
E
IA

S
-9

 S
D

K

1
http://eias3d.comCopyright 1998-2010, EIAS3D

EIAS Version 9.0
Layer Shaders API
EIAS Version 9.0

Layer Shaders API

Table of Contents

1.0 Layers in EIAS						 2

2.0 Layer Shaders Overview				 2

3.0 EIShaderInitLayers					 2

	 3.1 Basic structures/callbacks description

	 3.2 Creating standard layers

	 3.3 Creating custom layers

	 3.4 Applying layers to specific Phong transparency passes

4.0 EIShaderFillLayers					 5

5.0 EIShaderSlabLayers					 5

6.0 EIShaderProcLayers					 7

	 6.1 Post-Processing phase

	 6.2 EIShaderProcLayersRec

http://eias3d.com

E
IA

S
-9

 S
D

K

2
http://eias3d.com Copyright 1998-2010, EIAS3D

1.0 Layers in EIAS
The term “Layers” refers to additional files created by Camera at render time for each rendered frame. In most
cases these files are images containing different parts/components of the main rendering, such as Specular,
Luminance, Diffuse etc. However the layer’s content is not limited to imagery. Other kinds of data, usable for
post-processing, can be stored as well: Z-distance, surface normals, UV coordinates and so on. By default, the
rendered layer files are written into a Photoshop .psd file,created for each rendered frame.

The EI Layer architecture is open. By using the API, developers can create custom layers, write them into .psd
standard output or into files of arbitrary formats. The API also allows developers to implement different EI post-
processing effects (section 6).

Why do I need post-processing effects in EIAS if AE and other post-processing software already exist to do them?

It is a different kind of post-processing. By using this API, you can perform post-processing before the image is
anti-aliased, e.g. at the sub-pixel level. Such effects can be hard to implement or unachievable at all in a post-
processing application that operates with the final (screen), anti-aliased pixels.

2.0 Layer Shaders Overview
The Multi-Layers API is an extension to EI shaders API. So, a layers shader should be written generally in same
way as a usual material shader. The difference is that a layers shader does not export EIShaderShade function.
Instead it exports one or more of following functions:

	 EIShaderInitLayers
	 EIShaderFillLayers
	 EIShaderSlabLayers
	 EIShaderProcLayers

A layers shader should export EIShaderInitLayers function always. Otherwise user cannot apply it to layers
shaders list in Render Dialog. All others functions are optional, but if a shader provides some of them, the cor-
responded flag should be set in shaderFeaturesFlag field at host call EIShaderInformation

	 shaderFillLayersFlag 		 // The shader is called after each sub-pixel shading
					 to save layer’s information
	 shaderSlabLayersFlag 		 // The shader is called before and after every render pass
	 shaderProcLayersFlag 		 // The shader is called for post-processing

3.0 EIShaderInitLayers

3.1 Basic structures/callbacks description

	 SInt32 EIShaderInitLayers(EIShaderInitLayersRec * theHostInitLayersPtr);

http://eias3d.com

E
IA

S
-9

 S
D

K

3
http://eias3d.comCopyright 1998-2010, EIAS3D

The EIShaderInitLayersRec is decalred as:

	 typedef struct {
	 	 void * shaderData;
	 	 UInt32 theRenderPassID;
	 	 EILayerCreateProc HostLayerCreateProc;
	 	 EILayerEnumProc HostLayerEnumProc;
	 } EIShaderInitLayersRec, *EIShaderInitLayersPtr;

shaderData - the pointer to the shader’s private data previously allocated at EIShaderInitialize

theRenderPassID – reserved, actually not used

HostLayerCreateProc – the layer’s create callback

HostLayerEnumProc - the layers’ enumerating callback

To create a layer the shader fills the EI_LayerInfoRec structure and call HostLayerCreateProc.

	 typedef SInt32 (*EILayerCreateProc)(EI_LayerInfoPtr);

	 typedef struct {
	 	 UInt32 layerID;	 	 // unique layer’s ID
	 	 UInt32 layerFlag;	 	 // layer’s flag (see “Layers Flags” above)
	 	 UInt32 layerDataType;	 	 // layer’s data type (see “Layers Data Types” above)
	 	 UInt32 layerDataSize;	 	 // sub-pixel’s data size in bytes (used for custom or
	 	 	 	 	 	 user-defined layers)
	 	 SInt32 layerContentID;		 // layer’s content ID (see “Layers Contents” above)
	 	 uchar layerDefault[64];	 // default sub-pixel’s value block
	 	 UInt32 layerParentID;	 	 // ID of layers’s parent (0 = none)
	 	 UInt32 layerModePS; 	 	 // layer’s Photoshop mode (add, multiply etc.)
	 	 PStr63 layerName; 	 	 // layer’s name
	 	 UInt32 layerCreator; 	 	 // signature of layer’s creator
	 	 void * layerUserData; 		 // pointer to user-defined data
	 	 SInt32 layerTransRange[2]; 	 // range of phong transparency passes (“0” means all
	 	 further passes)
	 	 UInt32 layerReserved[8]; 	 // reserved, must be zero
	 } EI_LayerInfoRec, *EI_LayerInfoPtr;

If HostLayerCreateProc returns 0 (no error), the layerID is filled by unique ID of created layer.
Shaders should save this ID into their private data for further manipulations with the layer.

The created layer will be saved in output PSD file if a shader sets LFLAG_LAYER bit of layerFlag field.

3.2 Creating standard layers

A creating a layer can be the only task that a layer shader performs. The render engine does all the of the rest
of the work automatically if:

layerDataType either one of the standard:

	 LDATA_ARGB8
	 LDATA_RGB8

http://eias3d.com

E
IA

S
-9

 S
D

K

4
http://eias3d.com Copyright 1998-2010, EIAS3D

	 layerContentID is one of standard:

	 LCONTENT_CUSTOM 	 // custom (unknown) content
	 LCONTENT_DIFFUSE 	 // material’s diffuse
	 LCONTENT_LIGHTS 	 // sum of all lights values
	 LCONTENT_LUMINANCE	 // luminance
	 LCONTENT_SPECULAR 	 // specular
	 LCONTENT_AMBIENT 	 // ambient
	 LCONTENT_REFLECTION	 // material’s reflections summary
	 LCONTENT_REFL_BM 	 // bitmap reflections
	 LCONTENT_REFRACTION	 // RT refractions
	 LCONTENT_TRANSPARENCY 	// transparency
	 LCONTENT_FOG 	 	 // fog
	 LCONTENT_SHADE_COLOR	 // final shaded (non-clamped) color
	 LCONTENT_COVERAGE 	 // sub-pixel’s coverage (ARGB_Real)
	 LCONTENT_GROUP_ID 	 // group ID assigned at render time
	 LCONTENT_UV 	 	 // UV coordinates as ARGB_Real (a=1 indicates “natural” UV’s)
	 LCONTENT_PIXEL_MASK 	 // a packed array of bits representing the curent facet’s
	 	 	 	 visibility at each sub-pixel
	 LCONTENT_MOTION_BLUR	 // motion blur x and y vectors

3.3 Creating custom layers

The Multi-Layers API supports the creation of other layers besides standard ones listed above. The layers can
be saved in the PSD format or not, filled by host and/or by shaders etc. The host guarantees the layerʼs data
storage for each rendered sub-pixel and their availability for further manipulation.

The layer can have no pixel data (layerContentID = LCONTENT_CUSTOM and layerDataSize = 0).
Nevertheless the layer will be created. It tells host the layer service should be active regardless if there is PSD
output or not.

3.4 Applying layers to specific Phong transparency passes

The layerTransRange field tells the host to make a layer active for some Phong Transparency passes only.

The Camera renders directly visible surfaces first (itʼs the first Phong transparency pass). If other objects are
found behind Phong- transparent objects, they are rendered again (second/next passes) and rthe esult is com-
bined with the previous one. This process is repeated until all is done.

If layerTransRange[0] = 0, the layer is active for any pass. Otherwise it defines the first pass the shader should
be applied.
If layerTransRange[1] = 0, the layer is active for all passes starting from layerTransRange[0].
Otherwise it defines the last pass the shader should be applied.

If a layer is inactive at some passes, the layerʼs content remains unchanged for each sub-pixel.

http://eias3d.com

E
IA

S
-9

 S
D

K

5
http://eias3d.comCopyright 1998-2010, EIAS3D

4.0 EIShaderFillLayers
	 SInt32 EIShaderFillLayers(EIShaderShadeRec *theShadePtr);

The EIShaderFillLayers call allows shaders to read/write layersʼ data of the shaded sub-pixels.
Unlike EIShaderShade, the EIShaderFillLayers is called after the sub-pixel is fully shaded.

The EIShaderShadeRec structure is expanded with a new field HostLayerShade, its type
EILayerShadeProc is declared as:

	 typedef SInt32 (*EILayerShadeProc)(SInt32 theCommand, uInt32 theID, ARGB_Real * color);

The format is:

	 theCommand = LSHADE_CMD_GET_LAYER 	 // get the actual layer’s content
	 	 theID: ID of layer to interest (previously returned by EIShaderInitLayers)
	 	 color: on output filled with layer’s color (actually shaded pixel)

	 theCommand = LSHADE_CMD_GET_PROPERTY 	// get the property color
	 	 theID: one of standard layerContentID constants
	 	 color: on output filled with color of the property (actually shaded pixel)

	 theCommand = LSHADE_CMD_SET_LAYER 	 // set the layer’s content
	 	 theID: ID of layer to set (previously returned by EIShaderInitLayers)
	 	 color: input color to set

	 theCommand = LSHADE_CMD_SET_PROPERTY // set the property color
	 	 theID: one of standard layerContentID constants
	 	 color: input color to set

	 theCommand = LSHADE_CMD_GET_PREV 	 // get the previous layer’s content
	 	 theID: ID of layer to interest (previously returned by EIShaderInitLayers)
	 	 color: on output filled with layer’s color before actual shaded pixel is applied

A shader can fill the created layer directly via the LSHADE_CMD_SET_LAYER command and/or byusing the
render properties mechanism.

Each of the standard layerContentID constants is associated with some “render property” attribute that can be
get/set with the HostLayerShade callback function. The “property” is a value that the host is aware of and can
calculate for the shader on its request.

5.0 EIShaderSlabLayers
	 SInt32 EIShaderSlabLayers(EIShaderSlabLayersRec * theHostSlabPtr);

This function allows shaders to write custom output files (besides the standard PSD) and to prepare the post-
processing phase. The EIShaderSlabLayers is called by the host each time a new Render Slab starts or ends
and each time a new Phong transparency pass starts or ends. As you know, for large renders, the host can pro-
cess the image step by step sequentially. The Render Slab is the actual portion of the whole rendered screen
that is being processed currently.

http://eias3d.com

E
IA

S
-9

 S
D

K

6
http://eias3d.com Copyright 1998-2010, EIAS3D

The EIShaderSlabLayersRec is declared as:

	 typedef struct {
	 	 void * shaderData;	 	 // The pointer to the shader’s private data

	 	 L_Rect shadeRect; 	 	 // The rendering rectangle
	 	 L_Rect shadeSlabRect;	 	 // The rendering slab rectangle
	 	 L_Rect shadeImageRect;		 // The whole rendering image rectangle
	 	 L_Rect shadeSlabImageRect;	 // The slab rendering image rectangle

	 	 float shadePixelWidth;	 	 // The antialiasing pixel width
	 	 float shadePixelScale;	 	 // The zoom factor
	 	 float shadePixelRatio;	 	 // The y/x pixel ratio
	 	 float shadeOffsetX, shadeOffsetY; // The x and y image offset
	 	 UInt32 shadePerspectiveFlag; 	 // 1 for perspective rendering

	 	 UInt32 shaderPassStartFlag; // 1 = pass start, 0 = pass end
	 	 UInt32 shaderPassNomer;	 // The nomer of phong transparency pass,
	 	 	 	 	 	 // last pass = bit 31 is set

	 	 char * shaderFullPSDName;	 // The full name of output PSD file (C string)
	 	 char * shaderSetName;	 	 // The name of layer’s set the shader is applied to
	 	 	 	 	 	 // (C string)
	 	 char * shaderFileName; 	 // The full name of the shader file (C string)

	 	 EILayersReadProc HostLayersReadProc;	 	 // The layers read callback
	 	 EILayersWriteProc HostLayersWriteProc;	 // The layers write callback

	 } EIShaderSlabLayersRec, *EIShaderSlabLayersPtr;

The rendering rectangles (shadeRect and shadeSlabRect) are passed in sub-pixels. The image rectangles
(shadeImageRect and shadeSlabImageRect) are passed in final screen pixels.

The strings shaderFullPSDName, shaderSetName are passed to construct the name of the custom output file
regardless of whether or not a PSD file is being created. Shaders should create their custom files in same folder
as the shaderFullPSDName points to. During network rendering, it is guaranteed that files will be transferred
from slave(s) to master.

The string shaderFileName gives the shader the ability to find their “rsc” files and to report advanced error
information. It is recommended to use this string because the host cannot know all the details about what has
happened in the shaderʼs thread.

Shaders should not modify any of the passed strings.

The callbacks HostLayersReadProc and HostLayersWriteProc perform layer reading and writing. The typedef(s) are:

	 typedef SInt32 (*EILayersReadProc) (L_Rect * theRect,
	 	 UInt32 theLayersCount,
	 	 UInt32 * theLayersID,
	 	 uchar * theData);

	 typedef SInt32 (*EILayersWriteProc)(L_Rect * theRect,
	 	 UInt32 theLayersCount,
	 	 UInt32 * theLayersID,
	 	 uchar * theData);

http://eias3d.com

E
IA

S
-9

 S
D

K

7
http://eias3d.comCopyright 1998-2010, EIAS3D

theRect – the rectangle area (in sub-pixels) to read/write data. The rectangle should be within the bounds of the
actual shadeSlabRect

theLayersCount – the number of layers to read/write

theLayersID – the pointer to an array of layers IDs. The count of elements should correspond to theLayersCount

theData – the data to read/write. The data should be organized for writing (and expected for reading) as pixelʼs
blocks, i.e. the first are data for the first pixel (left top in theRect), second are next pixel in row etc. Inside pixelʼs
block, the layersdata follows in the order specified by theLayersID array. The data size of each layer should
correspond to the data size specified when the layer was created. No pad/fill bytes should be added/expected.

6.0 EIShaderProcLayers
SInt32 EIShaderProcLayers(EIShaderProcLayersRec *theHostProcPtr);

The EIShaderProcLayers is a function called to render every additional (post-processed) layer that can be
added to the output PSD file.

6.1 Post-Processing phase

The host detects a post-processing activity if one or more layer shader specifies LFLAG_PROCESS for one or
more created layers and these shaders export EIShaderProcLayers together with the shaderProcLayersFlag set.

The post-processing phase is started after the whole render screen is finished and the output image is writ-
ten. Then the host creates a series of render processes for each layer marked for postprocessing. Donʼt be
confused, it does not mean the host loads again and again all of the geometry, lights etc. The additional render
passes are very simple: the host just calls the shader(s) to fill the rendered screen. When done, the host auto-
matically performs anti-aliasing and saves the result as a PSD layer until all the post-processed layers are done.

The typical post-processing shader scheme is:

	 Create the needed channels and fill them with the appropriate data (by using EIShaderInitLayers and 	
	 EIShaderFillLayers);

	 Save filled layers in a temp file by using the EIShaderSlabLayers service;

	 When EIShaderProcLayers is called, load previously saved layers from the temp file, combine them 	
	 and use the HostLayersWriteSlabLineProc callback to pass the result to the host for anti-aliasing and
	 storage in PSD file.

http://eias3d.com

E
IA

S
-9

 S
D

K

8
http://eias3d.com Copyright 1998-2010, EIAS3D

6.2 EIShaderProcLayersRec

	 typedef struct {

	 	 void * shaderData;	 	 	 // The pointer to the shader’s private data

	 	 L_Rect shadeRect;	 	 	 // The rendering rectangle
	 	 L_Rect shadeSlabRect;	 	 	 // The rendering slab rectangle
	 	 L_Rect shadeImageRect;		 	 // The whole rendering image rectangle
	 	 L_Rect shadeSlabImageRect;	 	 // The slab rendering image rectangle

	 	 float shadePixelWidth;	 	 	 // The antialiasing pixel width
	 	 float shadePixelScale;	 	 	 // The zoom factor
	 	 float shadePixelRatio;	 	 	 // The y/x pixel ratio
	 	 float shadeOffsetX, shadeOffsetY;	 // The x and y image offset

	 	 UInt32 shadePerspectiveFlag;	 	 // 1 for perspective rendering

	 	 UInt32 shaderLayerID;	 	 	 // ID of the post-processing layer
	 	 SInt32 shaderTransparency;	 	 // 1 if there is phong transparency

	 	 PStr255 shaderStatusString;	 	 // The status string

	 	 EILayersWriteSlabLineProc HostLayersWriteSlabLineProc; // The write callback

	 } EIShaderProcLayersRec, *EIShaderProcLayersPtr

Even the rendering rectangles (shadeRect and shadeSlabRect) and the imageʼs rectangles (shadeImageRect
and shadeSlabImageRect) look same as in EIShaderSlabLayersRec, but donʼt forget – they belong to the other
(post-processed) render process.

The shaderLayerID tells the shader ID of a single layer that is being post-processed now.

The shaderStatusString should be modified by the shader at the start of post-processing work. Thehost shows
this status string in the Camera window.

The HostLayersWriteSlabLineProc passes transfers to host the shaderʼs data. The typedef is:

	 typedef SInt32 (*EILayersWriteSlabLineProc)(SInt32 theLine, RGBA * theColor, RGBA * theAlpha);

Where:

theLine – index of the line passed to the host. It should be in the bounds of the shadeSlabRect rectangle;

theColor and theAlpha – the array of color and alpha values respectively. The count of the arrayʼs elements
should correspond to shadeSlabRect.width. The values of theAlpha will be ignored (and theAlpha can be null)
without Phong transparency (shaderTransparency = 0)

Each time a shader calls HostLayersWriteSlabLineProc, the host updates the status information in the Camera
window. If HostLayersWriteSlabLineProc returns an error, the shader should stop work and return control to the
host. It means the user cancelled the operation.

http://eias3d.com

	1.0 Layers in EIAS
	2.0 Layer Shaders Overview
	3.0 EIShaderInitLayers
	3.1 Basic structures/callbacks description
	3.2 Creating standard layers
	3.3 Creating custom layers
	3.4 Applying layers to specific Phong transparency passes

	4.0 EIShaderFillLayers
	5.0 EIShaderSlabLayers
	6.0 EIShaderProcLayers
	6.1 Post-Processing phase
	6.2 EIShaderProcLayersRec

