
E
IA

S
-9

 S
D

K

2
http://eias3d.com Copyright 1998-2011, EIAS3D

EIAS Version 9.0
Shaders API

Table of Contents

	 Page
	 1.0	 Introduction…………………………………………………………………..	 1
	 2.0	 Basic Shader Structure……………………………………………………..	 2
	 3.0	 Memory Allocation…………………………………………………………..	 5
	 4.0	 Shader Interfaces……………………………………………………………	 6
	 4.1	 Shader Interfaces……………………………………………………………	 6
	 5.0	 Advanced Shader Interfaces……………………………………………….	 9
	 6.0	 Custom Shader’s Data……………………………………………………..	 11
	 6.1	 Custom Shaders – Using the Memory Block…………………………….	 12
	 6.2	 Custom Shaders – Using the Graph and Gradient Controls……………	 12
	 7.0	 Shader Data Structures…………………………………………………….	 13
	 8.0	 About the Shader Shade Record………………………………………….	 14
	 9.0	 Detecting a Shader’s Host………………………………………………….	 17
	 10.0	 Determining Render Context………………………………………………	 18
	 11.0	 About Shader Access Attributes…………………………………………..	 19
	 12.0	 About Shader Pixel Variables……………………………………………..	 21
	 13.0	 About Shader Map Variables………………………………………………	 23
	 14.0	 Anti-Aliasing…………………………………………………………………	 24
	 15.0	 Illumination Shaders………………………………………………………..	 26
	 16.0	 Shader Geometry Access………………………………………………….	 30
	 17.0	 Intercommunication Between Shaders and Model Plug-Ins……………	 30
	 18.0	 Multi-threaded Shaders…………………………………………………….	 31
	 19.0	 Miscellaneous……………………………………………………………….	 33
	 19.1	 How EI Shaders relate to Renderman shaders………………………….	 33
	 19.2	 Distance from the camera to the pixel being rendered………………….	 34
	 19.3	 Shader Preview Thumbnails……………………………………………….	 34
	 19.4	 Copy Protection……………………………………………………………..	 34
	 20.0	 Building an EI Shader………………………………………………………	 35
	 20.1	 File Names and Extensions………………………………………………..	 35
	 20.2	 Resource Files………………………………………………………………	 36
	 20.3	 Endian Issues………………………………………………………………..	 37

EIAS Version 9.0
Shaders API

http://eias3d.com

E
IA

S
-9

 S
D

K

3
http://eias3d.comCopyright 1998-2011, EIAS3D

1.0 Introduction

What exactly is a shader? Well, in its simplest form, it’s a way of creating a texture map for a piece of geometry.
If you’ve explored the shader library included with ElectricImage, you’ve seen everything from Fractal Noise to
Parquet Flooring.

Some of you out there may be asking why a shader is so cool. Couldn’t we just use a photograph of a brick
wall rather than the Brick shader? Well, yes you could, but in order to get the same level of detail in a traditional
texture map, you would have to scan it at very high resolutions. This results in a large file that has to be read
from disk. So speed is one benefit. Detail is another. Since the algorithms for shaders typically have unlimited
detail, they rapidly outdistance 2D texture maps.

Another major benefit of shaders is that they can be defined in three dimensions. When you apply a flat texture
map to an object, the texture “bleeds” all the way through the object. Three-dimensional shaders can create dif-
ferent data in the third dimension. Fractal Noise is an example of this. The shading on the back side of a cube
is different from that of the front side. Note: not all shaders are three dimensional.

Shaders can do some very complex magic. Since the shaders have access to virtually every material and
surface variable, you can create shaders that can’t be duplicated by traditional texture mapping. A shader that
mimics a brushed aluminum surface with circular polishing can be created including circular highlights that track
light sources.

So what’s the down side? Writing shaders can make your brain hurt because you really have to visualize the
end results in your mind and then break them down for coding. But probably the most difficult aspect of writing
shaders is anti-aliasing. You will probably spend most of your time dealing with anti-aliasing issues. For shad-
ers, anti-aliasing refers not just to resolving jaggies as we are used to but to how the shader is sampled. More
on this later.

http://eias3d.com

E
IA

S
-9

 S
D

K

4
http://eias3d.com Copyright 1998-2011, EIAS3D

2.0 Basic Shader Structure
So, on to the specifics of the ElectricImage Shader API. There are four functions that are required by the host
(ElectricImage or Camera). The first is

	 SInt32 EIShaderInformation(EIShaderInformationRec *theInformationPtr)

This function has three purposes. First, the variable values are set up. Second, the shader specifies which
material and surface attributes it needs access to. Third, the shader specifies which material and surface vari-
ables it is generating. The following code is from the Eroded shader.

	 /* Get the shader interface parameters */
		
	 GetShaderInterface(theInformationPtr->shaderInterface,
 				 theInformationPtr->shaderInterfaceSize,
 				 &theShaderInterface);
	
This function call sets up the shader variables. They are either initialized, read from the project file animation
channels, or byte-swapped for use with other processor types such as Intel processors.
It’s important to know that the shader variables defined in the source code match those in the resource template
or you won’t be able to access the variables from within ElectricImage. More on this later.

	 /* Setup the shader attribute access flags */
	
	 if (BTST(theShaderInterface.shaderErodeHoles, 31))
		 BSET(theInformationPtr->shaderFeatureFlags, shaderClipFlag);

	 /* Setup the shader feature flags */
	
	 BSET(theInformationPtr->shaderFeatureFlags, shaderAntialiasFlag);
	 BSET(theInformationPtr->shaderFeatureFlags, shaderColorFlag);
	 SETFLAG(theInformationPtr->shaderFeatureFlags, shaderBumpFlag,
 				 (theShaderInterface.shaderBumpStrength != 0.0));

The above code tells the host what shading attributes the shader generates. Here, we are generating a clip
map only if the user has turned on the Erode Holes checkbox. We are also performing anti-aliasing, setting the
surface color and generating a bump map.

If we wanted to build a shader that makes use of some surface attribute such as specular highlighting, you
would set up access flags in the Information phase as well. For example, the Granite shader generates differ-
ent surface shading when rendering areas of specular highlights.

http://eias3d.com

E
IA

S
-9

 S
D

K

5
http://eias3d.comCopyright 1998-2011, EIAS3D

The Second is

	 SInt32 EIShaderInitialize(EIShaderInitializeRec *theInitializePtr)

This is where you perform memory allocation. You also initialize noise libraries and transfer shader interface
variables into the shader’s data structures. Have a look at the initialize code from the Eroded shader.

	 ShaderDataPtr theShaderData;
	
	 /* Initialize the noise library */
	
	 if (!InitNoise((NoiseMallocFunction)theInitializePtr->HostMalloc, NULL))
		 return shaderMemoryError;
	
	 /* Allocate the shader’s private data record */
	
	 theShaderData = (ShaderDataPtr)theInitializePtr->HostMalloc(sizeof(ShaderDataRec));
	 if (theShaderData) {
	 ShaderInterfaceRec theShaderInterface;
		
	 /* Get the shader interface parameters */
		
	 GetShaderInterface(theInitializePtr->shaderInterface,
	 theInitializePtr->shaderInterfaceSize, &theShaderInterface);

		 /* Setup the shader’s private data */
		
	 theShaderData->shaderDensity = theShaderInterface.shaderDensity;
	 theShaderData->shaderBumpStrength = theShaderInterface.shaderBumpStrength;
	 theShaderData->shaderErodeHoles = BTST(theShaderInterface.shaderErodeHoles, 31);
	 theShaderData->shaderHoleMin = theShaderInterface.shaderHoleMin;
	 theShaderData->shaderHoleMax = theShaderInterface.shaderHoleMax;
	 theShaderData->shaderHoleColor.a = theShaderInterface.shaderHoleColor.argb.a / 255.0;
	 theShaderData->shaderHoleColor.r = theShaderInterface.shaderHoleColor.argb.r / 255.0;
	 theShaderData->shaderHoleColor.g = theShaderInterface.shaderHoleColor.argb.g / 255.0;
	 theShaderData->shaderHoleColor.b = theShaderInterface.shaderHoleColor.argb.b / 255.0;
	 theShaderData->shaderSurfaceColor.a =
						 theShaderInterface.shaderSurfaceColor.argb.a / 255.0;
	 theShaderData->shaderSurfaceColor.r =
						 theShaderInterface.shaderSurfaceColor.argb.r / 255.0;
	 theShaderData->shaderSurfaceColor.g =
						 theShaderInterface.shaderSurfaceColor.argb.g / 255.0;
	 theShaderData->shaderSurfaceColor.b =
						 theShaderInterface.shaderSurfaceColor.argb.b / 255.0;
		
		 /* Return the pointer to the shader’s private data to the host */
		
		 theInitializePtr->shaderData = theShaderData;
		 return shaderNoError;
	 } else
		 return shaderMemoryError;

First off, this shader makes use of the Perlin Noise library so we need to allocate some memory for it and initial-
ize the noise space. Second, we need to allocate memory for the shader’s main data structure. If both of these
memory allocation calls are successful, we then transfer the shader control variables from the host and copy
them into the shader’s main data structure. We’ll discuss how the main data structure is defined later.

http://eias3d.com

E
IA

S
-9

 S
D

K

6
http://eias3d.com Copyright 1998-2011, EIAS3D

The third major shader function is

	 SInt32 EIShaderFinish(EIShaderFinishRec *theFinishPtr)

This is where the shader deallocates any memory that is reserved in the Initialize phase. All shaders need to
deallocate the memory used by the main data structure. In the case of the Eroded shader, we also need to
shut down the Noise library.

	 /* Get rid of the shader’s private data */
	
	 theFinishPtr->HostFree(theFinishPtr->shaderData);
	
	 /* Finish the noise library */
	
	 FinishNoise((NoiseFreeFunction)theFinishPtr->HostFree);
	 return shaderNoError;

Finally, the most important function call is

	 SInt32 EIShaderShade(EIShaderShadeRec *theShadePtr)

This is where all the magic happens. The Eroded shader does the following:

	 ShaderDataPtr theShaderData = (ShaderDataPtr)theShadePtr->shaderData;
	 float factor = CalcEroded(theShadePtr);
	
	 /* Calculate the shader transparency */
	
	 if (theShaderData->shaderErodeHoles &&
 	 BTST(theShadePtr->shaderFeatureFlags, shaderClipFlag))
		 theShadePtr->shaderClip = factor;
	
	 /* Calculate the shader color */
	
	 if (BTST(theShadePtr->shaderFeatureFlags, shaderColorFlag))
		 MixARGBColors(&theShaderData->shaderHoleColor,
 				 &theShaderData->shaderSurfaceColor,
 				 &theShadePtr->shaderColor, factor);

	 return shaderNoError;

We’ll discuss the details of this magical function later.

http://eias3d.com

E
IA

S
-9

 S
D

K

7
http://eias3d.comCopyright 1998-2011, EIAS3D

3.0 Memory Allocation
Shader Memory allocation is similar to the standard C malloc function.. The call to allocate memory for the
shader’s main data structure is as follows:

	 theShaderData =
			 (ShaderDataPtr)theInitializePtr->HostMalloc(sizeof(ShaderDataRec));

This looks a bit odd but the way it works is the memory allocation procedure pointer is part of the initialization
data structure. Just pass the number of bytes you need and the pointer to that memory is returned.

Deallocation of this memory should be done only in the Finish phase. Again, the procedure point to the Free
function comes along with the call from the host to your Finish routine.

	 theFinishPtr->HostFree(theFinishPtr->shaderData);

Allocation of memory for Noise libraries is somewhat different.

	 if (!InitNoise((NoiseMallocFunction)theInitializePtr->HostMalloc, NULL))
		 return shaderMemoryError;

While the procedure pointer to the malloc function is still used, it must be typecast to NoiseMallocFunction.

You should check any pointers you allocate to see if they are NULL. If so, then the memory allocation was not
successful and you should return a shaderMemoryError.

http://eias3d.com

E
IA

S
-9

 S
D

K

8
http://eias3d.com Copyright 1998-2011, EIAS3D

4.0 Shader Interfaces

Another nice feature of the ElectricImage Shader API
is that the author does not have to spend enormous
amounts of time designing a user-interface. Here are
the steps to create or edit a shader’s UI interactively via
the EI Interface Builder utility:

- Run the EI Interface Builder and open an existing .rsc
file or create a new one.

- Open or create the shader’s UI dialog with WINT ID =
21000.

Have a look at the WINT resource for the Eroded shader in the EI Interface Builder. There are three required
items for shader interfaces: OK button, Cancel button and a user item (invisible Group) that is used for the
shader preview. The programmer does not have to write any special code to generate the preview.

- Edit the existing items, create or delete new edit boxes, check boxes, popups or color buttons. Note that val-
ues you enter in the controls will be used by Animator as default values.

- When you have finished editing, select “Shader..” from the Utility menu. Before opening the Shader dialog, the
EI Interface Builder can ask you to create an OK button, a Cancel button, or a Preview Group if they are missing
and/or perform “Recompute IDs” if new items were added or old ones deleted.

http://eias3d.com

E
IA

S
-9

 S
D

K

9
http://eias3d.comCopyright 1998-2011, EIAS3D

The list contains all controls that can be used by
Animator. With the choice “Auto” (“#Controls in Use”
panel), all controls are mapped into your ShaderData
record and automatically displayed in Animator. If you
plan on creating an advanced shader with a custom
UI then you can limit the number of mapped controls
to handle others manually via your own code.

- Edit the items’ attributes used by Animator: Name,
Type, Animation Channel and Limited Range flag. Set
the desired items order by dragging them in the list.

- specify the shader’s additional options in the “Op-
tions” Tab.

- Press Ok and save your changes.

4.1 What to Store in Resource Files
Note: this section describes the low-level format of
resources. In addition, it covers how you can create
and edit all resources (except WINT) via Resourcerer
or another native resource editor on the Macintosh.
However direct resource editing is longer and re-
quires more effort than using the EI Interface Builder
utility. It’s described here for backward compatibility
only. Normally you create and edit all resources via
EI Interface Builder.

1) Resource type ‘WINT’, ID = 21000. This is the
shader’s UI dialog shown in Animator. This resource
should be created via the EI Interface Builder appli-
cation on the Macintosh.

2) Resource type ‘PTKC’, ID = 128. This holds in-
formation about the shader’s parameters as de-
scribed below. This resource should be created via
the Resorcerer application on the Macintosh. To edit
‘PTKC’ you need an additional resource ‘TMPL’ used
by Resorcerer. You can grab it from the EI Shader
SDK resource files.

http://eias3d.com

E
IA

S
-9

 S
D

K

10
http://eias3d.com Copyright 1998-2011, EIAS3D

3) Resource type ‘PICT’, ID = 21000. This is the picture used by Animator as the
shader’s thumbnail.

4) Resource ‘EIMP’, ID =128 is used by Camera to detect how the shader should
be used at render time: as multi-threaded (supports being called in parallel) or not.
The resource is 4 bytes long, a zero value means multithreading is enabled, any
other means that multi-threading is not supported by the shader.

The shader’s resource file can optionally contain platform-dependent resources.

http://eias3d.com

E
IA

S
-9

 S
D

K

11
http://eias3d.comCopyright 1998-2011, EIAS3D

5.0 Advanced Shader Interfaces

Since EI 5.5, shaders can have a custom UI similar to EI plug-ins. The custom UI can be combined with the
older PTKC-style interface in an arbitrary way. For example a shader can handle only few controls and leave
most of the others for the host.

If a shader wants a custom UI, it must define the function

	 SInt32 EIShaderInterfaceSetup(EIShaderInterfaceSetupRec * theInterfaceSetup);

This function should have ‘export’ attribute, same as EIShaderShade, EIShaderInformation and others routines
called by host. The EIShaderInterfaceSetupRec is defined as:

typedef struct {
	 void * hostDialogReference;			 /* The host’s shader dialog reference */
	 SInt32 hostResourceFile; 			 /* The host’s shader resource file */
	 EIHostInterfaceSetupProc HostInterfaceSetup; /* Interface setup callback */
} EIShaderInterfaceSetupRec

http://eias3d.com

E
IA

S
-9

 S
D

K

12
http://eias3d.com Copyright 1998-2011, EIAS3D

When EIShaderInterfaceSetup is called, a shader should copy the EIShaderInterfaceSetupRec content into its
internal variabes.

	 /* Shader’s variables */

	 EI_Dialog * shaderDialog;
	 EI_Resource shaderResource;
	 EIHostInterfaceSetupProc shaderSetupProc;

	 /* Save theInterfaceSetup values */

	 shaderDialog = (EI_Dialog *) theInterfaceSetup->hostDialogReference;
	 shaderResource.data = theInterfaceSetup->hostResourceFile;
	 shaderSetupProc = theInterfaceSetup->HostInterfaceSetup;

As a result, the shader received the handles of the UI dialog and the shader’s resource file. From here the
shader can use all the EI UI API functions and install UI callbacks for controls and the main dialog, load alerts,
and other dialogs from resources and so on. The shader should not destroy handles to dialog and resources it
receives. The host does this automatically.

Using HostInterfaceSetup callback, shaders can simulate input for PTKC controls. For example:

	 EI_Control * control = EI_FindControlByID(shaderDialog, MY_EDIT_ID);
	 EI_SetEditTextString(control, “0.0”);
	 shaderSetupProc(shaderDialog, hostSetShaderItem, MY_EDIT_ID, 0);

This has the same effect as if a user typed “0.0” in the edit box with MY_EDIT_ID. The shader’s preview will be
updated by the host because MY_EDIT_ID is in the list of PTKC items.

http://eias3d.com

E
IA

S
-9

 S
D

K

13
http://eias3d.comCopyright 1998-2011, EIAS3D

6.0 Custom Shader’s Data
Since EI 7.0, shaders can have Custom items, including Memory Block, Graph, and Gradient. The correspond-
ing UI item should be created as a Group EI control.

In the shader’s data structure all custom items should be defined as void * or any pointer. This field should not
be converted between little/big endian. A shader should not attempt to release or replace this pointer.

typedef struct {
	 UInt32 shaderOwnerType;
	 UInt32 shaderVersionNum;
	 void * shaderMemoryBlock;
} ShaderInterfaceRec, *ShaderInterfacePtr;

http://eias3d.com

E
IA

S
-9

 S
D

K

14
http://eias3d.com Copyright 1998-2011, EIAS3D

6.1 Custom Shaders - Using the Memory Block
For custom items with a Memory Block type, the item’s value is a pointer to a EI_MemoryBlock structure

typedef struct {
	 UInt32	 blockSize; 		 /* Data size in bytes */
	 void *	 blockData;				 /* Data pointer */
	 UInt32	 blockSign;				 /* Data signature, should be ‘MEMO’ */	
} EI_MemoryBlock, EI_MemoryBlockPtr;

The shader should examine and read this structure’s content. The data pointed to by blockData should not be
modified. When a shader needs to update data, it should call the EIHostInterfaceSetupProc callback received
from EIShaderInterfaceSetup. A new data block should be passed as the argument. Example:

	 /* Fill EI_MemoryBlock */

	 EI_MemoryBlock theBlock;
	 theBlock.blockSize = (UInt32) myDataSize;
	 theBlock.blockData = myDataPtr;
	 theBlock.blockSign = ‘MEMO’;

	 /* tell host to update */

	 shaderSetupProc(shaderDialog, hostSetShaderItem, MY_MEMO_ID, &theBlock);

The host copies the data pointed to by blockData, thus the original data can be released after the update call.

6.2 Custom Shaders – Using the Graph and Gradient Controls
For these custom controls the pointer is EIGraphData or EIGradientData opaque pointers respectively.

At render time there is no UI thus shaders can get UI data by using EI_GraphDataRequest (EI_GradientDa-
taRequest). See header files EI_GraphData.h (EI_GradientData.h).

During preview, user input is automatically stored. If a shader needs more advanced actions, for example reset
graph, change interpolation style, etc., then the shader can obtain the control’s handle and use the UI functions
defined in EI_GraphControl.h (EI_GradientControl.h)

http://eias3d.com

E
IA

S
-9

 S
D

K

15
http://eias3d.comCopyright 1998-2011, EIAS3D

7.0 Shader Data Structures
There are two data structures that you need to define to store the shader variables. In the case of the Eroded
shader, they look like this.

typedef struct {
	 UInt32 shaderOwnerType;
	 UInt32 shaderVersionNum;
	 float shaderDensity;
	 float shaderBumpStrength;
	 SInt32 shaderErodeHoles;
	 float shaderHoleMin;
	 float shaderHoleMax;
	 ARGB shaderHoleColor;
	 ARGB shaderSurfaceColor;
} ShaderInterfaceRec, *ShaderInterfacePtr;

typedef struct {
	 float shaderDensity;
	 float shaderBumpStrength;
	 SInt32 shaderErodeHoles;
	 float shaderHoleMin;
	 float shaderHoleMax;
	 ARGBReal shaderHoleColor;
	 ARGBReal shaderSurfaceColor;
} ShaderDataRec, *ShaderDataPtr;

The first is used to transfer data to and from the user-interface. The first two fields are required. ShaderOwner-
Type is a four-character code that identifies and distinguishes one shader from another. ShaderVersionNum is
the version of the shader. This allows you to write new versions of a shader and be able to add data fields not
present in previous versions without destroying any pre-existing animation data.

Usually, variables in the ShaderInterfaceRec will correspond directly to those in the ShaderDataRec. However,
in the case of color variables, Camera uses floating-point representations whereas EI animation channels are
integer-based. Therefore, they must be converted when the data is transferred from the interface to the guts
of the shader.

http://eias3d.com

E
IA

S
-9

 S
D

K

16
http://eias3d.com Copyright 1998-2011, EIAS3D

8.0 About the Shader Shade Record
Most shaders will make use of the EIShaderShadeRec structure. The shader is given access to this during the
EIShaderShade call.

typedef struct {
	 void *shaderData;				 /* Pointer to the shader’s private data */
	 EIHostLightProc HostLight;			 /* The lightsource access callback */
	 EIShaderPixelRec *shaderPixel;		 /* Pixel perameters */
	 EIShaderAttributesRec *shaderAttributes;	 /* Shading attributes */
	 EIShaderMapRec *shaderMap;			 /* Mapping parameters */
	 UInt32 shaderAccessFlags;		 /* Flags specifying which host parameters the shader may write */
	 UInt32 shaderFeatureFlags;			 /* Flags specifying which features the shader supports */
	 float shaderDX, shaderDY, shaderDZ;		 /* The displacement vector */
	 float shaderBumpA, shaderBumpB, shaderBumpC;	 /* The bump perturbation vector */
	 float shaderClip;				 /* The shader clip factor */
	 RGB_Real shaderTransparency;			 /* The shader transparency color */
	 RGB_Real shaderReflection;			 /* The shader reflection color */
	 ARGB_Real shaderColor;				 /* The shader color and opacity */
	
	 /* Version 2.0 */
	
	 EIHostCastRayProc HostCastRay;		 /* The ray trace callback */
	 RGB_Real shaderHighlight;			 /* The shader highlight color */
	 RGB_Real shaderRefraction;			 /* The shader refraction color */
	
	 /* Version EI 7.0 */
	
	 EILayerShadeProc HostLayerShade;		 /* The update layer(s) callback */

	 /* Version EI 8.0 */
	
	 EIModelShadeProc HostModelShade;		 /* The model data access callback */
	
} EIShaderShadeRec, *EIShaderShadePtr;

Through this data structure, the shader can access almost anything. The first parameter, *shaderData, is a
pointer to the shader’s programmer-defined variables. Next, HostLight, is a procedure pointer for accessing
light sources. Third, *shaderPixel , is a very large data structure that describes specifiy rendered pixel attri-
butes. Following this, *shaderAttributes, is the structure for accessing and modifying material attributes. Next,
*shaderMap, are the animator-defined map parameters.

http://eias3d.com

E
IA

S
-9

 S
D

K

17
http://eias3d.comCopyright 1998-2011, EIAS3D

shaderAccessFlags is used to specify which parameters the shader needs to be able to read and write. Access
to a particular attribute is true or false and they are encoded into a single 32-bit variable. The bit numbers are
defined below.

/* shaderAccessFlags -- Shader attribute value access flags */

#define accessReferenceFlag					 0
#define accessAmbientFlag					 1
#define accessSpecularFlag					 2
#define accessTransparencyFlag				 3
#define accessReflectionFlag					 4
#define accessLuminanceFlag					 5
#define accessDiffuseFlag					 6
#define accessTransmissionFlag				 7
#define accessEdgeTransparencyFlag				 8
#define accessEdgeTransparencyValueFlag			 9
#define accessEdgeDiffuseValueFlag				 10
#define accessEdgeSpecularValueFlag				 11
#define accessEdgeReflectionValueFlag				 12
#define accessEdgeAmbientValueFlag				 13
#define accessEdgeLuminanceValueFlag				 14
#define accessEdgeTransmissionValueFlag			 15
#define accessHighlightFlag					 16
#define accessRefractionFlag					 17
#define accessTerminatorFlag					 18
#define accessGlowFlag						 19
#define accessBloomFlag					 20
#define accessAlphaFlag					 21
#define accessOpacityFlag					 22
#define accessGlossFlag					 23
#define accessShadeFlag					 24
#define accessEdgeTransparencyDropoffFlag			 25
#define accessEdgeDiffuseDropoffFlag				 26
#define accessEdgeSpecularDropoffFlag				 27
#define accessEdgeReflectionDropoffFlag			 28
#define accessEdgeAmbientDropoffFlag				 29
#define accessEdgeLuminanceDropoffFlag			 30
#define accessEdgeTransmissionDropoffFlag			 31

Similarly, the shader needs to specify what its purpose in life is. This is done through the shaderFeatureFlags
bitfield parameter. There are three types of flags encoded into this parameter. The Mode flags specify if the
shader calculates specific color channels and/or if it is an “illumination” or “lightsource” shader. The Checker-
Board shader sets the shaderColorFlag. That means that the shader generates the surface color and overrides
any other surface colors. The Granite shader doesn’t set this flag. Instead, it uses surface color, specular, and
reflection values.

http://eias3d.com

E
IA

S
-9

 S
D

K

18
http://eias3d.com Copyright 1998-2011, EIAS3D

A lightsource shader is a special purpose shader that allows you to do things light a circular brushed aluminum
surface where the specular highlight discs interact with lightsources in the scene.

/* shaderFeatureFlags -- mode flags -- if none are set, the shader generates a surface
material */

#define shaderIlluminationFlag		 0	 /* lightsource shading is performed by the shader */
#define shaderColorFlag			 1	 /* shader is designed to calculate a specific channel color */

The Write flags pertain to the more physical attributes of a surface that that the shader can generate.

The Eroded shader generates Clip values and Bump values in addition to color values.

/* shaderFeatureFlags -- write flags */
/* The shader sets these flags to indicate which values are written by the shader */

#define shaderClipFlag			 12	 /* shader writes shaderClip */
#define shaderTransparencyFlag	 13	 /* shader writes shaderTransparency */
#define shaderDisplacementFlag	 14	 /* shader writes shaderDisplacement */
#define shaderReflectionFlag		 15	 /* shader writes shaderReflection */
#define shaderBumpFlag			 16	 /* shader writes shaderBump(ABC) */

When a shader generates Clip, Transparency, Displacement, Reflection, or Bump information, the generated
values are returned to the host in the associated fields of the EIShaderShadeRec.

The Read flags allow the shader to access mostly anti-aliasing information.

/* shaderFeatureFlags -- read flags */
/* The shader sets these flags to indicate which values are read by the shader */

#define shaderPositionVectorsFlag		 28	 /* shader reads shadeD(XYZ)D(UV) */
#define shaderAntialiasPositionFlag		 29	 /* shader reads shade(XYZ)(12) */
#define shaderAntialiasNormalFlag		 30	 /* shader reads shadeNormal(ABC)(12),
 								 shaderNormal(XYZ)(12) */
#define shaderAntialiasFlag			 31	 /* shader reads map_(XYZ)(12), map_D(XYZ) */
								

Shaders don’t automatically get access to everything. They can only access parameters that are specifically
requested. This keeps the volume of data being transferred to a minumum so that Camera runs as fast as
possible.

http://eias3d.com

E
IA

S
-9

 S
D

K

19
http://eias3d.comCopyright 1998-2011, EIAS3D

NOTE: A shader should examine the anti-alias flags listed above (bits 28..31) for any shaded point. Do not as-
sume a flag should be ON because it was set by the shader via EIShaderInformation. It is true only for “primary”
(screen) points. In the case of ray-trace reflections, refractions and others, the anti-alias flags are always OFF.

9.0 Detecting a Shader’s Host
Some shaders do create advanced effects at render time and cannot provide an effective preview. To detect
when a shader is being called by Camera, the shader must define an exported EIShaderHostInfo function. This
function is called by the host and ID of the host is returned. Example:

SInt32 EIShaderHostInfo(EIShaderHostInfoRec * theShaderHostInfo)
{
 /* Save host ID in shader’s variable */

 theHostID = theShaderHostInfo->hostID;
 return shaderNoError;
}

/* Check host */

if (theHostID == QUADWORD(‘EIAR’)) {
 /* Camera is running, do things for render */
}
else {
 /* The shader runs in Animator */
}

It’s important to note that when the shader is being called by Animator it does not only mean “preview in Anima-
tor”. In Animator, shaders can be called for different purposes, for example, Shader Variance palette drawing. The
shader must handle all calls by Animator correctly.

http://eias3d.com

E
IA

S
-9

 S
D

K

20
http://eias3d.com Copyright 1998-2011, EIAS3D

10.0 Determining Render Context
Since EI 6.0, a shader can determine what it was called for in the render pipeline by examining bits 4..7 of
shaderFeatureFlags.

#define shaderModeFlag0			 4
#define shaderModeFlag1			 5
#define shaderModeFlag2			 6
#define shaderModeFlag3			 7

The values are:

#define shaderShadeNormal		 0	 /* the screen point is shaded */
#define shaderShadeZBuffer		 1	 /* the Z-Buffer point is shaded */
#define shaderShadeGlow			 2	 /* the glow point is shaded */
#define shaderShadeReflectionRT		 3	 /* the RT reflection point is shaded */
#define shaderShadeRefractionRT	 4	 /* the RT refraction point is shaded */
#define shaderShadeShadowRT		 5	 /* the RT shadow point is shaded */
#define shaderShadeHostCastRay		 6	 /* the point hit by HostCastRay is shaded */
#define shaderShadeBufferGI		 7	 /* the GI buffer point is shaded */
#define shaderShadeRayGI		 8	 /* the GI reverse illumination point is shaded */
#define shaderShadeSky			 9	 /* the sky (background/foreground) point is shaded */
#define shaderShadeReflectionSky	 10	 /* the sky reflection (background/foreground) point is
shaded */
#define shaderShadeReflectionSkyRT	 11	 /* the RT reflection sky point is shaded */
#define shaderShadeRefractionSkyRT	 12	 /* the RT refraction sky point is shaded */
#define shaderShadeUnknown		 13	 /* the shaded point is unknown */

Based on this information, shaders can optimize their calculations and/or create special effects for ray-trace
reflections, refractions, shadows and so on. Example:

	 SInt32 shadeMode = (theShaderShade->shaderFeatureFlags >> 4) & 0xF;

	 switch (shadeMode) {
		 case shaderShadeNormal:
			 /* Do a full processing */
		 break;

		 case shaderShadeReflectionRT:
		 case shaderShadeRefractionRT:
			 /* Do a simplified processing */
		 break;
	 }

http://eias3d.com

E
IA

S
-9

 S
D

K

21
http://eias3d.comCopyright 1998-2011, EIAS3D

11.0 About Shader Access Attributes
Shaders have the ability to use all of an object’s material settings. This is especially useful for cases where the shader
is responsble for generating things like specular highlights. An example of this would be a window pane shaped
specular reflection as seen in cartoons or Pixar’s Tin Toy. The shader needs to set the size the window pattern based
upon the Specular Size parameter. It may also need to soften the edges based on other parameters.

Here is the Shader Attributes structure:

/* Shading attributes record */

typedef struct {
	 RGBReal reference;			 /* surface color */
	 RGBReal ambient;			 /* ambient reflection color */
	 RGBReal specular;			 /* specular reflection color */
	 RGBReal transparency;			 /* transparency components */
	 RGBReal reflection;			 /* reflection color factor for material */
	 RGBReal edgeTransparency;		 /* edge reflection color (for backward compatibility) */
	 RGBReal luminance;			 /* self illumination components */
	 RGBReal diffuse;			 /* diffuse reflection color */
	 RGBReal transmission;			 /* The diffuse transmission color */
	 RGBReal glow;				 /* The glow color */
	 float alpha;				 /* surface alpha mask (1 = solid, 0 = invisible) */
	 float opacity;				 /* opacity transparency (1 = solid,0 = transparent) */
	 float edgeOpacity;			 /* edge opacity (for backward compatibility) */
	 float gloss;				 /* gloss factor (1 = no gloss, 0 = 100% gloss) */
	 float shade;				 /* shade factor (1 = no shading, 0 = 100% shading) */
	 float bloom;				 /* bloom factor (1 = full bloom, 0 = no bloom) */
	 float spread;			 	 /* specular highlight spread */
	 float refraction;			 /* transparency refraction index */
	 float terminator;			 /* edge terminator factor */
	 float highlight;			 /* highlight dropoff factor */
	 float edgeTransparencyValue;		 /* the edge transparency value */
	 float edgeDiffuseValue;			 /* The edge diffuse value */
	 float edgeSpecularValue;		 /* The edge specular value */
	 float edgeReflectionValue;		 /* The edge reflection value */
	 float edgeAmbientValue;			 /* The edge ambient value */
	 float edgeLuminanceValue;		 /* The edge luminance value */
	 float edgeTransmissionValue;		 /* The edge transmission value */
	 float edgeTransparencyDropoff;		 /* the degree to which the transparency changes
 								 from the center to the edge (0.0=none) */
	 float edgeDiffuseDropoff;		 /* the degree to which the diffuse changes
 								 from the center to the edge (0.0=none) */
	 float edgeSpecularDropoff;		 /* the degree to which the specular changes from
 								 the center to the edge (0.0=none) */
	 float edgeReflectionDropoff;		 /* the degree to which the reflection changes
 								 from the center to the edge (0.0=none) */
	 float edgeAmbientDropoff;		 /* the degree to which the ambient changes from
 								 the center to the edge (0.0=none) */
	 float edgeLuminanceDropoff;		 /* the degree to which the luminance changes
 								 from the center to the edge (0.0=none) */
	 float edgeTransmissionDropoff;		 /* the degree to which the transmission changes
 								 from the center to the edge (0.0=none) */
	 UInt32 shadeFlags;			 /* see “GATR Group Shading Flags” in FACTStuff.h
 								 */
	 UInt32 shadeFlags2;			 /* see “GATR Group Shading Flags2”in FACTStuff.h */
} EIShaderAttributesRec, *EIShaderAttributesPtr;

http://eias3d.com

E
IA

S
-9

 S
D

K

22
http://eias3d.com Copyright 1998-2011, EIAS3D

All of these values correspond directly to surface settings found in the ElectricImage Material Editor. It is impor-
tant to know that these values vary over the surface being rendered. In the example of specular highlighting,
the highlight doesn’t exist everywhere. It also changes with the object’s relationship to the surrounding lights.
These value vary during the course of rendering and animation. Earlier shaders and/or textures will modify
these values.

http://eias3d.com

E
IA

S
-9

 S
D

K

23
http://eias3d.comCopyright 1998-2011, EIAS3D

12.0 About Shader Pixel Variables
The EIShaderPixelRec contains a great deal of information that is specific to the pixels being rendered. Most of
this information you will never use. The values that are used most often are

float shadeNormalA0, shadeNormalB0, shadeNormalC0;	 // N at P’ before any bumps
									 have been applied

This triple represents the surface normal at the current rendering pixel before any bump information is applied.
This is important because you may want to write a shader that creates its own bumps but you do not want your
bump calculations affected by other shaders or textures that generate their own bumps. An example of this
would be a moon crater shader. Here, we want to generate a bump map that represents a crater. The shader
needs to disturb the surface in a direction that is perpendicular to it. So, we need the true surface normal. But,
bump mapping is a process that modifies surface normals. These values solve this problem.

Other useful value are things like shadeTime. The Wave shader is an animated effect. You use the shadeTime
value to generate the correct wave look. You can also get information about the camera so you could write your
own Camera Map shader.

You may notice some redundancy in some of the shader data structures. For example, there are transparency
values in both the EIShaderShadeRec and the EIShaderAttributesRec. There are three flavors of surface color,
reflection color and transparency color. The first is in the EIShaderAttributesRec. This is used by Camera as a
color filter during pixel shading. The second flavor is in the EIShaderPixelRec. This value is maintained by Cam-
era and is built up over calls to all of the shaders and textures. The final flavor is in the EIShaderShadeRec. This
is set by the shader at each pixel. Camera is responsible for mixing it into the value in the EIShaderPixelRec.

The pixel transparency value is replaced by the shader transparency value by Camera (it mixes them together
with the shader’s opacity setting). The transparency controls how much light passes through the surface from
whatever is behind the surface. This works in conjunction with the clip value and is used to make colored filters
and additive-style transparency. If the transparency is (0, 0, 0) the surface is not transparent. If the transpar-
ency is (1, 1, 1), the surface is fully transparent. Any shaded color on the surface would be added to the back-
ground in this case. You would want to use a fully transparent surface for a shader which simulated flames, for
example. A transparency of (1, 0, 0) would create a surface with a red transparent filter. Only red light from the
background would pass through the surface.
The pixel reflection value is replaced by the shader reflection value by Camera (it mixes them together with the
shader’s opacity setting). The reflection is added to the surface color after it has been filtered by the reflec-
tion value in the EIShaderAttributesRec. If your shader wishes to, it can add the shader reflection value in the
EIShaderPixelRec. This will cause the shaders reflection to get added to the pixel reflection from any previous
shaders instead of replacing it (which would be more natural).

The opacity channel of the EIShaderAttributes works the same way as the clip. The concept of a clip map
differs only in that it was designed with texture maps in mind. We want to have texture maps produce a very
sharp edged anti-aliased clip region regardless of how big or small the texture was in the rendered image. The
opacity value is used as a soft edged transparency. When the texture maps get large in the image, the edges
of the transparency become blurred.

http://eias3d.com

E
IA

S
-9

 S
D

K

24
http://eias3d.com Copyright 1998-2011, EIAS3D

13.0 About Shader Map Variables
Below are the shader mapping variables. We are all familiar with the ElectricImage mapping modes Flat, Cubic,
Cylindrical, and Spherical. In the world of shaders, the shader is defined in a cube one unit on a side of techni-
cally infinite resolution. Transformations take place between the user-specified mapping mode and parameters
to the shader space during rendering. These transformations are stored in the map matrices.

/* Mapping variables */

typedef struct {
	 RMatrix4 mapMatrix;			 /* The 4 by 4 transformation matrix for the
								 original group coordinates */
	 RMatrix4 mapWrapMatrix;		 /* The 4 by 4 transformation from shader space
								 back into camera space */
	 RMatrix3 mapBumpMatrix;		 /* The 3 by 3 pixel bump alignment matrix */
	 float mapBumpScale;			 /* The bump scaling factor (applied by the
							 	 host) */
	 float mapOpacity;			 /* The opacity factor (applied by the host) */
	 float map_X0, map_Y0, map_Z0;	 /* Mapping coordinates at the current screen
							 	 pixel*/
	 float map_X1, map_Y1, map_Z1;	 /* Mapping coordinates at screen pixel x + 1 */
	 float map_X2, map_Y2, map_Z2;	 /* Mapping coordinates at screen pixel y - 1 */
	 float map_DX, map_DY, map_DZ;	 /* Mapping pixel coordinate deltas */
	 bool mapPerspectiveFlag;		 /* True if the mapMatrix contains a
								 non-linear transformation */
} EIShaderMapRec, *EIShaderMapPtr;

When you are performing anti-aliasing, you typically want to perform some type of averaging between adjacent
pixels in high-contrast areas. The map_0, map_1, and map_2 triples allow you to calculate shading values for
surrounding pixels in order to smooth out transitions. The map_D triple gives you information about the dis-
tance between two adjacent pixels in shader space.

mapBumpScale and mapOpacity values are applied by Camera and should be ignored by the shader. The user
can adjust the bump scale in separately from the shader’s bump scale (if it has one). The mapOpacity is used
by Camera to mix the the surface color, transparency and reflection with previous values for the pixel.

mapPerspectiveFlag is set if the shader is appied with a non-linear projection matrix. An example of this would
be a camera projection.

http://eias3d.com

E
IA

S
-9

 S
D

K

25
http://eias3d.comCopyright 1998-2011, EIAS3D

14.0 Anti-aliasing
Anti-aliasing is perhaps the most complex and time-consuming task in writing shaders. There are many books
and SIGGraph papers on the subject. There is no one magic anti-aliasing algorithm that you can use for every
application. Basically, aliasing comes from performing discrete sampling of a continuous function. It’s some-
what of a level of detail issue. You may have a shading algorithm with lots of fine details but two adjacent pixels
don’t take this fact into account. Or, you may have a shading algorithm that has a very hard edge that would
produce jaggies if not handled properly.

Let’s look at the example of the CheckerBoard shader. CheckerBoard is both a 2D and a 3D shader. We’ll
look at the 2D case but the 3D case is virtually identical. This shader creates a grid of squares that alternate
between two colors. The transistion areas are essentially straight lines. When these are viewed at some angle
other than absolutely horizontal or vertical, you get jaggies. To resolve this, we’d like to blend the two colors
right at the transition point. But how do we know that we are at this point? This is where being able to look at
adjacent pixels comes in handy.

The call to generate a give pixel color looks like this:

factor = Calc2DCheckerFactor(theMap->map_X0 * density, theMap->map_Y0 * density,
				 theMap->map_DX * density, theMap->map_DY * density);

This function returns what number between 0.0 and 1.0. This is then passed on to a function that mixes the two
colors. Normally, the CheckerBoard function will return either 0.0 or 1.0. It will return something in between at
the transition points. The following code generates the blend factor. Note the shader can be viewed from such
large distances that the eye would not see the grid, the function quickly returns an even blend factor. This is
mainly a speed issue.

static float Calc2DCheckerFactor(float x, float y, float dx, float dy)
{
	 SInt32 xi, yi;
	 float maxDensity = MAX(dx, dy);
	
	 if (maxDensity > 0.75)
		 return 0.5;

dx *= 0.5;		 dy *= 0.5;
	
	 xi = FLOOR(x);	yi = FLOOR(y);
	
	 x -= xi;		 y -= yi;
	
	 if (x > 0.5)
		 x = 1.0 - x;
	 if (y > 0.5)
		 y = 1.0 - y;

http://eias3d.com

E
IA

S
-9

 S
D

K

26
http://eias3d.com Copyright 1998-2011, EIAS3D

	 if (x < dx)
		 x = 0.5 + 0.5 * x / dx;
	 else
		 x = 1.0;

	 if (y < dy) {
		 y = 0.5 + 0.5 * y / dy;
		 if (x > y)
			 x = y;
	 }

	 if (xi & 1)
		 x = 1.0 - x;
	 if (yi & 1)
		 x = 1.0 - x;
	
	 if (maxDensity > 0.5)
		 x += (0.5 - x) * (maxDensity - 0.5) * 4.0;
	
	 return x;
} /* Calc2DCheckerFactor */

http://eias3d.com

E
IA

S
-9

 S
D

K

27
http://eias3d.comCopyright 1998-2011, EIAS3D

15.0 Illumination Shaders
Illumination shaders allow you to completely redefine how the surface reacts to light. Normally, a Phong shaded
surface have fairly specific looks. There really isn’t any way to simulate surfaces such as brushed metal or
the diffraction qualities of a CD-ROM. This is where Illumination shaders come into play. Let’s say you have a
piece of stainless steel that has a single circular brush mark on it. Light that hits the surface from the 3 o’clock
position produces a pie wedge shaped highlight in the 9 o’clock position. As you move the light source around,
the highlight changes to maintain the opposite orientation.

In order to do this, you need to know where the light sources are. This comes from the HostLight call.

theShadePtr->HostLight(&theLight, &calcDiffuse, &calcSpecular, &dot,
 		 &normA, &normB, &normC, &curRed, &curGreen, &curBlue);

When you make this call,.if theLight is not NULL, there is another light that the shader must deal with. Camera
will return the position of the light source in (x, y, z), the color of the light in (r, g, b), the dot product of the light
with the visible side of the surface (negative values indicate the light is behind the surface). The diffuse and
specular values are flags to indicate whether diffuse and specular illumination are enabled for that lightsource.

Illumination shaders require more work on the part of the programmer because you are responsible for deter-
mining whether or not a given light actually strikes the surface in question. The shader is also responsible for
handling the minimum ambient light level, specular highlights, luminance, reflection color bias, etc.

The the following code essentially duplicates standard Phong shading.

SInt32 EIShaderShade(EIShaderShadeRec *theShadePtr)
{
	 EIShaderAttributesPtr theAttributes = theShadePtr->shaderAttributes;
	 EIShaderPixelPtr thePixel = theShadePtr->shaderPixel;
	 float temp;
	 float rNum, gNum, bNum;	/* The calculated color values */
	 float sRed = 0.0;		 /* The total light falling upon the surface */
	 float sGreen = 0.0;
	 float sBlue = 0.0;
	 float hRed = 0.0;		 /* The total highlight falling upon the surface */
	 float hGreen = 0.0;
	 float hBlue = 0.0;
	 bool transmissionFlag = (theAttributes->transmission.r > 0.0) ||
 					 (theAttributes->transmission.g > 0.0) ||
 					 (theAttributes->transmission.b > 0.0);
	 char *theLight = NULL;
	
	
	 /* Calculate the total illumnination color values */
	
	 do {

http://eias3d.com

E
IA

S
-9

 S
D

K

28
http://eias3d.com Copyright 1998-2011, EIAS3D

	 float dot;
	 float normA, normB, normC;			 /* The current lightsource’s normal */
	 float curRed, curGreen, curBlue;		 /* The current lightsource’s color */
	 SInt32 calcSpecular;
	 SInt32 calcDiffuse;
		

	 /* Calculate the lightsource illumination */
		
	 theShadePtr->HostLight(&theLight, &calcDiffuse, &calcSpecular, &dot,
 						 &normA, &normB, &normC, &curRed, &curGreen, &curBlue);
		
	 /* Calculate the diffuse and specular shading values */
			
	 if (calcDiffuse)
		 if (dot > 0.0) {
			 if (calcSpecular) {
				 float highVal = dot + dot;
					
				 /* Adjust the highlight value if the group
 								 has a non-linear highlight factor */
					
				 highVal = (highVal * thePixel->shadeNormalA - normA) * thePixel->shadeXN +
					 (highVal * thePixel->shadeNormalB - normB) * thePixel->shadeYN +
					 (highVal * thePixel->shadeNormalC - normC) * thePixel->shadeZN;
					
				 if (highVal > 0.0) {
					 highVal = theAttributes->highlight * POW(highVal, theAttributes->spread);
					 if (highVal > 1.0)
					 highVal = 1.0;
					
					 /* Components must be compared to prevent highlights from dark lights */
					 if (curRed > 0.0)
						 hRed += curRed * highVal;
					 if (curGreen > 0.0)
						 hGreen += curGreen * highVal;
					 if (curBlue > 0.0)
						 hBlue += curBlue * highVal;
					 }
				 }
				
				 /* Adjust the dot if the group has a non-linear terminator factor */
				
				 if (theAttributes->terminator != 1.0)
					 dot = POW(dot, theAttributes->terminator);
				 sRed += curRed * dot;
				 sGreen += curGreen * dot;
				 sBlue += curBlue * dot;

			 } else 	if (transmissionFlag) {
				
				 /* Adjust the dot if the group has a non-linear terminator factor */
				
				 if (theAttributes->terminator != 1.0)
					 dot = POW(dot, theAttributes->terminator);
				 sRed += curRed * dot * theAttributes->transmission.r;
				 sGreen += curGreen * dot * theAttributes->transmission.g;

http://eias3d.com

E
IA

S
-9

 S
D

K

29
http://eias3d.comCopyright 1998-2011, EIAS3D

				 sBlue += curBlue * dot * theAttributes->transmission.b;
			 }
	 } while (theLight);
	
	 /* The global ambient will insure that illumination does not fall below a minimum level */

	 sRed += thePixel->shadeAmbientR * theAttributes->ambient.r;
	 sGreen += thePixel->shadeAmbientG * theAttributes->ambient.g;
	 sBlue += thePixel->shadeAmbientB * theAttributes->ambient.b;

	 temp = thePixel->shadeMinAmbientR * theAttributes->ambient.r;
	 if (sRed < temp)
		 sRed = temp;
	 temp = thePixel->shadeMinAmbientG * theAttributes->ambient.g;
	 if (sGreen < temp)
		 sGreen = temp;
	 temp = thePixel->shadeMinAmbientB * theAttributes->ambient.b;
	 if (sBlue < temp)
		 sBlue = temp;
	
	 /* Start with the surface color */
	
	 rNum = theAttributes->reference.r;
	 gNum = theAttributes->reference.g;
	 bNum = theAttributes->reference.b;
	
	 /* Calculate the diffuse color */
	
	 rNum *= theAttributes->diffuse.r;
	 gNum *= theAttributes->diffuse.g;
	 bNum *= theAttributes->diffuse.b;
	
	 /* Calculate the color values by using the light source illumination values.
			 The glossy calculation is a simple image */
	 /* beautification algorithm which adds white as the light intensity increases past 75%. */
	
	 temp = theAttributes->gloss;
	 if (sRed > temp)
		 rNum = rNum * temp + sRed - temp;
	 else
		 rNum *= sRed;
	 if (sGreen > temp)
		 gNum = gNum * temp + sGreen - temp;
	 else
		 gNum *= sGreen;
	 if (sBlue > temp)
		 bNum = bNum * temp + sBlue - temp;
	 else
		 bNum *= sBlue;
	

	 /* Factor the luminance into the color values */

	 temp = theAttributes->shade;
	 if (temp > 0.0) {
		 rNum += temp * (theAttributes->reference.r - rNum);
		 gNum += temp * (theAttributes->reference.g - gNum);

http://eias3d.com

E
IA

S
-9

 S
D

K

30
http://eias3d.com Copyright 1998-2011, EIAS3D

		 bNum += temp * (theAttributes->reference.b - bNum);
	 }
	
	 /* The luminance color will be added to the shaded color */
	
	 rNum += theAttributes->luminance.r;
	 gNum += theAttributes->luminance.g;
	 bNum += theAttributes->luminance.b;
	
	 /* Add the highlight to the color values if any */
	
	 if (BTST(theAttributes->shadeFlags2, groupShadeBiasSpecularFlag)) {
		 float theSpecularValue = theAttributes->specular.r * 0.3 +
						 theAttributes->specular.g * 0.59 +
						 theAttributes->specular.b * 0.11;
		
		 rNum += hRed * theSpecularValue * theAttributes->reference.r;
		 gNum += hGreen * theSpecularValue * theAttributes->reference.g;
		 bNum += hBlue * theSpecularValue * theAttributes->reference.b;
	 } else {
		 rNum += hRed * theAttributes->specular.r;
		 gNum += hGreen * theAttributes->specular.g;
		 bNum += hBlue * theAttributes->specular.b;
	 }
	
	 /* Add the reflection to the color values if any */
	
	 if (BTST(theAttributes->shadeFlags2, groupShadeBiasReflectionFlag)) {
		 rNum += 	 theAttributes->reflection.r *
				 	 thePixel->shadeReflection.r *
				 	 theAttributes->reference.r;
		 gNum += 	 theAttributes->reflection.g *
				 	 thePixel->shadeReflection.g *
				 	 theAttributes->reference.g;
		 bNum += 	 theAttributes->reflection.b *
				 	 thePixel->shadeReflection.b *
					 theAttributes->reference.b;
	 } else {
		 rNum += theAttributes->reflection.r * thePixel->shadeReflection.r;
		 gNum += theAttributes->reflection.g * thePixel->shadeReflection.g;
		 bNum += theAttributes->reflection.b * thePixel->shadeReflection.b;
	 }
	

	 /* Limit color values into the range of 0..1 */
	
	 if (rNum > 1.0)
		 rNum = 1.0;
	 else if (rNum < 0.0)
		 rNum = 0.0;
	 if (gNum > 1.0)
		 gNum = 1.0;
	 else if (gNum < 0.0)
		 gNum = 0.0;
	 if (bNum > 1.0)
		 bNum = 1.0;
	 else if (bNum < 0.0)
		 bNum = 0.0;

http://eias3d.com

E
IA

S
-9

 S
D

K

31
http://eias3d.comCopyright 1998-2011, EIAS3D

	 /* Return the final color value */
	
	 thePixel->shadeColor.a = theAttributes->alpha;
	 thePixel->shadeColor.r = rNum;
	 thePixel->shadeColor.g = gNum;
	 thePixel->shadeColor.b = bNum;

	 return shaderNoError;
} /* EIShaderShade */

http://eias3d.com

E
IA

S
-9

 S
D

K

32
http://eias3d.com Copyright 1998-2011, EIAS3D

16.0 Shader Geometry Access
Since EI 8.0, shaders can read geometry data (vertices and facets) of shaded groups, in a way that is similar to
model plug-ins. A shader should call the HostModelShade callback defined as:

SInt32 EIModelShade(SInt32 theCommand, UInt32 theCommandSize, void * theCommandData);

The commands and formats are described in the EIShaderModel.h file. The shader should pass shadeGrou-
pReference and shadeFacetReference (obtained in the shaderPixel structure) to specify a group and/or facet
to read geometry from.

17.0 Intercommunication between shaders and model plug-ins
Shaders can use custom data created by plug-ins by examining the following fields of the EIShaderInitializeRec
structure.

	 void *shaderPluginData;		 /* The plugin data block (usually nil) */
	 UInt32 shaderPluginID;			 /* The ID of the plugin that created the data block */
	 UInt32 shaderPluginSize;		 /* The size of the plugin data block */

Model plug-ins can create data by using hostModelGetGroupData/hostModelSetGroupData calls. See the
Plug-in Manual for more details.

http://eias3d.com

E
IA

S
-9

 S
D

K

33
http://eias3d.comCopyright 1998-2011, EIAS3D

18.0 Multi-threaded Shaders
A multi-threaded shader should be compiled as a multi-threaded library and be able to run correctly in a multi-
threaded environment. These shaders should not make assumptions about their calling sequence, should not
write global variables at shading time, or provide a synchronization for such reading/writing. Here is a simple
example:

 	 /* Do NOT do this */

	 /* shader’s global variables */

	 float nX, nY, nZ;

	 /* Copy actual surface normal */

	 nX = theShaderShade->shaderPixel->shadeNormalA;
	 nY = theShaderShade->shaderPixel->shadeNormalB;
	 nZ = theShaderShade->shaderPixel->shadeNormalC;

	 /* Call a function that uses nX, nY, nZ */

	 CalculateSomething();	

This code will NOT work properly in a multi-threaded renderer. Any number of instances of the same shader can
run simultaneously, therefore global variables (nX, nY, nZ in the example) can be re-written by another instance
and the result of the CalculateSomething call will be junk.

EI 9.0 does not require shaders’ multi-threading. Camera recognizes a shader is multi-threaded by examining
the EIMP resource with ID 128 in a shader’s resource file. If this resource found and its length is 4 bytes long (all
zeroes), then this shader can be called in parallel. Otherwise the render threads will wait until the shader returns
control to the host and only then call the shader again.

http://eias3d.com

E
IA

S
-9

 S
D

K

34
http://eias3d.com Copyright 1998-2011, EIAS3D

Some shaders can be applied 2 or more times to the same texture stack. A typical workflow is: The first instance
stores some data (surface color for example) in order to use it by the next instance(s). There are no principal
obstacles to do the same with multi-threading but a shader must not make assumptions that a second instance
is called immediately after the first one. With multi-threaded rendering, the order of calls is not defined. A good
idea is to examine the following field of EIShaderPixelRec

	 UInt32 shadeThreadIndex;	 /* The shade thread index */

and use the array (one element per each thread) for stored values.

http://eias3d.com

E
IA

S
-9

 S
D

K

35
http://eias3d.comCopyright 1998-2011, EIAS3D

19.0 Miscellaneous
For some shaders, it is necessary to know the angle between the surface normal and the incident angle. The
following code fragment shows how to do this from data provided by the Shader Pixel record.

ShaderDataPtr theShaderData = (ShaderDataPtr)theShadePtr->shaderData;

EIShaderPixelPtr thePixel = theShadePtr->shaderPixel;

float Xi = thePixel->shadeXN;
float Yi = thePixel->shadeYN;
float Zi = thePixel->shadeZN;

float Na = thePixel->shadeNormalA;
float Nb = thePixel->shadeNormalB;
float Nc = thePixel->shadeNormalC;

float Nf = (Xi * Na) + (Yi * Nb) + (Zi * Nc);

19.1 How EI Shaders relate to Renderman shaders
/* Comments in the EIShader.h file */

float shadeDistance; 					 /* |P| */
float shadeXN, shadeYN, shadeZN; 				 /* P normalized */
float shadeNormalA, shadeNormalB, shadeNormalC;	 /* N at P’ - the surface normal */

/* Pseudo- Renderman translation */

float shadeDistance; 					 /* The distance of pixel to camera*/
float shadeXN, shadeYN, shadeZN; 				 /* I or incident angle */
float shadeNormalA, shadeNormalB, shadeNormalC; /* N or surface normal(after earlier perturbs) */

In Renderman, many variables are of the type Point. This is an X,Y,Z triple. In EI Shaders, point variables are
stored as their individual components.

In Renderman, the variable P is used to define the surface position in space. Typically, this is transformed into
texture space which is the UV parameter space. In EI Shaders, you can access the current map position by
use of the map_X0, map_Y0, map_Z0 found in the EIShaderMapRec. These variables range from –0.5 to +0.5.In
Renderman, the variable Ci is output color of the surface. The EI equivalent is ARGBReal shaderColor found in
the EIShaderShadeRec. The variable Cs is the input surface color and is represented by shadeColor in the EISha-
derPixelRec.

Oi and Os are opacity output and surface colors in Renderman. Here, you have a number of options. You could
convert Renderman opacity to an alpha channel, a clip map value, or a transparency. The choice is yours. In
the case of the Eroded shader, Clip mapping is used so that the eroded holes can have light pass through them.

The E variable is the position of the Camera. EI Shaders give you access to a full blown transformation matrix
that allows you to find out where the camera is in World space. The matrix *shadeCameraInvMatrix from the EI-
ShaderPixelRec contains the camera position in world space in the m30, m31, and m32 components.

http://eias3d.com

E
IA

S
-9

 S
D

K

36
http://eias3d.com Copyright 1998-2011, EIAS3D

19.2 Distance from the Camera to the pixel being rendered
The camera is always at (0, 0, 0). The point being shaded is at (shadeX, shadeY, shadeZ). The distance from
the camera to the point being shaded is SQRT(shadeX^2 + shadeY^2 + shadeZ^2) which is shadeDistance. If you
are only interested in the distance along the Z axis ignoring the X and Y distance, that is simply shadeZ.

19.3 Shader Preview Thumbnails
Shaders can have thumbnails shown inside Animator. To create a thumbnail simply add a ‘PICT’ resource with
ID 21000 to shader’s rsc file. The recommended image size is 128x128

19.4 Copy Protection
Shaders have the ability to query the ElectricImage hardware key to determine the user’s serial number. Cur-
rently there are two slightly different serial number types. For Film versions of ElectricImage, the serial number
starts with two uppercase letters followed by five digits. For Broadcast versions, the serial number is the same
as for Film versions except that there is a capital B following the five digits.

The call to retrieve the serial number only returns the last seven characters of the serial number. For Film ver-
sions, this is the whole serial number. For Broadcast versions, the first letter is dropped.
The following code can be used to get this serial number:

Uint32 EIShaderSerial(EIShaderSerialRec *theSerialPtr)
{
	 Sint32 theChallengeType = QUADWORD(‘SERL’); char testString[8];
	 theSerialPtr->HostChallenge(theChallengeType, &testString[0]);
	 return shaderNoError;
} /* EIShaderSerial */

http://eias3d.com

E
IA

S
-9

 S
D

K

37
http://eias3d.comCopyright 1998-2011, EIAS3D

20.0 Building an EI Shader
Shaders are built on the Macintosh using XCode 3.1 or later. They are built under Windows using MSVC 2008
or later.

You must define one of the platform symbols in order to properly compile. The valid platform symbols are:

__MACINTOSH__
__WIN32__
__WIN64__

One of these symbols must be defined “outside” of the source (e.g. in a prefix file, in a precompiled header, as
a command line argument, etc.).

20.1 File Names and Extensions
Similar to plugins, shaders should include an extension. The standard extensions used by Electric Image shad-
ers are:

.shd		 for surface shaders

.shl		 for layers shaders

You should name your shaders with this extension even on the Macintosh. In fact, your shader should be named
the same on every platform you ship on (if your shader uses different names on different platforms, it may not
work correctly with Renderama).

On the Macintosh platform, a shader should be built via Xcode as a universal 32/64 bits library. On the Windows
platform you must provide a second library to run in 64-bit mode with the, suffix _64 placed before the exten-
sion. Example:

Macintosh platform:
Eroded.shd - universal library holds both the 32-bit and 64 bit code

Windows platform:
Eroded.shd - shader’s library (dll) holds the 32-bit code
Eroded_64.shd - shader’s library (dll) holds the 64-bit code

On the Windows platform both of the shader’s files (Eroded.shd and Eroded_64.shd) should be placed into the
“EI Shaders” folder.

http://eias3d.com

E
IA

S
-9

 S
D

K

38
http://eias3d.com Copyright 1998-2011, EIAS3D

20.2 Resource Files
All EI Shaders are required to have a separate resource file with the same name but with the .rsc extension.
This file must be in the same folder as the shader’s .shd/.shl file (the EI Shaders folder by default).

The resource file format is different on Macintosh and Windows.

Do NOT simply copy .rsc files from Macintosh to Windows or vice versa, such copies won’t work.

The reason is that on Macintosh the resource file contains resources in the native Macintosh format (e.g. re-
sources stored in the file’s resource fork), but on Windows, the .rsc file is really a MacBinary II version of the
Macintosh .rsc file. One way to create the Windows version of the .rsc file is as follows:

- build the .rsc file on a Macintosh

- stuff the .rsc file on a Macintosh using DropStuff to generate a .rsc.sit file

- transfer the .rsc.sit file to a PC (make sure to use a binary transfer so no conversions occur to the file)

- use Stuffit Expander on Windows to expand the .rsc.sit into a MacBinary file. Make sure when expanding the
.rsc.sit file that Stuffit Expander is set to always expand resource forks into separate MacBinary II files.

Note: on the Windows platform, the same resource file is used for both: 32 and 64 bits, for example a full install
of the Eroded shader on Windows contains 3 files:

Eroded.shd
Eroded_64.shd
Eroded.rsc

http://eias3d.com

E
IA

S
-9

 S
D

K

39
http://eias3d.comCopyright 1998-2011, EIAS3D

20.3 Endian Issues
The data passed to the shader from the host will always be in big-endian format. This means that under Win-
dows, you must byte-swap the data before using it. You can use the FIXFIELD macro for this purpose. FIX-
FIELD is defined in System.h. FIXFIELD will byte-swap its argument on little endian machines and do nothing
on big-endian machines. Example:

typedef struct {
	 UInt32 shaderOwnerType;
	 UInt32 shaderVersionNum;
	 UInt32 one;
	 UInt32 two;
	 SInt32 three;
} ShaderInterface;

static void FixShaderInterface(ShaderInterface *theShaderInterface)
{
	 FIXFIELD(theShaderInterface->shaderOwnerType);
	 FIXFIELD(theShaderInterface->shaderVersionNum);
	 FIXFIELD(theShaderInterface->one);
	 FIXFIELD(theShaderInterface->two);
	 FIXFIELD(theShaderInterface->three);
}

N O T E : Do not use the macro FixField (mixed case); use FIXFIELD (all caps).

N O T E : Do not use FIXFIELD on values of type ARGB and custom controls. Their values will already be in the
correct byte order when your shader is called.

http://eias3d.com

E
IA

S
-9

 S
D

K

40
http://eias3d.com Copyright 1998-2011, EIAS3D

In the example below, we fix the shader interface data first by calling FixShaderInterface, which will apply
FIXFIELD to each member of the shader interface structure. After that point, it is valid to test the values of the
interface structure to see if they should be reverted to the default values.

static void GetShaderInterface(void* theInterface, SInt32 theSize,
							 ShaderInterfacePtr theShaderInterface)
{
	 /* Copy the shader interface data */

	 if (theSize == sizeof(ShaderInterfaceRec))
		 *theShaderInterface = *(ShaderInterfacePtr) theInterface;
	 else {
		 theShaderInterface->shaderOwnerType = 0;
		 theShaderInterface->shaderVersionNum = 0;
	 }

	 /* Validate the shader interface data */
	
	 FixShaderInterface(theShaderInterface);
	 if (theShaderInterface->shaderOwnerType != shaderType ||
		 theShaderInterface->shaderVersionNum != shaderVersion)
		 DefaultShaderInterface(theShaderInterface);
} /* GetShaderInterface */

http://eias3d.com

