Экологический мониторинг воды.

Автор: *Постникова Таисия Федосеевна* – учитель биологии средней общеобразовательной школы №32 г. Краснотурьинска, отличник народного просвещения.

А) Исследования загрязнений воды в реке

Выбрать несколько пунктов для исследования воды и провести физические, химические и биологические исследования с помощью доступных методов. Путем сравнения загрязнений выяснить самые загрязненные места в реке и причины их загрязнений, нанести их на карту.

Физические исследования воды

Оборудование:

- 1. Прозрачная пластиковая бутылка.
- 2. Диск для определения прозрачности воды.
- 3. Термометр.
- 4. Один апельсин или яркий резиновый мяч.
- 5. Отрезок веревки длиной один метр.
- 6. Отрезок веревки длиной 10 метров.
- 7. Секундомер или часы с секундной стрелкой.
- 8. Бумага и карандаш для записи результата.
- 9. Рулетка или сантиметровая лента.

Измерение ширины реки: положить на землю перед собой отрезок веревки длиной 1 метр. Прикинуть на глазок, сколько таких отрезков можно было бы уложить на ширине реки от одного берега до другого. Определить, к какому классу относится река: более 2 метров, 2-5 метров, 5 метров, 1-10 метров, более 10 метров.

Измерение скорости течения: уложить десятиметровую веревку вдоль берега реки. Встать у верхнего по течению конца веревки и бросить в реку апельсин или яркий мячик и засечь промежуток времени, за который апельсин доплывет до нижнего конца веревки. Опыт можно повторить. Записать среднее значение.

Измерение температуры воды: аккуратно войдите в воду. Погрузите термометр в воду. Подождите, пока установится цвет на шкале (не менее 50 секунд) и определите температуру, не вынимая термометр из воды.

Исследование речного дна: описывать речное дно следует только в том случае, если вы можете различить его сквозь слой воды.

Наличие мусора: на расстоянии 50 метров вдоль берега определить мусор на дне и у кромки воды.

Примечание: все остальные методы по физическим исследованиям воды смотри в методах по исследованию питьевой воды.

Оборудование:

- 1. Сачок для отбора проб растений и животных; сетка с галькой.
- 2. Пластиковая коробка или миска для изучения содержимого сачка.
- 3. Таблица определитель водных обитателей.

Пройдите по берегу реки 10 метров вверх и вниз и запишите, какие растения вы увидели. Чтобы узнать, какая рыба водится в реке, можно обратиться в местное отделение общества рыболовов и охотников. Для изучения других речных обитателей поместить сетку, заполненную речной галькой, на дно реки, закрепить ее и оставить на три недели. Через три недели всех обитателей сетки прополоскать в миске с водой и определить, кого удалось выловить.

С помощью сачка вылавливаются те обитатели, которые не попали в сетку с галькой. Перенести содержимое сачка или сети в пластиковую коробку или миску. Определить с помощью определителя.

Химическое исследование воды

Оборудование: индикаторные полоски для определения кислотности воды.

Таблица №8 Результаты измерений параметров воды в водоеме [2]

Параметры	Единица измерения	Результат измерений
1. Температура в момент взятия пробы		
2. Кислотность рН		
3. Электропроводность S	С	
4. Прозрачность	Усл.ед. Микросим.	
5. Цвет	Усл.ед.	
6. Осадок	Усл.ед.	
7. Запах	Усл.ед.	
8. Микроорганизмы (в капле под микроскопом)		

Оценка экологического состояния водоемов по макрозообентосу [3]

- 1. Провести сбор водной фауны по ряду проб в различных частях исследуемого водоема.
- 2. Провести определение основных присутствующих таксонов.
- 3. С помощью таблицы определить уровень загрязнения воды. При этом стараются найти таксоны, соответствующие верхним графам таблицы, то есть чистым водам.

При наличии в исследуемом водоеме хотя бы одного из организмов верхней части таблицы данному водоему автоматически присваивается класс чистоты не ниже выявленного. Наличие других организмов (характерных для более грязных вод) не

Таблица № 9 Оценка качества воды по организмам макрозообентоса

Перечень индикаторных таксонов	Условная оценка качества воды	
Личинки веснянки, ручейника – Риакофила	Очень чистая	
Губки, плоские личинки поденок, ручейник – Нейроклепсис, личинка вилохвосток	Чистая	
Роющие личинки поденок, Ручейники при отсутствии Риакофила и Нейроклепсис, личинки стрекоз Красотки и Плосконожки, личинки мошки, водяные клопы, крупные двустворчатые моллюски, моллюски-затворки	Удовлетворительная	
Личинки стрекоз при отсутствии Красотки и Плосконожки, личинки вислокрылки, водяной ослик, плоские пиявки, мелкие двустворчатые моллюски	Загрязненная	
Масса мотыля (личинки хиро), крыски, масса трубочника, червеобразные пиявки при отсутствии плоских	Грязная	
Макробеспозвоночных нет	Очень грязная	

Зообентос – это совокупность беспозвоночных животных, которые населяют дно водоемов, водную растительность и другие субстраты. Наиболее крупных представителей бентоса, с размерами тела более 2 мм, называют макробентосами. Население макробентоса составляют черви, моллюски, ракообразные, паукообразные, насекомые.

Относительная малоподвижность и крупные размеры представителей макробентоса облегчают задачу его обнаружения и распознавания начинающим экологам.

Для целей учебно-исследовательского мониторинга выбирают участки субстрата в стоячих водоемах в литоральной (прибрежной) зоне, а в реках – в прибрежной зоне и на перекатах. Пробы для целей экологического мониторинга следует отбирать в средних во всех отношениях участках водоема и, конечно, в различных его частях.

Для отбора проб лучше использовать скребок, который представляет собой надетую на палку металлическую рамку с режущей кромкой, к которой пришито сито из плотной бязи и мельничного газа. Работу необходимо выполнять в высоких (болотных) сапогах. При отборе проб на реках скребок устанавливается ниже по течению относительно субстрата, с которого ведется отбор, чтобы организмы вместе с взмученными частицами грунта попадали внутрь сита скребка с течением. Стоя в воде в сапогах, следует ворошить грунт ногой, продвигаясь в нем боком и располагая скребок ниже по течению. Каждая бентосная проба снабжается этикеткой.

Форма этикетки к пробе зообентоса:

Пункт –	
Глубина –	
Орудие лова –	
Дата отбора –	
Водоем –	
Количество скребков –	
Время отбора –	
Примечания –	
Фамилия –	

Если пункт наблюдений находится сравнительно недалеко от лаборатории, то проба сохраняется в незафиксированном виде для выборки живых организмов в лаборатории. Разобранная проба сортируется по систематическим группам до семейств. При пересчете численности и биомассы организмов необходимо пользоваться коэффициентами пересчета.

При отборе проб скребком за 1 количественную пробу или 1 скребок принять прохождение режущей кромки в поверхностном слое грунта полосы в 50 см. При ширине режущей кромки в 16 см (стандарт) облавливаемая площадь составит 800 см в квадрате, что меньше 1 квадратного метра в 12,5 раза. Следовательно, коэффициент пересчета 12,5.

Для получения более достоверных данных измерения не следует проводить однократно и только в одном месте. Полноценный мониторинг водоема должен включать отбор проб как минимум в пяти удаленных друг от друга точках в течение круглого года (по 2-3 пробы в сезон). Рекомендуется проводить измерения на участках реки до впадения в реку воды из очистных сооружений в нескольких точках и после очистных сооружений тоже в нескольких точках.

Б) Методика исследования питьевой воды [4]

Температуру воды определяют в водопроводных установках, погружая в струю стекающей воды на 5-10 минут спиртовой термометр. Отчет производят, не вынимая термометра из воды.

Мутность воды связана с присутствием в ней твердых частиц. Для определения мутности воду взбалтывают, наливают в пробирку так, чтобы высота воды была ровна 10 см и рассматривают в проходящем свете. Мутность характеризуется описательно: слабая, заметная, сильная.

Прозрачность воды зависит от присутствия взвешенных частиц и определяется путем чтения стандартного, хорошо освещенного шрифта через столб воды, налитой в градуированный цилиндр с плоским дном. Воду в цилиндр наливают постепенно, следя за четкостью шрифта до тех пор, пока буквы будут плохо различимы. Высота столба воды, налитой в цилиндр, выраженная в сантиметрах, является показателем прозрачности.

Осадок обусловлен оседанием взвеси, которая имелась в исходной воде. Характеризуется количественно (ничтожный, незначительный, заметный, большой - толщина слоя по отношению к объему пробы воды) и качественно (аморфный, кристаллический, хлопьевидный, илистый, песчаный и так далее), а также по цвету.

Цветность - окраску определяют как цвет воды: желтый, светло-желтый, зеленоватый, бурый и так далее.

Запах определяют при комнатной температуре и при нагревании до 50-60 градусов Цельсия, характеризуя качественно (ароматический, гнилостный, болотный, землистый, рыбный...) и количественно.

Таблица №10 Шкала для определения запаха в баллах

Балл	Степень	Характеристика					
0	нет	запах совсем не ощущается					
1	очень слабый	запах обычно не замечаемый, обнаруживаемый опытным наблюдателем					
2	Слабый	запах, обнаруживаемый потребителем, если на это обратить е внимание					
3	заметный	запах легко замечаемый, заставляющий воздержаться от питья					
4	очень сильный	запах резко выраженный, вода не пригодна для питья					

Измерение параметров питьевой воды

- взять пробы водопроводной воды по 200 мл каждая
- провести измерения параметров воды и занести результаты в таблицу
- сравнить результаты измерений и объяснить возможные причины различий

Таблица № 11

N º π/π	 Прозрачность	Цвет	Запах	Осадок в течение суток	Плотность (г/см3)	Кислотность pH

Измерение количества растворенных веществ в воде

- спомощью мерного стакана взять пробы воды (100 мл) из водопровода и пробы кипяченой воды
- определить с помощью весов массу пустых чашек, налить в них воду
- поставить обе чашки на электроплитку и нагревать до полного испарения воды
- после охлаждения взвесить обе чашки, определить массу осадков, занести результаты

в таблицу

Таблица №12 Результаты измерений массы осадков

Масса пустых чашек (г)	Объем воды (г)	Масса чашек с осадками (г)	Масса осадков (г)

к - предварительно кипяченая вода

Вычислить количество растворенных веществ (С) в питьевой воде по формулам:

$$C = \frac{m}{\nu} \, (\text{Me} \, / \, \text{n}); C = \frac{m_k}{\nu_k} \, (\text{Me} \, / \, \text{n})$$

Сравните результаты и объясните причины различий.

- _____
- [1] Бухвалов В.А. и др. Там же.
- [2] Там же.
- [3] Боголюбов А.С. Методы исследований зообентоса и оценки экологического состояния водоемов. М., 1997.
- [4] Бухвалов В.А. и др. Там же.