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Summation-by-parts (SBP) operators are traditionally viewed as high-order
finite-difference operators, but they can also be interpreted as finite-element operators
with an implicit basis. Such an element-based perspective leads to several opportunities
that we describe. The first is provided by generalized one-dimensional SBP operators,
which maintain the desirable properties of classical SBP operators while permitting flexi-
ble nodal distributions. The second opportunity is to extend the SBP definition to multiple
dimensions, and a recently proposed definition for multidimensional SBP operators paves
the way for time-stable, high-order finite-difference operators on unstructured grids. The
final opportunity that we discuss is an analogy with the continuous Galerkin finite-element
method, which leads to a systematic means of assembling SBP operators on a global do-
main from elemental operators. To illustrate these ideas, high-order SBP operators are
constructed for the triangle and tetrahedron, and the former are assembled into a global
SBP operator and applied to a linear convection problem on a triangular grid.

I. Introduction

The potential efficiency of high-order methods in the numerical solution of partial differential equations
has been recognized since the seminal work of Kreiss and Oliger [1] and Swartz and Wendroff [2]. A large va-
riety of high-order methods have been proposed, including but not limited to finite-difference, finite-element,
finite-volume, spectral-difference, spectral-element, and spectral-volume methods. Within each category
there exist several different approaches as well. Recently the discontinuous Galerkin and flux reconstruction
methods have drawn considerable interest. The recent high-order workshops provide a snapshot of some
high-order approaches of current interest [3].

The interest in high-order methods is often limited to simulations of turbulent flows, aeroacoustics, wave
propagation problems, and other time-dependent flows. However, the basic advantage of high-order methods
is not restricted to time-dependent problems, and such methods have the potential to be beneficial in the
computation of steady flows governed by the Reynolds-averaged Navier-Stokes (RANS) equations as well [4].
An important point is that the benefit of a high-order method over a second-order method increases as the
numerical accuracy requirement becomes more stringent. Therefore one can argue that, given that turbulence
modeling and transition prediction can introduce significant error, one often does not have a particularly
stringent numerical accuracy requirement when solving the steady RANS equations. However, there are
conditions, e.g. cruise conditions for an aircraft, where turbulence modeling errors are small and grid density
requirements for appropriate numerical accuracy are high. In these cases, a high-order method may well be
advantageous in providing equivalent numerical accuracy at a lower cost than a second-order method.

For many problems of interest, high-order methods cannot achieve their design order due to singularities
such as an airfoil trailing edge or discontinuities such as shock waves. Even under these conditions high-order
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methods can nevertheless show efficiency benefits as a result of their accuracy in smooth regions of the flow.
Adaptive methods provide a complementary means of improving efficiency. Either the method or the grid
can be adaptively altered based on the solution. Such approaches are particularly powerful when a functional
is of interest and adjoint variables are used to determine the impact of the local discretization error on the
accuracy of the functional.

Given the wide variety of methods available, it is of interest to understand and quantify the trade-offs
associated with various approaches in the context of popular problem classes. For example, for reasonably
smooth geometries, it is possible to generate a smooth mesh and therefore a smooth coordinate transfor-
mation in order to enable the application of a finite-difference method extended to multiple dimensions
through Kronecker products, which can be very efficient. However, this approach becomes less effective
with increasing geometric complexity such that it becomes difficult to find a sufficiently smooth coordinate
transformation. For such problems, unstructured grids are appealing, in particular methods that do not rely
on mesh smoothness, i.e. those with interior degrees of freedom. Unstructured grids are often better suited
to solution adaptation as well.

For the purpose of this paper, we will consider operators that can be divided into two classes. The first
class is associated with the traditional implementation of finite-difference methods in which the operator in
the interior of the domain is the same for all nodes and there are a finite number of boundary operators. The
second class is associated with finite-element methods, where each element has an associated operator and
the elements are coupled in some manner. In the first class of methods the mesh is refined by increasing the
number of grid nodes, which in turn increases the number of nodes where the interior operator is applied.
In the element approach, increased resolution can be achieved either by increasing the number of elements
(h refinement), by raising the order of the operators by increasing the number of interior degrees of freedom
(p refinement), or both (hp refinement).

One of the observations in this paper is that methods normally considered to be finite-difference methods
can be applied in an element type manner. One often defines finite-difference methods in terms of two
properties. First, they are derived on the basis of Taylor series expansions [5]. Second, they involve a
repeating interior operator. Here we will consider only the first property to be the defining characteristic of
a finite-difference method. Thus we will consider any matrix operator for which the entries of the matrix
are derived through a Taylor series analysis or equivalent to be a finite-difference operator. In particular
this contrasts with the use of basis functions in the finite-element method. This perspective opens up some
useful avenues to derive new methods with excellent properties. Such ideas are not new. There are many
methods, for example some meshless methods, that are difficult to classify and blur the distinction between
finite-difference and finite-element methods. An interesting recent example can be found in Ditkowski [6],
where he introduces finite-difference operators with two- and three-point blocks.

A primary challenge in deriving high-order finite-difference methods is to ensure their stability. Typically
this involves finding boundary operators that can be used in conjunction with a selected interior operator
to produce a stable schemea with global accuracy as close as possible to that associated with the interior
operator. Summation by parts (SBP) operators provide an excellent mechanism to construct provably stable
high-order finite-difference methods [7–10]. Typically used with a weak imposition of boundary conditions
through penalty terms (simultaneous approximation terms or SATs [11–13]), SBP methods are strongly
associated with finite-difference methods implemented in the traditional manner with a repeating interior
operator, as described above. However, Carpenter and Gottlieb [14], Gassner [15], and others have shown
that other known operators possess the SBP property. Del Rey Fernández et al. [16] showed that the SBP
concept can be extended from the classical operators on a uniform nodal distribution implemented in the
traditional manner to include operators that involve a nonuniform nodal distribution (which need not include
boundary nodes) and are not characterized by a repeating interior operator. This generalization leads to
both operators that can be implemented either in the traditional finite-difference manner or as elements and
operators that can only be implemented as elements. This is discussed further in Section II B.

Together the concept of a generalized SBP operator and the idea of implementing SBP operators as
elements provide a basis for the development of SBP operators in multiple dimensions applicable to unstruc-
tured grids. This provides a very general approach to the construction of stable operators for such grids
with the potential to lead to novel operators with useful properties. The objective of this paper is to present
an approach to the construction of SBP operators in multiple dimensions and to provide some examples of
operators that can be constructed within the wide class of possible operators.

aWe will discuss only time stability here.
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In the next section we provide a quick introduction to the SBP property. This is followed by a discussion of
the implementation of finite-difference methods as elements. Next we review the generalized SBP approach.
In Section III we introduce a theoretical basis for SBP operators in multiple dimensions and provide examples
on simplices in two and three dimensions.

II. One dimensional SBP operators

A. Classical SBP Operators

Our starting point is the classical SBP operator definition, proposed by Kreiss and Scherer [7] with the
purpose of bringing to higher-order finite-difference methods a systematic means of proving stability. These
operators are defined as

Definition 1 Classical summation-by-parts operators: Consider the domain [xL, xR]. The matrix
Dx is a degree p classical one-dimensional SBP approximation to the first derivative ∂

∂x on the nodes S =
{xL + (i− 1)h}ni=1, where h = xR−xL

n−1 , if

1. Dxx
ax = axx

ax−1, ∀ ax ≤ p;

2. Dx = H−1Sx = H−1
(
Qx + 1

2Ec

)
, where Qx is antisymmetric, and Ec = diag(−1, 0, . . . , 0, 1), and;

3. H is symmetric positive definite.

Property 1 ensures that the difference matrix Dx is exact for the restriction of polynomials xax onto the
grid. The system of equations that needs to be solved to satisfy this property can equivalently be derived
using Taylor series expansions. The second property (2) ensures provable stability, while the last property
ensures that classical SBP operators result in a consistent discrete representation of integration by parts.

To show how these operators are used to discretize PDEs, we consider the linear convection equation

∂U
∂t

= −∂U
∂x

, x ∈ [0, 1], (1)

with the following boundary condition, where the initial condition is immaterial for the current discussion,

U(0, t) = G(t). (2)

Using the classical diagonal-norm SBP first-derivative operator of order two, which leads to solutions of
global order three, to discretize the spatial derivative in (1) results in the following ODE:

duh

dt
= −Dxuh, (3)

where, for now, we ignore the imposition of interface conditions, and, for simplicity, we focus on diagonal
norm matrices. For p = 2 and a nodal distribution with n nodes, the diagonal norm matrix H is given as

H =
1

n− 1
diag

[
17
48

59
48

43
48

49
48 1 . . . 1 49

48
43
48

59
48

17
48

]
, (4)
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and

Qx =

0 59
96 − 1

12 −
1
32

− 59
96 0 59

96

1
12 − 59

96 0 59
96 − 1

12

1
32 0 − 59

96 0 2
3 − 1

12

1
12 − 2

3 0 2
3 − 1

12

. . .
. . .

. . .
. . .

. . .
1
12 − 2

3 0 2
3 − 1

12

1
12 − 2

3 0 59
96 0 − 1

32

1
12 − 59

96 0 59
96 − 1

12

− 59
96 0 59

96

1
32

1
12 − 59

96 0





. (5)

The repeating interior operator is highlighted in blue, while the green triangles contain entries that originate
from the repeating interior operator and ensure that the resultant Qx is skew symmetric. The entries
associated with the boundary operators are shown in the grey boxes. The matrix Dx = H−1Sx is given as

Dx = (n− 1)



− 24
17

59
34 − 4

17 − 3
34

− 1
2 0 1

2
4
43 − 59

86 0 59
86 − 4

43
3
98 0 − 59

98 0 32
49 − 4

49
1
12 − 2

3 0 2
3 − 1

12
. . .

. . .
. . .

. . .
. . .

1
12 − 2

3 0 2
3 − 1

12
4
49 − 32

49 0 59
98 0 − 3

98
4
43 − 59

86 0 59
86 − 4

43

− 1
2 0 1

2
3
34

4
17 − 59

34
24
17



. (6)

To apply this operator on a nodal distribution with a larger number of nodes, the matrix is expanded by
inserting additional interior operators, which does not require a change to the operators near the boundaries.
The entries in Qx and H are specified by satisfying the degree conditions (1) and the constraint that H be
positive definite.

For diagonal-norm classical FD-SBP operators up to p ≤ 4, using 2p boundary operators at the first and
last 2p nodes leads to unique H that are positive definite. For p > 4 increasing numbers of boundary nodes
need to be used in order to introduce degrees of freedom such that a positive-definite H can be found.

Boundary conditions can be weakly enforced using SATs. The discretization of the linear convection
equation using a SAT to enforce the left boundary condition is given as

duh

dx
= −Dxuh + SATL = Ahuh + b (7)

where the SAT is
SATL = σL (u1 − G(t))H−1e1, (8)

e1 =
[

1 0 . . . 0
]T

, and the range of σL is determined by conservation, accuracy, and stability. The

term SATL in (7) enforces the boundary condition weakly; that is, at the boundary node, both the PDE
and the boundary condition are enforced simultaneously.
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Using σL = −1 results in a discretization that is conservative, stable, and dual-consistent [17], which
leads to superconvergent approximations of functionals. Using this value of the penalty parameter, results
in the following matrix operator Ah in (7):

Ah = (n− 1)



− 24
17 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

. . .
. . .

. . .
. . .

. . .

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 − 24

17



, (9)

where the entry modified by the SAT has been highlighted in blue. We will use the value σL = −1 throughout
this section.

B. Finite Difference Operators Implemented as Elements

Now consider a domain with 18 grid nodes divided into two blocks of nine nodes each. It is necessary to
couple the solution in the first block, uh, to the solution in the second block vh. This can be accomplished
using SATs. For the first element, the required coupling SAT is

SATuh
= σuh

(un − v1)H−1en, (10)

where en =
[

0 . . . 0 1
]T

, while for the second element, the SAT is given by

SATvh
= σvh

(v1 − un)H−1e1. (11)

The choice σuh
= 1

2 and σvh
= − 1

2 results in a nondissipative interface coupling [18], and this is what we
use for the remainder of this section. With this choice of SAT penalty parameters we get
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Ah = 4



− 24
17 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 0 − 24

17

24
17 0 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 − 24

17



. (12)

The highlighted entries are those that have been modified by the SATs. In the traditional finite-difference
approach, mesh refinement is accomplished by increasing the number of nodes where the interior operator
is applied, as follows:

Ah =
n− 1

2



− 24
17 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

. . .
. . .

. . .
. . .

. . .

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 0 − 24

17

24
17 0 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

. . .
. . .

. . .
. . .

. . .

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 − 24

17



. (13)

However, one can alternatively keep the block size at nine and increase the number of blocks, leading to
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the following matrix operator with N elements:

Ah =


Âh SATuh

SATvh
Ãh SATuh

. . .
. . . . . .

SATvh
Ãh SATuh

SATvh
Ăh

 , (14)

where

Âh = 8
N



− 24
17 − 59

34
4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 0



, Ãh = 8
N



0 − 59
34

4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 0



,

Ăh = 8
N



0 − 59
34

4
17

3
34

1
2 0 − 1

2 0

− 4
43

59
86 0 − 59

86
4
43

− 3
98 0 59

98 0 − 32
49

4
49

− 1
12

2
3 0 − 2

3
1
12

− 4
49

32
49 0 − 59

98 0 3
98

− 4
43

59
86 0 − 59

86
4
43

0 1
2 0 − 1

2

− 3
34 − 4

17
59
34 − 24

17



,

(15)
SATvh

is a 9× 9 matrix given by

SATvh
=

8

N


0 . . . 0 24

17

0 . . . 0 0
...

...
...

0 . . . 0 0

 , (16)

and SATuh
is a 9× 9 matrix given by

SATuh
=

8

N


0 0 . . . 0
...

...
...

0 0 . . . 0

− 24
17 0 . . . 0

 . (17)

This describes the element approach, and the 9×9 blocks can be considered to be elements, even though their
origin is as finite-difference operators. These elements can be arbitrarily large, but they have a minimum
size. For this case, with p = 2, the minimum size is nine nodes such that at least one matrix row corresponds
to the interior operator.

C. Generalized SBP Operators

In the last section, we have shown that classical SBP operators can be applied using either the traditional
finite-difference approach or the element approach. As described in the Introduction, the SBP concept can
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be applied to a much broader set of operators. The generalized SBP definition is given by the following [16]:

Definition 2 Generalized summation-by-parts operators: Consider the domain [xL, xR] and the set
of nodes S = {xi}ni=1, which is not necessarily uniform and may not include nodes at the boundaries. The
matrix Dx is a degree p one-dimensional generalized SBP approximation to the first derivative ∂

∂x if

1. Dxx
ax = axx

ax−1, ∀ ax ≤ p;

2. Dx = H−1Sx = H−1
(
Qx + 1

2Ex

)
, where Qx is antisymmetric;

3.
(
xi
)T

Exx
j = xi+j

R − xi+j
L , ∀ i+ j ≤ r, where r ≥ p, Ex is symmetric, and;

4. H is symmetric positive definite.

An important difference from Definition 1 is the change from Ec to Ex; this frees us from having to
include boundary nodes in the nodal distribution, while retaining the ability to prove stability in exactly the
same way as is done for classical SBP operators. The definition of Ex is motivated by approximating the
term VU|xR

xL
that results from integration by parts in one dimension. As we shall see in Section III, this idea

motivates the definition of multidimensional SBP operators for unstructured meshes.
As an example, consider a p = 2 generalized SBP operator constructed on the hybrid Gauss-trapezoidal-

Lobatto quadrature nodes proposed by Alpert [19]. On nine nodes, which is the minimum number of nodes
for this operator, the difference matrix is given as

Dx = 8



− 864
553

408811
209034 − 2901

7742 − 278
14931

− 41
78 0 15

26 − 2
39

967
7932 − 49855

71388 0 11800
17847 − 56

661

139
23460

9971
164220 − 1770

2737 0 1296
1955 − 162

1955

1
12 − 2

3 0 2
3 − 1

12

162
1955 − 1296

1955 0 1770
2737 − 9971

164220 − 139
23460

56
661 − 11800

17847 0 49855
71388 − 967

7932

2
39 − 15

26 0 41
78

278
14931

2901
7742 − 408811

209034
864
553



, (18)

the diagonal-norm matrix is given by

H =
1

8
diag

[
553
1728

129623
108864

661
672

1955
1944 1 1955

1944
661
672

129623
108864

553
1728

]
, (19)

and the nodal distribution is given by

x =
1

8

[
0 12

13 2 3 4 5 6 (8− 12
13 ) 8

]T
. (20)
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Using two nine-node elements with the same SAT coefficients as in the previous section results in

Ah = 4



− 864
553 − 408811

209034
2901
7742

278
14931

41
78 0 − 15

26
2
39

− 967
7932

49855
71388 0 − 11800

17847
56
661

− 139
23460 − 9971

164220
1770
2737 0 − 1296

1955
162
1955

− 1
12

2
3 0 − 2

3
1
12

− 162
1955

1296
1955 0 − 1770

2737
9971

164220
139

23460

− 56
661

11800
17847 0 − 49855

71388
967
7932

− 2
39

15
26 0 − 41

78

− 278
14931 − 2901

7742
408811
209034 0 − 864

553
864
553 0 − 408811

209034
2901
7742

278
14931

41
78 0 − 15

26
2
39

− 967
7932

49855
71388 0 − 11800

17847
56
661

− 139
23460 − 9971

164220
1770
2737 0 − 1296

1955
162
1955

− 1
12

2
3 0 − 2

3
1
12

− 162
1955

1296
1955 0 − 1770

2737
9971

164220
139

23460

− 56
661

11800
17847 0 − 49855

71388
967
7932

− 2
39

15
26 0 − 41

78

− 278
14931 − 2901

7742
408811
209034 − 864

553



.

(21)
This is an example of a GSBP operator that can be implemented either in the traditional finite-difference
manner by increasing the number of matrix rows where the interior operator is applied or in the element
manner in which the element size is fixed and the number of elements is increased. However, in contrast to
classical operators, the nodal distribution has a number of nodes that are not evenly spaced, in this case one
node at either boundary. The benefit of this is that truncation error terms from the boundary terms can be
significantly reduced. This results in solutions that have a smaller global error compared to classical SBP
operators and therefore leads to more efficient discretization methods [20, 21]. Similar operators have been
derived by Mattsson et al. [22].

Next we consider a GSBP operator of fixed size that can therefore only be implemented as an element. We
construct a diagonal-norm GSBP operator on the Chebyshev-Gauss-Lobatto quadrature nodes [16], which
have the following nodal distribution for five nodes:

x =
1

2

[
−1 − 1

2

√
2 0 1

2

√
2 1

]T
+

(
1

2

)
1, (22)

where 1 is a vector of ones. The operator is given by

Dx = 2



− 15
2 8 + 2

√
2 −6 8− 2

√
2 − 5

2

−1− 1
4

√
2 0 3

2

√
2 −

√
2 1− 1

4

√
2

1
2 −

√
2 0

√
2 − 1

2

−1 + 1
4

√
2

√
2 − 3

2

√
2 0 1 + 1

4

√
2

5
2 −8 + 2

√
2 6 −8− 2

√
2 15

2


, (23)

the norm matrix is

H =
1

2
diag

[
1
15

8
15

4
5

8
15

1
15

]
. (24)
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Using two elements again with the same SAT coefficients results in

Ah = 2



− 15
2 −8− 2

√
2 6 −8 + 2

√
2 5

2

1 + 1
4

√
2 0 − 3

2

√
2

√
2 −1 + 1

4

√
2

− 1
2

√
2 0 −

√
2 1

2

1− 1
4

√
2 −

√
2 3

2

√
2 0 −1− 1

4

√
2

− 5
2 8− 2

√
2 −6 8 + 2

√
2 0 − 15

2
15
2 0 −8− 2

√
2 6 −8 + 2

√
2 5

2

1 + 1
4

√
2 0 − 3

2

√
2

√
2 −1 + 1

4

√
2

− 1
2

√
2 0 −

√
2 1

2

1− 1
4

√
2 −

√
2 3

2

√
2 0 −1− 1

4

√
2

− 5
2 8− 2

√
2 −6 8 + 2

√
2 − 15

2



.

(25)
The various operators shown above demonstrate some of the operators that can be constructed with

the SBP property. With the SATs shown, these schemes are provably stable, but they can be used with
other methods for coupling the elements as well. In the context of the linear convection equation on a
uniform mesh, the traditional finite-difference approach with a repeating interior operator is generally the
most accurate approach. The boundary operators are typically less accurate than the interior operator;
with the traditional approach their effect is minimized. However, as discussed in the introduction, the
element approach offers opportunities for h and p refinement and extends to unstructured grids in multiple
dimensions. This suggests that a hybrid approach that combines the traditional finite-difference approach
with an element approach could be efficient. Together with the extensions afforded by the generalized SBP
definition, the perspective discussed here in which SBP operators are applied as elements paves the way for
multidimensional SBP operators. This enables the provable stability of the SBP approach to be brought
to methods for unstructured grids, with the advantages described in the Introduction. As noted previously,
some finite-element methods have the SBP property, and these methods can be applied on unstructured grids.
However, the current approach enables the development of very general methods in multiple dimensions with
the SBP property and thus provable stability. This generality arises as a result of the fact that, in contrast
to finite-element methods, SBP operators do not require the existence of a basis in closed form. This is
explored in the next section.

III. Multidimensional SBP Operators for Unstructured Grids

A. Formal Definition

Our proposed definition for multidimensional SBP operators is given below. The definition extends the
notion of generalized one-dimensional SBP operators proposed in Ref. [16] and is inspired by the classical
SBP operators of Kreiss and Scherer [7]. In the definition, the vectors xax and yay are the monomials xax

and yay evaluated at the nodes, and ◦ denotes the Hadamard product.

Definition 3 Two-dimensional summation-by-parts operators: Consider an open and bounded do-
main Ω ⊂ R2 with a piecewise-smooth boundary Γ. The matrix Dx is a degree p SBP approximation to the
first derivative ∂

∂x on the nodes S = {(xi, yi)}ni=1 if

1. Dxx
ax ◦ yay = axx

ax−1 ◦ yay , ∀ ax + ay ≤ p;

2. Dx = H−1Sx = H−1
(
Qx + 1

2Ex

)
, where Qx is antisymmetric, and Ex is symmetric;

3. H is symmetric positive definite, and;

4. (xax ◦ yay )
T Exx

bx ◦ yby =

∮
Γ

xax+bxyay+bynxdΓ, ∀ ax + ay, bx + by ≤ τEx
,

where τEx
≥ p and n = [nx, ny]

T
is the outward pointing unit normal to the surface Γ.

As with the one-dimensional operator definitions, each of the properties in Definition 3 plays an important
role. Property 1 ensures accuracy by requiring that the SBP operators are exact for polynomials of total
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degree p. Property 2 is needed in order to mimic integration by parts, which is vital for proving time stability.
Property 3 guarantees that the matrix H can be used to define a norm, which is also needed to prove stability.

Properties 1, 2, and 3 are also present in the definitions of classical SBP operators. The last property,
Property 4, is introduced in the multidimensional case to ensure that Ex not only mimics the surface integral
in the integration-by-parts formula, but approximates it to some order. A similar property is required by
generalized one-dimensional SBP operators; see Definition 2.

B. Multidimensional SBP Operators with Diagonal Norms

In this section we consider the implications of Definition 3 when the matrix H is diagonal. Perhaps the most
important implication is the following existence theorem.

Theorem 1 Let nmin = (p + 1)(p + 2)/2 be the dimension of the polynomial basis of degree p in two
dimensions, and consider the node set S = {(xi, yi)}ni=1 with n ≥ nmin nodes. Define the generalized
Vandermonde matrix V ∈ Rn×nmin whose columns are the monomial-basis elements evaluated at the nodes;

V:,k = xi ◦ yj−i, k =
j(j + 1)

2
+ i+ 1, ∀ j = 0, 1, . . . , p, i = 0, 1, . . . , j.

If the columns of V are linearly independent, then the existence of a cubature rule of degree τH ≥ 2p − 1
with positive weights is necessary and sufficient for the existence of degree p diagonal-norm SBP operators
approximating the first derivatives ∂

∂x and ∂
∂y on the node set S.

See [23] for the proof. Theorem 1 tells us that the entries of H and nodes of an diagonal norm SBP operator
define a cubature rule. This is consistent, by design, with classical [24] and generalized SBP theory [16].
Note that a similar theorem holds for higher dimensional SBP operators.

Theorem 1 also suggests a strategy for constructing SBP operators on a particular domain: first find
a cubature rule with positive weights. This is the approach we take in Section III D when building SBP
operators for simplices. Finally, we note that, while Theorem 1 provides conditions for existence, it does not
say anything about the uniqueness of SBP operators of a particular degree on a given domain.

The connection between H and cubature opens the door to a number of other results that allow us to
characterize Sx and its anti-symmetric part Qx.

Theorem 2 The matrix Sx of a degree p diagonal-norm multidimensional SBP operator defines a degree
τSx

= min (τEx
, 2p) approximation to the bilinear form

BSx
(V,U) =

∫
Ω

V ∂U
∂x

dΩ. (26)

Similarly, the matrix Qx is a degree τQx
= min (τEx

, 2p) approximation to the bilinear form

BQx
(V,U) =

∫
Ω

V ∂U
∂x

dΩ− 1

2

∮
Γ

VUnxdΓ. (27)

Again, we refer the interested reader to Ref. [23] for the proof.
Suppose {φi}ni=1 is a nodal basis, such that φi(xj , yj) = δij . Then Theorem 2 provides an integral

interpretation for the entries of Sx and Qx:

(Sx)i,j =

∫
Ω

φi
∂φj
∂x

dΩ, and (Qx)i,j =

∫
Ω

φi
∂φj
∂x

dΩ− 1

2

∮
Γ

φiφjnxdΓ.

Consequently, SBP discretizations have a finite-element-like variational interpretation; however, as mentioned
earlier, the basis {φi}ni=1 does not exist in closed form, in general. This is perhaps the key feature that
distinguishes SBP operators from FEM ones.
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C. Assembly of Global SBP Operators from Elemental Operators

The multidimensional SBP definition could, in theory, be applied directly to arbitrary domains. Indeed,
such an approach was pursued by Chiu et al. [25, 26]. Their mesh-free operators are closely related to our
proposed multidimensional SBP operators; the difference is that they do not include Property 4. A practical
disadvantage of seeking SBP operators on a global domain with prescribed node locations and stencils is that
a positive diagonal mass matrix may not exist for the desired accuracy [27]. This is not surprising in light of
Theorem 1, since existence of the SBP operator is linked to the existence of a cubature with positive weights.

Instead of constructing SBP operators globally, we pursue a more conventional element-based approach;
that is, construct SBP operators for individual elements or cells and then couple them. Even here there are
multiple possibilities. The popular approach for tensor-product SBP operators on multiblock grids is to use
simultaneous approximation terms to couple the elements. This is analogous to the discontinuous Galerkin
method, including the multivalued nature of the solution along element interfaces.

Given the similarities between the DG finite-element method and the SBP-SAT method, one may ask
if there would be a way to relate SBP discretizations to the continuous Galerkin finite-element method. In
other words, can we use SBP operators defined on individual elements to assemble a single SBP operator on
the global domain? The answer, provided formally in the following theorem, is yes.

Theorem 3 Suppose the domain Ω is partitioned into a set of K non-overlapping subdomains Ω(k) with

boundaries Γ(k), and each subdomain is associated with a set of nodes S(k) ≡ {(x(k)
i , y

(k)
j )}ni=1, such that

(x
(k)
i , y

(k)
i ) ∈ Ω̄(k). Let D

(k)
x =

(
H(k)

)−1
S

(k)
x be a degree p SBP operator for the first derivative ∂/∂x on the

node set S(k), k = 1, 2, . . . ,K, and define

H ≡
K∑

k=1

n∑
i=1

H
(k)
i,i Z

(k)(i, i), and Sx ≡
K∑

k=1

n∑
i=1

n∑
j=1

(
S(k)
x

)
i,j

Z(k)(i, j),

where the matrix Z(k)(i, j) maps the local indices (i, j) on element k to global indices. Then Dx = H−1Sx is
a degree p SBP operator on the global node set S ≡ ∪kS(k).

The proof, although somewhat tedious, is straightforward and can be found in Ref. [23].
Theorem 3 is significant, because it provides a systematic way to construct a high-order finite-difference

operator that satisfies the summation-by-parts definition on an arbitrary domain. To the best of our knowl-
edge, such a systematic construction has not been proposed or exploited in the SBP literature previously.
Below, we use Theorem 3 to construct SBP operators on unstructured triangular grids.

D. SBP Operators for the Triangle and Tetrahedron

In this section, we describe the construction of multidimensional SBP operators for the triangle and tetra-
hedron. Unlike classical one-dimensional SBP operators, we do not restrict the operators to uniform node
distributions, because Theorem 1 would then dictate that the entries of H be cubature weights on a uniform
node distribution.

Our procedure for constructing SBP operators of degree p on simplex elements proceeds as follows.

1. Identify a cubature rule with positive weights that is exact for polynomials of degree 2p − 1 on the
reference triangle or tetrahedron; we also require that

(
p+d−1
d−1

)
nodes lie on each face of the elements,

where d is the spatial dimension. For most of the operators considered in this work, cubature rules
meeting our requirements can be found in the literature; see, for example, [28–31]. The one exception
is the seventh degree cubature on the tetrahedron, which was constructed using methods from the
literature [31–33]. The cubature weights are inserted into H and the cubature nodes become the nodes
of the SBP operator.

2. Next, the boundary operators Ex, Ey, and Ez are constructed. Since the faces have
(
p+d−1
d−1

)
nodes, we

use a nodal polynomial basis to construct mass matrices for each face; see [34, pg. 187] for the details.

3. Finally, the antisymmetric matrices Qx, Qy, and Qz are determined using the accuracy conditions. The
accuracy conditions lead to systems with more equations then unknowns; however, the SBP definition
ensures that these systems are consistent. In fact, for degrees p ≥ 3 there are fewer constraints than
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p = 1, 3 nodes p = 2, 7 nodes p = 3, 12 nodes p = 4, 18 nodes

p = 1, 4 nodes p = 2, 11 nodes p = 3, 24 nodes p = 4, 45 nodes

Figure 1. Node distributions for the SBP operators on triangles (upper figures) and tetrahedra (lower figures).

unknowns, so an infinite number of SBP operators exist; in this situation we take the minimum-norm
solution to the least-squares problem [35].

We remark that each step in the above procedure is not unique: there are many different cubature rules
that can be chosen, many different boundary operators that can be constructed, and many different ways
the accuracy conditions can be satisfied, in general.

Figure 1 shows the nodal distributions of the simplex-based SBP operators considered in this work. The
SBP operators themselves were generated using the Julia package SummationByParts, which is available for
download on githubb.

The simplex SBP operators that result from the above procedure are similar to operators in the diagonal
mass-matrix spectral-element (SE) method [29–31] and the spectral-difference (SD) method [36]. There are,
however, some notable differences.

While the SBP matrix H is identical to the mass matrix used in the diagonal mass-matrix SE method, the
stiffness matrices of the two methods differ. For example, in the SE method of Giraldo and Taylor [31], the
stiffness matrix is defined using a polynomial basis with bubble functions, thus the integrand in the bilinear
form is of higher degree than the cubature rule can integrate exactly. Consequently, the SE stiffness matrix
does not have the symmetry structure of an SBP operator nor its stability properties.

The simplex SBP operators may also be regarded as SD operators in which the unknowns and fluxes are
collocated. This collocation is typically avoided in the SD method, because the same formal accuracy can
be achieved using fewer unknowns if the two sets of points are distinct [36]; however, the goal of reducing
the number of unknowns on a per element basis assumes a discontinuous solution space. The perspective
changes when elemental SBP operators are assembled into global operators, since some nodes will be shared
by multiple elements.

bhttps://github.com/OptimalDesignLab/SummationByParts.jl
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Figure 2. L2 error between the solution at t = 1 and initial condition for different mesh spacing and operators.

E. Multidimensional SBP Results

The accuracy and stability properties of the triangular SBP operators are demonstrated by discretizing the
two-dimensional linear convection equation on a periodic domain:

∂ψ

∂t
+ u · ∇ψ = 0, ∀ (x, y) ∈ [0, 1]2,

ψ(x, 0, t) = ψ(x, 1, t), and ψ(0, y, t) = ψ(1, y, t),

where u = (1, 1) is the advection velocity and the initial condition is given by

ψ(x, y, 0) =
1

4
(3− cos(2πx)) (3− cos(2πy)) .

The square domain is divided into 2N2 triangular elements, and a global SBP operator is constructed
using the assembly process described in Section C. The classical 4th-order Runge-Kutta scheme is used to
time march the solution. For the results below, we define a nominal element size of h = 1/N .

Figure 2 shows the L2-norm of the solution error versus element size after one period. For a given mesh
size, the results show the expected qualitative benefit of using higher order discretizations. A similar benefit
is observed when plotting accuracy versus CPU time [23]. We note that the p = 2 and p = 4 results have
asymptotic convergence rates that are lower than expected; we do not have an explanation for this behavior
at this time.

Next we demonstrate the stability properties of the multidimensional SBP operators. Figure 3 shows the
spectra of the discretized spatial operator u ·∇ for the SBP operators corresponding to p = 1 through p = 4
with h = 1/12. The spectra have essentially zero real part, which is consistent with the continuous spatial
operator. For comparison, the figure also plots the spectra corresponding to the diagonal-mass matrix SE
method. The SE operators’ spectra have significant real parts.

The mimetic behaviour of the SBP spectra has practical implications. Figure 4 shows the change in the
L2 norm of the solution over two periods using the p = 2, p = 3 and p = 4 SBP discretizations and the
corresponding SE discretizationsc. The CFL number, defined as

√
2∆t/h, was fixed at 0.01 to ensure temporal

errors were negligible relative to the spatial errors. The results clearly illustrate exponential growth in the

cThe p = 1 SBP and SE discretizations are identical to one another and both are stable, so they are not included in the
plot.
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p = 1 (SBP) p = 2 (SBP) p = 3 (SBP) p = 4 (SBP)

p = 1 (SE) p = 2 (SE) p = 3 (SE) p = 4 (SE)

Figure 3. Eigenvalue distributions for the two discretizations of the linear convection problem: SBP (upper
row) and the SE (lower row).

solution norm of the SE discretizations, while the SBP discretizations remain stable. The slight increase in
the solution error of the p = 2 and p = 3 SBP results is due to temporal error that can be eliminated using
a smaller CFL number.

IV. Summary and Discussion

When they proposed the classical SBP definition, Kreiss and Scherer [7] were seeking a finite-difference
scheme that mimics integration-by-parts in the same way that finite-element methods do. Given this lineage,
it should not be surprising to find that SBP operators share a significant amount in common with finite-
element methods. Indeed, one can interpret an SBP operator as the result of applying the Galerkin finite-
element method to a nominal basis that has no closed form expression.

Viewing SBP operators from the perspective of elements with implicit basis functions opens a number of
avenues. In the case of generalized one-dimensional SBP operators, this perspective provides the flexibility
to alter the nodal distribution to meet various criteria of interest. The element perspective also opens the
door to multidimensional SBP operators defined on, for example, triangular or tetrahedral domains. Finally,
by exploiting an analogy with the continuous Galerkin method, we demonstrated that SBP operators on a
global domain can be assembled from elemental operators.

As discussed in the introduction, many different high-order discretizations have been proposed. What
advantage do SBP operators offer over these other methods? While many existing methods offer accuracy,
efficiency, and provable stability, we believe a significant advantage of the SBP framework is its flexibility,
which enables a wide range of provably stable methods to be constructed with properties tailored to par-
ticular problem classes. The work described in this paper scratches the surface of this flexibility and many
opportunities remain to be explored.
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Figure 4. Change in the solution energy norm over two periods using SBP and SE discretizations for p = 2,
p = 3 and p = 4. The p = 1 case is time-stable for both discretizations. Note the use of a symmetric logarithmic
scale on the vertical axis.
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9Svärd, M. and Nordström, J., “Review of summation-by-parts schemes for initial-boundary-value-problems,” Journal of

Computational Physics, Vol. 268, No. 1, 2014, pp. 17–38.
10Del Rey Fernández, D. C., Hicken, J. E., and Zingg, D. W., “Review of summation-by-parts operators with simultaneous

approximation terms for the numerical solution of partial differential equations,” Computers & Fluids, Vol. 95, No. 22, 2014,
pp. 171–196.

11Carpenter, M. H., Gottlieb, D., and Abarbanel, S., “Time-stable boundary conditions for finite-difference schemes solving
hyperbolic systems: Methodology and application to high-order compact schemes,” Journal of Computational Physics, Vol. 111,
No. 2, 1994, pp. 220–236.
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