
E
IA

S
-9

 S
D

K

2
http://eias3d.com Copyright 1998-2010, EIAS3D

EIAS Version 9.0
Image File Format Specification

This is description of the format of the Image file which is used by the Electric Image Animation System to
store both single frame images and multi-frame animations. The same format is also used to store texture and
reflection maps (which can also be multi-frame). Following the file format description there is a discussion of
the method by which the alpha byte in a 32 bit 1 color image is applied to the red green and blue channels to
form a correct 24 bit image.

The image file header is as follows:

 	 Name	 	 	 	 Type	 Size	 Typical	
 	 __	
 	 Version		 	 	 short	 2	 5	 	
 	 Frame Count	 	 	 SInt32	 4	 >0	 	
 	 __	

This is followed by the frames in the image file Each frame has a frame header as follows:
 	 __	
	 Frame Time	 	 	 float	 4	 0.0	 	
 	 Frame Rect Top		 	 short	 2	 0	 	
 	 Frame Rect Left	 	 short	 2	 0	 	
 	 Frame Rect Bottom	 	 short	 2	 480	 	
 	 Frame Rect Right	 	 short	 2	 640	 	
 	 Frame Bit Depth	 	 Byte	 1	 8	 	
 	 Frame Frame Type	 	 Byte	 1	 1	 	
 	 Frame Pack Rect Top	 	 short	 2	 0	 	
 	 Frame Pack Rect Left	 	 short	 2	 0	 	
 	 Frame Pack Rect Bottom		 short	 2	 480	 	
 	 Frame Pack Rect Right	 	 short	 2	 640	 	
 	 Frame Packing Type	 	 Byte	 1	 1	 	
 	 Frame Alpha Bits	 	 Byte	 1	 0	 	
 	 Frame Size	 	 	 SInt32	 4	 >=0	 	
 	 Frame Palette Entries	 	 short	 2	 256	 	
 	 Frame Background Index		 short	 2	 0	 	

Note: There is at least 1 palette color for the background color even in direct color images.

Palette Color List

For each entry in the list:					
 	 __	
 	 Red	 	 Byte	 	 1	 	 0...255		
 	 Green	 	 Byte	 	 1	 	 0...255		
 	 Blue	 	 Byte	 	 1	 	 0...255		

 The frame header is followed by either raw or run length encoded pixels.

EIAS Version 9.0
Image File Format Specification

http://eias3d.com

E
IA

S
-9

 S
D

K

3
http://eias3d.comCopyright 1998-2010, EIAS3D

Image Pixel Storage and Run Length Encoding:

Count is stored as a byte.
 If 0<=Count<=127 the next value in the file is repeated Count+1 times.
 If 128<=Count<=255 there follows a block of Count-127 values.

The value size is calculated as follows:

 If the Bits Per Pixel value is <=8 then one or more pixels are stored for each 8 bit value. Otherwise, the value
size is equal to Bits Per Pixel + Alpha Bits. Currently only 1, 2, 4, 8, 16 and 24 Bits Per Pixel are supported. The
Alpha Bits must always be 0 except when the Bits Per Pixel is 24, in which case the Alpha Bits may be either 0
or 8. The last byte in each scanline of 1, 2 and 4 bit is padded with zero bits so that each scanline ends on a
byte boundary.

 Most images generated by EIAS are 32 bits deep (including an 8 bit alpha). Each pixel is stored as ARGB with
8 bits per channel.

 The Frame Types are 0 for direct colors, 1 for indexed colors or 2 for Z-Buffer depth values. Color depths of 1,
2, 4 and 8 bits per pixel are always pixel type 1 and color depths 16 and 24 are always pixel type 0. 32 bit pixel
depths are only used for floating point Z-Buffer depth values.

 The Packing Type must be 0 for raw pixels or 1 for run length encoded pixels. Both modes are supported,
however EIAS only creates run length encoded images.

 Z-Buffers always have 4 palette entries. Since the palette is defined as three byte RGB values, four entries
are used to store three 32 bit floating point values. These values are background depth, minimum depth and
maximum depth in that order. The background depth is always INF.
The background is not used to compute the maximum depth.

 Alpha Plane Graphics Discussion:

In 1 color graphics, the red green and blue components of the image pixels each require one byte of memory.
Together they take up 24 bits of a 32 bit long word. In most graphics systems, four pixels are packed into 3 long
words for efficiency. A better approach is to reserve a fourth byte for use as an alpha plane:

 	 31	 	 	 24	 	 16	 	 	 8	 	 	 0
 	 |	 alpha	 |	 red	 |	 green	 |	 blue	 |

 In C, a color is declared as follows: (This record is really declared in FACTStuff.h)

	 typedef struct {
	 	 uchar a, r, g, b;
	 } ARGB

The alpha byte is used to mix foreground and background image planes. By using several layers of image
planes, a composite image is formed. The layers can be animated to produce a 2 1/2 dimensional movie. In
addition to simply specifying the holes in an image plane, the alpha byte can be used to simulate transparencies
and high quality anti-aliasing. The formula for placing a foreground ARGB plane over a background RGB plane
is quite simple:

http://eias3d.com

E
IA

S
-9

 S
D

K

4
http://eias3d.com Copyright 1998-2010, EIAS3D

	 back.r = (fore.a * fore.r + (255 - fore.a) * back.r) / 255;		
	 back.g = (fore.a * fore.g + (255 - fore.a) * back.g) / 255;		
	 back.b = (fore.a * fore.b + (255 - fore.a) * back.b) / 255;		

When the alpha is 0, none of the foreground values are used and all of the background values are used. When
the alpha is 255, all of the foreground values are used and none of the background values are used. For values
between 0 and 255, a mixing of foreground and background values occurs. It is this mixing of values that is
important for simulation of transparencies and anti-aliasing of image planes.

Only slightly more complicated is the formula by which two ARGB planes are combined to form a single ARGB
plane. In this formula, the source plane is matted onto the destination plane and the alpha values are com-
bined and preserved. Even if repeated composites of the same source image onto the destination image is
performed, alpha buildup will not occur.

	 temp = source.a + dest.a;	 	 	 	 	 	 	 	 	
	 if (temp > 255) {	 	 	 	 	 	 	 	 	 	
	 	 alpha = 255 - source.a;	 	 	 	 	 	 	 	
	 	 temp = 255;	 	 	 	 	 	 	 	 	 	
	 } else	 	 	 	 	 	 	 	 	 	 	 	
	 	 alpha = dest.a;	 	 	 	 	 	 	 	 	
	 if (source.a > dest.a)		 	 	 	 	 	 	 	 	
	 	 dest.a = source.a;	 	 	 	 	 	 	 	 	
	 dest.r = ((SInt32)source.a * source.r + alpha * dest.r) / temp;	
	 dest.g = ((SInt32)source.a * source.g + alpha * dest.g) / temp;	
	 dest.b = ((SInt32)source.a * source.b + alpha * dest.b) / temp;	

For compositing of two images in which the alpha is used to represent antialiasing, the destination alpha chan-
nel is generated as follows:

	 if (source.a > dest.a)		 	 	 	 	 	 	 	 	
	 	 dest.a = source.a;	 	 	 	 	 	 	 	 	 	
		
For layering of two images in which the alpha is used to represent transprency, the destination alpha channel
is generated as follows:

	 alpha = source.a + dest.a;	 	 	 	 	 	 	 	 	
	 if (alpha >= 255)	 	 	 	 	 	 	 	 	 	
	 	 dest.a = 255;	 	 	 	 	 	 	 	 	 	
	 else	 	 	 	 	 	 	 	 	 	 	 	
	 	 dest.a = alpha;	 	 	 	 	 	 	 	 	 	
	 	 	

In a 1 color painting program that uses alpha plane graphics, the user may edit the alpha plane directly by us-
ing a 256 level mask. The mask is automatically created when the user paints the image. The brush’s alpha
value would default to 255 but could also be set to any other value. When an image is complete, the user could
then modify the alpha plane with the same tools he used to paint the original image. This will provide a simple
method for generating images with transparent areas.

The alpha plane may also be used to provide anti-aliased edges around the image planes. If an image contains
a solid triangle, for example, the alpha plane values inside the triangle will be 255. Outside of the triangle, the
values will all be 0. If, however, the alpha values along the edges of the triangle are chosen with intermediate
values, the triangles edges will appear to blend evenly into the background without any noticeable aliasing.

The simplest method of producing the correct alpha values to achieve good anti-aliased edges is to draw the

http://eias3d.com

E
IA

S
-9

 S
D

K

5
http://eias3d.comCopyright 1998-2010, EIAS3D

image at 16 times the visible resolution. For every pixel in the destination image, sixteen pixels are drawn on
an off-screen image in a 4x4 matrix. When the entire image has been constructed, the final image is calculated
from the off-screen image with the following algorithm:

	 for (x = 0; x < xRes; x++)	 	 	 	 	 	 	 	 	 	
	 	 for (y = 0; y < yRes; y++) {	 	 	 	 	 	 	 	
	 	 	 aSum = 0;
	 	 	 rSum = 0;	 	 	 	 	 	 	 	 	
	 	 	 gSum = 0;	 	 	 	 	 	 	 	 	
	 	 	 bSum = 0;	 	 	 	 	 	 	 	 	
	 	 	 for (i = 0; i < 4; i++)	 	 	 	 	 	 	
	 	 	 	 for (j = 0; j < 4; j++) {	 	 	 	 	 	
	 	 	 	 	 pixPtr = &offScrPixel[x * 4 + i, y * 4 + j];		
	 	 	 	 	 aSum += a;	 	 	 	 	 	 	
	 	 	 	 	 rSum += r * a;		 	 	 	 	 	
	 	 	 	 	 gSum += g * a;		 	 	 	 	 	
	 	 	 	 	 bSum += b * a;		 	 	 	 	 	
	 	 	 	 }	 	 	 	 	 	 	 	 	
	 	 	 pixPtr = &imagePixel[x, y];	 	 	 	 	 	 	
	 	 	 	 	 a = aSum / 16;		 	 	 	 	 	
	 	 	 	 	 r = rSum / aSum;	 	 	 	 	 	 	
	 	 	 	 	 g = gSum / aSum;	 	 	 	 	 	 	
	 	 	 	 	 b = bSum / aSum;	 	 	 	 	 	 	
	 	 	 	 	 }									
						

A more complicated but more efficient method is to produce the alpha plane on the fly as the user is painting with
lines, circles, polygons and other shapes. The program can draw these types of objects and calculate exactly
how much of any pixel that the object covers. This value is then placed into the alpha plane. This method is
better suited to a drawing or CAD program where all of the pictures are stored as a series of primatives.

There are many other uses for alpha planes. Some graphics cards that provide genlock abilities can mix 256
levels of the foreground graphics with the background video. An alpha plane would eliminate any matte lines
from the resulting video and produce a better signal.

Look in FACTStuff.h for the following definitions and structures:

imageCreator
imageType
ImageHeader
ImageFrame

http://eias3d.com

