Measuring the uniqueness of technological capabilities

A data driven network exploration

Responsible: Duarte Oliveira e Carmo (s160951)

Supervisors: Anja Maier, Pedro Parraguez Ruiz

DTU Management Engineering Department of Management Engineering

Table of Contents

Introduction

- Background
- From questions to research
- Motivation and Goal
- Structure
- Previous Work

Methodology

- Tools
- Model + Macro Level

Results and discussion

- Meso Level
- Micro Level
- Other topics

Conclusion

- Implications for Theory
- Implications for Industry
- Future Research

Project Background

This project has its roots in two initiatives:

AMICA:

- Stands for Advanced Mapping of Industrial Capabilities for Climate
- Answer research specific questions
- Uses a complex system view
- It's our starting point
- Exploration stage

EURITO:

- Stands for EU Relevant, Inclusive, Timely, Trusted, and Open Research Innovation Indicators
- Bring data to the heart of R&I research
- Improving the decision making process
- Quantitative indicators and analysis

Main research question

How to measure the uniqueness of technological capabilities?

Motivation

"There is a need for companies, countries, and organizations to improve Research and Innovation policies. Most approaches rely on methods that are not reusable, applicable to other fields and produce hard to prove results."

Goal

"Helping decision makers understand highly interconnected technological landscapes and as a result make better R&I decisions using knowledge data. For this purpose biofuels will be used as testing ground."

Structure of the Analysis and Research Questions

DTU

Some example questions

International Organization:

- How is this technological field evolving over time?(RQMa1)
- What's the big picture for a certain research field? (RQMa3)

Policy Maker:

- How can I characterize a country in terms of its capability?(RQMe1)
- Are certain countries more related to others? (RQMe7)

Organizational Leader (CTO, Research Executive):

- Who could I collaborate with based on my capabilities? (RQMi2)
- Where is the industry collaborating in terms of capabilities? (RQMi4)
- Are there clusters of companies and universities? (RQMi2)

Some example questions

International Organization:

- How is this technological field evolving over time?(RQMa1)
- What's the big picture for a certain research field? (RQMa3)

Policy Maker:

- How can I characterize a country in terms of its capability?(RQMe1)
- Are certain countries more related to others? (RQMe7)

Organizational Leader (CTO, Research Executive):

- Who could I collaborate with based on my capabilities? (RQMi2)
- Where is the industry collaborating in terms of capabilities? (RQMi4)
- Are there clusters of companies and universities? (RQMi2)

Our research questions.

Approach

- The goal is to answer the main research question, characterize uniqueness
- A complex system view with emphasis on connections
- How do we combine technologies/resources?
- Terms Vs. Term pairs

OUTPUT

Approach

NPUT

PROCESS

Approach

DTU Ħ

Tools

٠

٠

٠

٠

Dictionary of terms (342)

jupyter

- Numpy + Math ٠
- Matplotlib + Seaborn ٠
- Scikit + Scipy ٠

DTU

Model requirements

The developed model needs to:

- Accurately portray research
- Preserve complexity
- Be scalable
- Allow for analysis

From asset to model

The filtering process

An example matrix

								-															
	1.1	100			÷.,	•					10	÷.,											
	, 1										-	•					-					1	
	· .	- ia -		- 6	27	17	1			1.4				'		2				- 24	· .	. '	
	•			11	1	• •					1	1											
	11000	1010	: 1.	121	2 Å .	5 H	11,2	÷ .		191	сŤф.	. 500	nĝo	: :	11	÷	111	:	12.5	:‡	1.1	τ÷.	÷;
		11		П.2.,	22	- 12				127	1	127	- 22			-				'		·	·
	1.14	1.6			1	5.7			•		1	1	1			f			-	1			· '·
l.	1.4.17	ЪĊ		15.	14	e C	1.14	27		1.51	45		-1.1			ī	_ :.	۰.		.2		λ., .	. NE
		1.1		12		e.Č				111.	4.	1.1	120	÷.,			1			÷	2	. :	1
			÷	17			1				- 21	1.				5		:		-	-	-	
	1. 11	444	÷.,	44.	12		• •			1.01	71	14	7.3	1.1		:	_ :		:	. ::	- 7	12	
		11		1.1	· F	eeo	dsto	cks					12										:
		$(m_{i})^{(1)}$		14	$\gamma (s)$	••••		•	11	- 24	- 6		÷ 4			í.	-		÷ .	ֈ.		5.0	
		1.1		41						- 1			12						-				
					1	• • •	1				1.											•••	
		11		1.		1.		•				1.				÷							
	111161	371	£ .,	191	z^{\pm}	i je	111	2	۰.	120	- i 1.	÷	: 2:	1	14	÷	44.5	. :	:23	14		3÷-	
	1.11		,							-	1.1												
_		171	:	1	11		17	•		17	4.	1	11	1		÷		•	·.	1			
	18.00	10	Ξ.		÷ 1	- 74				140	2.		- 84	÷		-			1				
	10.00	die.	es.	-44	11	i le	40	÷	18	121	100	÷н.	-26			+		1.5		\mathcal{L}_{R}	Υģ	, at .	
	1.1	111	•	11		1.1		11	12		- 14	1	18.	1.1		:	1	•					
	. ÷																						
						-													1	-			
	· ·.					:			-	÷.,	Ξ.					4	- 1		÷.,			Ξ.	
	$(1,1) \in \mathbb{R}$	$-1.5\pm$		1.00	1.12	• • •	·		• •	$(a_1)^{-1}$	$-\delta < \epsilon$		÷			\mathbf{r}_{i}	(\mathbf{a},\mathbf{a})	1-1	1 - 1	e tak			
		.1	1		÷.,					1	11		2.5	Pro	cessi	ing	Tech	nolc	gies	12		1	· .
	'	÷		• :		•••						• • •	~ `	• •		1	÷.,			-	1		• •
		31		÷.							11		÷.			÷.				12			1.1
																•							
		11.		- i		: Ľ		•		ŝ						ī			1.1	Э.	÷.,	1	1
	1.1			1		1.	1.5				12	:	1	. '		£	⁽	÷.	Ι.		÷.	1	- T.
				1.2				-					10.0			7		11	1.1.1	Н.	Q	÷.	
									• •				1.000			1			1° ' '	0	Dutc	outs	
	• , • •	- 475		14	11	22	111		5	-84	52	i:	<u>,</u>						1.14	14			ĺα.
	:	11.1			••	1				11	1	: '	1.1	•		1		.:		1	\mathbf{r}_{i}		1.1
		.:	:	.15	- 1	12	· · · /		:	÷.	÷.		4.	•		÷				÷÷.	÷.,	12	}-
		1.1.1															- 1		1.00	1.0	100	1.1	1.1

Capability Matrix of 2017: Annotaded version

How to characterize a year of scientific research?

Comparing capabilities

This allows for the coverage for more than just pairs.

DTU

The Macro Level

Are all years linearly related or do research gaps exist?

The Macro Level

Are all years linearly related or do research gaps exist?

Contextual Relationships at the Macro Level

Is the price of a consumer good related with the research volume? What terms are most affected by it?

Feedstock Name	Pearson Correlation Index							
sugarcane	0.789014							
cellulosic sugars	0.775341							
jatropha	0.771713							
sorghum	0.757299							
dry biomass	0.754884							
beets	0.751165							
dedicated energy crops	0.739525							
algae	0.728562							
hybrid poplar	0.721206							
soy	0.706675							

Capability Correlations at the Meso Level

Do international capability clusters exist?

Language matters Distance matters Other things might also matter

Capability Correlations at the Meso Level

Do international capability clusters exist?

GDP as context for the Meso Level

Does the amount of money of you have (GDP per capita) determine the space of possibilities or your technological freedom?

Collaboration at the Meso Level

Is capability similarity related to international collaboration?

Similar tend to not collaborate EU is similar and collaborates

Capability Correlations at the Micro Level

Do organizational clusters exist?

More sparse

Mostly 'pure' clusters

DTU and Univ.Minho

Capability Correlations at the Micro Level

Do organizational clusters exist?

Typifying organizational collaborations

Do universities collaborate more with universities or businesses? Do businesses collaborate more with universities?

Most universities collaborate with other universities.

Organizations are more 'closed to collaboration'.

The triple helix

Using Spectrums at the Micro Level

Is there value in characterizing an organization's capability as a spectrum?

Organization Capability Spectral Representation: Zoom

Studying the balance of terms

How does the volume of patenting and publishing of a certain scientific term evolve over time? Is there a bias towards patenting or publishing?

It should depend on the term.

Validating the term pair approach

Term frequency vs term pair frequency? What characterizes better the scientific capability of a country or organization?

Implications for Theory

- Volume (even normalized) of R&D is not sufficient to characterize a country value terminology
- There might not be a perfect indicator, but this helps
- Value lies in the complexity
- Triple helix can be quantified
- Engineering system approach is valuable and scalable

Implications for the industry

- A workflow that transforms data to insights
- These are just some of the possible questions and tools to answer them
- Not only a way to help answer, but also a way of evaluating strategies (even monitor)
- Untapped areas of research and uniqueness, sandbox for exploration
- Transparent decision making

Further Research

- Expand to other areas, not only biofuels
- Study more external factors (not only sugar and oil) and see if they relate. Possibly predict better areas.
- Use capability correlation and test a wide range of characteristics to improve current indicators.
- Dig deeper into uniqueness and DNA
- Investigate the collaborations (why do entities collaborate? what are the consequences in terms
 of capabilities?)
- Limitations: normalizations, data under-representation, language...

DTU

Learn more

Website: <u>https://technological-capabilities.eu</u>

Repository: <u>https://github.com/duarteocarmo/technological_capabilities</u>

Thank you!