
LAKSHYA (JEE)

Electrostatic Potential and Capacitance

DPP-10

- 1. A condenser is charged by connecting to a battery and then the battery is disconnected. If a dielectric slab is introduced between the plates
 - (A) potential decreases
 - (B) capacity decreases
 - (C) potential increases
 - (D) charge increases
- 2. In the circuit, if the potential difference across $4 \mu F$ condenser is 6 V, the potential difference between $5 \mu F$ condenser is

3. The capacity of a parallel plate condenser is $10 \ \mu\text{F}$, without dielectric. If dielectric of dielectric constant 2 is used to fill half thickness between the plates, the capacitances is

(A) $10 \mu\text{F}$ (B) 2	0 μF
----------------------------	------

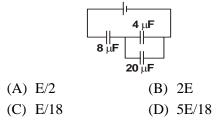
- (C) $15 \,\mu\text{F}$ (D) $13.33 \,\mu\text{F}$
- 4. A positively charged oil drop of charge 8×10^{-15} C remains stationary in the electric field between two horizontal plates separated by a distance of 2 cm and having potential difference 6 V. The mass of the oil drop is (g = 10 ms⁻¹

(A) 24×10^{-14} kg (B) 24×10^{-16} kg

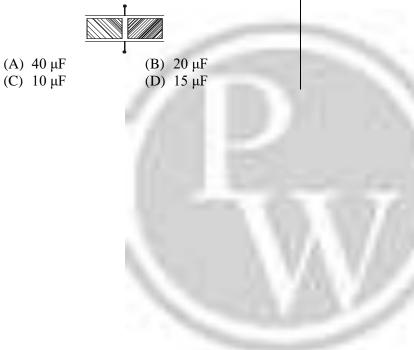
(C) 12×10^{-14} kg (D) 6×10^{-14} kg

5. A capacitor 4 μ F charged to 50 V is connected to another capacitor 2 μ F charged to 100 V. The total energy of the combination is

(A)
$$\frac{4}{3} \times 10^{-2}$$
 J (B) $\frac{3}{2} \times 10^{-2}$ J
(C) 3×10^{-2} J (D) $\frac{8}{3} \times 10^{-2}$ J


6. A parallel plate capacitor with a dielectric slab (k = 1) filling the space between the plates is charged to potential 250 V and isolated. The slab is drawn out and another dielectric of equal thickness but of k = 4 is introduced between the plates. The ratio of the energy stored in the capacitor, second case to first case, is

(A)	4:3	(B)	1:4
(C)	9:16	(D)	16:9


7. Two identical condensers P and Q are connected in series with a battery. The space between the plates of P is completely filled with dielectric medium of dielectric constant 8 and a copper plate of thickness d/2 is introduced between the plates of Q. If d is the distance of separation of the plates, then the ratio of potentials of P and Q is

(A) 1:4	(B) 4:1
(C) 3:8	(D) 1:6

8. In the circuit, if the energy of 8 μ F condenser is E, the energy of 4 μ F condenser is

- **9.** If the electric field intensity between the plates of a parallel plate condenser is E, the electric energy stored per unit volume of the medium is
 - (A) $\frac{1}{2} \varepsilon_{o} E^{2}$ (B) $\frac{1}{2} E \varepsilon_{o}^{2}$
 - (C) $\epsilon_0 E^2$ (D) $2\epsilon_0 E^2$
- 10. The capacity of a parallel plate condenser with air medium is 5μ F. If the space between the plates is completely filled with two dielectric slabs of same area but of dielectric constants 3 and 5 as shown in the figure, the capacity of the condenser becomes

ANSWERS

- **1.** (A)
- **2.** (B)
- **3.** (D)
- **4.** (A)
- **5.** (A)
- **6.** (B)
- **7.** (A)
- **8.** (C)
- **9.** (A)
- **10.** (B)

Note - If you have any query/issue

Mail us at support@physicswallah.org

