
A Dataset of Non-Functional Bugs
Aida Radu

Department of Computing Science
University of Alberta, Edmonton, Canada

aradu@ualberta.ca

Sarah Nadi
Department of Computing Science

University of Alberta, Edmonton, Canada
nadi@ualberta.ca

Abstract—While several researchers have published bug data
sets in the past, there has been less focus on bugs related to non-
functional requirements. Non-functional requirements describe
the quality attributes of a program. In this work, we introduce
NFBugs, a data set of 133 non-functional bug fixes collected from
65 open-source projects written in Java and Python. NFBugs can
be used to support code recommender systems focusing on non-
functional properties.

I. INTRODUCTION

a) Overview: Non-functional requirements (NFRs) are
a class of software constraints that pertain to the quality of
a program, as opposed to its functionality [1]. NFRs are
an important part of software development, because they
impact aspects of a program such as efficiency, portability, and
maintainability. In this paper, we present NFBugs, a dataset
of 133 real-world non-functional bugs from 65 open-source
GitHub repositories. We define a non-functional bug as a
problem in a piece of source code, which impairs some aspect
of a program’s NFRs. An example of a non-functional bug
is when a developer uses an inefficient method when a more
efficient one is available.

b) Previous Bug Datasets: While several researchers
have published bug datasets in the past, none have focused
primarily on non-functional bugs. MUBENCH by Amann et al.
[2] contains 89 misuses of Java APIs, collected from existing
bug datasets, open-source projects that used APIs from the
javax.crypto package, and a developer survey. This set
contains data from 33 open-source projects. DEFECTS4J by
Just et al. [3] contains 357 reproducible Java bugs collected
from five open-source projects.

BUGS.JAR by Saha et al. [4] contains 1,158 Java bugs from
eight open-source Apache projects, constructed by extracting
issue labels of type Bug from each project’s commit history.

OHIRA ET AL. [5] collected 4000 functional and non-
functional bugs from four open-source Apache projects that
had over 5000 reported issues in JIRA.

IBUGS by Dallmeier and Zimmermann [6] contains 369
Java bugs from the AspectJ project. The authors created this
dataset by searching for bug report IDs in the project’s commit
history. This dataset focuses on bugs that produce incorrect
program results.

c) Novelty and Contributions: Most of the above datasets
focus on functional bugs, and the ones that include non-
functional bugs collect this data from less than 10 projects.
While Ohira et al. [5] included non-functional bugs in their

dataset, these were grouped broadly under the labels of either
security or performance. Notably, our dataset uses 5
labels for non-functional bugs, in order to better differentiate
the nuance of these bugs. Additionally, all the above datasets
focus on Java projects. In contrast, our dataset contains NFR
bugs from 65 projects written in either Java or Python. We also
include a variety of projects from both novice and experienced
programmers, so that their practices can be compared and con-
trasted. Most importantly, since our focus is on non-functional
bugs, our dataset can be used to develop code recommender
systems targeted at helping developers make better quality
choices. NFBugs is publicly available on GitHub1, under an
MIT license with a citable DOI, and includes a simple API
for querying the dataset.

II. DATA COLLECTION AND STORAGE

To build NFBugs, we analyzed a variety of Github reposi-
tories written in either Java or Python. We used three methods
to identify candidate repositories for mining. By examining
the history of these repositories, we found commit messages
related to non-functional bugs, which we then manually re-
viewed to construct our dataset.

A. Project Selection

1) Selecting Projects via Star Rating: Our first selection
method uses the Github API to search for projects written in
Java or Python, sorted based on their number of stars. We then
analyzed the top repositories in order as follows.

To extract commits related to non-functional requirements,
we implemented a keyword search for commit messages using
PyDriller [7], which provides an API for mining git history.
The stemmed keywords we use in our search are listed in
Table I. Examples of possible word endings for matches are
in square brackets. We constructed this set using a combination
of the keywords created by Hindle et al. [8] and de la Mora
and Nadi [9], as well as new keywords relevant to our focus.
We also filtered out the terms spell[ing], typo, and npe
(null pointer error), since these kinds of fixes are irrelevant to
this dataset.

Our PyDriller-based program mines the commit history of
each project and identifies commits whose messages contain
one or more of the keywords in Table I. It then outputs a
CSV file containing the matched commit IDs and messages.

1https://github.com/ualberta-smr/NFBugs



TABLE I
COMMIT MESSAGE KEYWORDS

”fix” ”bug” ”error”
”refactor” ”secur[ity]” ”maint[enance]”

”stab[ility]” ”portab[ility]” ”efficien[cy]”
”usab[ility]” ”reliab[ility]” ”testab[ility]”

”changeab[ility]” ”replac[e]” ”memory”
”resource” ”runtime” ”crash”

”leak” ”attack” ”authenticat[ion]”
”authoriz[ation]” ”cipher” ”crack”

”decrypt” ”encrypt” ”vulnerab[ility]”
”minimiz[e]” ”optimiz[e]” ”slow”

”#” ”fast” ”perform[ance]

For projects written in Java, we further limited our search to
commits affecting .java files. Likewise, for Python projects,
we looked only at .py files.

We then manually reviewed these commits for true positives.
We ignored commits that, despite containing one or more of
the keywords in our list, did not relate to non-functional re-
quirements (e.g., “Fix copy paste error”2 and “Allow modules
to replace visual character representation”3). Furthermore, we
did not include problems that were highly specific to the given
project. Using this first method, we reviewed the returned
results from 91 Java and 15 Python repositories. A list of all
our reviewed repositories is available in our online repository.

2) Selecting Projects via Github Search: Using our first
method, we found several instances where developers replaced
one API with another to improve performance. Noting these
patterns, we developed another more effective strategy for
finding potential target projects. In this second method, we
identified candidate repos by using Github’s search bar to
find relevant patterns. Github searches through a variety of
data, including code, commit messages, and issues. We filtered
our search to commit messages containing the keywords in
Table I. As well, we searched for commit messages contain-
ing language-specific enhancements such as “StringBuilder
replace,” and “foreach loop replace,” since we had seen
these in previous projects. We analyzed the commit that was
found in the search to confirm if it is relevant, then ran our
PyDriller program on the complete repository history. Thus,
these projects always had at least one potential hit. Once we
ran PyDriller, the remaining steps were identical to those in the
previous section. Using this method, we mined an additional
23 Java and 11 Python projects.

3) Selecting Projects from RepoReapers: In order to add
more examples from well-engineered projects to our dataset,
we chose Github repositories from the reaper dataset of well-
engineered projects collected by Munaiah et al. [10]. First, we
sorted this dataset in descending order of star rating. We then
chose Java and Python repositories that the authors’ Random
Forest classifier predicted as well engineered. We chose to
focus on the predictions of the Random Forest classifier since
Munaiah et al. reported a higher precision for that classifier,

2https://github.com/jenkinsci/jenkins/commit/9fb6ccf
3https://github.com/MovingBlocks/Terasology/commit/45f915a

compared to the other classifiers in their study. We then ran
our PyDriller-based program on these repositories as in the
previous two methods. Using this dataset, we reviewed an
additional 17 Java and 10 Python repositories.

B. Reviewing Potential Hits

For each identified potential hit (i.e., a commit that matched
our criteria), the first author looked at the code changes
that occurred in the commit to ensure the code change was
indeed fixing a non-functional property. This manual review
is necessary since there are sometimes matched commits that
do not contain relevant code changes. For example, a commit
message that matches a performance keyword may really
be updating functionality4, or it may confuse how APIs or
methods were actually changed in the commit5. The second
author then reviewed all confirmed and documented bugs. Any
disagreements in labeling were discussed through issues or
pull requests in the data set repository. As part of our reviewing
criteria, we also ensured that we could both understand the fix
and reasoning behind it before deciding to include it in the
dataset. We erred on the side of precision.

C. Recording Identified Bugs

We categorized the bugs we found into one of three types:
General-Practise, API-related, and Project-Specific. General-
Practise problems are related to code quality and language-
independent practices. API-related problems describe changes
where one API or method was swapped with a “better” API.
Project-Specific problems are non-functional changes that are
specific to the logic of the project in which they occur; these
typically include project-specific APIs.

For each problem we identified, we recorded the prob-
lem meta data in a YAML6 file. Figure 1 shows an
example of our format, which is similar to the format
used by MUBench [2]. Each file specifies the problem’s
source, which is the search method used to find this
bug. The source commit-msg-keywords refers to method
one, while github-search refers to method two, and
RepoReapers-dataset refers to method three. Under the
project field, we specify the name of the project and
the url of its Github repository. We also document the
commit url and commit message associated with the
fix, as well as the particular file and method affected.
Because a user’s commit message is not always thorough,
we provide a description of our interpretation of the
problem. In addition, we assign one or more tags to each
problem according to the non-functional requirement(s) that
the fix improves.

Our collection of tags consists of: security,
performance, memory, resource management,
and determinism. Problems tagged with security
include changes such as improving encryption or preventing
unauthorized usage. performance problems improve

4https://github.com/adangert/JoustMania/commit/a9711c2
5https://github.com/Offer-Ready/xslt-library/commit/12fbf12
6http://yaml.org/, last checked on June 27, 2018



Fig. 1. Example YAML file for an API-related problem from
elasticsearch

Fig. 2. Example YAML file for a General-Practise problem from storio

the program’s time efficiency. Memory problems correct
memory leaks or reduce memory usage. Resource
management refers to problems where developers
neglect to close a file or stream. Finally, problems
tagged with determinism describe changes done to
the program to ensure consistent behavior. For fixes
related to specific APIs (e.g., Java.lang.String),
we record the involved API. If the developer switched
to a different API, we record the API change in the
problem documentation (e.g., Java.lang.String ->
Java.lang.StringBuilder). We also assign a rule to
the problem, which is a generalized summary of the fix that
other developers can apply. For commits not connected to a
particular API, we instead create a general suggestion to
address similar problems. An example of this type of record
is shown in Figure 2.

III. DATASET DETAILS

Using the first search method, 23 repositories contained
true positives, out of the total of 91 Java and 15 Python
repositories. In total, we identified 54 problems using this

TABLE II
DATA DISTRIBUTION BY PROBLEM TYPE AND LANGUAGE

Problem Type Python Java Total

API Related 24 68 92
General 16 16 32

Project Specific 3 6 9

Total 43 90 133

TABLE III
DATA DISTRIBUTION BY PROBLEM TAG

Tag Python Java Total

security 10 15 25
performance 27 36 63

memory 3 33 36
resource management 2 14 16

determinism 1 2 3

method. Using the second procedure, we obtained 35 problems
from 18 Java repositories and 11 Python repositories. With
the third procedure, we identified 44 problems from 8 Java
and 5 Python repositories. In total, our dataset contains 133
problems from 65 projects. The distribution of problems by
type and language is shown in Table II.

The number of problems per tag are displayed in Table III.
Performance related bugs were the most common subtype.
Table IV shows the number of projects in our dataset that
have stars, watches, and forks within a given range. Eighteen
of the projects had no stars; all of these were identified via
the github-search procedure. We decided to keep these
projects in the dataset, because (1) some of these problems
resembled others in more popular repositories and (2) it may
interest others to study the non-functional bugs that novice
programmers run into and fix. Meanwhile, 49 projects had at
least one star, with the detailed breakdown shown in Table IV.
Twenty-one projects had more than 800 stars. The majority of
projects in our dataset had less than fifty watches and no more
than 400 forks.

We identified 48 different Java APIs and 17 different Python
APIs as sources of API-related problems. Fixes for these
problems consisted of refining the use of the problematic
API, or exchanging it with a more optimal one. The number
of problems involving each API in each language is shown
in Tables V and VI. Java’s String class contributed to the
highest number of API-related problems in that language.
These were all performance problems, which developers
fixed by using a more efficient API (e.g., StringBuilder) to
perform concatenation. In Python, list methods were the most
common source of API-related problems.

To enable easy usage of the dataset, we supply a DataBox
Python API that allows users to filter the data based on star
rating, tags, project source, and more. We also provide a
sample client script7 to demonstrate usage of the API.

7https://github.com/ualberta-smr/NFBugs/blob/master/scripts/DataBoxClient.py



TABLE V
FREQUENCY OF PROBLEMATIC JAVA APIS

API Occurrence API Occurrence

java.lang.String 8 java.io.BufferedOutputStream 1
android.content.Context 2 org.apache.commons.io.IOUtils 1
java.io.FileOutputStream 2 hudson.model.Run 1
java.util.jar 1 hudson.model.Item 1
java.io.BufferedReader 3 hudson.model.Hudson 3
java.util.zip.ZipFile 1 org.kohsuke.stapler.StaplerRequest 1
java.util.ArrayList 2 java.io.FileReader 1
android.util.SparseArray 1 squareup.haha.perflib.Snapshot 1
java.util.Vector 3 java.lang.Long 3
java.lang.StringBuffer 5 java.lang.Double 2
SentienceLab.PointCloudDatasetReader.DataSource 1 java.lang.Boolean 1
xtremelabs.robolectric.bytecode.RobolectricClassLoader 1 java.lang.ref.WeakReference 2
org.codehaus.jackson.JsonParser 1 java.util.HashMap 3
fasterxml.jackson.annotation.JsonProperty.Access 2 java.lang.annotation.RetentionPolicy 1
terasology.rendering.nui.NUIManager 1 java.util.UUID.randomUUID 1
terasology.physics.engine.PhysicsLiquidWrapper 1 hudson.remoting.Channel 1
terasology.entitySystem.entity.EntityRef 1 android.webkit.WebView 1
java.io.FileInputStream 1 java.awt.image.BufferedImage 1
java.util.HashSet 1 java.io.Closeable 1
javax.imageio.ImageWriter 1 android.webkit.WebSettings 1
com.facebook.common.references.CloseableReference 1 java.lang.Float 2
java.util.concurrent.Executors 1 rajawali.util.LittleEndianDataInputStream 1
javax.imageio.ImageReader 1 org.apache.lucene.store.IndexOutput 1
PowerManager.WakeLock 1 java.io.ByteArrayOutputStream 3

TABLE VI
FREQUENCY OF PROBLEMATIC PYTHON APIS

API Occurrence API Occurrence

builtins.io.IOBase 1 builtins.list 5
builtins.input 1 builtins.forloop 2
builtins.str 3 builtins.map 3
django.db.models.Model 1 builtins.hasattr 1
Object.__class__.__name__ 1 requests 1
sqlite3.Connection 1 numpy 1
copy.deepcopy 1 builtins.generator 1
Lib.json 1

TABLE IV
NUMBER OF PROJECTS BY GITHUB STATS

Projects in Range
Range stars watches forks

[0] 17 5 20
[1,50) 9 37 10

[50,200) 2 14 16
[200,400) 6 4 4
[400,600) 6 1 5
[600,800) 4 0 2
[800,∞) 21 4 8

IV. DISCUSSION

Because of the manual labor needed for the review of
keyword hits, we are only able to include a limited number of
problems in our dataset. Additionally, similar to any manual
review process, our decision to include a bug or not and its
categorization is subjective. We mitigitated this by having two
authors review all data and documenting all the steps taken
to create the dataset. Additionally, by making the repository
public and providing a template for documentation of bugs,
we leave the dataset open to future extensions, whether by
ourselves or by other researchers.

Having a dataset of non-functional bugs can enable the
creation of code recommender systems that suggest potential
API replacements to developers. In the future, we can also

test how useful such a non-functional recommender tool is,
and how important these kinds of bugs are to programmers.
Careful thought needs to go into how such recommendations
would be presented to the developer and when, since the
detected problems are not functional defects in the end, but
are potential improvements to the non-functional qualities of
the system. Our data set can serve as a benchmark for such
recommender systems. The data we collected can also be
used in software documentation systems [11], to record non-
functional problems with certain APIs. Additionally, our data
can be used to expand the findings of previous work related to
profiling performance bugs. Finally, since our dataset contains
non-functional bugs from Java and Python, the types of non-
functional problems found across the programming languages
can also be compared.

V. CONCLUSIONS

This paper introduces NFBugs, a database of Java and
Python bugs related to non-functional requirements. Currently,
the dataset contains a description of 133 non-functional bugs
collected from 65 open-source projects. The collected bugs
come from a variety of projects and can be filtered using
several attributes. The data can be used for studying types of
non-functional problems in practice and for evaluating code
recommender systems.



ACKNOWLEDGEMENTS

This work was sponsored by the Natural Sciences and En-
gineering Research Council (NSERC) Undergraduate Student
Research Award (USRA), and by the University of Alberta’s
Computing Science Department Science Internship Program
(SIP).

REFERENCES

[1] G. Kotonya and I. Sommerville, Requirements Engineering: Processes
and Techniques, 1st ed. Wiley Publishing, 1998.

[2] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: A benchmark for api-misuse detectors,” in Proceedings of
the 13th International Conference on Mining Software Repositories,
MSR ’16. New York, NY, USA: ACM, 2016, pp. 464–467. [Online].
Available: http://doi.acm.org/10.1145/2901739.2903506

[3] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014. New York, NY, USA: ACM, 2014, pp. 437–
440. [Online]. Available: http://doi.acm.org/10.1145/2610384.2628055

[4] R. K. Saha, Y. Lyu, W. Lam, H. Yoshida, and M. R. Prasad, “Bugs.jar:
A large-scale, diverse dataset of real-world java bugs,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR ’18. New York, NY, USA: ACM, 2018, pp. 10–13. [Online].
Available: http://doi.acm.org/10.1145/3196398.3196473

[5] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda,
N. Limsettho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto,
“A dataset of high impact bugs: Manually-classified issue
reports,” in Proceedings of the 12th Working Conference
on Mining Software Repositories, MSR ’15. Piscataway, NJ,
USA: IEEE Press, 2015, pp. 518–521. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2820518.2820602

[6] V. Dallmeier and T. Zimmermann, “Extraction of bug localization
benchmarks from history,” in Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07. New York, NY, USA: ACM, 2007, pp. 433–436.
[Online]. Available: http://doi.acm.org/10.1145/1321631.1321702

[7] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller: Python Framework
for Mining Software Repositories, 2018.

[8] A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos,
“Automated topic naming to support cross-project analysis of
software maintenance activities,” in Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR ’11. New
York, NY, USA: ACM, 2011, pp. 163–172. [Online]. Available:
http://doi.acm.org/10.1145/1985441.1985466

[9] F. L. de la Mora and S. Nadi, “Which library should i use? a metric-
based comparison of software libraries,” in Proceedings of the 40th
International Conference on Software Engineering New Ideas and
Emerging Results Track (ICSE NIER ’18), 2018.

[10] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” Empirical Software Engineering,
vol. 22, no. 6, pp. 3219–3253, Dec 2017. [Online]. Available:
https://doi.org/10.1007/s10664-017-9512-6

[11] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst,
M. A. Gerosa, M. Godfrey, M. Lanza, M. Linares-Vsquez, G. C.
Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand developer
documentation,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sep. 2017, pp. 479–483.


