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1 Introduction

1.1 Blimp Overview

Blimp is an all-purpose data analysis and latent variable modeling program that

harnesses the flexible power of Bayesian estimation in a user-friendly application that

requires minimal scripting and no deep-level knowledge about Bayes. The application,

which is available for macOS, Windows, and Linux, was developed with funding from

Institute of Educational Sciences awards R305D150056 and R305D190002. The

application began as a platform for implementing multilevel multiple imputation via

fully conditional specification (Enders, Keller, & Levy, 2018), and its second release

transitioned the software to a full-featured multilevel analysis package (Enders, Du, &

Keller, 2020). Blimp 3 introduces wide ranging and powerful capabilities for

multivariate analyses with latent variables (e.g., path models, measurement models,

structural equation models), including many models not available in other software

packages.

The development team’s philosophy for Blimp is to bring easy Bayes estimation to the

masses; the program offers some opportunities for “getting under the hood”, but

algorithmic tweaks and nuanced model specifications are not as customizable as they

are in specialized (but less user-friendly) programs such as Stan or JAGS. To this end,

Blimps implements a reasonable set of diffuse or noninformative prior distributions

with a handful of “off-the-shelf” alternatives described in Bayesian texts. In line with

our overarching philosophy, complex models can be specified with minimal coding by

simply listing variable names in a format that resembles a regression equation (e.g., y

~ x1 x2 x3). In most cases, Blimp automatically introduces means, variances, and
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covariances (or correlations) with no additional specifications required, and the

software also adds any supporting models needed for missing data handling.

Blimp’s primary purpose is to provide researchers with a powerful tool for analyzing

data, with or without missing values. Blimp 3 offers a commercial-grade user

experience with the flexibility to estimate complex latent variable models, many of

which are not available in other software packages. Models can include up to three

levels with mixtures of binary, ordinal, multicategorical nominal, normal, skewed

continuous variables, and count variables. Chapters 4 through 7 of this guide provides

numerous examples. Separate from its data analytic core, Blimp continues to offer the

fully conditional specification routines introduced in Version 1. Blimp’s implementation

of fully conditional specification parallels van Buuren’s popular MICE program (van

Buuren & Groothuis‐Oudshoorn, 2011), but it uses latent response variable framework

to treat categorical variables and uses latent group means to preserve multilevel data

structures. Enders (2022) describes fully conditional specification with latent variables,

and Chapters 4 through 6 of this guide provides illustrations.

1.2 Working in Blimp

One of the major features in Blimp 3 is a redesigned graphical user interface called

Blimp Studio. The Studio application features a tabbed interface that makes it easy to

work with multiple scripts and projects at the same time. The graphic below shows the

Blimp Studio interface.
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Clicking the blue arrow button on the toolbar executes a script and spawns a paned

interface that adds an output window containing the analysis results and a plotting

window displaying trace (time series) plots for every model parameter.
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Clicking on the normal distribution icon in the toolbar hides the plotting window, which

can also be disabled completely in the application’s Preferences, located under the

Blimp Studio > Preferences pull-down menu. Other visual settings such as

fonts and the orientation of the paned windows can also be set in the Preferences

pane, shown below.

The Blimp output includes regression model parameters for each variable, including

standardized estimates and variance explained effect sizes (Rights & Sterba, 2019).

Certain types of analyses spawn additional output (e.g., odds ratios in a logistic

regression; transformation parameters for skewed variables). By default, Blimp uses

the posterior median and standard deviation as a point estimate and measure of

uncertainty, respectively, and it provides 95% credible interval limits. Other summary

statistics such as posterior mean and median absolute deviation are also available (see
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OUTPUT command). The graphic below shows a typical tabular display of the analysis

results with a vertical split between the scripting and output window.

Blimp automatically saves the output file to the same directory as the analysis script.

Blimp output is saved in a text file with a .blimp-out extension. The outputs are

linked to their analysis scripts, such that double-clicking on one of the files opens both

in the Blimp Studio interface.

1.3 Blimp’s Modeling Framework

The major feature that distinguishes Blimp’s estimation architecture from other latent

variable modeling software packages is that it does not work with the joint distribution

of the analysis variables. Rather, the multivariate distribution is factored into the

product of multiple univariate distributions. To illustrate, consider an analysis involving

Y, X, and M. The trivariate distribution factors into the product of three univariate

distributions, each of which corresponds to a univariate regression model.
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Blimp estimates the models on the right of the equals sign without assuming anything

about the form or shape of the multivariate distribution on the left. The advantage of

this specification is that the individual regression equations can feature mixtures of

categorical and normal variables, continuous variables with skewed distributions,

interactive or nonlinear terms, and other complex constructions. In such cases, the

multivariate distribution on the left doesn’t have a known or simple form, and model

misspecifications (e.g., treating such data as multivariate normal) can introduce bias.

The theory for Blimp’s model specification is given by Ibrahim and colleagues (Ibrahim,

Chen, & Lipsitz, 2002; Ibrahim, Lipsitz, & Chen, 1999; Lipsitz & Ibrahim, 1996), and the

software extends these ideas to latent variable models with up to three levels. More

recent literature refers to this model specification as fully Bayesian estimation, the

sequential specification, and factored regression (Enders et al., 2020; Erler, Rizopoulos,

Jaddoe, Franco, & Lesaffre, 2019; Erler et al., 2016; Lüdtke, Robitzsch, & West, 2020a,

2020b; Zhang &Wang, 2017).

To illustrate Blimp’s modeling framework more concretely, consider a research scenario

where the focal analysis model is a linear regression of Y on X and M. The factorization

above translates into the following linear regression models, where all residuals are

normal and have constant variance.

https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX%2CM%5Cright)%3Df%5Cleft(Y%5Cmiddle%7C%20X%2CM%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%5Ctimes%20f%5Cleft(M%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=X_i%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM_i%2Br_%7B1i%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_i%3D%5Cgamma_%7B02%7D%2Br_%7B2i%7D#0
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The X and M equations are essentially nuisance models in this example, and their role

is to link incomplete predictors to one another as well as to any complete regressors.

Any univariate equation can feature mixtures of categorical and normal variables,

continuous variables with skewed distributions, and interactive or nonlinear terms,

among other things. For example, the following equations include an interaction

between X and M in the focal model and a quadratic association between X and M in

the supporting predictor model.

If either X or M has missing values, a joint modeling framework is inappropriate and

would produce biased estimates because the incomplete predictor distributions are

complicated nonlinear functions of the outcome; such associations are fundamentally

incompatible with off-the-shelf distributions such as the multivariate normal (Bartlett,

Seaman, White, & Carpenter, 2015; Liu, Gelman, Hill, Su, & Kropko, 2014). Specifying a

model as a sequence of factored regressions bypasses the problematic joint

distribution altogether. These ideas readily extend to latent variables, which Blimp

views as missing data to be estimated (imputed).

1.4 Specifying Models for Incomplete Predictors

Throughout the guide, we use the term “predictors” to refer to exogenous variables—in

a path diagram, variables that do not have incoming arrows. When predictors are

complete, there is usually no reason to specify a distribution for these variables;

instead, the covariate data essentially function as known constants, as in ordinary least

https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%2B%5Cbeta_2M%2B%5Cbeta_3%5Cleft(X%5Ctimes%20M%5Cright)%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=X%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM%2B%5Cgamma_%7B21%7DM%5E2%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=M%3D%5Cgamma_%7B02%7D%2Br_2#0
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squares. In contrast, incomplete predictors require an explicit distribution for

imputation. Blimp allows these distributions to be many different things (e.g., normal,

skewed, discrete). In most cases, assigning a distribution to a predictor means making

that covariate a dependent variable in its own regression model. These supporting

models can be explicitly specified, or Blimp can create them automatically. These two

strategies are somewhat different and have different strengths and weaknesses. We

use the following multiple regression to illustrate the two model specification

strategies, and we assume that all variables are incomplete.

To begin, consider the situation where Blimp automatically constructs supporting

regression models for the predictors. The MODEL statement is as follows.

MODEL:
y ~ x1 x2 x3;

Throughout the guide, we refer to this specification as reflecting unspecified

associations among the predictors. The underlying regression models follow a round

robin pattern where each predictor is regressed on all other predictors.

The regressions above are linear and assume normally distributed residuals, but this

specification also allows for binary, ordinal, and multicategorical nominal predictors, in

which case Blimp adopts a latent response variable formulation (Albert & Chib, 1993;

https://www.codecogs.com/eqnedit.php?latex=Y%3D%5C%20%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3X_3%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=X_1%3D%5Cmu_1%2B%5Cgamma_%7B11%7D%5Cleft(X_2-%5Cmu_2%5Cright)%2B%5Cgamma_%7B21%7D%5Cleft(X_3-%5Cmu_3%5Cright)%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=X_2%3D%5Cmu_2%2B%5Cgamma_%7B12%7D%5Cleft(X_1-%5Cmu_1%5Cright)%2B%5Cgamma_%7B22%7D%5Cleft(X_3-%5Cmu_3%5Cright)%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=X_3%3D%5Cmu_3%2B%5Cgamma_%7B13%7D%5Cleft(X_1-%5Cmu_1%5Cright)%2B%5Cgamma_%7B23%7D%5Cleft(X_2-%5Cmu_2%5Cright)%2Br_3#0
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Carpenter & Kenward, 2013; Enders et al., 2018; Johnson & Albert, 1999). Variable

metrics are specified using the ORDINAL and NOMINAL commands described in

Chapter 2. Enders et al. (2020) describe the multilevel version of this specification.

More formally, adopting unspecified associations for the predictors invokes a model

that factors the joint distribution into the product of a univariate distribution for the

analysis model and a multivariate distribution for the predictors.

We refer to this setup as a partially factored specification because it leaves the

rightmost term—a multivariate normal distribution for continuous predictors and latent

response variables—unfactored. With mixed response types, the multivariate

distribution’s covariance matrix is difficult to model because it could include a mixture

of fixed constants, variances and covariances, and correlations. The round robin

regression equations above simplify estimation by leveraging the property that a

multivariate normal distribution spawns an equivalent set of linear regression models

(Arnold, Castillo, & Sarabia, 2001; Liu, Gelman, Hill, Su, & Kropko, 2014). Importantly,

the normal distribution assumption precludes the possibility of nonlinear associations

among the predictors, as such relations are incompatible with normal data.

Next, consider the situation where the user explicitly specifies the regression equations

for the predictors. This specification leverages the probability chain rule to factorize the

joint distribution of the analysis variables into the product of several univariate

conditional distributions, each of which corresponds to a regression model.

https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX_1%2CX_2%2CX_3%5Cright)%3Df%5Cleft(Y%7CX_1%2CX_2%2CX_3%5Cright)%5Ctimes%20f%5Cleft(X_1%2CX_2%2CX_3%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX_1%2CX_2%2CX_3%5Cright)%3Df%5Cleft(Y%7CX_1%2CX_2%2CX_3%5Cright)%5Ctimes%20f%5Cleft(X_1%7CX_2%2CX_3%5Cright)%5Ctimes#0
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The corresponding regression equations follow the same cascading pattern where the

first predictor’s model is empty, the second predictor is regressed on the first, the third

on the first and second, and so on.

The MODEL statement for this specification is

MODEL:
# predictor models
x3 ~ 1;
x2 ~ x3;
x1 ~ x2 x3;
# focal model
y ~ x1 x2 x3;

and the code block below illustrates a syntax shortcut for this specification that lists all

predictors to the left of a tilde.

MODEL:
# predictor models
x1 x2 x3 ~ 1;
# focal model
y ~ x1 x2 x3;

We refer to this setup as a factored regression specification or sequential

specification (Erler et al., 2016; Lüdtke et al., 2020b).

https://www.codecogs.com/eqnedit.php?latex=X_1%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DX_2%2B%5Cgamma_%7B21%7DX_3%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=X_2%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DX_3%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=X_3%3D%5Cgamma_%7B03%7D%2Br_3#0
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Blimp’s output produces a tabular summary for each estimated model (there are four in

the previous example). By default, the summary tables are alphabetized according to

the outcome’s name. Some users may prefer to order the tables so the primary analysis

results appear first. This is accomplished by using labels ending in a colon to define

blocks of models that appear in the order listed. The following example creates two

model blocks, such that the focal model summary table appears first on the printed

output.

MODEL:
focal.model:
y ~ x1 x2 x3;
predictor.models:
x1 x2 x3 ~ 1;

The sequential specification for predictors differs in important ways. First, the

predictor’s equation can have any metric allowed by Blimp—normal, skewed

continuous, binary (probit or logit link), ordinal (probit link), multicategorical nominal

(logistic link), or count (negative binomial link). Second, associations among the

predictors need not be linear. For example, the following equations include the

quadratic effect of X3 on X2.

The corresponding MODEL statement is as follows.

MODEL:

https://www.codecogs.com/eqnedit.php?latex=X_1%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DX_2%2B%5Cgamma_%7B21%7DX_3%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=X_2%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DX_3%2B%5Cgamma_%7B12%7DX_3%5E2%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=X_3%3D%5Cgamma_%7B03%7D%2Br_3#0
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# predictor models
x3 ~ 1;
x2 ~ x3 (x3^2);
x1 ~ x2 x3;
# focal model
y ~ x1 x2 x3;

When using a sequential specification, ordering the predictors in a particular way can

facilitate estimation and reduce the impact of model misspecifications. Lüdtke et al.

(2020b, pp. 171-172) recommend ordering variables from left to right by their

missingness rates, with categorical variables before continuous variables. To illustrate,

suppose that X1 is an incomplete binary variable, X2 is complete, and X3 is an

incomplete continuous variable. Their recommended specification would be as follows

and the corresponding model specification is

ORDINAL: x1;
MODEL:
# predictor models
x2 ~ 1;
x1 ~ x2;
x3 ~ x1 x2;
# focal model
y ~ x1 x2 x3;

or simply as follows.

ORDINAL: x1;
MODEL:
# predictor models

https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%7CX_1%2CX_2%2CX_3%5Cright)%5Ctimes%20f%5Cleft(X_3%7CX_1%2CX_2%5Cright)%5Ctimes%20f%5Cleft(X_1%7CX_2%5Cright)%5Ctimes%20f%5Cleft(X_2%5Cright)#0
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x3 x1 x2 ~ 1;
# focal model
y ~ x1 x2 x3;

Finally, when predictors are complete, there is usually no reason to specify a

distribution for these variables; instead, the covariate data essentially function as

known constants, as in ordinary least squares. With either specification for the

predictors, listing complete predictors on the FIXED command line indicates that the

variable does not require a model (or distribution). Continuing with the previous

example where X2 is complete, the sequential specification moves the complete

variable from the left to the right of the tilde, as follows.

FIXED: x2;
MODEL:
# predictor models
x3 x1 ~ x2;
# focal model
y ~ x1 x2 x3;

The partially factored specification with unspecified predictor associations is as

follows.

FIXED: x2;
MODEL:
y ~ x1 x2 x3;

The examples in Chapters 4 through 7 generally treat predictor distributions as

unspecified. This setup is easy to specify, and it is also convenient for centering

because the means are explicit model parameters that MCMC iteratively estimates.

This approach does not limit the composition of the focal analysis model, which can
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include interactive or nonlinear terms. However, predictor regressions are necessarily

additive, as interactions and similar nonlinearities are incompatible with a multivariate

normal distribution. As mentioned previously, unspecified predictor associations

accommodate normal, binary, ordinal, and multicategorical variables via a latent

response variable framework. Blimp can apply a Yeo-Johnson (Yeo & Johnson, 2000)

distribution to skewed variables and negative binomial regression to count variables,

but these features require a sequential specification.

The next section provides a complete description of the Blimp command language, and

Chapters 4 through 7 provide numerous analysis examples. The examples span a wide

variety of single-level and multilevel analyses with manifest and latent variables,

including analyses for missing not at random processes.

1.5 Missing Data Handling

As detailed in Section 1.3, Blimp’s estimation architecture factorizes a multivariate

distribution into the product of univariate distributions. This factorization carries

through to missing data handling, where the distributions of missing values rely on a

collection of univariate models. The advantage of this specification is that Blimp can

generate appropriate imputations from models that are fundamentally incompatible

with known multivariate distributions. Examples include models with incomplete

interactive or polynomial effects, multilevel models with random effects, and models

with skewed variables or mixtures of discrete and numeric variables.

To illustrate missing data handling, consider an analysis involving Y, X, and M. To

refresh, the trivariate distribution factors into the product of three univariate

distributions, each of which corresponds to a regression model.
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Blimp estimates the models on the right of the equals sign without assuming anything

about the form or shape of the multivariate distribution on the left. In a simple scenario

where all three three variables are continuous, the factorization corresponds to the

following linear regression models.

In a factored regression framework, the distributions of missing values depend on

every model in which a variable appears. For example, the distribution of missing Y

values depends only on the analysis model, and MCMC samples imputations from a

normal curve with center and spread equal to a predicted value and residual variance,

respectively.

Because it appears in two models—once as a predictor and once as an outcome—the

conditional distribution of missing X values is proportional to the product of two

normal distributions.

In a similar vein, the conditional distribution of the missing M values is proportional to

the product of three normal distributions.

https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX%2CM%5Cright)%3Df%5Cleft(Y%5Cmiddle%7C%20X%2CM%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%5Ctimes%20f%5Cleft(M%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=X_i%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM_i%2Br_%7B1i%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_i%3D%5Cgamma_%7B02%7D%2Br_%7B2i%7D#0
https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%7CX%2CM%5Cright)%3DN%5Cleft(%5Cbeta_0%2B%5Cbeta_1X_i%2B%5Cbeta_2M_i%2C%5Csigma_%5Cvarepsilon%5E2%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(X%7CY%2CM%5Cright)%5Cpropto%20f%5Cleft(Y%5Cmiddle%7C%20X%2CM%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%3D#0
https://www.codecogs.com/eqnedit.php?latex=N%5Cleft(%5Cbeta_0%2B%5Cbeta_1X_i%2B%5Cbeta_2M_i%2C%5Csigma_%5Cvarepsilon%5E2%5Cright)%5Ctimes%20N%5Cleft(%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM_i%2C%5Csigma_%7Br1%7D%5E2%5Cright)#0
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These conditional distributions have analytic solutions in many cases (Levy & Enders,

2021), but Blimp’s MCMC algorithm uses Metropolis sampling to draw imputations

from composite functions such as these.

With a collection of additive models like those above, the distributions of missing

values are equivalent to the distributions implied by a joint modeling framework or

fully conditional specification. The same is not true for models with nonlinearities,

skewed variables, or mixtures of discrete and numeric variables. To illustrate, suppose

the analysis model includes an interaction between X and M. The factorization and the

corresponding regression models are as follows.

As before, the distributions of missing values depend on every model in which a

variable appears. For example, the distribution of missing X values is again the product

of two normal distributions, as follows.

Importantly, the conditional distribution of missing values is incompatible with

multivariate normality because its variance is heteroscedastic function (Enders et al.,

https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(Y%2CX%2CM%5Cright)%5Cpropto%20f%5Cleft(Y%5Cmiddle%7C%20X%2CM%2CX%5Ctimes%20M%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%5Ctimes%20f%5Cleft(M%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_i%2B%5Cbeta_2M_i%2B%5Cbeta_3%5Cleft(X_i%5Ctimes%20M_i%5Cright)%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=X_i%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM_i%2Br_%7B1i%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_i%3D%5Cgamma_%7B02%7D%2Br_%7B2i%7D#0
https://www.codecogs.com/eqnedit.php?latex=f%5Cleft(X%7CY%2CM%5Cright)%5Cpropto%20f%5Cleft(Y%5Cmiddle%7C%20X%2CM%2CX%5Ctimes%20M%5Cright)%5Ctimes%20f%5Cleft(X%5Cmiddle%7C%20M%5Cright)%3D#0
https://www.codecogs.com/eqnedit.php?latex=N%5Cleft(%5Cbeta_0%2B%5Cbeta_1X_i%2B%5Cbeta_2M_i%2B%5Cbeta_3%5Cleft(X_i%5Ctimes%20M_i%5Cright)%2C%5Csigma_%5Cvarepsilon%5E2%5Cright)%5Ctimes%20N%5Cleft(%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM_i%2C%5Csigma_%7Br1%7D%5E2%5Cright)#0
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2020, Eq. 8). The same issue applies more broadly to models with polynomial or

nonlinear terms and multilevel models with random effects, among others.

Basing imputations on factored regression specification is guaranteed to produce a set

of compatible univariate regressions, whereas conventional modeling frameworks that

create imputations based on a multivariate distribution are prone to bias (Bartlett,

Seaman, White, & Carpenter, 2015; Liu, Gelman, Hill, Su, & Kropko, 2014). More

generally, the univariate models described above could feature discrete variables

(binary, ordinal, multicategorical nominal, count), skewed continuous variables, and

even latent variables, which Blimp views as missing data to be estimated (imputed).

1.6 New Features

The following is a list of new features and functionality available in Version 3.2.

❖ Multiple-equation models (e.g., path models) with up to three levels

❖ Latent variables and latent variable regressions

❖ Latent variables with random effects, interactions, and nonlinear effects

❖ Single-level and multilevel selection and pattern mixtures models for missing not
at random processes

❖ Multivariate regression models

❖ Parameter constraints

❖ Auxiliary parameters that are functions of estimated parameters

❖ Latent variable imputation

❖ Yeo-Johnson modeling for skewed continuous variables

❖ Binary and multinomial logistic regression

❖ Negative binomial regression for count outcomes

❖ Estimation with sampling weights
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❖ Facilities for computing new variables with numerous built-in functions

❖ Built-in functions embedded within regression equations

❖ Facilities for introducing custom univariate prior distributions

❖ New Blimp Studio graphical user interface

❖ Redesigned output with numerous enhancements and additional printing options

❖ Better optimization and many algorithmic improvements

❖ Enhanced user guide with dozens of new examples and analysis scripts

❖ Enhanced TEST command for Bayesian Wald tests in all models Blimp estimates

❖ DIC and WAIC information criteria for model selection

❖ Correlations among the residuals of all outcome variables for evaluating local
sources of model misfit

The following is a list of features and functionality that were introduced in Version 2.

❖ TEST command for Bayesian Wald tests (Asparouhov & Muthén, 2021)

❖ Simplified scripting language and redesigned output

❖ Graphical interface with automatic updates when new features become available

❖ Graphical engine that creates trace plots for all model parameters

❖ Bayesian estimation of single-level, multilevel (up to three levels), and multiple
group regression models with complete or incomplete data

❖ Posterior summaries of all model parameters from Bayesian estimation (posterior
mean, median, standard deviation, and credible interval)

❖ Single-level and multilevel R-squared measures (Rights & Sterba, 2019)

❖ Bayesian estimation for interactive and nonlinear effects with missing data

❖ Bayesian estimation with grand mean centering (all models) and group mean
centering (two- and three-level models)

❖ Post-hoc probing of interaction effects with continuous or categorical moderators

❖ Bayesian estimation of conditional effects (simple slopes) in regression models
with interaction effects
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❖ Incomplete binary, ordinal, or nominal predictor variables

❖ Discrete and latent imputations for binary, ordinal, and nominal variables

❖ FCS or Bayesian estimation with level-2 and level-3 cluster means modeled as
latent variables

❖ Contextual effects models with latent group means or manifest group means

❖ Interaction effects with latent group means

❖ Various algorithmic and interface enhancements (eg, random starting values,
options for saving various estimates and output)

1.7 Running From Terminal

Blimp scripts can also be executed from the terminal without the graphical interface.

This is useful when conducting computer simulations, for example. The most basic

specification includes a file path to the Blimp executable file followed by a file path to

the script to be executed. To illustrate, the following line of code executes a script

located on the desktop.

/Applications/Blimp/blimp ~/desktop/myscript.imp

Similarly, the following line uses the Blimp beta engine to execute the same file.

/Applications/Blimp/blimp-beta ~/desktop/myscript.imp

Several parts of the Blimp script can be specified via command line arguments. The

general form of an argument includes a double dash followed by a keyword and an

input parameter. For example, the following code block uses a command line argument

to specify the input data set.

BLIMPPATH=/Applications/Blimp/blimp
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${BLIMPPATH} ~/desktop/myscript.imp --data ~/desktop/mydata.dat

Note that any parameters specified as command line arguments replace the current

contents of the script (e.g., the file specified on the DATA command is replaced by the

file ~/desktop/mydata.dat).

In addition to the input data, command line arguments include the random number

seed and most quantities exported using the SAVE command. The code block below

shows the full array of command line arguments. The backslash is the Linux command

continuation character; the arguments would otherwise need to appear on a single line

separated by a space.

/Applications/Blimp/blimp ~/desktop/myscript.imp \
--seed {seed value} \
--data {filepath to input data} \
--output {filepath to blimp-out output file} \
--stacked {filepath to stacked imputation data} \
--stacked0 {filepath to stacked original + imputed data} \
--separate {filepath to separate imputation data sets} \
--estimates {filepath to save estimate summary tables} \
--burn {filepath to save all burn-in estimates} \
--iterations {filepath to save all post burn-in estimates} \
--psr {filepath to save burn-in psr values} \
--waldtest {filepath to save Wald statistics} \
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2 Blimp Command Language

2.1 Overview

This chapter gives a detailed account of the Blimp’s scripting language. Blimp

commands can be entered in the Blimp Studio syntax editor or in a plain text file with

.imp as the file extension. The code block below shows a typical script with many of

Blimp’s major commands.

DATA: data.dat;
VARIABLES: id a1:a4 y m x1:x3 z1 z2;
ORDINAL: x1;
NOMINAL: x3;
MISSING: 999;
FIXED: x3;
CENTER: grandmean = x1 x2;
MODEL:
# x1-x3 and x2-x3 interaction predicting m;
m ~ x1 x2 x3 x2*x3;
# m and x1-x3 predicting y;
y ~ m x1:x3;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

The Blimp command language uses the following general conventions, most of which

are shown in the previous code block.

❖ Upper and lower case are equivalent, no case sensitivity

❖ Command names (e.g., DATA, VARIABLES) end in a colon

❖ Subcommands or specifications following a command in a semicolon

❖ Commands and subcommands can span multiple lines
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❖ A colon can be used to specify a range of variables with the same prefix and suffix

❖ A # symbol indicates a comment that Blimp ignores until the end of the line

❖ Three symbols are needed to specify models: (a) ~ or <- denotes a regression
equation, (b) <-> or ~~ denote variances and covariances, and (c) -> or =~ assigns
indicators to a latent variable

❖ Mathematical operator symbols are * for multiplication, / for division, + for
addition, – for subtraction, ^ or ** to raise a variable or quantity to a power, and
parentheses for specifying order of operations

Blimp also provides a number of built-in functions that work in conjunction with certain

commands. The TRANSFORM command can use these functions to create new

variables, the PARAMETERS command can use these routines to compute auxiliary

parameters that are functions of the estimated model parameters, and functions can be

embedded within regression equations listed in the MODEL statement. The list of

functions is below.

❖ abs(x) = absolute value of x

❖ sqrt(x) = square root of x

❖ exp(x) = exponential function applied to x

❖ logit(x) = logit function applied to x

❖ sigm(x) = sigmoid function applied to x

❖ log(x) or ln(x) = natural log of x

❖ log1p(x) = log(1 + x)

❖ expm1(x) = exp(x) - 1

❖ phi(x) = normal cumulative distribution function of x

❖ iphi(x) or probit(x) = inverse normal cumulative distribution function of x

❖ yjt(x,lambda) = Yeo-Johnson transformation of x with optional shape
parameter
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❖ iyjt(x, lambda) = inverse Yeo-Johnson transformation of x with optional
shape parameter

❖ mean(x) = returns the mean of x

❖ mean(x, idvar) = returns the cluster means of x computed within the grouping
variable idvar

❖ sd(x) = returns the standard deviation of x

❖ sd(x, idvar) = returns the cluster standard deviation of x computed within the
grouping variable idvar

❖ stand(x) or scale(x) = returns x standardized as a z-score

❖ stand(x, idvar) or scale(x, idvar) = returns x standardized as a z-score
within the grouping variable idvar

❖ center(x) = returns x but centered. Equivalent to (x - mean(x))

❖ center(x, idvar) = returns x but centered within the grouping variable
idvar. Equivalent to (x - mean(x, idvar))

❖ max(x) = returns the maximum of x

❖ max(x, y) = returns the row-wise maximum between x and y

❖ min(x) = returns the minimum of x

❖ min(x, y) = returns the row-wise minimum between x and y

❖ vec(x) = creates a variable filled with the scalar x

The following built-in functions are only available in the TRANSFORM command:

❖ ismissing(x) = returns missing data indicator for x

❖ lag1(x, time) = returns the lag 1 of x based on the time variable

❖ lag1(x, time, idvar) = returns the lag 1 of x within the grouping variable
idvar, based on the time variable

❖ ifelse(condition, value if true, value if false) recodes a
variable X into a new variable with two values
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2.2 Blimp Commands

DATA Command

The DATA command specifies the input data set, which must be saved as a .csv

(comma separated values) format or a whitespace (including tab) delimited file (e.g.,

.dat or .txt). Blimp accepts only numeric characters for data values (e.g., a nominal

variable cannot have alphanumeric labels as score values), although alphanumeric

characters (e.g., NA) can be used for missing value codes. Variable names can appear

in the column headers, but the VARIABLE command (described next) must be omitted.

No file path is needed if the Blimp script (the .imp file) is located in the same directory

as the data. The following code block illustrates this specification.

DATA: mydata.dat;

The DATA command requires a full file path to the input data set that is located in a

directory other than the one that contains the Blimp script. The file path should not be

enclosed in quotations. The following code block reads a data file located in a directory

named “research project” located on the desktop. In line with macOS and other

Unix-based systems conventions, a tilde can be used to reference the user’s home

directory. The following input line reads a data file from a directory within the desktop

folder.

DATA: ~/desktop/research project/mydata.dat;

VARIABLE Command

The VARIABLES command specifies the variable names for the data set listed on the

DATA command. in the input file. This command should not be used if the data file has
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variable names as column headers. The variable list may include variables that are not

used in an analysis model or imputation model. The code block below illustrates a

basic specification with five variables.

VARIABLES: y x1 x2 x3 x4;

A colon can be used to specify a range of variables with the same prefix but different

numeric suffixes, as follows.

VARIABLES: y x1:x4;

The colon specification also works if a group of variables has a common alphanumeric

string following the numeric values (e.g., a set of variables and their recoded

counterparts).

VARIABLES: y x1:x4 x1r:x4r;

ORDINAL Command

The ORDINAL command identifies ordinal variables that appear in a MODEL statement.

For computational efficiency, we recommend listing binary variables on the ORDINAL

line, but these variables could also be treated as nominal. A colon can be used to

specify a range of ordinal variables, as follows.

ORDINAL: x1:x5;

By default, Blimp uses a latent response variable (i.e., probit regression) framework for

ordinal variables (Albert & Chib, 1993; Carpenter & Kenward, 2013; Enders et al.,
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2018; Johnson & Albert, 1999), and a logistic link is an option for binary variables

(Asparouhov, T., & Muthén, B. (2021; Polson, Scott, & Windle, 2013).

NOMINAL Command

The NOMINAL command specifies nominal variables that appear in a MODEL statement.

Nominal variables must be represented as a single variable with numeric codes. Blimp

automatically recodes the discrete responses into a set of dummy codes (or latent

response difference scores, in some cases) during estimation. By default, Blimp assigns

the first (lowest) code as the reference category. To change the reference category, list

the numeric code of the desired reference group in parentheses following the variable’s

name. To illustrate, consider two nominal variables X and Z, each with codes 1, 2, and

3. The following example assigns X = 3 and Z = 1 as the reference groups.

NOMINAL: x(3) z;

For predictors with unspecified associations, Blimp uses a latent difference score (i.e.,

multinomial probit regression) framework for nominal variables (Albert & Chib, 1993;

Carpenter & Kenward, 2013; Enders et al., 2018; Johnson & Albert, 1999), and it uses

a logistic link for multicategorial nominal variables on the left side of a tilde

(Asparouhov, T., & Muthén, B. (2021; Polson, Scott, & Windle, 2013).

COUNT Command

The COUNT command identifies count variables that appear in a MODEL statement.

Count dependent variables have a negative binomial regression (Asparouhov, T., &

Muthén, B. (2021; Polson, Scott, & Windle, 2013). Currently, incomplete count
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variables can only be outcomes, not predictors. Additionally, the COUNT command

requires the #!beta shebang at the top of the Blimp script (see Example 4.15).

COUNT: y x3;

CLUSTERID Command

The CLUSTERID command specifies cluster-level identifier variable(s) needed for a

multilevel analysis or multilevel imputation. Two-level analyses require a single

identifier for the level-2 sampling unit (cluster), and three-level analyses require

level-2 and level-3 identifier variables. The order of the identifier variables does not

matter, as Blimp automatically determines variable levels. To illustrate, the following

code block specifies a single cluster-level identifier for a two-level analysis.

VARIABLES: level2id y x1 x2;
CLUSTERID: level2id;
MODEL: y ~ x1 x2;

The code block below illustrates a pair of cluster-level identifiers for a three-level

analysis.

VARIABLES: level2id level3id y x1 x2;
CLUSTERID: level2id level3id;
MODEL: y ~ x1 x2;

Blimp currently does not allow cross-classified clustering schemes.
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MISSING Command

The MISSING command is used to specify the missing value code. Missing values can

be coded with a single numeric (e.g., 999) or alphanumeric value (e.g., NA). The

following code block specifies a numeric value of 999 as the missing data code.

MISSING: 999;

LATENT Command

The LATENT command is used to define latent variables (e.g., factors in a measurement

model) that will be referenced in the MODEL section. For example, the code block

below illustrates the specification for a single latent factor with three manifest

indicators.

LATENT: yfactor;
MODEL:
yfactor -> y1:y3;

The default scaling for latent factors is described in the MODEL command section.

Blimp treats all latent variables as missing data to be imputed, and adding the

savelatent keyword to the OPTIONS line saves the estimated latent variable scores

to the imputed data.

Latent variables can be specified at any level of a multilevel model. This specification

references cluster-level identifier variables from the CLUSTERID line. For example, the

code below illustrates the specification of a level-1 latent factor with three manifest

indicators measured at level-1 and a level-2 latent factor with three indicators

measured at level-2. The variable
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CLUSTERID: level2id;
LATENT: yfactor, level2id = xfactor;
MODEL:
yfactor -> y1:y3;
xfactor -> x1:x3;

Latent variables can also be listed on separate lines as follows.

LATENT:
yfactor;
level2id = xfactor;

RANDOMEFFECT Command

The RANDOMEFFECT command is used to define new latent variables that equal the

random intercepts and slopes from a multilevel regression model. These latent

variables are referenced in the MODEL section, where they can be used to predict other

variables in a multilevel path or structural equation model. The RANDOMEFFECT

command is similar to the LATENT command except that the random intercept and

slope residuals can only function as predictors and not outcomes like a latent factor.

The specification for a random effect latent variable has four components: (a) the new

latent variable’s name appears on the left side of the equation, (b) the target equation’s

outcome variable is listed after the equals sign, (c) the random slope predictor’s name

from the target model appears after the vertical pipe, and (d) the cluster-level identifier

variable from the CLUSTERID command appears at the end of the line in square

brackets. The generic specification is as follows.

RANDOMEFFECT:
newlatent = outcome variable | random predictor [CLUSTERID var];
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To illustrate more concretely, the code block below defines a pair of new latent

variables equal to the random intercept and random slope residuals from a two-level

model and uses the random effects to predict an outcome.

CLUSTERID: cluster;
RANDOMEFFECT:
ranicepts = y | 1 [cluster];
ranslopes = y | x [cluster];
MODEL:
y ~ x | x;
z ~ ranicepts ranslopes;

TRANSFORM Command

The TRANSFORM command creates new variables that are functions of existing

variables. If imputations are requested, the new variable is saved to the output data

sets. The general form of the TRANSFORM command is as follows.

TRANSFORM:
newvar1 = expression or function;
newvar2 = expression or function;

Mathematical operator symbols are * and / for multiplication and division, + and – for

addition and subtraction, and ^ to raise a variable or quantity to a power. The following

examples apply these operators to create new variables from an existing variable X.

TRANSFORM:
newvar1 = x * 2;
newvar2 = x / 2;
newvar3 = x + 2;
newvar4 = x - 2;
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newvar5 = x^2;

Blimp also offers three ways to recode an existing variable into a new variable. The

switch function is the most convenient in many situations.

TRANSFORM:
newvar = switch(condition1, value if true,

condition2, value if true,
condition3, value if true,
...
value if all conditions are false);

To illustrate, consider the creation of a new binary variable that equals 1 if X is less

than 50 and 2 if X is greater than or equal to 50. The TRANSFORM command for

recoding X into a binary variable is as follows.

TRANSFORM:
newvar = switch(x < 50, 1, 2);

As a second example, suppose X is a multicategorical variable with four groups coded

1 through 4. The TRANSFORM command below creates a new three-category variable

that combines codes 3 and 4 into a single group.

TRANSFORM:
newvar = switch(x == 1, 1, x == 2, 2, 3);

The second recording strategy uses Boolean statements that evaluate to a 1 or 0. To

illustrate, consider the creation of a new binary variable that equals 1 if X is less than

50 and 2 if X is greater than or equal to 50. The TRANSFORM command for recoding X

into a binary variable is as follows.
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TRANSFORM:
newvar = (x < 50)*1 + (x >= 50)*2;

The Boolean operator (x < 50) evaluates to 1 if X is less than 50 and 0 otherwise.

Multiplying by 1 establishes the score value that is assigned if the first condition is

true. The Boolean operator (x >= 50) similarly evaluates to a 1 or 0, and multiplying by

2 establishes the score value that is assigned if the second condition is true. Summing

the two components produces the desired binary variable because only one of the two

terms is non-zero.

As a second example, suppose X is a multicategorical variable with four groups coded

1 through 4. The TRANSFORM command below creates a new three-category variable

that combines codes 3 and 4 into a single group.

TRANSFORM:
newvar = (x == 1)*1 + (x == 2)*2 + (x == 3)*3 + (x == 4)*3;

Following the previous example, the command consists of four Boolean operators,

each of which evaluates to 1 or 0 if the condition is true or false, respectively. Each

operator is multiplied by the score value that is assigned if the condition is true. Finally,

summing the result of each product recodes the variable because only one condition is

non-zero.

Multiple Boolean operators can be combined into a single condition by separating two

operators with and/or. For example, the TRANSFORM command below creates a new

three-category variable that uses an or logical argument to recode codes 3 and 4 into a

single category.
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TRANSFORM:
newvar = (x == 1)*1 + (x == 2)*2 + ((x == 3) or (x == 4))*3;

The ifelse function is a third method for recoding variables. The general form of the

command has three arguments: a condition to be evaluated, the value of the new

variable it the condition is true, and the value of the new variable if the condition is

false.

TRANSFORM:
newvar = ifelse(condition, value if true, value if false);

To illustrate, reconsider the creation of a new binary variable that equals 1 if X is less

than 50 and 2 if X is greater than or equal to 50. The TRANSFORM command for

recoding X into a binary variable is as follows.

TRANSFORM:
newvar = ifelse(x >= 50, 2, 1);

The condition being evaluated is whether X is greater than or equal to 50, and the new

variable is assigned a value of 2 if the condition is true and 1 otherwise. Multiple

ifelse statements can be nested within each other, but the switch function is

generally more convenient for recoding variables into three or more score values.

Global functions are listed in Section 2.1. The following functions are specific to the

TRANSFORM command and cannot be used elsewhere:

❖ ismissing(x) = returns missing data indicator for a variable X

❖ lag1(x, timescores, cluster) = in a multilevel longitudinal structure,
shifts all rows of variable X down by one row, as indexed by a level-1 temporal
predictor timescores nested within a cluster-level identifier variable cluster
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❖ switch(condition1, value if true, condition2, value if true,
..., value if all conditions false) recodes existing variables

❖ ifelse(condition, value if true, value if false) recodes a
variable X into a new variable with two values

BYGROUP Command

The BYGROUP command is used to perform fully conditional specification imputation

(when used in conjunction with the FCS command) or model estimation (when used in

conjunction with the MODEL command) for observed subgroups in the data. For

example, consider a manifest (and complete) grouping variable G with three

categories. The following code block specifies fully condition specification imputation

separately for each level of G.

BYGROUP: g;
FCS: y x1 x2;

Similarly, the following code block estimates a separate multiple regression model for

each subgroup of G.

BYGROUP: g;
MODEL: y ~ x1 x2;

Only a single categorical variable is allowed on the BYGROUP command, although this

limitation can be bypassed by recoding multiple categorical variables into a single

variable, sample size permitting. Additionally, the BYGROUP variable should not appear

on the ORDINAL, NOMINAL, or MODEL lines. Trace plots are currently unavailable with

BYGROUP processing. Finally, you can use this command to fit multiple-group models,

but Blimp does not allow between-group constraints.
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FIXED Command

The FIXED command identifies complete predictor variables that do not require a

distribution. Incomplete variables and outcome variables (variables that appear to the

left of a tilde) must be random variables with a distribution. With relatively few

exceptions, we recommend listing complete variables on the fixed line, as doing so

speeds computations and convergence. Fixed variables listed on the CENTERING line

will be centered at the means of the observed data (i.e., the means will not be treated

as random variables to be estimated). The following code block illustrates a multiple

regression analysis with two complete fixed variables, X1 and X2.

VARIABLES: y x1 x2 x3 x4;
FIXED: x1 x2;
MODEL: y ~ x1 x2 x3;

CENTER Command

The CENTERING command is used to center predictor variables in regression

equations. This command affects Blimp’s printed estimates but has no bearing on

imputations generated by the SAVE command. For complete variables listed on the

FIXED line, Blimp centers variables at arithmetic averages (grand mean or group

means). For all variables assigned a distribution, the CENTERING command treats

grand means and group means as random variables to be estimated at each MCMC

iteration (Enders & Keller, 2019). Any product terms specified on the MODEL line

automatically reflect the specified centering method.
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In a single-level model, there is no need to specify the type of centering because

centering at the grand means is the only option. The code block below shows a basic

grand mean centering specification for a single-level multiple regression model.

CENTER: x1 x2;
MODEL: y ~ x1 x2 x3;

The equivalent specification below explicitly requests grand mean centering.

CENTER: grandmean = x1 x2;
MODEL: y ~ x1 x2 x3;

Predictor variables in a multilevel regression model can be centered at the grand

means or group-level cluster means (lower-level regressors only). In this case, the type

of centering must be explicitly specified. The following code block illustrates a

two-level regression model with a cross-level interaction where a level-1 predictor X1

is centered at the level-2 latent group means, and a level-2 predictor X2 is centered at

its grand mean (group mean centering is not an option for variables at the highest

level).

CLUSTERID: level2id;
CENTER: groupmean = x1.i, grandmean = x2.j;
MODEL: y ~ x1.i x2.j x1.i*x2.j | x1.i;

Centering specifications can also be spread over multiple lines, as follows.

CLUSTERID: level2id;
CENTER:
groupmean = x1.i;
grandmean = x2.j;
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MODEL: y ~ x1.i x2.j x1.i*x2.j | x1.i;

Importantly, group mean centering reflects deviations between the raw scores and

latent group means (unless the variable is complete and listed on the FIXED line, in

which case the group means are arithmetic averages). Further, group mean centering is

always performed by subtracting the latent group means at the next level of the data

hierarchy. For example, if the previous analysis was a three-level model, the centering

procedure would subtract X1 scores from the level-2 latent group means. The group

means themselves can be included in the analysis model, and these latent variables

can be centered just like any other predictor.

Categorical variables can also be centered (Enders & Tofighi, 2007; Yaremych &

Preacher, 2021). As mentioned elsewhere, categorical predictors (binary, ordinal, or

nominal) are modeled as underlying normal latent response variables. The grand and

group means are also modeled on the latent metric, and listing categorical variables on

the CENTERING command invokes a transformation that converts the latent mean to

the metric required by the analysis model (Enders & Keller, 2019). For example,

centering a binary predictor converts the latent grand mean to a “manifest” mean equal

to the model-implied proportion of ones in the data. Applying centering to nominal

variables with three or more categories can be computationally intensive because the

latent mean conversion requires Monte Carlo integration at each MCMC step.

MODEL Command

The MODEL command typically consists of one or more univariate regression models.

Blimp’s modeling framework can accommodate a wide range of analyses ranging from

basic multiple regression models to complicated multilevel structural equation models
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with interactions involving latent variables. This section describes the command, and

Chapters 4 through 7 provide numerous examples.

Regression Models

Univariate regression models are the building blocks for specifying more complex

multivariate models involving networks of variables—Blimp’s modeling framework

simply defines any multivariate model as a collection of individual univariate

regressions (see Section 1.3). A univariate regression is specified by listing an outcome

variable to the left of the tilde symbol and predictors (or perhaps just an intercept) to

the right of the tilde. The code block below illustrates a multiple regression analysis

with three predictors.

MODEL:
y ~ 1 x1 x2 x3;

Outcome variables that appear to the left of a tilde can be latent factors or manifest

variables with a variety of different metrics (normal, skewed continuous, binary,

ordinal, multicategorical nominal, count). With the exception of latent outcomes where

means are set equal to 0, Blimp estimates the intercept by default, and the above

specification can be shortened as follows.

MODEL:
# unspecified predictor models
y ~ x1 x2 x3;

As explained in Section 1.4, supporting regression models for incomplete predictors

can be explicitly specified (i.e., they can appear as outcomes to the left of a tilde), or

Blimp can create them automatically. The previous code block does not list models for
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the regressors, so Blimp constructs them as needed for missing data handling. The

examples in Chapter 3 generally adopt this specification because it is easy to

implement and accommodates normal, binary, ordinal, and multicategorical nominal

variables. Leaving predictor associations unspecified also facilitates centering because

grand means and latent group means (multilevel models) are iteratively estimated

parameters. To reiterate, regressions among the predictors are simply a device for

assigning distribution to and preserving associations among incomplete covariates.

These models usually are not the substantive focus, and they need not have a logical

causal construction.

Alternatively, predictor models can be invoked with a sequential specification that

features a cascading pattern of univariate regressions, where the first predictor’s model

is empty, the second predictor is regressed on the first, the third on the first and

second, and so on.

MODEL:
# sequentially specified predictor models
x3 ~ 1;
x2 ~ x3;
x1 ~ x2 x3;
# focal analysis model
y ~ x1 x2 x3;

Sequential models can be specified more succinctly by listing all predictors on the left

side of the same tilde.

MODEL:
# sequentially specified predictor models
x1 x2 x3 ~ 1;
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# focal analysis model
y ~ x1 x2 x3;

When using the FIXED command to identify complete predictor variables that do not

require a distribution, those predictors should only appear on the right side of a tilde in

a sequential specification.

FIXED: x2;
MODEL:
# sequentially specified predictor models
x1 x3 ~ x2;
# focal analysis model
y ~ x1 x2 x3;

A sequential specification is primarily useful for two scenarios: modeling nonlinear

associations among predictors and modeling skewed or count distributions. In most

other situations, unspecified and sequentially specified predictor models are

equivalent. To illustrate, the code below depicts a scenario where X2 is a quadratic

function of X3 (see the later section on interactive and polynomial effects).

MODEL:
x3 ~ 1;
x2 ~ x3 (x3^2);
x1 ~ x2 x3;
y ~ x1 x2 x3;

As a second example, the following code block assigns a Yeo-Johnson normal

distribution (Yeo & Johnson, 2000) that allows X2’s distribution to be positively or

negatively skewed (see the later section on functions embedded within equations).
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MODEL:
x3 ~ 1;
yjt(x2) ~ x3;
x1 ~ x2 x3;
y ~ x1 x2 x3;

Lüdtke et al. (2020b) provide recommendations for ordering variables when adopting a

sequential specification (see Section 1.4).

Blimp prints a table of estimates for each outcome variable in a model (i.e., every

variable to the left of a tilde. By default, the tables are printed in alphabetical order.

Users can specify a custom order for tables by defining equation blocks within the

MODEL statement. Equation blocks are defined by specifying an arbitrary name for the

block (which will appear on the output) followed by a colon. For example, the code

below defines two equation blocks, such that the focal regression output would be the

first table of results. Within a given block, order is alphabetic.

MODEL:
focal.regression:
y ~ x1 x2 x3;
predictor:models:
x3 ~ 1;
yjt(x2) ~ x3;
x1 ~ x2 x3;

With the exception of latent dependent variables, Blimp automatically estimates each

equation’s intercept and residual variance. In some situations, it may be necessary to

explicitly mention these parameters (e.g., when imposing a constraint or labeling a

parameter). The code block below explicitly references the intercept by including a 1
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on the right of the tilde (the keyword intercept can be used in lieu of the 1), and it

uses a double-headed arrow to reference the residual variance

MODEL:
y ~ 1 x1 x2 x3;
y <-> y;

Variances can also be specified with double tildes, as follows.

MODEL:
y ~ 1 x1 x2 x3;
y ~~ y;

Discrete Outcomes

Discrete outcomes are defined on the ORDINAL, NOMINAL, and COUNT lines. In general,

little or no further specification is needed. For example, the following code block

illustrates a probit regression for a binary outcome.

ORDINAL: y;
MODEL:
y ~ x1 x2 x3;

A logistic regression additionally applies the logit function to the dependent variable,

as shown below.

ORDINAL: y;
MODEL:
logit(y) ~ x1 x2 x3;
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Discrete Predictors

Discrete predictors are defined on the ORDINAL, NOMINAL, and COUNT lines (the latter

is only available with a sequential specification). In general, little or no further

specification is needed to invoke a discrete predictor. For example, the following code

block illustrates a linear regression where X2 is a binary dummy code.

ORDINAL: x2;
MODEL:
y ~ x1 x2 x3;

The discrete scores appear in the focal analysis model, but Blimp uses a latent

response variable formulation for the predictor’s supporting regression model (which is

left unspecified above).

The specification for nominal variables is similar. To illustrate, the code block below

specifies a linear regression where X2 is a multicategorical predictor (X2 = 1, 2, 3).

NOMINAL: x2;
MODEL:
y ~ x1 x2 x3;

Blimp uses a latent difference variable formulation (multinomial probit model) for the

predictor’s supporting regression (which is left unspecified above), but a set of dummy

codes appear in the focal analysis model. By default, Blimp assigns the first (lowest)

numeric code as the reference category. To override this default behavior, list the

desired reference group’s numeric code in parentheses on the NOMINAL line. To

illustrate, the following code block assigns X2 = 3 as the reference category.
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NOMINAL: x2(3);
MODEL:
y ~ x1 x2 x3;

In some situations, it may be necessary to refer to a specific dummy code (e.g., when

constraining or labeling a parameter). This specification uses a period and a numeric

label following the variable’s name. For example, the following code block assigns X2

= 3 as the reference group, and it explicitly references the dummy codes for the X2 = 1

and 2 categories in a MODEL statement.

NOMINAL: x2(3);
MODEL:
y ~ x1 x2.1 x2.3 x3

Interaction and Polynomial Terms

Traditional modeling frameworks that assume a multivariate distribution for the

analysis variables (e.g., all structural equation models based on multivariate normal

distribution) are fundamentally incompatible with incomplete nonlinear effects. This

includes models with incomplete interaction effects, curvilinear effects, and random

slopes (two- or three-level models). Practically speaking, incompatibility means that

imputations generated by a multivariate distribution are mathematically impossible

given the configuration of effects in the focal analysis model.

Blimp’s estimation architecture avoids this problem by working with a set of univariate

regression models that are guaranteed to be mutually compatible. Rather than

imputing the product directly, Blimp uses a Metropolis sampling step to select

imputations that are consistent with any nonlinear effects in the univariate regression
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models. The methodological literature uniformly favors this strategy over so-called

just-another-variable imputation schemes that apply normal distribution assumptions

to incomplete nonlinear effects (Bartlett et al., 2015; Enders et al., 2020; Erler et al.,

2016; Kim, Belin, & Sugar, 2018; Kim, Sugar, & Belin, 2015; Lüdtke, Robitzsch, & West,

2019; Zhang &Wang, 2017). The specifications described below are the same for

single-level and multilevel regression models.

Interaction terms are specified by connecting two predictors in the same equation with

an asterisk. The following code block illustrates a two-way interaction with

lower-order terms. The supporting regressions for incomplete predictors are

constructed automatically (see Section 1.4).

MODEL:
y ~ x1 x2 x1*x2;

Similarly, the code below shows a three-way interaction with all possible two-way

interactions and lower-order terms.

MODEL:
y ~ x1 x2 x3 x1*x2 x1*x3 x2*x3;

Generally speaking, any variable to the left of a tilde (dependent variables, predictors

in a factored regression specification) can have interaction effects in its regression

model.

Blimp allows for interactions with categorical predictors defined on the NOMINAL and

ORDINAL lines. Binary and ordinal predictors function as numeric variables when

multiplied by another variable; the supporting regressor model again uses a latent

response variable formulation. Interactions involving multicategorical nominal
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variables require product terms for each dummy code in a set. By default, Blimp

automatically creates a model that includes the necessary product terms. To illustrate,

the code block below illustrates an interaction effect where X2 is a multicategorical

nominal predictor (X2 = 1, 2, 3) and X3 is continuous.

NOMINAL: x2;
MODEL:
y ~ x1 x2 x3 x2*x3;

In this case, Blimp automatically generates a model with two product terms, one for

each of the two dummy codes (recall that X2 = 1 is the reference group). In some

situations, it may be necessary to refer to a specific component of the product (e.g.,

when constraining or labeling a parameter). The following specification is equivalent to

the one above.

NOMINAL: x2;
MODEL:
y ~ x1 x2 x3 x2.2*x3 x2.3*x3;

A polynomial term in a curvilinear regression is just interaction between a variable and

itself. As such, these terms can specified by connecting a regressor with itself using an

asterisk. The following code block illustrates a quadratic function a with lower-order

term and a covariate.

MODEL:
y ~ x1 x1*x1 x2;

Alternatively, the quadratic term can be specified by using a function embedded in a

regression equation, as follows..
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MODEL:
y ~ x1 (x1^2) x2;

Correlations and Residual Correlations

In Blimp, univariate regression models are always the building blocks for specifying

more complex multivariate models involving networks of variables—the modeling

framework simply defines a multivariate model as a collection of individual univariate

regressions (see Section 1.3). Because Blimp does not work with the joint distribution

of the variables (e.g., impose a multivariate normal distribution on the data), these

univariate equations are uncorrelated by construction. For example, the code block

below illustrates a bivariate analysis with two empty regression equations, but the

correlation (or covariance) between the two dependent variables is not a byproduct of

estimation.

MODEL:
y1 ~ 1;
y2 ~ 1;

Blimp has two ways of estimating associations among a set of variables like those

above. Whenever possible, the software assigns a multivariate distribution with a

mean vector and covariance matrix as the parameters. The covariance matrix approach

invokes a Wishart prior distribution. The second approach uses phantom latent factors

to correlate dependent variables from different regression equations. Variances and

correlations are the parameters of this specification. In a single-level model, the

procedure is the “srs” specification described in Merkle and Rosseel (2018), and Blimp

extends their approach to two- and three-level models. The phantom variable

approach uses a so-called separation strategy (Barnard, McCulloch, & Meng, 2000; Liu,
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Zhang, & Grimm, 2016) that assigns distinct priors to the diagonal and off-diagonal

elements of the covariance matrix. A path diagram of the underlying model is shown

below.

The multivariate structure of this specification consists of variances (or residual

variances) and correlations (or residual correlations). If desired, covariances can be

obtained by using the PARAMETERS command to define these quantities as auxiliary

functions of the estimated parameters. The phantom variable approach can be

manually specified by listing the use_phantom keyword on the OPTIONS line.

Like variances, correlations and residual correlations are specified with double-headed

arrows or double tildes. The following code block illustrates a simple bivariate analysis

with two empty regression models.

MODEL:
y1 ~ 1;
y2 ~ 1;
y1 <-> y2;

MODEL:
y1 ~ 1;
y2 ~ 1;
y1 ~~ y2;

The analysis can be specified more succinctly as follows.
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MODEL:
y1 <-> y2;

The same specification applies to correlated residual terms from a multivariate

regression.

MODEL:
y1 ~ x1 x2 x3;
y2 ~ x1 x2;
y1 <-> y2;

Finally, multiple correlations can be specified by listing a set of variables on each side

of a double-headed arrow or double tilde. The following code block requests all

possible correlations among a set of five variables.

MODEL:
y1:y3 x1 x2 <-> y1:y3 x1 x2;

Parameter Constraints

Blimp allows for many types of parameter constraints. These restrictions are imposed

by listing the @ symbol and a numeric value or label following a variable’s name. For

example, the following code block uses a label “beta” to specify an equality constraint

on X1 and X2’s regression slopes.

MODEL:
y ~ x1@beta x2@beta x3;

As a second example, the code below uses a numeric label to fix the regression

intercept to zero during estimation.
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MODEL:
y ~ 1@0 x1 x2;

Similarly, the code below fixes the variance of a variable to 1 during estimation.

MODEL:
y ~ x1 x2;
y <-> y@1;

Many, but not all model parameters can be constrained. For example, between-group

constraints are not permissible when using BYGROUP processing.

Auxiliary Variables

Blimp uses a sequential specification to incorporate auxiliary variables into a model.

Associations among the auxiliary variables and analysis variables follow the same

cascading pattern of univariate models used to connect regressors; the first auxiliary is

regressed on the analysis variables, the second auxiliary variable is regressed on the

first plus the analysis variables, the third is regressed on the first two, and so on. The

code block below illustrates a multiple regression analysis with three auxiliary

variables, A1 to A3.

MODEL:
y ~ x1 x2;
a1 ~ y x1 x2;
a2 ~ a1 y x1 x2;
a3 ~ a1 a2 y x1 x2;

The auxiliary models can be specified more succinctly by listing all auxiliary variables

on the left side of the same tilde.
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MODEL:
y ~ x1 x2;
a3 a2 a1 ~ y x1 x2;

Latent Variables

The LATENT command described earlier defines latent variables (e.g., factors in a

measurement model) referenced in the MODEL section. To illustrate, the following code

block shows a basic measurement model with a single latent factor and three normally

distributed indicators (indicators can also be binary or ordinal).

LATENT: yfactor;
MODEL:
yfactor -> y1:y3;

By default, Blimp establishes identification by fixing the first factor loading to one and

the latent mean (or intercept) to zero. The following code block uses univariate

regression equations to achieve an identical specification.

LATENT: yfactor;
MODEL:
yfactor ~ 1@0;
y1 ~ yfactor@1;
y2 ~ yfactor;
y3 ~ yfactor;

It may be beneficial to override the default identification settings in some cases. For

example, convergence speed may be improved by scaling the latent factor to an

indicator with complete data (or the indicator with the least amount of missing data) or

fixing one of the regression intercepts instead of the latent mean to 0. To illustrate, the
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code block below illustrates a specification with the following features: (a) Y1’s loading

is freely estimated, (b) the latent mean is estimated, (c) Y3’s measurement intercept is

constrained to 0, and (d) Y3’s loading is constrained to 1.

LATENT: yfactor;
MODEL:
# estimate the latent mean
yfactor ~ 1;
# estimate loadings
y1 ~ yfactor;
y2 ~ yfactor;
# fix intercept to 0 and loading to 1
y3 ~ 1@0 yfactor@1;

Blimp’s univariate modeling framework treats latent factors as incomplete variables to

be imputed (adding the savelatent keyword to the OPTIONS line saves the

estimated latent scores to the imputed data sets). Imputing the latent scores opens up

interesting opportunities not available in other software packages. For example, Blimp

allows a latent variable to interact with a manifest variable or with another latent

variable (Keller, 2021). The following code block illustrates a latent-by-manifest

variable interaction.

LATENT: xfactor;
MODEL:
xfactor -> x1:x3;
y ~ xfactor z xfactor*z;

The manifest variable Z is normal in this example, but it could have any metric that

Blimp supports. Similarly, two latent variables can interact with one another. The
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following code block illustrates a latent-by-latent interaction involving two factors

with three indicators each.

LATENT: xfactor mfactor;
MODEL:
xfactor -> x1:x3;
zfactor -> z1:z3;
y ~ xfactor zfactor xfactor*zfactor;

Finally, an outcome variable (manifest or latent) can be a polynomial function of a

latent variable. The code below shows a latent variable with a quadratic effect on the

outcome.

LATENT: xfactor;
MODEL:
xfactor -> x1:x3;
y ~ xfactor (xfactor^2) z;

Multilevel Regression Models

Multilevel regression models require relatively few additional specifications beyond

those for single-level regression models. Blimp automatically determines the level at

which a variable is measured in a multilevel data set, so the user need only provide a

basic model specification. The one exception is latent variables, the levels of which

must be specified in the LATENT command. Enders et al. (2020) provide specific details

about Blimp’s multilevel modeling framework, which uses the same factored

regression specification outlined for single-level models. Predictor variables can be

centered at their grand means or group means (Enders & Tofighi, 2007) using the

CENTERING command (discussed later).
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Blimp automatically adds random intercepts residuals to all lower-level models

(outcomes or predictors) whenever the CLUSTERID command is used to specify a

cluster-level identifier variable. To illustrate, consider a two-level regression model

where X1 and X2 are level-1 and level-2 predictors, respectively. The following code

block illustrates a regression model with random intercepts.

CLUSTERID: level2id;
MODEL:
y ~ x1.i x2.j;

The estimated model includes a random intercept in the analysis model as well as in

X1’s supporting model. In some cases, it may be necessary to manually reference the

random intercept (e.g., when labeling or constraining the parameter). In the code block

below, the 1 to the right of the vertical pipe represents a random intercept.

CLUSTERID: level2id;
MODEL:
y ~ x1.i x2.j | 1;

Random slope coefficients are specified by listing lower-level predictors to the right of

a vertical pipe. For example, the code block below illustrates a regression model with

random intercepts (implicit) and a random slope for the level-1 predictor X1.

CLUSTERID: level2id;
MODEL:
y ~ x1.i x2.j | x1.i;
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Blimp estimates an unstructured variance–covariance matrix for the random intercepts

and random slopes. Adding the savelatent keyword to the OPTIONS line saves the

random effect estimates to the imputed data sets.

Random intercepts and slopes can also appear as regressors in other equations. To

illustrate, the code block below uses the RANDOMEFFECT command to define the

intercepts and slopes as cluster-level latent variables that predict another variable Z.

CLUSTERID: level2id;
RANDOMEFFECT:
ranicepts = y | 1 [level2id];
ranslopes = y | x1.i [level2id];
MODEL:
y ~ x1.i x2.j | x1.i;
z ~ ranicepts ranslopes;

Blimp can also estimate three-level models. To illustrate, consider a three-level model

where X1 and X2 are level-1 and level-2 regressors, respectively, and X3 is a level-3

predictor. As before, Blimp automatically detects the level at which a variable is

measured. The following code block illustrates a three-level regression model with

random intercepts induced by a pair of cluster-level identifier variables.

CLUSTERID: level2id level3id;
MODEL:
y ~ x1.i x2.j x3.k;

As a second example, the code block below illustrates a three-level random slope

model where the influence of the level-1 regressor X1 varies across level-2 and level-3

units and the influence of the level-2 predictor X2 varies across level-3 units.
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CLUSTERID: level2id level3id;
MODEL:
y ~ x1.i x2.j x3.k | x1.i x2.j;

By default, Blimp estimates an unstructured variance-covariance matrix of the random

effects at all higher levels of the data hierarchy.

In some situations, it is desirable or necessary to override Blimp’s default behavior and

fix certain variance components to zero (or alternatively, select which variances get

estimated). This is achieved by listing the desired random effects on the right side of

the vertical pipe and appending to the effect’s name a cluster-level identifier in square

brackets. To illustrate, the following code block illustrates a three-level model with

random intercepts at both levels and a random coefficient for X1 at the second level.

CLUSTERID: level2id level3id;
MODEL:
y ~ x1.i x2.j x3.k | 1[level2id] 1[level3id] x1[level2id];

The resulting variance–covariance matrix at level-2 is an unstructured 2 × 2 matrix, and

the level-3 covariance matrix reduces to a scalar with only a random intercept variance.

Multilevel regression models can also include cluster means as group-level predictors

(i.e., contextual effects; Longford, 1989; Raudenbush & Bryk, 2002). Appending the

.mean keyword to the end of a lower-level covariate’s name references that variable’s

latent group means. To illustrate, the following code block specifies a two-level

regression model that includes X1 as a level-1 predictor and its group means as a

level-2 predictor.
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CLUSTERID: level2id;
MODEL:
y ~ x1 x1.mean x2;

Importantly, the group means are cluster-level latent variables rather than

deterministic arithmetic averages of the level-1 scores. Methodology research favors a

latent variable specification because it can reduce bias associated with arithmetic or

“manifest” group means in some scenarios (Hamaker & Muthén, 2019; Lüdtke et al.,

2008).

In a three-level model, appending the .mean suffix to a level-1 predictor automatically

introduces the level-2 and level-3 latent group means as predictors. To specify the

group means at one level but not the other, additionally append the cluster-level

identifier variable in square brackets. For example, the following code block illustrates

a three-level random intercept regression with X1’s level-3 latent group means as a

predictor but not its level-2 averages.

CLUSTERID: level2id level3id;
MODEL:
y ~ x1 x1.mean[level3id] x2 x3;

Functions Embedded in Equations

Blimp allows users to embed functions inside parentheses on the right side of

regression equations and, in limited cases, on the left side as well. As an example, the

following code block features a predictor centered at a constant value of 10.

MODEL:
y ~ (x1 - 10);
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The next example uses an embedded function to specify a curvilinear regression where

the outcome is a quadratic function of the predictor.

MODEL:
y ~ x (x^2);

Embedded functions can also reference multiple variables. For example, the following

code block defines the predictor variable as the sum of four ordinal variables. A

common application occurs with scale scores computed as the sum of several

questionnaire items.

ORDINAL: x1:x4;
MODEL:
y ~ (x1 + x2 + x3 + x4);

Importantly, the embedded sum function does not imply a deterministic computation or

passive imputation. Rather, the sum is essentially a random variable that varies as a

function of its four components (e.g., items). Any missing data handling uses a

Metropolis sampling step to impute the individual components while simultaneously

accounting for the fact that the incomplete component is part of a larger summation.

The procedure for treating missing data is described in Alacam, Enders, Du, and Keller

(2023).

There are two equivalent ways to specify a sum function in a regression equation. The

first is to separate the first and last variables in the sum with :+: as shown below.

ORDINAL: x1:x4;
MODEL:
y ~ x1:+:x4;
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The second method defines the function or computation as a new variable and then

uses that new variable in a regression equation. The code block below illustrates this

approach, which is equivalent to the previous two.

ORDINAL: x1:x4;
MODEL:
xsum = x1:+:x4;
y ~ xsum;

Again, it is important to emphasize that xsum is itself a random variable rather than a

deterministic computation or passive imputation.

Although computationally different, the previous sum functions are conceptually

equivalent to placing equality constraints on item-level coefficients from the same

scale, as follows.

ORDINAL: x1:x4;
MODEL:
y ~ x1@beta x2@beta x3@beta x4@beta;

Embedded functions can also be part of interactive effects. To illustrate, the following

code block shows an interaction between a scale (sum) score involving five items and a

continuous moderating variable M (manifest or latent).

ORDINAL: x1:x4;
MODEL:
y ~ x1:+:x4 m (( x1:+:x4 ) * m);

Alternatively, the same analysis can be expressed by first defining the sum function as

a new random variable as follows.
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ORDINAL: x1:x4;
MODEL:
xsum = x1:+:x4;
y ~ xsum m xsum*m;

Although computationally different, the embedded function above is conceptually

equivalent to placing equality constraints on products involving items and the

moderator, as follows.

ORDINAL: x1:x5;
MODEL:
y ~ x1@beta1 x2@beta1 x3@beta1 x4@beta1 m x1*m@beta3 x2*m@beta3

x3*m@beta3 x4*m@beta3;

Extending the previous idea, the code below shows the interaction between two scale

scores, one computed as the sum of four ordinal items and the other computed as the

sum of six items.

ORDINAL: x1:x4 m1:m6;
MODEL:
y ~ x1:+:x4 m1:+:m6 (( x1:+:x4 ) * ( m1:+:m6 ));

Alternatively, the same analysis can be expressed by first defining the sum function as

a new random variable as follows.

ORDINAL: x1:x4;
MODEL:
xsum = x1:+:x4;
msum = m1:+:m6;
y ~ xsum msum xsum*msum;
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Blimp also allows embedded functions on the left side of the tilde, but the range of

allowable functions is limited (e.g., to basic mathematical operations and

transformations). Moreover, the embedded function can only reference a single

(dependent) variable. A common application of this functionality involves

transformations to a skewed outcome variable. As an example, the following code

block applies a natural log transformation to a positively-valued dependent variable.

MODEL:
ln(y) ~ x1 x2 x3;

As a second example, the code below applies the Yeo-Johnson (Yeo & Johnson, 2000)

transformation to a skewed outcome variable.

MODEL:
yjt(y) ~ x1 x2 x3;

The Yeo-Johnson procedure estimates the shape of the data as the MCMC algorithm

iterates and produces imputations from a skewed distribution. The analysis examples

in Chapter 3 illustrate the procedure in more detail.

The description of the TRANSFORM command in Section 2.2 outlined Boolean operators

(true/false functions) that can be used to recode an existing variable into a new

variable. Boolean operators can also be used to define predictors in a regression

equation. To illustrate, consider a binary dummy variable that equals 0 if X is less than

50 and 1 if X is greater than or equal to 50. In lieu of using the TRANSFORM command

to compute a new variable, listing a Boolean operator as a predictor similarly creates a

dummy variable predictor.
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MODEL:
y ~ (x >= 50);

As explained previously, the operator evaluates to 1 or 0 if the condition in

parentheses is true or false, respectively. Note that variables created with TRANSFORM

are saved to the imputed data sets, whereas variables created via inline functions are

not. When X has missing values, the continuous version of the variable links to other

predictors, whereas the discrete version predicts Y. The imputation algorithm uses a

Metropolis sampling step that allows X to simultaneously function as a continuous and

binary variable.

SIMPLE Command

The SIMPLE command is used to request conditional effects (e.g., simple intercepts and

simple slopes) from a regression model with an interaction effect. At each MCMC

iteration, Blimp computes conditional effects by applying an appropriate contrast

vector to the analysis model’s regression coefficients. These additional auxiliary

parameters thus have their own distribution, credible intervals, et cetera. The

PARAMETERS command described next can also be used to compute contrasts.

The code block below shows the basic specification where the SIMPLE command

requests the conditional effects of X (the focal predictor) at different values of M (the

moderator).

CENTER: x m;
MODEL: y ~ x m x*m;
SIMPLE: x | m;

Multiple sets of conditional effects can be separated by commas
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CENTER: x m;
MODEL: y ~ x m x*m;
SIMPLE: x | m, m | x;

or listed on separate lines, as follows.

CENTER: x m;
MODEL: y ~ x m x*m;
SIMPLE:
x | m;
m | x;

When a continuous moderator is listed to the right of the vertical pipe, Blimp

automatically reports conditional effects at 0, plus or minus 1, and plus or minus 2

standard deviations from 0. We highly recommend centering the focal predictor and

moderator such that zero represents the mean. In a multilevel model, the standard

deviation is determined by the type of centering. A continuous moderator centered at

its group means has only within-cluster variation, so the pooled within-cluster

standard deviation is used. A continuous moderator centered at its grand mean has

both within-cluster and between-cluster variation, so the total standard deviation is

used. The number of standard deviation units can also be specified. For example, the

code block below requests the simple slopes of X at one half of a standard deviation

above and below the mean of M.

CENTER: x m;
MODEL: y ~ x m x*m;
SIMPLE:
x | m@.5SD;
x | m@-.5SD;
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When a nominal moderator variable is listed to the right of the vertical pipe, Blimp

automatically computes and reports conditional effects for every group. When an

ordinal variable is listed to the right of the vertical pipe, the pick-a-point score values

must be specified. To illustrate, the following code block specifies conditional effects at

M = 0 and M = 1 (e.g., conditional effects at each level of a binary dummy code). The

same method identifies specific points for continuous moderators.

CENTER: x m;
MODEL: y ~ x m x*m;
SIMPLE:
x | m@0;
x | m@1;

The main restriction with the SIMPLE command occurs in models with multiple

equations. In this case, a dependent variable in one equation can serve as the

moderator in another equation, but the user must specify the values being conditioned

on. The code block below shows a specification where M is the dependent variable in

one equation and a moderator in the other. The variable M appears to the right of the

vertical pipe along with the fixed values to condition in (i.e., default standard deviation

units are not an option).

CENTER: x m;
MODEL:
m ~ x z;
y ~ x m x*m;
SIMPLE:
x | m@0;
x | m@1;
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No such specification is necessary if the dependent variable in one equation is the focal

predictor in the other (i.e., appears to the left of the vertical pipe). The code block

below shows a specification where M is the dependent variable in one equation and

the focal predictor in the other. The variable X appears to the right of the vertical pipe,

and the output would return the conditional effect of M at standard deviation units

above and below X’s mean.

CENTER: x m;
MODEL:
m ~ x z;
y ~ x m x*m;
SIMPLE:
m | x;

PARAMETERS Command

The PARAMETERS command is used to (a) define auxiliary parameters that are

functions of a model’s estimated parameters, and (b) specify custom prior distributions.

The command uses the same mathematical operators and accesses the same functions

as the TRANSFORM command described earlier. Auxiliary parameters are computed by

attaching alphanumeric labels to model parameters, then using those labels in an

equation that defines a new parameter. Auxiliary parameters are computed at every

MCMC iteration, and thus they have their own distributions and summary tables in the

output.

As a first example, recall from the MODEL command section that Blimp links dependent

variables from separate equations with correlations or residual correlations (instead of

covariances). One use of the PARAMETERS command is to compute covariances. The
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code block below labels the variances and correlation and uses the labels to compute

the covariance, which is the product of the correlation and the standard deviations.

MODEL:
y ~~ y@yvar;
x ~~ x@xvar;
y ~~ x@yxcorr;
PARAMETERS:
yxcov = yxcorr * sqrt(yvar * xvar);

As a second example, the following code block labels the three slope coefficients in a

moderated regression model and uses the PARAMETERS command to compute the

conditional effect of X (i.e., simple slope) at values of M = 0 and M = 1.

MODEL:
y ~ x@beta1 m@beta2 x*m@beta3;
CENTER: x m;
PARAMETERS:
m0 = 0;
m1 = 1;
slope.at.m0 = beta1 + m0 * beta3;
slope.at.m1 = beta1 + m1 * beta3;

As a final example, the code block below labels pathways from a single-mediator

model and uses the PARAMETERS command to compute the product of coefficients

estimator (i.e., the product of the X to M and M to Y paths; Mackinnon, 2008).

MODEL:
m ~ x@apath;
y ~ x@cpath m@bpath;
PARAMETERS:
indirect = apath * bpath;
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The second major use for the PARAMETERS command is to introduce custom prior

distributions. This functionality is currently restricted to the following list of univariate

prior distributions.

❖ normal(mu, var) or N(mu, var) = normal distribution with mu as the mean
and var as the variance

❖ invgamma(a, b) = inverse gamma distribution with a = scale (i.e., alpha; prior
degrees of freedom ÷ 2) and b = shape (i.e., beta; prior sums of squares ÷ 2)

❖ gamma(k, theta) = gamma distribution with k = shape and theta = scale

❖ uniform(a, b) or unif(a, b) = uniform distribution with lower bound a
and upper bound b

❖ beta(a, b) = beta distribution with a = alpha and b = beta

❖ laplace(mu, b) = laplace distribution with mu = location and b = scale

❖ cauchy(a, g) = cauchy distribution with a = location and g = scale

❖ truncate(a, b) or trunc(a, b) = truncate function to generate truncated
distributions with a = lower bound and b = upper bound. To obtain one sided
truncation, you can set either parameter to -Inf or Inf for positive and negative
infinity.

To illustrate, the following code block shows a simple regression model with

informative normal priors on the regression coefficients and an inverse gamma prior for

the variance with a = 1 and b = .5 (i.e., 2 additional degrees of freedom and unit sum of

squares). This prior specification for the variance is identical to listing prior1 on the

OPTIONS line.

MODEL:
y ~ 1@beta0prior x@beta1prior;
y ~~ y@resvarprior;
PARAMETERS:
beta0prior ~ normal(2,20);
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beta1prior ~ normal(5,10);
resvarprior ~ invgamma(1,.5);

In addition to the mathematical operators and functions described in the TRANSFORM

command section, the PARAMETERS command can also access the following

model-predicted variance expressions. These expressions could be used, for example,

to create custom R2 statistics beyond those included in the default output.

❖ varname.totalvar = model-predicted total variance of an outcome variable (a
variable to the left of a tilde) named varname

❖ varname.coefvar = explained variance in an outcome variable named
varname by the fixed effects coefficients

❖ varname.slopevar = explained variance in an outcome variable named
varname by the fixed effects coefficients via random slopes in a multilevel model

❖ varname.iceptvar = explained variance in an outcome variable (a variable to
the left of a tilde) named varname by the random intercepts

❖ varname.residvar = residual variance in an outcome variable named varname

TEST Command

The TEST command is used to perform the Bayesian Wald test described by

Asparouhov and Muthén (2021). This command is available in models with a single

outcome and multivariate models with several outcomes (e.g., path models). The TEST

command can be implemented in a variety of ways. One approach is to label

parameters in the MODEL statement and use the TEST command to specify the null

hypothesis or condition to be evaluated. The example below illustrates a test of

whether two slopes simultaneously equal 0.

MODEL:
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y ~ x1@b1 x2@b2 x3@b3;
TEST:
b1 = 0;
b2 = 0;

Tests of multiple parameters can also be specified using the following shortcut.

MODEL:
y ~ x1@b1 x2@b2 x3@b3;
TEST:
b1:b3 = 0;

More than one test can be performed by specifying multiple TEST commands. For

example, the following code block yields two tests, the first of which involves a single

parameter, the second of which involves two slopes.

MODEL:
y ~ x1@b1 x2@b2 x3@b3;
TEST:
b1 = 0;
TEST:
b2:b3 = 0;

The TEST command can also evaluate equality and other types of constraints. For

example, the following code block tests an equality constraint on two regression

slopes.

MODEL:
y ~ x1@b1 x2@b2 x3@b3;
TEST:
b1 = b2;
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Complex hypotheses are specified by listing multiple conditions in a single TEST

command. For example, the following code block evaluates whether one slope differs

from 0 and whether two slopes differ from one another.

MODEL:
y ~ x1@b1 x2@b2 x3@b3;
TEST:
b1 = b2;
b3 = 0;

The second way to implement the TEST command is similar to the MODEL

statement—it specifies a regression model. However, the model listed on the TEST line

must be nested within the model listed on the MODEL statement. The first way to

specify the nested model is to exclude parameters from the nested model. The code

block below illustrates a comparison involving a full model with three predictors and a

restricted model with only an intercept.

MODEL:
y ~ x1 x2 x3;
TEST:
y ~ 1;

Alternatively, a nested model can be specified by fixing parameters to desired test

values by appending an @ and a numeric label to a variable or effect. For example, the

following code block illustrates an equivalent specification that fixes three slope

coefficients to 0.

MODEL:
y ~ x1 x2 x3;
TEST:
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y ~ x1@0 x2@0 x3@0;

The TEST command produces the output table below. The Wald test statistic is a

chi-square variable, and the test’s degrees of freedom equals the number of

parameters by which the two models differ. The probability value is not a frequentist

p-value because it makes no reference to test statistics from other random samples.

Rather, the probability is an index of support for the proposed constraints, where

support is defined as the area above the test statistic in a chi-square distribution.

MODEL FIT:

Asparouhov & Muthén Wald Tests

Test #1

Wald Statistic (Chi-Square) 133.705
Number of Parameters Tested (df) 3
Probability 0.000

The TEST command can also compare nested models with different variances. To

illustrate, the code block below shows a two-level model with random coefficients,

where the TEST command is used to specify a random intercept model with two fewer

parameters.

CLUSTERID: level2id;
MODEL:
y ~ x1 x2 x3 | x1;
TEST:
y ~ x1 x2 x3 | x1@0;
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FCS Command

The FCS command invokes a fully conditional specification multiple imputation

(FCS–MI) approach similar to that described by Stef van Buuren and colleagues (van

Buuren, 2007; van Buuren, Brand, Groothuis-Oudshoorn, & Rubin, 2006). This

command cannot be used in conjunction with the MODEL command. Rather, FCS

deploys an MCMC algorithm that cycles through incomplete variables one at a time,

imputing each variable from an additive equation that features the incomplete variable

regressed on all other variables listed on the FCS line. This algorithm makes no

distinction between outcomes and regressors in the subsequent analysis model; all

entities listed on the FCS line are simply variables to be imputed or complete variables

that contribute to imputation. The SAVE command outputs the filled-in data sets for

reanalysis using frequentist methods (Rubin, 1987). FCS–MI is known to introduce bias

when applied to analysis models with nonlinear terms such as interactions, polynomial

effects, or random coefficients. The model-based imputation routines illustrated in

Chapter 3 are far superior.

To illustrate FCS–MI, consider a simple scenario with one continuous variable X,

one binary dummy variable D, and one 7-category ordinal variable O. The code block

below shows a basic script (which could also include nominal variables).

DATA: data.dat;
VARIABLES: id a1:a5 x d o z;
ORDINAL: d o;
MISSING: 999;
FCS: x d o;
NIMPS: 100;
CHAINS: 100;
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BURN: 1000;
ITERATIONS: 10000;
OPTIONS: savelatent;
SAVE: stacked = imps.dat;

At a minimum, the FCS command should include all variables and effects of interest in

the analysis model(s), but the list may also include additional auxiliary variables. The

commands following the FCS line in the script are described later in this section.

Blimp’s FCS–MI routine primarily differs from the classic MICE (Multiple Imputation by

Chained Equations; van Buuren & Groothuis‐Oudshoorn, 2011) approach in two ways.

First, Blimp’s algorithm is a true Gibbs sampler; this is a small technical nuance that

makes no difference in practice. Second, Blimp adopts a fully latent specification for all

categorical variables. As noted previously, Blimp uses a probit regression framework

that views discrete scores as arising from one or more normally distributed latent

response variables (or latent response difference scores in the case of multicategorical

nominal variables). Applied to the previous example, the binary dummy variable D and

the 7-category ordinal variable O have corresponding latent response variables D* and

O*, respectively. Blimp’s FCS–MI routine uses the latent variables both as predictors

and as outcomes. The round robin imputation models for this example are as follows.

https://www.codecogs.com/eqnedit.php?latex=X%3D%5Cmu_X%2B%5Cgamma_%7B11%7D%5Cleft(D%5E*-%5Cmu_%7BD%5E*%7D%5Cright)%2B%5Cgamma_%7B21%7D%5Cleft(O%5E*-%5Cmu_%7BO%5E*%7D%5Cright)%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=D%5E*%3D%5Cmu_%7BD%5E*%7D%2B%5Cgamma_%7B12%7D%5Cleft(O%5E*-%5Cmu_%7BO%5E*%7D%5Cright)%2B%5Cgamma_%7B22%7D%5Cleft(X-%5Cmu_X%5Cright)%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=O%5E*%3D%5Cmu_%7BO%5E*%7D%2B%5Cgamma_%7B13%7D%5Cleft(X-%5Cmu_X%5Cright)%2B%5Cgamma_%7B23%7D%5Cleft(D%5E*-%5Cmu_%7BD%5E*%7D%5Cright)%2Br_3#0
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The latent response models also incorporate threshold parameters that divide the

latent distributions into discrete segments, and the residual variances of r2 and r3 are

fixed at 1 to establish the latent variable metrics.

Listing the savelatent keyword on the OPTIONS line saves both the discrete and

latent response variables to the imputed data files (by default, only the discrete

imputes are written to the imputed data files). The imputed latent scores (plausible

values) could be used in lieu of the discrete scores in a subsequent analysis. For

example, the analysis in Section 5.7 illustrates an item-level factor analysis that uses

imputed latent response scores. In a similar vein, Muthén and Asparouhov (2016)

describe an application that replaces a binary mediator with a latent response variable.

As an aside, the savelatent keyword can also be used in conjunction with

imputations generated by the MODEL command.

If desired, listing the mice and manifest keywords on the OPTIONS line alters

Blimp’s default behaviors and invokes an algorithm that is equivalent to the one in the

MICE package in R (van Buuren & Groothuis‐Oudshoorn, 2011). In addition to a slight

algorithmic modification, this specification uses discrete variables as predictors on the

right side of equations. The round robin imputation models for this example are as

follows.

https://www.codecogs.com/eqnedit.php?latex=X%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DD%2B%5Cgamma_%7B21%7DO%2Br_1#0
https://www.codecogs.com/eqnedit.php?latex=D%5E*%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DO%2B%5Cgamma_%7B22%7DX%2Br_2#0
https://www.codecogs.com/eqnedit.php?latex=O%5E*%3D%5Cgamma_%7B03%7D%2B%5Cgamma_%7B13%7DX%2B%5Cgamma_%7B23%7DD%2Br_3#0
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The MICE package deploys logistic rather than probit models for categorical variables,

but this distinction tends to make little difference in practice.

The multilevel version of fully conditional specification (Enders et al., 2018)

automatically introduces the latent group means of all lower-level variables in the

imputation model (i.e., latent contextual effects); this is true for both continuous and

latent response variables. Including the group means in the imputation model allows

all between-cluster associations to vary independently of the within-cluster

associations. Listing the noclmean keyword on the OPTIONS line removes the latent

group means from the regression models, producing a more restrictive imputation

model where the within- and between-cluster regressions are assumed to be equal.

For two-level models, a heterogeneous level-1 variance structure is invoked by listing

the hev keyword on the OPTIONS line. This method is described in Kasim and

Raudenbush (1998).

BURN Command

The BURN command specifies the number of burn-in iterations. Bayesian analysis

results summarize estimates taken from iterations following the burn-in period, and

multiple imputations (via FCS or MODEL) are saved after the burn-in period. To

illustrate, the following code block illustrates a 5,000-iteration burn-in period.

BURN: 5000;

The number of burn-in iterations should always be determined by examining the

potential scale reduction factor diagnostic (Gelman & Rubin, 1992) from the Blimp

output. Material at the beginning of Chapter 3 describes how to use these diagnostics.
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ITERATIONS Command

The ITERATIONS command specifies the number of iterations after the burn-in period.

The tabular summaries reflect Bayesian analysis results taken from the post burn-in

period. To illustrate, the following code block specifies 10,000 MCMC iterations

following an initial burn-in period of 5,000 iterations.

BURN: 5000;
ITERATIONS: 10000;

Note that the total number of iterations is distributed equally across the number of

MCMC chains, the default value of which is two (see the CHAINS command). In our

experience, 10,000 iterations is usually more than sufficient, but material at the

beginning of Chapter 3 describes how to verify that this is the case.

CHAINS Command

The CHAINS command is used to specify the number of MCMC processes (and

optionally, the number of processors used for computation). The default number of

chains is two, and the total number of computational cycles specified on the

ITERATIONS line is always divided equally across chains. By default, Blimp attempts

to distribute MCMC chains across physical cores, resulting in faster computation (e.g.,

on a 10-core machine, specifying 10 chains would automatically assign one MCMC

process per core). Because Blimp automatically uses the maximum available cores, this

specification would primarily be used to specify fewer resources. For example, the code

block below specifies 10,000 iterations spread across 10 unique MCMC chains. The

MCMC processes are completed sequentially using two physical cores.
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ITERATIONS: 10000;
CHAINS: 10 processors 2;

By default, each chain will have a different seeding value and different random starting

values. Random starting values can be disabled by specifying the norandomstarts

keyword on the OPTIONS line.

NIMPS Command

The NIMPS command is used to specify the desired number of multiple imputation data

sets to save during MCMC estimation (saving imputed data sets is optional). Graham,

Olchowski, and Gilreath (2007) suggest using at least 20 imputed data sets to

maximize power, and other studies have shown that 100 or more imputations may be

necessary to reduce the impact of Monte Carlo simulation error on standard errors and

get precise estimates of confidence interval half-widths and probability values

(Bodner, 2008; Harel, 2007; von Hippel, 2018). Imputations can be saved at regular

intervals during a single MCMC chain, at the final iteration of multiple MCMC

processes, or some combination of the two. The code block below saves 100 imputed

data sets from the final iteration of 100 MCMC chains, each with 5,000 burn-in

iterations and 100 iterations thereafter (i.e., 10,000 total iterations spread across 100

MCMC processes).

BURN: 5000;
ITERATIONS: 10000;
NIMPS: 100;
CHAINS: 100;
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THIN Command

The THIN command is used to specify the between-imputation interval when saving

multiple imputations from the same MCMC chain. For example, the following code

block deploys two MCMC chains (the default) that create 100 filled-in data sets by

saving imputations every 1,000 iterations after the 5,000-iteration burn-in period.

NIMPS: 100;
BURN: 5000;
THIN: 1000;

Saving multiple imputations is optional, and this command is not necessary; however,

either THIN or ITERATIONS must be specified when saving filled-in data sets. The

THIN command has no impact on printed parameter summaries, which are always

based on the post burn-in iterations.

OPTIONS Command

The following keywords are used in conjunction with either the FCS or MODEL

commands. Bolded keywords are default and do not require explicit specification.

❖ prior1/prior2/prior = Three common prior distributions for the residual
variances and covariances of dependent variables; prior1 is more informative
because it adds to the degrees of freedom and sums of squares, prior2 is less
informative because subtracts from the degrees of freedom, and prior3 has zero
degrees of freedom and adds zero to the sums of squares

❖ xprior1/xprior2/xprior3 = Three common prior distributions for the residual
variances of predictor variables with unspecified associations

❖ psr/nopsr = Compute the potential scale reduction factor diagnostic

❖ hov/hev = homogenous versus heterogeneous within-cluster variances
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❖ randomstarts/norandomstarts = Enable/disable random starting values for
different MCMC chains

❖ listwise = Enable listwise deletion (off by default).

❖ saveVariableNames or saveVarNames = write variable names as column
headers when saving imputed data sets.

The following keywords are used in conjunction with the FCS command to alter the

behavior of the fully conditional specification imputation algorithm.

❖ mice = classic mice algorithm instead of a Gibbs sampler

❖ manifest = manifest categorical rather than latent response variables as
predictors in the imputation model

❖ noclmean = exclude latent cluster means from level-2 (and level-3) imputation
models

The following keywords are used in conjunction with the SAVE command to alter the

composition of imputed data files.

❖ savelatent = save factor or latent variable scores (measurement models),
random effects (two-level models), latent response variables (categorical
variables), and normalized values from the Yeo-Johnson transformation

❖ savepredicted = save the predicted values of continuous outcomes, predicted
probabilities for binary and nominal outcomes, and predicted latent response
variable scores for ordinal outcomes

❖ saveresidual = save residuals (or within cluster residuals)

❖ csv = save data sets as comma separated .csv files (instead of space delimited
.dat files) and write variable names as column headers

OUTPUT Command

The OUTPUT command is used to customize the printed parameter summaries. By

default, Blimp prints the posterior median, posterior standard deviation, 95% credible
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interval limits, split chain potential scale reduction factor, and effective number of

MCMC samples (estimated number of independent MCMC iterations using split chain

approach) for each parameter. Listing any of the following keywords on the OUTPUT

command overrides Blimp’s default output tables with new tables containing the

requested quantities.

❖ default = posterior median, standard deviation, 95% credible interval, split
chain potential scale reduction factor, effective number of MCMC samples

❖ default_mean = posterior mean, standard deviation, 95% credible interval,
split chain potential scale reduction factor, effective number of MCMC samples

❖ default_median = posterior median, posterior median absolute deviation
(scaled to be same metric as std. dev.), 95% credible interval, split chain potential
scale reduction factor, effective number of MCMC samples

❖ mean = posterior mean

❖ median = posterior median

❖ stddev = posterior standard deviation

❖ mad_sd = posterior median absolute deviation (scaled to be same metric as the
standard deviation)

❖ quant = 2.5%, 25%, 50%, 75%, 97.5% quantiles

❖ quant50 = 25% and 50% quantiles

❖ quant95 = 2.5% and 97.5% quantiles

❖ psr = potential scale reduction factor computed after the burn-in period

❖ n_eff = print effective number of MCMC samples

❖ mcmc_se = print MCMC simulation standard error

To illustrate, the code block below creates a custom table displaying only the median,

a set of quantiles (2.5%, 25%, 50%, 75%, and 97.5%), and potential scale reduction

factors computed following the burn-in period.
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OUTPUT: median quant psr;

The code block below specifies Blimp’s default output with the additional quantities.

OUTPUT: default median quant psr;

SAVE Command

The SAVE command is used to save byproducts of MCMC estimation. The principal use

for this command is to save multiply imputed data sets, but the command also saves

parameter estimates from the burn-in and post burn-in iterations, posterior summaries,

and potential scale reduction factors. Unless a full file path is specified, Blimp saves

the specified files to the directory that contains the input script.

Multiple imputations can be saved in three different formats: (a) as separate data files

(ideal for analysis in Mplus or HLM), (b) in a single stacked file with an additional

identifier variable that indexes imputations (ideal for analysis in R, SPSS, and SAS),

and (c) a single stacked file that includes the original data indexed with a zero value

(ideal for analysis in Stata). The following code block illustrates all three specifications.

SAVE:
separate = imp*.dat;
stacked = imps.dat;
stacked0 = imps0.dat;

When saving imputations to separate files, the asterisk in the file path is replaced with

an integer in the file name (e.g., specifying imp*.dat produces imputed data sets

named imp1.dat, imp2.dat, imp3.dat, et cetera). The separate-file specification



Blimp User’s Guide (Version 3) 89

also generates a text file that contains the names of the individual data files (this file

functions as the input data when analyzing imputations in Mplus).

The imputed data sets include all variables from the input data (regardless of whether

they were used in an analysis or imputation routine) along with the values of any latent

variables, predicted scores, and residuals specified on the OPTIONS line (the

savelatent, savepredicted, and saveresidual keywords). The stacked format

adds a variable to the first column of the data that indexes the data sets. The order of

the variables in the imputed data sets is listed at the bottom of the Blimp output. The

output excerpt below provides an illustration.

VARIABLE ORDER IN IMPUTED DATA:

stacked = ‘imps.dat’

imp# id n1 d1 o1 y x1 d2 x2 x3

In addition to creating imputed data sets, the SAVE command can produce files

containing the estimated parameters for burn-in iterations (burn = filename;),

estimated parameters for the post burn-in iterations (iterations = filename;),

posterior summaries of the parameter estimates as they appear on the Blimp output

(estimates = filename;), starting values (starts = filename;), the potential

scale reduction factor values for all parameters (psr = filename;), the Bayesian

Wald test statistic (waldtest = filename;), and the average imputation across the

post burn-in iterations (avgimp = averageimps.dat;). The code block below

illustrates these options.

SAVE:
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burn = burnin.dat;
iterations = iterations.dat;
estimates = estimates.dat;
starts = starts.dat;
psr = psr.dat;
waldtest = wald.dat;
avgimp = averageimps.dat;

When using multiple MCMC chains, chain-specific quantities can be saved by

specifying an asterisk in the filename. Blimp replaces this symbol in the filename with

a numeric value that indexes the chains. The following code block illustrates this

specification.

SAVE:
burn = burnin*.dat;
iterations = iterations*.dat;
estimates = estimates.dat;
starts = starts.dat;
psr = psr.dat;
avgimp = averageimps.dat;

Parameter summaries and starting values are saved in a single file regardless of the

number of MCMC chains used for computations.
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3 Diagnosing Convergence and Specifying the Number of Iterations

Diagnosing the MCMC algorithm’s convergence and determining the total number of

computational cycles is an important part of any analysis. The initial burn-in (trial)

period should be long enough for the algorithm to achieve independence from its

random starting values and achieve a steady state (i.e., converge in distribution); the

total number of iterations after the burn-in period should be large enough to provide

adequate precision. This section describes this process of determining these two

quantities. These steps are applicable to any analysis, including all the ensuing

examples. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex3a.imp Ex3b.imp data8.dat

The first step in an analysis is to perform a preliminary diagnostic run to determine the

length of the burn-in period. This initial period should be long enough for the MCMC

algorithm to converge. As a starting point, we find it useful to specify 10,000 burn-in

cycles for the preliminary analysis. The code block below estimates a two-level

random coefficient model (see Example 6.3) with this setting on the BURN line. The

default number of chains is two, and the number of iterations after the burn-in period

(the ITERATIONS line) is not important at this point.

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;

https://www.dropbox.com/s/03hggemxp60pqgd/Ex3a.imp?dl=1
https://www.dropbox.com/s/2mh2pyofcyv8rbr/Ex3b.imp?dl=1
https://www.dropbox.com/s/u0luo59hqwcrr7f/data8.dat?dl=1
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MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL: y.i ~ x1.i x2.i x7.j d1.j | x1.i;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
OPTIONS: labels;

Blimp divides the burn-in period into 20 equal segments and computes the split-chain

potential scale reduction factor (Gelman et al., 2014) at the end of each interval. The

table below shows the highest (worst) potential scale reduction factor across all

model parameters.

BURN-IN POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains Highest PSR Parameter #
251 to 500 1.461 12
501 to 1000 1.303 13
751 to 1500 1.157 13
1001 to 2000 1.313 5
1251 to 2500 1.085 13
1501 to 3000 1.055 5
1751 to 3500 1.096 13
2001 to 4000 1.090 13
2251 to 4500 1.051 13
2501 to 5000 1.024 13
2751 to 5500 1.020 13
3001 to 6000 1.015 13
3251 to 6500 1.041 5
3501 to 7000 1.011 5
3751 to 7500 1.015 8
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4001 to 8000 1.009 3
4251 to 8500 1.030 8
4501 to 9000 1.028 14
4751 to 9500 1.032 8
5001 to 10000 1.024 8

The table shows that the index drops to acceptable levels (e.g., less than 1.05, where 1

is the theoretical minimum) by iteration 5,000. A good rule of thumb is to set the

burn-in period for the final run to a value at least as large as 5,000. If the value in the

bottom row of the table (the final checkpoint) exceeds 1.05, increase the number of

burn-in iterations (e.g., to 20,000) and rerun the model.

The potential scale reduction factor table indicates that the highest (worst) values prior

to convergence are primarily associated with parameter numbers 13 and 5. Listing the

optional labels keyword on the OPTIONS line prints a table of potential scale

reduction factors for all model parameters along with their numeric indices. In some

cases (e.g., latent variable models), very high potential scale reduction factors will be

associated with standardized regression weights (e.g., due to scaling constraints). In

general, these can be ignored, and the focus should be on the unstandardized

parameters. The table for the focal regression model is shown below (unspecified

predictor models also have similar tables). The table indicates that parameter numbers

13 and 5 correspond to the standardized coefficient for a level-2 predictor and the

intercept, respectively. The columns of the table give the potential scale reduction

factors for the final five checkpoints during the burn-in period.
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PARAMETER LABELS:

Printing out PSR for last 5 comparisons:

NOTE: Split chain PSR is being used. This splits each chain's
iterations to create twice as many chains.

Comparing iterations across 2 chains
[1] 4001 to 8000
[2] 4251 to 8500
[3] 4501 to 9000
[4] 4751 to 9500
[5] 5001 to 10000

[1] [2] [3] [4] [5]
Outcome Variable: y.i

Variances:
1 L2 : Var(Intercept) 1.00 1.00 1.00 1.00 1.00
2 L2 : Cov(x1.i,Intercept) 1.00 1.00 1.00 1.00 1.00
3 L2 : Var(x1.i) 1.01 1.01 1.02 1.01 1.00
4 Residual Var. 1.00 1.00 1.00 1.00 1.00

Coefficients:
5 Intercept 1.01 1.00 1.01 1.01 1.01
6 x1.i 1.00 1.00 1.00 1.00 1.00
7 x2.i 1.00 1.00 1.00 1.00 1.00
8 x7.j 1.01 1.03 1.03 1.03 1.02
9 d1.j 1.00 1.00 1.00 1.00 1.00

Standardized Coefficients:
10 x1.i 1.00 1.00 1.00 1.00 1.00
11 x2.i 1.00 1.00 1.00 1.00 1.00
12 x7.j 1.01 1.03 1.03 1.03 1.02
13 d1.j 1.00 1.00 1.00 1.00 1.00

Proportion Variance Explained
14 by Coefficients 1.01 1.02 1.03 1.02 1.01
15 by Level-2 Random Intercepts 1.00 1.00 1.00 1.00 1.00
16 by Level-2 Random Slopes 1.01 1.01 1.02 1.01 1.00
17 by Level-1 Residual Variation 1.00 1.00 1.00 1.00 1.00



Blimp User’s Guide (Version 3) 95

A trace plot of the intercept estimates from the first 5,000 computational cycles is

shown below. Plot features such as the number of chains or iterations printed can be

set in the Blimp Studio > Preferences pull-down menu. Plotting can also be turned off

completely in these settings (this can reduce post-processing time considerably).

The next step is to set the burn-in period and total number of iterations for the final

analysis. We find it useful to specify 10,000 iterations following the initial burn-in

period, which for this example we set at 5,000 based on the preliminary diagnostic

run. The code block below reflects these settings on the BURN and ITERATIONS line.

The labels keyword and OPTIONS line are no longer needed.

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
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ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL: y.i ~ x1.i x2.i x7.j d1.j | x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

The Blimp output tables include point estimates and measures of uncertainty

(posterior median and standard deviation), 95% credible interval limits, potential scale

reduction factors for the iterations following the burn-in period, and the effective

number of MCMC samples. The output tables generally include a section for variances,

coefficients, standardized estimates, and variance explained effect sizes (Rights &

Sterba, 2019).

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

Outcome Variable: y.i

Grand Mean Centered: d1.j x2.i x7.j
Group Mean Centered: x1.i

Parameters Median StdDev 2.5% 97.5% PSR N_Eff
-------------------------------------------------------------------

Variances:
L2 : Var(Intercept) 0.619 0.083 0.484 0.811 1.001 4793.680
L2 : Cov(x1.i,Intercept) 0.013 0.016 -0.018 0.045 1.000 1569.242
L2 : Var(x1.i) 0.020 0.006 0.011 0.034 1.002 715.523
Residual Var. 0.358 0.011 0.336 0.382 1.000 4620.046

Coefficients:
Intercept 4.168 0.070 4.030 4.305 1.015 169.900
x1.i -0.094 0.019 -0.132 -0.056 1.000 1841.459
x2.i 0.086 0.008 0.071 0.102 1.000 2622.345
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x7.j 0.056 0.066 -0.072 0.194 1.025 149.321
d1.j -0.104 0.150 -0.398 0.193 1.003 143.175

Standardized Coefficients:
x1.i -0.094 0.020 -0.133 -0.056 1.001 1870.786
x2.i 0.184 0.019 0.148 0.222 1.001 2510.830
x7.j 0.054 0.064 -0.069 0.183 1.025 151.449
d1.j -0.050 0.071 -0.188 0.093 1.003 143.392

Proportion Variance Explained
by Coefficients 0.061 0.017 0.038 0.105 1.011 186.000
by Level-2 Random Intercepts 0.580 0.034 0.515 0.646 1.001 2791.706
by Level-2 Random Slopes 0.020 0.006 0.011 0.034 1.003 655.997
by Level-1 Residual Variation 0.335 0.027 0.281 0.389 1.002 1828.375

-------------------------------------------------------------------

The rightmost column of the table—the effective number of MCMC samples—is

essentially the number of independent estimates on which the parameter summaries

are based after removing autocorrelations from the MCMC process. Gelman et al.

(2014, p. 287) recommend values greater than 100. All values in the example table

exceed this recommended minimum. Increasing the total number of iterations would

provide more precise summaries.
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4 Analysis Examples: Regression Models

The analysis examples in this chapter primarily illustrate different types of univariate

regression models. Univariate regressions are the basic building blocks of more

complicated multivariate and latent variable models, which are just collections of

univariate equations. In general, it is possible to mix and match features from any

examples to easily create complex analysis models that honor features of the data. The

examples use a generic notation system where variable names usually consist of an

alphanumeric prefix and a numeric suffix (e.g., Y1, X1, N1, D1, D2, V1, V2, V3). The letter

Y designates a dependent variable, a D prefix denotes a binary dummy variable, an O

prefix indicates an ordinal variable, and an N prefix indicates a multicategorical nominal

variable. Other letters generally represent continuous variables. Finally, the model

equations use a “cgm” superscript to indicate grand mean centering. The following list

outlines the examples in this section.The following list outlines the examples in this

section.

❖ 4.1: Correlations and Descriptive Statistics

❖ 4.2: Polychoric Correlations With Latent Response Variables

❖ 4.3: Linear Regression

❖ 4.4: Model-Based Multiple Imputation

❖ 4.5: Linear Regression With Nominal Predictors

❖ 4.6: Fully Conditional Specification Multiple Imputation

❖ 4.7: Regression With Auxiliary Variables

❖ 4.8: Linear Regression With an Interaction

❖ 4.9: Multiple Imputation Within Subgroups

❖ 4.10: Curvilinear Regression
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❖ 4.11: Probit Regression With a Binary Outcome

❖ 4.12: Probit Regression With an Ordinal Outcome

❖ 4.13: Logistic Regression With a Binary Outcome

❖ 4.14: Logistic Regression With a Multicategorical Outcome

❖ 4.15: Negative Binomial Regression With a Count Outcome

❖ 4.16: Linear Regression With Scale Scores

❖ 4.17: Linear Regression With Scale Score Interaction

❖ 4.18: Skewed Predictor and Yeo-Johnson Transform

❖ 4.19: Skewed Outcome and Yeo-Johnson Transform

❖ 4.20: Bayesian Wald Test

❖ 4.21: Propensity Score Estimation With Missing Data

❖ 4.22: Linear Regression With Sampling Weights

4.1: Correlations and Descriptive Statistics

This example illustrates correlations and descriptive statistics. Blimp has two ways of

estimating associations among a set of variables. Whenever possible, the software

assigns a multivariate distribution with a mean vector and covariance matrix as the

parameters. The covariance matrix approach invokes a Wishart prior distribution. The

second approach uses phantom latent factors to correlate dependent variables from

different regression equations. Variances and correlations are the parameters of this

specification. In a single-level model, the procedure is the “srs” specification described

in Merkle and Rosseel (2018), and Blimp extends their approach to two- and

three-level models. A path diagram of the underlying model is shown in the MODEL

section of Chapter 2. The phantom variable approach uses a so-called separation

strategy (Barnard, McCulloch, & Meng, 2000; Liu, Zhang, & Grimm, 2016) that assigns

distinct priors to the diagonal and off-diagonal elements of the covariance matrix.
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Computer simulation studies suggest that the separation strategy gives more accurate

estimates of the variance components, although the correlation estimate may be

attenuated when the number of level-2 units is small (Keller & Enders, 2021).

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.1a.imp Ex4.1b.imp Ex4.1c.imp data1.dat

The following code block uses the default approach to estimate means, covariances,

and correlations.

DATA: data1.dat;
VARIABLES: id n1 d1 y1 y2 x1 d2 x2 x3;
MISSING: 999;
MODEL:
x1 y1 y2 <-> x1 y1 y2;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

Adding the use_phantom keyword to the OPTIONS line invokes the phantom variable

approach with separation priors.

DATA: data1.dat;
VARIABLES: id n1 d1 y1 y2 x1 d2 x2 x3;
MISSING: 999;
MODEL:
x1 y1 y2 <-> x1 y1 y2;
SEED: 90291;
BURN: 10000;

https://dl.dropboxusercontent.com/s/kblzk7gmod5gdan/Ex4.1a.imp?dl=1
https://dl.dropboxusercontent.com/s/knlgw753g4yqizx/Ex4.1b.imp?dl=1
https://dl.dropboxusercontent.com/s/3tiljnpf2uaarqd/Ex4.1c.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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ITERATIONS: 10000;
OPTIONS: use_phantom;

Finally, the code block below labels variance parameters and uses the PARAMETERS

command to compute standard deviations. Omitting the use_phantom argument

defaults to a standard multivariate model.

DATA: data1.dat;
VARIABLES: id n1 d1 y1 y2 x1 d2 x2 x3;
MISSING: 999;
MODEL:
x1 y1 y2 <-> x1 y1 y2;
x1 <-> x1@varx1;
y1 <-> y1@vary1;
y2 <-> y2@vary2;
PARAMETERS:
sd.x1 = sqrt(varx1);
sd.y1 = sqrt(vary1);
sd.y2 = sqrt(vary2);
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

4.2: Polychoric Correlations With Latent Response Variables

This example illustrates polychoric correlations among continuous variables and latent

response scores from binary and ordinal variables. Clicking the links below downloads

the Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.

Ex4.2.imp data1.dat

The syntax highlights are as follows.

https://www.dropbox.com/s/079heumk0j8c9fs/Ex4.2.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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❖ ORDINAL command identifies binary and ordinal variables

❖ Longer burn-in period for estimating threshold parameters

DATA: data1.dat;
VARIABLES: id n1 d1 o1 y1 x1 d2 x2 x3;
ORDINAL: d1 o1;
MISSING: 999;
MODEL:
d1 o1 y1 x1 <-> d1 o1 y1 x1;
SEED: 90291;
BURN: 25000;
ITERATIONS: 10000;

4.3: Linear Regression

This example illustrates a linear regression analysis. Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex4.3.imp data1.dat

The model features a pair of continuous predictors and a binary dummy code, as

follows. The cgm superscript denotes variables centered at their grand means.

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

https://www.dropbox.com/s/vjbmqi1x2tqb88n/Ex4.3.imp?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0


Blimp User’s Guide (Version 3) 103

DATA: data1.dat;
VARIABLES: id n1 d1 o1 y x1 d2 x2 x3;
ORDINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 x2;
MODEL: y ~ x1 d2 x2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

4.4: Model-Based Multiple Imputation

Blimp can save multiple imputations from any model it estimates. This example

illustrates a model-based multiple imputation procedure tailored around the linear

regression model from Example 4.3. Clicking the links below downloads the scripts

and data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex4.4.imp Ex4.4.R data1.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command grand mean centers predictors in the Bayesian output, saved
imputations are on the original metric

❖ Unspecified associations for predictor variables

❖ NIMPS command specifies 20 imputed data sets

https://www.dropbox.com/s/488yvbb1urgip92/Ex4.4.imp?dl=1
https://www.dropbox.com/s/m7xeb65o3pofkx3/Ex4.4.R?dl=1
https://www.dropbox.com/s/cn8s1cx10q029vs/data1.dat?dl=1
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❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data1.dat;
VARIABLES: id n1 d1 o1 y x1 d2 x2 x3;
ORDINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 x2;
MODEL: y ~ x1 d2 x2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# id n1 d1 o1 y x1 d2 x2 x3

The imputed data sets can be analyzed in other software packages. For example, the

script below uses the R package mitml (Grund, Robitzsch, & Lüdke, 2021) to fit the
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linear regression model to the filled-in data sets. The resulting estimates are

numerically equivalent to the Bayesian results from Example 4.3.

# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("imputation","id","n1","d1","o1","y","x1",

"d2","x2","x3")

# center predictors
imps$x1.cgm <- imps$x1 - mean(imps$x1)
imps$x2.cgm <- imps$x2 - mean(imps$x2)

# analysis and pooling with mitml
implist <- mitml::as.mitml.list(split(imps, imps$imputation))
results <- with(implist, lm(y ~ x1.cgm + d2 + x2.cgm))
mitml::testEstimates(results, extra.pars = T, df.com = 626)

4.5: Linear Regression With Nominal Predictors

This example illustrates a linear regression model with a multicategorical nominal

predictor. Clicking the links below downloads the scripts and data for this example,

and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.4.imp data2.dat

The regression model is

https://www.dropbox.com/s/awf5j2lkdzr80ei/Ex4.5.imp?dl=1
https://www.dropbox.com/s/595p4yuoj01fsm9/data2.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2D_1%2B%5Cbeta_3N_%7B1.2%7D%2B%5Cbeta_3N_%7B1.3%7D%2B%5Cbeta_3N_%7B1.4%7D%2B%5Cvarepsilon_i#0
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where Y is a continuous outcome, X1 is a continuous predictor, D1 is a dummy code,

and N1.2, N1.3, and N1.4 are dummy codes that represent a four-category nominal

predictor (N1 = 1, 2, 3, 4). The cgm superscript denotes variables centered at their

grand means. The syntax highlights are listed below, and adding the NIMPS and SAVE

commands generates model-based multiple imputations for a frequentist analysis (see

Example 4.4).

❖ ORDINAL command identifies a binary predictor

❖ NOMINAL command identifies a 4-category discrete predictor that Blimp
automatically converts to dummy codes with the lowest numeric value as the
reference group

❖ FIXED command identifies a complete predictor

❖ CENTER command grand mean centering to predictors

❖ Unspecified associations for predictor variables

DATA: data2.dat;
VARIABLES: id y1 y2 x1 d1 d2 n1 x2 n2;
ORDINAL: d1;
NOMINAL: n1;
MISSING: 999;
FIXED: x1;
CENTER: x1;
MODEL: y1 ~ x1 d1 n1;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;
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4.6: Fully Conditional Specification Multiple Imputation

The model-based multiple imputation procedure illustrated in Example 4.4 creates

filled-in data sets tailored to the analysis specified on the MODEL line. The resulting

imputations are appropriate for fitting the identical model (or one that is nested within

the target model) in the frequentist framework. Fully conditional specification multiple

imputation instead uses a round robin sequence of regression models, each of which

features an incomplete variable regressed on all other variables (complete or

previously imputed). Blimp’s implementation of fully conditional specification is

described in Chapter 2 (see the FCS command).

This example illustrates a fully conditional specification imputation routine that would

yield appropriate imputations for the linear regression model from Example 4.5 (or any

additive model that includes the variables listed on the FCS line). Note that fully

conditional specification should not be applied to analysis models with interactive or

nonlinear effects, as it is prone to bias in such cases (Bartlett et al., 2015; Seaman,

Bartlett, & White, 2012). The model-based multiple imputation procedure illustrated in

Example 4.8 is a better option. Clicking the links below downloads the scripts and data

for this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Ex4.6.imp data2.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies binary variables

❖ NOMINAL command identifies a 4-category nominal variable

❖ FIXED command identifies complete variables

https://www.dropbox.com/s/2r4rjmgk4bj7v8o/Ex4.6.imp?dl=1
https://www.dropbox.com/s/595p4yuoj01fsm9/data2.dat?dl=1
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❖ FCS command includes all analysis variables plus two auxiliary variables

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data2.dat;
VARIABLES: id y1 y2 x1 d1 d2 n1 x2 n2;
ORDINAL: d1 d2;
NOMINAL: n1;
FIXED: x1 d2;
MISSING: 999;
FCS: y1 x1 d1 d2 n1 x2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 1000;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# id y1 y2 x1 d1 d2 n1 x2 n2
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The imputed data sets can be analyzed in other software packages. Example 4.4

illustrated an analysis using the R package mitml (Grund et al., 2021).

4.7: Regression With Auxiliary Variables

This example illustrates how to add auxiliary variables to a regression model. Clicking

the links below downloads the Blimp scripts and data for this example, and the full set

of User Guide examples is available from a pull-down menu in the graphical interface.

Ex4.7a.imp Ex4.7b.imp data3.dat

The model analysis model features a continuous variable and dummy code as

predictors. The cgm superscript denotes variables centered at their grand means.

In Blimp, auxiliary variables are introduced via a factored regression (sequential)

specification where analysis variables predict the auxiliary variables and auxiliary

variables predict each other in a cascading pattern (i.e., the first auxiliary predicts the

second, the first and second predict the third, and so on).

The syntax highlights are as follows.

❖ ORDINAL command identifies binary variables

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to a predictor

https://www.dropbox.com/s/4hbvfki38uky72z/Ex4.7a.imp?dl=1
https://www.dropbox.com/s/junf8066zzemro1/Ex4.7b.imp?dl=1
https://www.dropbox.com/s/o6rd8ko6pcbm6di/data3.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2D_1%2B%5Cvarepsilon_i#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A_1%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DY%2B%5Cgamma_%7B21%7DX_1%5E%7Bcgm%7D%2B%5Cgamma_%7B31%7DD_2%2Br_1#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A_2%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DA_1%2B%5Cgamma_%7B22%7DY%2B%5Cgamma_%7B32%7DX_1%5E%7Bcgm%7D%2B%5Cgamma_%7B42%7DD_2%2Br_2#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=A_3%3D%5Cgamma_%7B03%7D%2B%5Cgamma_%7B13%7DA_2%2B%5Cgamma_%7B23%7DA_1%2B%5Cgamma_%7B33%7DY%2B%5Cgamma_%7B43%7DX_1%5E%7Bcgm%7D%2B%5Cgamma_%7B53%7DD_2%2Br_3#0
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❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a factored regression (sequential specification) for
auxiliary variables

❖ Unspecified associations for predictor variables

DATA: data3.dat;
VARIABLES: id x1 a1 a2 y d1 a3 v1:v4;
MISSING: 999;
ORDINAL: d1 a3;
FIXED: d1;
CENTER: x1;
MODEL:
focal.model:
y ~ x1 d1;
auxiliary.model:
a1 ~ y x1 d1;
a2 ~ a1 y x1 d1;
a3 ~ a1 a2 y x1 d1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

The script below illustrates a syntax shortcut that specifies the sequential specification

by listing all auxiliary variables to the left of the tilde sign.

DATA: data3.dat;
VARIABLES: id x1 a1 a2 y d1 a3 v1:v4;
MISSING: 999;
ORDINAL: d1 a3;
FIXED: d1;
CENTER: x1;
MODEL:
focal.model:
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y ~ x1 d1;
auxiliary.model:
a3 a2 a1 ~ y x1 d1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

Adding the NIMPS, CHAINS, and SAVE commands to the script creates model-based

multiple imputations that can be analyzed in the frequentist framework (see Example

4.4).

4.8: Linear Regression With an Interaction

This example illustrates a moderated regression with an interaction between a

continuous predictor and binary moderator and an incomplete binary covariate.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.8a.imp Ex4.8b.imp Ex4.8b.R data4.dat

The model is as follows, and the cgm superscript denotes variables centered at their

grand means.

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ NOMINAL command identifies a binary predictor

❖ FIXED command identifies a complete variable

https://www.dropbox.com/s/vukl3j7amyf5ooj/Ex4.8a.imp?dl=1
https://www.dropbox.com/s/b94psbc66xt1dnt/Ex4.8b.imp?dl=1
https://www.dropbox.com/s/aq0xban8vhvbk5c/Ex4.8.R?dl=1
https://www.dropbox.com/s/hcr6lq58pl7pfqz/data4.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2D_2%2B%5Cbeta_3X_1D_2%2B%5Cbeta_4D_1%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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❖ CENTER command applies grand mean centering to predictors

❖ MODEL command features a product term

❖ SIMPLE command produces conditional effects (simple slopes) at each level of the
nominal moderator

❖ Unspecified associations for predictor variables

DATA: data4.dat;
VARIABLES: id a1:a3 y x1 x2 n1 d1 d2 o1:o19;
ORDINAL: d1;
NOMINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 d1;
MODEL: y ~ x1 d2 x1*d2 d1;
SIMPLE: x1 | d2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

Blimp can save multiple imputations from any model it estimates. The script below

illustrates model-based multiple imputation (imputation tailored around one specific

analysis) for the linear moderated regression model. The new syntax features are as

follows.

❖ CENTER command grand mean centers predictors in the Bayesian output, but
saved imputations are on the original metric

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column
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DATA: data4.dat;
VARIABLES: id a1:a3 y x1 x2 n1 d1 d2 o1:o19;
ORDINAL: d1;
NOMINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 d1;
MODEL: y ~ x1 d2 x1*d2 d1;
SIMPLE: x1 | d2;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# id a1 a2 a3 y x1 x2 n1 d1 d2 o1 o2 o3 o4 o5 o6 o7 o8
o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 o19

The imputed data sets can be analyzed in other software packages. For example, the

script below uses the R package mitml (Grund et al., 2021) to fit the moderated

regression model to the filled-in data sets. The resulting estimates are numerically

equivalent to the Bayesian results.
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# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("imputation","id","a1","a2","a3","y","x1",

"x2","n1","d1","d2",paste0("o", 1:19))

# center predictors
imps$x1.cgm <- imps$x1 - mean(imps$x1)
imps$d1.cgm <- imps$d1 - mean(imps$d1)

# analysis and pooling with mitml
implist <- mitml::as.mitml.list(split(imps, imps$imputation))
results <- with(implist, lm(y ~ x1.cgm + d2 + x1.cgm*d2 + d1.cgm))
mitml::testEstimates(results, extra.pars = T, df.com = 295)

4.9: Multiple Imputation Within Subgroups

Fully conditional specification multiple imputation is generally inappropriate for

interactive effects because it is prone to bias. The moderated regression in Example 4.8

is an exception that could be handled by imputing the data separately within each

group of the complete moderator variable (Enders & Gottschall, 2011; Graham, 2009).

This example illustrates a multiple-group multiple imputation strategy that stratifies

the data by subgroup and imputes within each strata. Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex4.9.imp Ex4.9.R data4.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary variable

https://www.dropbox.com/s/xg1czljm59gosud/Ex4.9.imp?dl=1
https://www.dropbox.com/s/x3yhoul43d3dyxm/Ex4.9.R?dl=1
https://www.dropbox.com/s/v9cj4nn1nb078qh/data4.dat?dl=1
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❖ FIXED command identifies a complete variable

❖ BYGROUP identifies complete, nominal strata variable not listed on the ORDINAL
(or NOMINAL) command

❖ FCS command includes all analysis variables (other than the one listed on the
BYGROUP line) plus two auxiliary variables

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4.dat;
VARIABLES: id a1:a3 y x1 x2 n1 d1 d2 o1:o19;
ORDINAL: d1;
MISSING: 999;
FIXED: d2;
BYGROUP: d2;
FCS: a1:a3 y x1 d1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:
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stacked = 'imps.dat'

imp# id a1 a2 a3 y x1 x2 n1 d1 d2 o1 o2 o3 o4 o5 o6 o7 o8
o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 o19

The imputed data sets can be analyzed in other software packages. The R script from

Example 4.8 fits a moderated regression model to the filled-in data sets from this run.

4.10: Curvilinear Regression

This example illustrates a curvilinear regression with a quadratic term and continuous

and binary covariates. Clicking the links below downloads the Blimp scripts and data

for this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Ex4.10.imp data5.dat

The regression model is as follows, and the cgm superscript denotes variables

centered at their grand means.

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

4.8).

❖ ORDINAL command identifies binary predictors

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ MODEL command features an embedded function that squares a predictor

❖ Unspecified associations for predictor variables

https://www.dropbox.com/s/9hlkud6t9xfikxb/Ex4.10.imp?dl=1
https://www.dropbox.com/s/v09lxxp6zmnr1eu/data5.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2(X_1%5E%7Bcgm%7D)%5E2%2B%5Cbeta_3X_2%5E%7Bcgm%7D%2B%5Cbeta_4D_1%2B%5Cbeta_5D_2%2B%5Cvarepsilon#0
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DATA: data5.dat;
VARIABLES: id d1 d2 v1:v3 x1 x2 y;
MISSING: 999;
ORDINAL: d1 d2;
FIXED: d1 x2;
CENTER: x1 x2;
MODEL: y2 ~ x1 (x1^2) x2 d1 d2;
SEED: 12345;
BURN: 1000;
ITERATIONS: 10000;

4.11: Probit Regression With a Binary Outcome

This example illustrates probit regression for a binary outcome. Clicking the links

below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex4.11a.imp Ex4.11b.imp data1.dat

The model features a latent response variable regressed on continuous predictors and

a binary dummy code, and the cgm superscript denotes variables centered at their

grand means.

A single threshold value fixed at 0 is automatically included and does not require

specification. The syntax highlights are listed below, and adding the NIMPS and SAVE

commands generates model-based multiple imputations for a frequentist analysis (see

Example 4.8).

❖ ORDINAL command identifies a binary outcome and predictor

https://www.dropbox.com/s/z8i3h0apl2avdh7/Ex4.11a.imp?dl=1
https://www.dropbox.com/s/7bxaxeggqtrwpp7/Ex4.11b.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%5E%5Cast%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_1%2B%5Cvarepsilon#0
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❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: id n1 y o1 x1 x2 d1 x3 x4;
ORDINAL: y d1;
MISSING: 999;
FIXED: d1;
CENTER: x1 x2;
MODEL:
y ~ x1 x2 d1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

Blimp can also create auxiliary parameters that are functions of the estimated model

parameters. To illustrate, the following script uses parameter labels, built-in functions,

and the PARAMETERS command to compute the predicted probability of a “success” or

“case” at each level of the D1 dummy code (and at the means of the continuous

predictors). The additional syntax highlights are as follows.

❖ MODEL command labels the intercept and the binary predictor’s slope

❖ PARAMETERS command defines news parameters that give the predicted
probability of a “success” (outcome = 1) at each level of the dummy code and the
group difference on the probability metric

DATA: data1.dat;
VARIABLES: id n1 y o1 x1 x2 d1 x3 x4;
ORDINAL: y d1;
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MISSING: 999;
FIXED: d1;
CENTER: x1 x2;
MODEL:
y ~ 1@b0 x1 x2 d1@b3;
PARAMETERS:
pp.d0 = phi(b0);
pp.d1 = phi(b0 + b3);
pp.diff = pp.d1 - pp.d0;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

4.12: Probit Regression With an Ordinal Outcome

This example illustrates a probit regression for an ordered categorical outcome with

seven response options (e.g., a Likert scale). Clicking the links below downloads the

Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.

Ex4.12.imp data1.dat

The model features a latent response variable regressed on continuous predictors and

a binary dummy code, and the cgm superscript denotes variables centered at their

grand means.

Six threshold parameters that divide the latent response distribution into seven bins

are automatically included and do not require specification (the lowest is fixed at 0 for

identification). The syntax highlights are listed below, and adding the NIMPS and SAVE

https://www.dropbox.com/s/6uyh83vsxsoddac/Ex4.12.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%5E%5Cast%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_1%2B%5Cvarepsilon#0
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commands generates model-based multiple imputations for a frequentist analysis (see

Example 4.8).

❖ ORDINAL command identifies an ordinal outcome and a binary predictor

❖ Automatic threshold specification for binary and ordinal variables

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

❖ Longer burn-in period required for estimating threshold parameters

DATA: data1.dat;
VARIABLES: id n1 n2 y x1 x2 d1 x3 x4;
ORDINAL: y d1;
MISSING: 999;
FIXED: d1;
CENTER: x1 x2;
MODEL:
y ~ x1 x2 d1;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

4.13: Logistic Regression With a Binary Outcome

This example illustrates logistic regression for a binary outcome. Clicking the links

below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex4.13a.imp Ex4.13b.imp data1.dat

https://www.dropbox.com/s/pvlavlymjw4q9mc/Ex4.13a.imp?dl=1
https://www.dropbox.com/s/gng8frxmg5s1azj/Ex4.13b.imp?dl=1
https://www.dropbox.com/s/dpvvc4bu3rbnwfp/data1.dat?dl=1
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The model features a binary outcome regressed on continuous predictors and a binary

dummy code, and the cgm superscript denotes variables centered at their grand

means.

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

4.8). When saving imputations, adding the savepredicted keyword to the OPTIONS

command saves predicted probabilities (see Example 4.20).

❖ ORDINAL command identifies a binary outcome and predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: id n1 y o1 x1 x2 d1 x3 x4;
ORDINAL: y d1;
MISSING: 999;
FIXED: d1;
CENTER: x1 x2;
MODEL:
logit(y) ~ x1 x2 d1;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D1%5Cright)%7D%7B1-Pr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_1#0
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Note that the outcome variable must be coded as 0 and 1 when using the logit

command in conjunction with ORDINAL. If the outcome has different codes (e.g., 1 and

2), either use TRANSFORM to recode the variable or use the NOMINAL command to

identify the outcome as categorical.

Blimp can also create auxiliary parameters that are functions of the estimated model

parameters. To illustrate, the following script uses parameter labels, built-in functions,

and the PARAMETERS command to compute the predicted probability of a “success” or

“case” at each level of the D1 dummy code (and at the means of the continuous

predictors). The additional syntax highlights are as follows.

❖ MODEL command labels the intercept and the binary predictor’s slope

❖ PARAMETERS command defines news parameters that give the predicted
probability of a “success” (outcome = 1) at each level of the dummy code and the
group difference on the probability metric

DATA: data1.dat;
VARIABLES: id n1 y o1 x1 x2 d1 x3 x4;
ORDINAL: y d1;
MISSING: 999;
FIXED: d1;
CENTER: x1 x2;
MODEL:
logit(y) ~ 1@b0 x1 x2 d1@b3;
PARAMETERS:
pp.d0 = exp(b0) / (1 + exp(b0));
pp.d1 = exp(b0 + b3) / (1 + exp(b0 + b3));
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4.14: Logistic Regression With a Multicategorical Outcome

This example illustrates logistic regression for a multicategorical outcome with three

levels. Clicking the links below downloads the Blimp scripts and data for this example,

and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.14.imp data4.dat

The model features a 3-category outcome (Y = 1, 2, 3) regressed on three continuous

predictors, with the lowest numeric code (e.g., Y = 1) as the reference group. The cgm

superscript denotes variables centered at their grand means.

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

4.8).

❖ NOMINAL command identifies a multicategorical outcome, which automatically
invokes a logit link when the categorical variable is an outcome (applying the
logit function to the dependent variable is optional)

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

DATA: data4.dat;

https://www.dropbox.com/s/n2h4l5x8t5mq2gs/Ex4.14.imp?dl=1
https://www.dropbox.com/s/35c9focn4jelb0m/data4.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D2%5Cright)%7D%7BPr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DX_1%5E%7Bcgm%7D%2B%5Cbeta_%7B22%7DX_2%5E%7Bcgm%7D%2B%5Cbeta_3X_3%5E%7Bcgm%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D3%5Cright)%7D%7BPr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_%7B03%7D%2B%5Cbeta_%7B13%7DX_1%5E%7Bcgm%7D%2B%5Cbeta_%7B23%7DX_2%5E%7Bcgm%7D%2B%5Cbeta_%7B33%7DX_3%5E%7Bcgm%7D#0
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VARIABLES: id x1:x6 y d1 d2 o1:o19;
ORDINAL: d1;
NOMINAL: y;
MISSING: 999;
FIXED: x2 x3;
CENTER: x1 x2 x3;
MODEL: logit(y) ~ x1 x2 x3;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

4.15: Regression With a Count Outcome

This example illustrates a regression analysis with a count outcome. Blimp uses the

negative binomial regression model described by Asparouhov and Muthén (2021). The

negative binomial (NB) model is similar to the Poisson model, but it incorporates an

additional overdispersion term that accounts for heterogeneity among individuals with

the same predicted score. The interpretation of the coefficients is the same as a

Poisson regression (Coxe, West, & Aiken, 2009). Clicking the links below downloads

the Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface. Note that the COUNT

command currently requires Blimp’s beta computational engine. If it is not already

installed, you can install it by (a) launching the blimp-updater file from within the

Applications directory, (b) clicking the Add or remove components radio button,

then (c) clicking the Blimp Base (Beta) radio button.

Ex4.15.imp data22.dat

The model features a pair of continuous predictors and a binary dummy code, as

follows. The cgm superscript denotes variables centered at their grand means.

https://dl.dropboxusercontent.com/s/cnon1buau6fhry1/Ex4.15.imp?dl=1
https://dl.dropboxusercontent.com/s/deqpqq2otxk55yo/data22.dat?dl=1
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The natural log on the left side of the equation is the predicted count based on the

constellation of predictors on the right side of the equation. As noted earlier, the model

incorporates an overdispersion parameter that accommodates heterogeneity among

individuals with the same predicted value.

The syntax highlights are as follows.

❖ ORDINAL command identifies binary predictors

❖ COUNT command identifies a count outcome

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

#!beta
DATA: data22.dat;
VARIABLES: id d1 x1 n1 d2 x2 x3 y1 y2 y3;
ORDINAL: d1 d2;
COUNT: y1;
MISSING: 999;
FIXED: d1 x1;
CENTER: x1 x2;
MODEL: y1 ~ d1 d2 x1 x3;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

https://www.codecogs.com/eqnedit.php?latex=ln(%5Chat%7B%5Cmu%7D)%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2D_2%2B%5Cbeta_3X_1%5E%7Bcgm%7D%2B%5Cbeta_4X_2%5E%7Bcgm%7D#0
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4.16: Linear Regression With Scale Scores

This example illustrates a regression analysis that features a 6-item sum (scale) score

as the outcome, a 7-item sum score as a predictor, and two binary covariates. The

ordered categorical (e.g., questionnaire) items that determine the sum are incomplete.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex4.16a.imp Ex4.16b.imp data4.dat

The analysis model is

where X is the scale (sum) score, and X1 to X7 are its ordinal components. It is

important to treat missing data at the item level when analyzing incomplete composite

scores, as doing so maximizes power and precision. This example illustrates the

approach from Alacam, Du, Enders, and Keller (2023) and Enders (2022). It is

important to reiterate that the scale score (represented as an embedded function) is

essentially a random variable that depends on its constituent parts rather than a

deterministic computation or passive imputation (see the Functions Embedded in

Equations section from Chapter 2). The syntax highlights are listed below, and adding

the NIMPS and SAVE commands generates model-based multiple imputations for a

frequentist analysis (see Example 4.8).

❖ ORDINAL command identifies binary and ordinal variables

❖ Automatic threshold specification for binary and ordinal variables

https://www.dropbox.com/s/192fcrbcpy91u0j/Ex4.16a.imp?dl=1
https://www.dropbox.com/s/k0ui8kzvnzf2yrk/Ex4.16b.imp?dl=1
https://www.dropbox.com/s/arwxqp6uc7dp91g/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X%2B%5Cbeta_2D_1%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%3D%5Cbeta_0%2B%5Cbeta_1%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cbeta_2D_1%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0
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❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictors

❖ MODEL command features an embedded function that defines the sum of ordinal
items as a predictor

❖ MODEL command defines the sum of ordinal items as a random variable

❖ Longer burn-in period for estimating threshold parameters

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale v zscale n1 d1 d2

y1:y6 x1:x7 z1:z6;
ORDINAL: x1:x7 d1 d2;
MISSING: 999;
MODEL:
focal.model:
# embedded sum variable as a predictor
xscale = x1:+:x7;
yscale ~ xscale d1 d2;
predictor.model:
x1:x7 d1 d2 ~ 1;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

The previous script used a composite score as the dependent variable but did not

incorporate the dependent variable’s component items into the model. Doing so would

improve precision because the items are strong correlates of the sum score. The code

block below leverages item-level correlations by introducing five of the six outcome

items as auxiliary variables (Eekhout et al., 2015). The component items are added
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using the same auxiliary variable approach from Example 4.7. The additional syntax

highlights are as follows.

❖ MODEL command features a factored regression (sequential specification) for the
dependent variable’s scale score and its items

❖ All but one of the dependent variable’s scale items are used as auxiliary variables
(using all items induces linear dependencies)

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale v zscale n1 d1 d2

y1:y6 x1:x7 z1:z6;
ORDINAL: x1:x7 d1 d2;
MISSING: 999;
MODEL:
focal.model:
xscale = x1:+:x7;
yscale ~ xscale d1 d2;
predictor.model:
x1:x7 d1 d2 ~ 1;
auxiliary.models:
# sequential specification for y scale items
y1:y5 ~ yscale;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

4.17: Linear Regression With Scale Score Interaction

This example illustrates a moderated regression with an interaction between a 7-item

sum score predictor and binary moderator. Clicking the links below downloads the

Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.
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Ex4.17.imp data4.dat

The analysis model is

where X is the scale (sum) score, and X1 to X7 are its ordinal components. It is

important to treat missing data at the item level when analyzing incomplete composite

scores, as doing so maximizes power and precision. This example extends the

approach from Alacam, Du, Enders, and Keller (2023) to include interaction effects

involving an incomplete sum score. Enders (2022) summarizes the approach. It is

important to reiterate that the scale score (represented as an embedded function) is

essentially a random variable that depends on its constituent parts rather than a

deterministic computation or passive imputation (see the Functions Embedded in

Equations section from Chapter 2). The syntax highlights are listed below, and adding

the NIMPS and SAVE commands generates model-based multiple imputations for a

frequentist analysis (see Example 4.8).

❖ ORDINAL command identifies binary and ordinal variables

❖ Automatic threshold specification for binary and ordinal variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictors

❖ MODEL command features an embedded function that defines the sum of ordinal
items as a predictor

❖ MODEL command defines the sum of ordinal items as a random variable

https://www.dropbox.com/s/yzl1eancdw881uk/Ex4.17.imp?dl=1
https://www.dropbox.com/s/bgeuxz9n4mud365/data4.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2X%2B%5Cbeta_3D_2%2B%5Cbeta_4D_2X%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cbeta_2%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cbeta_3D_2%2B%5Cbeta_4D_2%5Cleft(X_1%2B%5Cldots%2BX_7%5Cright)%2B%5Cvarepsilon#0


Blimp User’s Guide (Version 3) 130

❖ MODEL command features a factored regression (sequential specification) for the
dependent variable’s scale score and its items

❖ All but one of the dependent variable’s scale items are used as auxiliary variables
(using all items induces linear dependencies)

❖ Longer burn-in period for estimating threshold parameters

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale xscale zscale n1 d1 d2

y1:y6 x1:x7 z1:z6;
ORDINAL: y1:y5 x1:x7 d1 d2;
MISSING: 999;
MODEL:
focal.model:
# scale score predictor and interaction with embedded function
xscale = x1:+:x7;
yscale ~ xscale d2 d2*xscale d1;
predictor.model:
# sequential specification for x scale items and dummy codes
x1:x7 d1 d2 ~ 1;
auxiliary.model:
# sequential specification for y scale items
y1:y5 ~ yscale;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

4.18: Skewed Predictor and Yeo-Johnson Transform

This example illustrates a Yeo-Johnson (Yeo & Johnson, 2000) transformation that

samples imputations from a skewed distribution. Clicking the links below downloads

the Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.



Blimp User’s Guide (Version 3) 131

Ex4.18.imp data6.dat

The analysis model is a logistic regression with two continuous variables and two

binary dummy codes as predictors.

X2’s distribution is markedly peaked and positively skewed, and drawing imputations

from a normal distribution would likely distort the variable’s distribution.

The Yeo-Johnson procedure estimates the variable’s shape and draws imputations

from a nonnormal distribution. Applying the Yeo-Johnson transformation normalizes

the predictor variable, such that the resulting linear regression reflects associations

between the normalized variable and other predictors. The sequential specification in

the code block below invokes the following regression equation for the normalized

predictor.

However, skewed imputations on the raw score metric always appear on the right side

of any regression equation (e.g., the focal regression model). Normalized imputations

can be saved by adding the savelatent keyword to the OPTIONS line.

The Yeo–Johnson transformation can be very slow (or fail) to converge if the skewed

variable’s mean is far from zero. To facilitate interpretation, the code block below

centers the predictor scores at the median value of 16. Additional details about the

procedure are available in the literature (Enders, 2022; Lüdtke et al., 2020b). The

syntax highlights are listed below, and adding the NIMPS and SAVE commands

https://www.dropbox.com/s/t1smsba5j4uuk6o/Ex4.18.imp?dl=1
https://www.dropbox.com/s/zewyybil0lhc1g1/data6.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Y%3D1%5Cright)%7D%7B1-Pr%5Cleft(Y%3D1%5Cright)%7D%5Cright)%3D%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3D_1%2B%5Cbeta_4D_2#0
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cwidetilde%7BX%7D%7D_2%3D%5Cgamma_0%2B%5Cgamma_1X_1%2B%5Cgamma_2D_1%2Br#0
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generates model-based multiple imputations for a frequentist analysis (see Example

4.8).

❖ ORDINAL command identifies a binary outcome and predictors

❖ FIXED command identifies complete predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a factored regression (sequential specification) for
incomplete predictor variables

❖ Unspecified associations for complete predictor variables

❖ Applying the yjt function to the skewed predictor on the MODEL line requests a
Yeo-Johnson transformation

❖ Applying a subtraction function to center the skewed predictor at its median
facilitates convergence

❖ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

DATA: data6.dat;
VARIABLES: id d1 x1 n1 d2 a1 x2 x3 x4 y;
ORDINAL: y d1 d2;
MISSING: 999;
FIXED: d1 x1;
MODEL:
focal.model:
logit(y) ~ x1 x2 d1 d2;
predictor.model:
# sequential predictor models with yeo-johnson transform for x2
yjt(x2 - 16) ~ x1 d1;
d2 ~ x2 x1 d1;
SEED: 90291;
BURN: 1000;
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ITERATIONS: 10000;

4.19: Skewed Outcome and Yeo-Johnson Transform

This example applies the Yeo–Johnson transformation to a nonnormal dependent

variable. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex4.19a.imp Ex4.19b.imp Ex4.19.R data2.dat

The untransformed analysis model features two continuous variables and one binary

dummy code as predictors, where the cgm superscript denotes variables centered at

their grand means.

The outcome variable’s distribution is markedly peaked and positively skewed.

Applying the Yeo-Johnson transformation normalizes the dependent variable, such that

the resulting linear regression reflects associations between the normalized outcome

and the predictors.

Normalized imputations can be saved by adding the savelatent keyword to the

OPTIONS line. The Yeo–Johnson transformation can be very slow (or fail) to converge if

the skewed variable’s mean is far from zero. To facilitate interpretation, the code block

below centers the outcome at the median value of 9. Additional details about the

procedure are available in the literature (Enders, in press; Lüdtke et al., 2020b).

https://www.dropbox.com/s/p6c4f3g9i7txdqs/Ex4.19a.imp?dl=1
https://www.dropbox.com/s/n6an66jff7y95l0/Ex4.19b.imp?dl=1
https://www.dropbox.com/s/zehaxa9q9nzs4oe/Ex4.19.R?dl=1
https://www.dropbox.com/s/w7eizepp1l94czo/data2.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_1%2B%5Cvarepsilon#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cwidetilde%7BY%7D%3D%5Cgamma_0%2B%5Cgamma_1X_1%5E%7Bcgm%7D%2B%5Cgamma_2X_2%5E%7Bcgm%7D%2B%5Cgamma_3D_1%2Br#0
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The syntax highlights are listed below.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies complete predictors

❖ Applying yjt function to the skewed outcome on the MODEL line requests a
Yeo-Johnson transformation

❖ Applying a subtraction function to center the skewed outcome at its median
facilitates convergence

❖ Unspecified associations for predictor variables

DATA: data2.dat;
VARIABLES: id y n1 x1 d1 d2 n2 x2 n3;
ORDINAL: d1;
MISSING: 999;
FIXED: x1;
CENTER: x1 x2;
MODEL:
yjt(y - 9) ~ x1 x2 d1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

Blimp can save multiple imputations from any model it estimates. Adding the NIMPS

and SAVE commands generates model-based multiple imputations for a frequentist

analysis, and listing the savelatent keyword on the OPTIONS command saves the

normalized imputes from the Yeo-Johnson transformation alongside the skewed

imputes on the raw score metric (this keyword also saves the latent response scores

for the binary predictor).

DATA: data2.dat;
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VARIABLES: id y n1 x1 d1 d2 n2 x2 n3;
ORDINAL: d1;
MISSING: 999;
FIXED: x1;
CENTER: x1 x2;
MODEL:
yjt(y - 9) ~ x1 x2 d1;
SEED: 90291;
BURN: 3000;
ITERATIONS: 10000;
# save model-based multiple imputations;
CHAINS: 20;
NIMPS: 20;
OPTIONS: savelatent;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'
imp# id y n1 x1 d1 d2 n2 x2 n3 yjt(yjt(y-9)) d1.latent

The variable y contains skewed imputations on the raw score metric, and the variable

yjt(yjt(y-9)) contains the normalized imputes. The imputed data sets can be

analyzed in other software packages. To illustrate, the script below uses the R package

mitml (Grund et al., 2021) to fit the regression model to the filled-in data sets. The

positively skewed raw score imputations are on the original metric, whereas the

transformed imputations are approximately normal.
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# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("imputation","id","y","n1","x1","d1","d2","n2",

"x2","n3","ytransform","d1.latent")

# plot raw and transformed scores
hist(imps$y)
hist(imps$ytransform)

# center predictors
imps$x1.cgm <- imps$x1 - mean(imps$x1)
imps$x2.cgm <- imps$x2 - mean(imps$x2)

# analysis and pooling with mitml
implist <- mitml::as.mitml.list(split(imps, imps$imputation))

# analyze skewed outcome
results <- with(implist, lm(y ~ x1.cgm + x2.cgm + d1))
mitml::testEstimates(results, extra.pars = T, df.com = 1996)

# analyze transformed outcome
results <- with(implist, lm(ytransform ~ x1.cgm + x2.cgm + d1))
mitml::testEstimates(results, extra.pars = T, df.com = 1996)

4.20: Bayesian Wald Test

This example illustrates the linear regression analysis from Eample 4.3 with the

Bayesian Wald test described by Asparouhov and Muthén (2021). Clicking the links

below downloads the Blimp scripts and data for this example, and the full set of User

Guide examples is available from a pull-down menu in the graphical interface.

Ex4.20.imp data1.dat

https://www.dropbox.com/s/xbm0a1w19b0dvpn/Ex4.20.imp?dl=1
https://www.dropbox.com/s/3ef11ct14bassl8/data1.dat?dl=1
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The model features a pair of continuous predictors and a binary dummy code, where

the cgm superscript denotes variables centered at their grand means.

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ TEST command specifies a nested model with all slopes fixed at 0

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: id n1 d1 o1 y x1 d2 x2 x3;
ORDINAL: d2;
MISSING: 999;
FIXED: d2;
CENTER: x1 x2;
MODEL: y ~ x1@b1 x2@b2 d2@b3;
TEST:
b1:b3 = 0;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

The TEST command produces the output table below. The Wald test statistic is a

chi-square variable, and the test’s degrees of freedom equals the number of

parameters by which the two models differ. The probability value is not a frequentist

p-value because it makes no reference to test statistics from other random samples.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%5E%7Bcgm%7D%2B%5Cbeta_2X_2%5E%7Bcgm%7D%2B%5Cbeta_3D_2%2B%5Cvarepsilon#0
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Rather, the probability is an index of support for the proposed constraints, where

support is defined as the area above the test statistic value in a chi-square distribution.

MODEL FIT:

Asparouhov & Muthén Wald Tests

Test #1

Wald Statistic (Chi-Square) 158.363
Number of Parameters Tested (df) 3
Probability 0.000

NOTE: Wald tests are printed in the order specified on the
WALDTEST command.

4.21: Propensity Score Estimation With Missing Data

This example illustrates propensity score estimation with missing data. Clicking the

links below downloads the Blimp scripts and data for this example, and the full set of

User Guide examples is available from a pull-down menu in the graphical interface.

Ex4.21.imp data4.dat

The focal model features a binary dummy code (the “treatment” indicator) predicting a

continuous outcome.

The propensity score model features the treatment indicator regressed on potential

confounder variables and their higher-order interaction terms.

https://www.dropbox.com/s/rkpzuvdsdh8hion/Ex4.21.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_1%2B%5Cvarepsilon#0
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Because the treatment indicator D1 consists of naturally occurring groups, this variable

could be incomplete, which it is here. In this case, it is important for propensity score

estimation to account for both models.

❖ ORDINAL command identifies a binary outcome and predictor

❖ FIXED command identifies a complete predictor

❖ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a product term

❖ The savepredicted keyword on the OPTIONS line saves the predicted
probabilities of treatment group membership, which are the propensity scores

❖ Unspecified associations for predictor variables

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4.dat;
VARIABLES: id x1:x4 y x5 n1 d1 d2 o1:o19;
ORDINAL: d1;

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(D_1%3D1%5Cright)%7D%7B1-Pr%5Cleft(D_1%3D1%5Cright)%7D%5Cright)%3D%5Cgamma_0%2B%5Cgamma_1X_1%2B%5Cgamma_2X_2%2B%5Cgamma_3X_3%2B%5Cgamma_4X_4%2B#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cgamma_5X_1X_2%2B%5Cgamma_6X_1X_3%2B%5Cgamma_7X_1X_4%2B%5Cgamma_8X_2X_3%2B%5Cgamma_9X_2X_4%2B%5Cgamma_%7B10%7DX_3X_4#0
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MISSING: 999;
FIXED: x2 x3;
MODEL:
focal.model:
y ~ d1;
propensity.model:
logit(d1) ~ x1 x2 x3 x4 x1*x2 x1*x3 x1*x4 x2*x3 x2*x4 x3*x4;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;
OPTIONS: savepredicted;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# id x1 x2 x3 x4 y x5 n1 d1 d2 o1 o2 o3 o4 o5 o6 o7 o8
o9 o10 o11 o12 o13 o14 o15 o16 o17 o18 o19
d1.probability y.predicted

The variable d1.probability contains the propensity scores. Following earlier

examples, imputed data sets from Blimp can be analyzed in other software packages.
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4.22: Linear Regression With Sampling Weights

This example illustrates a linear regression analysis with sampling (i.e., inverse

probability) weights. Clicking the links below downloads the Blimp scripts and data for

this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Ex4.22.imp data21.dat

The analysis model features three continuous predictors.

Blimp’s MCMC estimation routine incorporates sampling weights using the procedure

described in Goldstein (2011, Section 3.4.2). The syntax highlights are as follows.

❖ WEIGHT command identifies the inverse probability sampling weights

❖ Unspecified associations for predictor variables

DATA: data21.dat;
VARIABLES: v1 v2 v3 wght y x1 x2 x3 x4 x5;
WEIGHTS: wght;
MISSING: 999;
MODEL: y ~ x1 x2 x3;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

https://dl.dropboxusercontent.com/s/ppqcxiibrcmtqx9/Ex4.22.imp?dl=1
https://dl.dropboxusercontent.com/s/wnj36mej6z3bmbg/data21.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1X_1%2B%5Cbeta_2X_2%2B%5Cbeta_3X_3%2B%5Cvarepsilon#0
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5 Analysis Examples: Path Analysis and Latent Variable Models

This section illustrates path analyses and latent variable models in Blimp. These

multivariate analyses are specified as collections of univariate equations. In general, it

is possible to mix and match features from any examples to easily create complex

analysis models that honor features of the data. Additional details about fitting path

and latent variable models in Blimp can be found in Keller (2022), which is available

for download here.

Following the previous chapter, the examples in this section use a generic notation

system where variable names usually consist of an alphanumeric prefix and a numeric

suffix (e.g., Y1, X1, N1, D1, D2, V1, V2, V3). The letter Y designates a dependent variable,

a D prefix denotes a binary dummy variable, an O prefix indicates an ordinal variable,

and an N prefix indicates a multicategorical nominal variable. Other letters generally

represent continuous variables. Finally, the model equations use a “cgm” superscript to

indicate grand mean centering. The following list outlines the examples in this section.

❖ 5.1: Mediation Analysis

❖ 5.2: Mediation Analysis With Moderated Paths

❖ 5.3: Mediation Analysis With a Binary Outcome

❖ 5.4: Mediation Analysis With a Categorical Mediator

❖ 5.5: Factor Analysis With Continuous Indicators

❖ 5.6: Factor Analysis With Binary Indicators (IRT Model)

❖ 5.7: Factor Analysis With Ordinal Indicators

❖ 5.8: Imputing Latent Response Scores for Item-Level Factor Analysis

❖ 5.9: Factor Analysis With Skewed Indicators and Yeo-Johnson Transform

❖ 5.10: Latent Variable Regression Model

https://www.dropbox.com/s/6l0sh8t100nj7e1/Keller%20%282022%29%20-%20Blimp.pdf?dl=1
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❖ 5.11: Latent-by-Manifest Variable Interaction

❖ 5.12: Latent-by-Latent Variable Interaction

❖ 5.13: Moderated Factor Analysis for Measurement Invariance Testing

❖ 5.14: Latent Growth Curve Model

5.1: Mediation Analysis

This example illustrates a single-mediator path model. The regression models are

shown below

where α and β are slope coefficients that define the indirect effect or product of the

coefficients estimator, and τ’ is the direct effect of X on Y. A path diagram of the

analysis is shown below. The model also incorporates three auxiliary variables

following the procedure from Example 4.7.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cvarepsilon_1%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DM%2B%5Cbeta_%7B22%7DX%2B%5Cvarepsilon_2%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
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Ex5.1.imp data4.dat

The syntax highlights are as follows.

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels the indirect effect’s component pathways

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4.dat;
VARIABLES: id a1:a3 zscale y m n1 x d1 o1:o19;
MISSING: 999;
MODEL:
mediation.model:
m ~ x@alpha;
y ~ m@beta x;
auxiliary.model:
# sequential specification for auxiliary variables
a1:a3 ~ y m x;
PARAMETERS:
indirect = alpha * beta;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

5.2: Mediation Analysis With Moderated Paths

This example adds moderated pathways to the single-mediator model from the

previous example. The regression models are shown below

https://www.dropbox.com/s/2qbokthuug4mqwu/Ex5.1.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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and the corresponding path diagram is as follows.

The dashed lines pointing from D to the directed arrows convey that D moderates the

mediation model paths.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.2.imp data4.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels the indirect effect’s component pathways

❖ MODEL command features a product term

https://www.codecogs.com/eqnedit.php?latex=M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cbeta_%7B21%7DD%2B%5Cbeta_%7B31%7D%5Cleft(X%5Ctimes%20D%5Cright)%2B%5Cvarepsilon_1#0
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DM%2B%5Cbeta_%7B22%7DX%2B%5Cbeta_%7B32%7DD%2B%5Cbeta_%7B42%7D%5Cleft(M%5Ctimes%20D%5Cright)%2B%5Cvarepsilon_2#0
https://www.dropbox.com/s/5tab0x075dzo13v/Ex5.2.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator at each level of the binary moderator

DATA: data4.dat;
VARIABLES: id a1 a2 a3 zscale y m n1 x d o1:o19;
ORDINAL: d;
MISSING: 999;
FIXED: d;
MODEL:
mediation.model:
m ~ x@alpha d x*d@alphamod;
y ~ m@beta x d m*d@betamod;
auxiliary.model:
# sequential specification for auxiliary variables
a1:a3 ~ y m x d;
PARAMETERS:
indirect.d0 = alpha * beta;
indirect.d1 = ( alpha + alphamod ) * ( beta + betamod );
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

5.3: Mediation Analysis With a Binary Outcome

This example illustrates a single-mediator model with a binary outcome. The

regression models are shown below

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cvarepsilon_1%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%5E*%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DM%2B%5Cbeta_%7B22%7DX%2B%5Cvarepsilon_2%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
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where Y * denotes the underlying latent response variable for a binary outcome Y, and

all other features of the model are the same as Example 5.1. A path diagram of the

mediation model is shown below, with the ellipse denoting the latent response

variable, the residual variance of which is a fixed at 1 for identification.

Muthén, Muthén, and Asparouhov (2016) show that the indirect effect alone does not

capture the fact that changes in Y are non-constant on the probability metric. They give

the following expression for computing the probability that Y = 1 given a particular

value of X (Equations 8.4 to 8.6). The script below uses these equations to compute

the probability at different values of X.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.3a.inp Ex5.3b.inp data20.dat

https://www.codecogs.com/eqnedit.php?latex=E(Y%5E*%7CX)%3DI_Y%2BI_M%7B%5Cbeta%7D%2B%7B%5Calpha%7D%7B%5Cbeta%7DX%2B%7B%5Ctau%7D%5E%7B'%7DX%3D#0
https://www.codecogs.com/eqnedit.php?latex=V(Y%5E*%7CX)%3D%5Cbeta%5E2%5Csigma_M%5E2%2B1#0
https://www.codecogs.com/eqnedit.php?latex=P(Y%3D1%7CX)%20%3D%20%5Cphi%5BE(Y%5E*%7CX)%2F%5Csqrt%7BV(Y%5E*%7CX)%7D%5D#0
https://dl.dropboxusercontent.com/s/med8snahdtekc3t/Ex5.3a.imp?dl=1
https://dl.dropboxusercontent.com/s/88v77wx58wk1fei/Ex5.3b.imp?dl=1
https://dl.dropboxusercontent.com/s/gwokk1ierasop1h/data20.dat?dl=1
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The syntax highlights are as follows.

❖ ORDINAL command identifies a binary outcome and predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels intercepts, slopes, and the residual variance of the
mediator

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

❖ PARAMETERS command uses labeled quantities to compute the the probability
that Y equals 1 at three values of X (the mean and plus/minus one standard
deviation from the mean)

DATA: data20.dat;
VARIABLES: id a1:a3 z y m n1 x d1 o1:o19;
MISSING: 999;
ORDINAL: y;
MODEL:
mediation.model:
# single-mediator model with parameter labels
m ~ 1@m.icept x@alpha;
m ~~ m@m.resvar;
y ~ 1@y.icept m@beta1 x@beta2;
auxiliary.model:
# sequential specification for auxiliary variables
a1:a3 ~ y m x;
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PARAMETERS:
indirect = alpha * beta1;
xvalue1 = -.50;
xvalue2 = 0;
xvalue3 = .50;
pyeq1.xvalue1 = phi((y.icept + beta1*m.icept +

beta1*alpha*xvalue1 + beta2*xvalue1)/
sqrt(beta1^2*m.resvar + 1));

pyeq1.xvalue2 = phi((y.icept + beta1*m.icept +
beta1*alpha*xvalue2 + beta2*xvalue2)/
sqrt(beta1^2*m.resvar + 1));

pyeq1.xvalue3 = phi((y.icept + beta1*m.icept +
beta1*alpha*xvalue3 + beta2*xvalue3)/
sqrt(beta1^2*m.resvar + 1));

SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

The script above defines the binary outcome as a latent response variable (i.e., probit

regression). Applying the logit function to the dependent variable on the MODEL line

requests a logit rather than probit link. The conditional probabilities described above

do not have a simple expression when using a logit link for the outcome.

DATA: data20.dat;
VARIABLES: id a1:a3 zscale y mscale n1 x d1 o1:o19;
MISSING: 999;
ORDINAL: y;
MODEL:
# single-mediator model with parameter labels
mscale ~ x@alpha;
logit(y) ~ mscale@beta x;
# sequential specification for auxiliary variables
a1:a3 ~ y mscale x;
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PARAMETERS:
indirect = alpha * beta;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

5.4: Mediation Analysis With a Categorical Mediator

This example illustrates a single-mediator path model with an ordered categorical

mediator (the mediator could also be binary). The regression models are shown below

where α and β are slope coefficients that define the indirect effect or product of the

coefficients estimator, and τ’ is the direct effect of X on Y. A path diagram of the

analysis is shown below. The model also incorporates three auxiliary variables

following the procedure from Example 4.7.

When M is binary or ordinal, the α path represents the regression of a latent response

variable on X. Typically, the discrete M would then serve as a predictor of Y, thus

leading to an awkward situation where M essentially has two different metrics within

the same model (i.e., M is latent when it is an outcome variable but ordinal when it is a

https://www.codecogs.com/eqnedit.php?latex=M%5E%7B*%7D%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cvarepsilon_1%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://www.codecogs.com/eqnedit.php?latex=Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DM%5E%7B*%7D%2B%5Cbeta_%7B22%7DX%2B%5Cvarepsilon_2%3DI_Y%2B%7B%5Cbeta%7DM%5E%7B*%7D%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
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predictor). Alternatively, Blimp can use the latent response variable in both

regressions, effectively converting a complicated categorical variable regression into a

straightforward linear regression with latent response variables. This idea was

proposed in Muthén, Muthén, and Asparouhov (2016). Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex5.4.imp data4.dat

The syntax highlights are as follows.

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels the indirect effect’s component pathways

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ Appending the .latent suffix to the mediator’s variable name in the MODEL
statement accesses the latent response variable instead of the discrete responses

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4.dat;
VARIABLES: id a1:a3 zscale y n1 n2 x d1 o1:o18 m;
MISSING: 999;
ORDINAL: m;
MODEL:
mediation.model:
m ~ x@alpha;
y ~ m.latent@beta x;
auxiliary.model:
# sequential specification for auxiliary variables

https://dl.dropboxusercontent.com/s/oejmfaghm6vgmvb/Ex5.4.imp?dl=1
https://www.dropbox.com/s/y80x13ezra79zv3/data4.dat?dl=1
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a1:a3 ~ y m.latent x;
PARAMETERS:
indirect = alpha * beta;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

5.5: Factor Analysis With Continuous Indicators

This example illustrates a two-factor measurement model with correlated latent

variables, each measured by six continuous indicators. A path diagram of the analysis

model is shown below.
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.5.imp data4.dat

The syntax highlights are as follows.

❖ LATENT command defines two latent variables

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to 0

❖ Longer burn-in period for estimating latent variables

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale n1 d1 d2

y1:y6 m1:m7 x1:x6;
MISSING: 999;
LATENT: latenty latentx;
MODEL:
latentx -> x1:x6;
latenty -> y1:y6;
latentx <-> latenty;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

5.6: Factor Analysis With Binary Indicators (IRT Model)

This example illustrates a unidimensional measurement model with binary indicators

and IRT scaling. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

https://dl.dropboxusercontent.com/s/am5oggxlmxudoa0/Ex5.5.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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Ex5.6a.imp Ex5.6b.imp data4.dat

A path diagram of the analysis model is shown below, with ellipses denoting latent

response variables, the residual variances of which are fixed scaling constants.

Blimp can use either a logit or probit link. The syntax highlights for the logistic link are

as follows.

❖ ORDINAL command identifies binary variables

❖ LATENT command defines a latent (ability) variable

❖ MODEL command fixes the mean and variance of the latent variable to 0 and 1,
respectively

❖ MODEL command labels measurement intercepts and factor loadings

❖ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

❖ PARAMETERS command uses labeled quantities to compute item discrimination
and difficulty indices for 2-parameter IRT scaling

DATA: data14.dat;
VARIABLES: id y1:y6;
ORDINAL: y1:y6;

https://dl.dropboxusercontent.com/s/0oqi24rop555smi/Ex5.6a.imp?dl=1
https://dl.dropboxusercontent.com/s/s10cblg1x6bpwwe/Ex5.6b.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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MISSING: 999;
LATENT: ability;
MODEL:
ability ~ 1@0;
ability ~~ ability@1;
logit(y1) ~ 1@icept1 ability@load1;
logit(y2) ~ 1@icept2 ability@load2;
logit(y3) ~ 1@icept3 ability@load3;
logit(y4) ~ 1@icept4 ability@load4;
logit(y5) ~ 1@icept5 ability@load5;
logit(y6) ~ 1@icept6 ability@load6;
PARAMETERS:
discrim1 = load1;
discrim2 = load2;
discrim3 = load3;
discrim4 = load4;
discrim5 = load5;
discrim6 = load6;
difficulty1 = - icept1 / load1;
difficulty2 = - icept2 / load2;
difficulty3 = - icept3 / load3;
difficulty4 = - icept4 / load4;
difficulty5 = - icept5 / load5;
difficulty6 = - icept6 / load6;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

The script below is identical but uses a probit rather than logit link (i.e., a normal ogive

model specification). The logistic coefficients differ by a factor of approximately 1.7.

DATA: data14.dat;
VARIABLES: id y1:y6;
ORDINAL: y1:y6;
MISSING: 999;
LATENT: ability;
MODEL:
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ability ~ 1@0;
ability ~~ ability@1;
y1 ~ 1@icept1 ability@load1;
y2 ~ 1@icept2 ability@load2;
y3 ~ 1@icept3 ability@load3;
y4 ~ 1@icept4 ability@load4;
y5 ~ 1@icept5 ability@load5;
y6 ~ 1@icept6 ability@load6;
PARAMETERS:
discrim1 = load1;
discrim2 = load2;
discrim3 = load3;
discrim4 = load4;
discrim5 = load5;
discrim6 = load6;
difficulty1 = - icept1 / load1;
difficulty2 = - icept2 / load2;
difficulty3 = - icept3 / load3;
difficulty4 = - icept4 / load4;
difficulty5 = - icept5 / load5;
difficulty6 = - icept6 / load6;
SEED: 90291;
BURN: 3000;
ITERATIONS: 10000;

5.7: Factor Analysis With Ordinal Indicators

This example illustrates a two-factor measurement model with correlated latent

variables, each measured by six ordinal indicators. A path diagram of the analysis

model is shown below, with ellipses denoting latent response variables, the residual

variances of which are fixed at 1.
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.7.imp data4.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies ordinal variables

❖ Automatic threshold specification for binary and ordinal variables

❖ LATENT command defines two latent variables

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to 0

https://dl.dropboxusercontent.com/s/p1x8g75nt5qpqy6/Ex5.7.imp?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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❖ Longer burn-in period for estimating latent variables

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale n1 d1 d2

y1:y6 m1:m7 x1:x6;
ORDINAL: x1:x6 y1:y6;
MISSING: 999;
LATENT: latenty latentx;
MODEL:
latentx -> x1:x6;
latenty -> y1:y6;
latentx <-> latenty;
SEED: 90291;
BURN: 50000;
ITERATIONS: 10000;

5.8: Imputing Latent Response Scores for Item-Level Factor Analysis

Examples 5.5 and 5.6 illustrated item-level factor analyses that imposed a

measurement model on latent response variables. This example illustrates a latent

variable imputation scheme from Enders (2022) that creates multiple imputation data

sets containing categorical items as well as their underlying latent response variables

(i.e., plausible values). The goal is to convert a categorical factor analysis problem into

a normal-theory multiple imputation analysis that uses the latent response scores as

indicators in lieu of discrete items. Clicking the links below downloads the Blimp

scripts and data for this example, and the full set of User Guide examples is available

from a pull-down menu in the graphical interface.

Ex5.8.imp Ex5.8.R data4.dat

The syntax highlights are as follows.

https://dl.dropboxusercontent.com/s/xv5rnk7ils551r9/Ex5.8.imp?dl=1
https://dl.dropboxusercontent.com/s/7kqhkd7rp3so9cx/Ex5.8.R?dl=1
https://www.dropbox.com/s/i5ispelsk3dl118/data4.dat?dl=1
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❖ ORDINAL command identifies ordinal variables

❖ Automatic threshold specification for binary and ordinal variables

❖ FCS command specifies fully conditional specification multiple imputation

❖ Longer burn-in period for estimating thresholds

❖ savelatent keyword on the OPTIONS line saves latent response scores

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale d1 d2

y1:y6 m1:m7 x1:x6;
ORDINAL: x1:x6 y1:y6;
MISSING: 999;
FCS: x1:x6 y1:y6;
SEED: 90291;
BURN: 25000;
ITERATIONS: 10000;
CHAINS: 100;
NIMPS: 100;
OPTIONS: savelatent;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed. The latent response variables have a .latent suffix

appended to the discrete variable’s name.
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VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# id a1 a2 a3 yscale mscale xscale d1 d2 y1 y2 y3 y4 y5
y6 m1 m2 m3 m4 m5 m6 m7 x1 x2 x3 x4 x5 x6
y1.latent y2.latent y3.latent
y4.latent y5.latent y6.latent
x1.latent x2.latent x3.latent
x4.latent x5.latent x6.latent

In the analysis phase, a normal-theory item-level confirmatory factor analysis is fit to

the imputed latent response scores using other software packages. A path diagram is

as follows.
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The code block below uses the R packages mitml (Grund, Robitzsch, & Lüdke, 2021),

lavaan (Rosseel, Jorgensen, & Rockwood, 2021), and semTools (Jorgensen,

Pornprasertmanit, Schoemann, & Rosseel, 2021) to fit a two-factor measurement

model to the latent normal imputations. The resulting estimates are numerically

equivalent to applying full information maximum likelihood analysis (FIML) with a

probit link to the categorical data, but the FIML analysis often doesn’t provide fit

indices because the saturated model is too complex to estimate.

# load packages
library(semTools)
library(lavaan)
library(mitml)

# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")

names(imps) <- c("Imputation","id","a1","a2","a3","yscale","mscale",
"xscale","d1","d2",paste0("y",seq(1:6)), paste0("m",seq(1:7)),
paste0("x",seq(1:6)),paste0("laty",seq(1:6)),paste0("latx",seq(1:6)))

# specify lavaan model
ylatent <- paste("ylatent =~", paste0("laty", 1:6, collapse = " + "))
xlatent <- paste("xlatent =~", paste0("latx", 1:6, collapse = " + "))
model <- c(ylatent,xlatent)

# fit model with semtools
implist <- as.mitml.list(split(imps, imps$Imputation))
analysis <- cfa.mi(model, data = implist, estimator = "ml")
summary(analysis, standardized = T, fit = T)

# imputation-based modification indices
modindices.mi(analysis, op = c("~~","=~"), minimum.value = 3, sort. = T)
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5.9: Factor Analysis With Skewed Indicators and Yeo-Johnson Transform

This example illustrates a two-factor model with correlated latent variables, each

measured by three continuous indicators. One indicator from each latent factor is

skewed, and a Yeo-Johnson (Yeo & Johnson, 2000) normalizing transformation is

applied to these indicators. A path diagram of the analysis model is shown below.

The ellipses indicate normalized indicators, which are essentially latent normal

variables that have a nonlinear mapping to the nonnormal manifest variables. Clicking

the links below downloads the Blimp scripts and data for this example, and the full set

of User Guide examples is available from a pull-down menu in the graphical interface.

Ex5.9.imp Ex5.9.R data12.dat

The syntax highlights are as follows.

❖ LATENT command defines two latent variables

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

https://dl.dropboxusercontent.com/s/df78g3ckwn1yiw7/Ex5.9.imp?dl=1
https://dl.dropboxusercontent.com/s/8zs5cgn9prtg5bg/Ex5.9.R?dl=1
https://www.dropbox.com/s/781kec9izwyu37t/data12.dat?dl=1
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❖ Applying yjt function to skewed indicators on the MODEL line requests a
Yeo-Johnson transformation

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command fixes the latent variable means to 0 and fixes one loading from
each factor to 1

❖ Longer burn-in period for estimating latent variables

❖ savelatent keyword on the OPTIONS line saves transformed (normalized)
variables

❖ NIMPS command specifies 100 imputed data sets (more imputations
recommended when analyzing latent response variables)

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data12.dat;
VARIABLES: x1:x3 y1:y3;
MISSING: 999;
LATENT: latentx latenty;
MODEL:
structural.model:
latentx <-> latenty;
latentx ~ 1@0;
latenty ~ 1@0;
measurement.model:
x1 ~ latentx@1;
yjt(x2) ~ latentx;
x3 ~ latentx;
yjt(y1) ~ latenty;
y2 ~ latenty@1;
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y3 ~ latenty;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;
OPTIONS: savelatent;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp can save multiple imputations from any model it estimates. In addition to

producing Bayesian estimates of the factor model parameters, the previous code block

saves normalized imputations for a frequentist analysis. Blimp lists the order of the

variables in the imputed data sets at the bottom of the output file, and all variables in

the input file appear in the output file regardless of whether they were imputed. The

variables yjt(yjt(x2)) and yjt(yjt(y1)) are the normalized variables.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# x1 x2 x3 y1 y2 y3 latentx.latent latenty.latent
yjt(yjt(x2)) yjt(yjt(y1))

In the analysis phase, a normal-theory item-level confirmatory factor analysis is fit to

the original and normalized variables using other software packages. For example, the

script shown in the code block below uses the R packages mitml (Grund, Robitzsch, &

Lüdke, 2021), lavaan (Rosseel, Jorgensen, & Rockwood, 2021), and semTools

(Jorgensen, Pornprasertmanit, Schoemann, & Rosseel, 2021) to fit a two-factor

measurement model.
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# load packages
library(semTools)
library(lavaan)
library(mitml)

# set working directory
fdir::set()

# plot original and normalized variables
hist(imps$x2)
hist(imps$x2norm)
hist(imps$y1)
hist(imps$y1norm)

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("Imputation","x1","x2","x3","y1","y2","y3",

"latentx","latenty","x2norm","y1norm")

# specify lavaan model
ylatent <- paste("ylatent =~ x1 + x2norm + x3")
xlatent <- paste("xlatent =~ y1norm + y2 + y3")
model <- c(ylatent,xlatent)

# fit model with semtools
implist <- as.mitml.list(split(imps, imps$Imputation))
analysis <- cfa.mi(model, data = implist, estimator = "ml")
summary(analysis, standardized = T, fit = T)

5.10: Latent Variable Regression Model

This example illustrates a latent variable mediation model where both the mediator

and outcome are latent variables, each with six ordinal indicators. The structural

regression equations are as follows

https://www.codecogs.com/eqnedit.php?latex=%5Ceta_M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cbeta_%7B21%7DD_2%2B%5Cvarepsilon_1#0


Blimp User’s Guide (Version 3) 166

and a path diagram for the full model is shown below.

The residual variances of all latent response variances are fixed at values of 1, and

mediated pathways can be computed following Example 5.1. Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex5.10.imp data4.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies binary and ordinal variables

❖ FIXED command defines a complete predictor

https://www.codecogs.com/eqnedit.php?latex=%5Ceta_Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7D%5Ceta_M%2B%5Cbeta_%7B22%7DX%2B%5Cbeta_%7B32%7DD_2%2B%5Cvarepsilon_2#0
https://dl.dropboxusercontent.com/s/5tckkh0pq11vcub/Ex5.10.imp?dl=1
https://www.dropbox.com/s/zn4i8jocmhetf0r/data4.dat?dl=1
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❖ Automatic threshold specification for binary and ordinal variables

❖ LATENT command defines two latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to 0

❖ Longer burn-in period for estimating latent variables and threshold parameters

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale n1 d1 d2

y1:y6 m1:m7 x1:x6;
ORDINAL: d2 y1:y6 m1:m7;
MISSING: 999;
FIXED: d2;
LATENT: latenty latentm;
MODEL:
structural.model:
latentm ~ xscale d2;
latenty ~ latentm xscale d2;
measurement.model:
latentm -> m1:m6;
latenty -> y1:y6;
SEED: 90291;
BURN: 50000;
ITERATIONS: 10000;

5.11: Latent-by-Manifest Variable Interaction

This example adds moderated paths to the latent variable mediation model from the

previous example. The structural regression equations feature an interaction between

two manifest variables and an interaction between a manifest and latent variable.
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The path diagram of the full model is shown below.

The dashed lines pointing from D2 to the directed arrows convey that D2 moderates the

association between X and the latent mediator as well as the association between the

latent mediator and the outcome. The residual variances of all latent response

variances are fixed at values of 1, and mediated pathways can be computed following

Example 5.2. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Ceta_M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cbeta_%7B21%7DD_2%2B%5Cbeta_%7B31%7D(X%5Ctimes%20D_2)%2B%5Cvarepsilon_1#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Ceta_Y%3D%5Cbeta_0%2B%5Cbeta_1%5Ceta_X%2B%5Cbeta_2D_2%2B%5Cbeta_3%5Cleft(%5Ceta_X%5Ctimes%20D_2%5Cright)%2B%5Cvarepsilon_2#0
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Ex5.11.imp data4.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command defines a complete predictor

❖ LATENT command defines two latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to 0

❖ MODEL command features product terms

❖ Longer burn-in period for estimating latent variables

DATA: data4.dat;
VARIABLES: id a1 a2 a3 xscale zscale yscale n1 d1 d2 x1:x6

z1:z7 y1:y6;
ORDINAL: d2;
MISSING: 999;
LATENT: latentx latenty;
MODEL:
structural.model:
# label factor variances for simple slopes
latentx ~~ latentx@xvar;
latentm ~~ latentm@mvar;
# latent correlation
latentx <-> latentm;
# regression model with interaction
latenty ~ latentx@b1 latentm@b2 latentx*latentm@b3;
measurement.model:
latentx -> x1:x3;
latentm -> m1:m3;

https://dl.dropboxusercontent.com/s/u0mhshevxx9hdwt/Ex5.11.imp?dl=1
https://www.dropbox.com/s/6uvm2mw5lgtgbj7/data4.dat?dl=1
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latenty -> y1:y3;
SEED: 90291;
BURN: 25000;
ITERATIONS: 10000;

5.12: Latent-by-Latent Variable Interaction

This example illustrates a latent variable regression model with two latent predictors

and their interaction influencing a latent outcome variable. The structural regression

equation is as follows.

A path diagram of the full model is shown below.

https://www.codecogs.com/eqnedit.php?latex=%5Ceta_Y%3D%5Cbeta_0%2B%5Cbeta_1%5Ceta_X%2B%5Cbeta_2%5Ceta_M%2B%5Cbeta_3%5Cleft(%5Ceta_X%5Ctimes%5Ceta_M%5Cright)%2B%5Cvarepsilon#0
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The dashed line pointing from the latent variable to the directed arrow conveys that

one latent predictor is moderating the influence of the other. Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex5.12.imp data13.dat

The syntax highlights are as follows.

❖ LATENT command defines three latent variables

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a product term

❖ MODEL command labels the latent variable variances and structural regression
slopes

❖ PARAMETERS command uses labeled quantities to compute conditional effects
(simple slopes) at plus and minus one standard deviation above the latent
moderator’s mean

❖ Longer burn-in period for estimating latent variables

DATA: data13.dat;
VARIABLES: x1:x3 m1:m3 y1:y3;
MISSING: 999;
LATENT: latentx latentm latenty;
MODEL:
# label factor variances for simple slopes
latentx ~~ latentx@xvar;
latentm ~~ latentm@mvar;
# measurement models

https://dl.dropboxusercontent.com/s/7e8fnfmy301zshs/Ex5.12.imp?dl=1
https://www.dropbox.com/s/q6fldc8mqdzr288/data13.dat?dl=1
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latentx -> x1:x3;
latentm -> m1:m3;
latenty -> y1:y3;
# latent correlation
latentx <-> latentm;
# regression model with interaction
latenty ~ latentx@b1 latentm@b2 latentx*latentm@b3;
PARAMETERS:
xslp.mlo = b1 - b3 * sqrt(mvar);
xslp.mhi = b1 + b3 * sqrt(mvar);
mslp.xlo = b2 - b3 * sqrt(xvar);
mslp.xhi = b2 + b3 * sqrt(xvar);
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

5.13: Moderated Factor Analysis for Measurement Invariance Testing

This example illustrates a moderated factor analysis for measurement invariance

testing. The method is conceptually similar to nonlinear moderated factor analysis

(Bauer, 2017) but does not require complicated constraints. Rather, the binary

grouping variable exerts direct effects on factor model indicators and it interacts with

the latent factor to produce group-specific factor loadings (the predictor need not be

binary). The latent variable’s variance and the indicator variances can also be modeled

as a function of the background variable, which does not need to be categorical.

The measurement model equation for a manifest indicator k is as follows.

A path diagram of the model is shown below.

https://www.codecogs.com/eqnedit.php?latex=Y_k%3D%5Cbeta_%7B0k%7D%2B%5Cbeta_%7B1k%7D%5Ceta_Y%2B%5Cbeta_%7B2k%7DG%2B%5Cbeta_%7B3k%7D(G%5Ctimes%5Ceta_Y)%2B%5Cvarepsilon_k#0
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The straight lines from G to the indicators introduce group differences in measurement

intercepts, and the dashed lines from G to the directed arrows reflect

manifest-by-latent interaction terms (factor loading differences). Unlike a conventional

multiple-group model, G could be a continuous dimension, although it is binary in this

example. Finally, the model includes a loglinear equation that relates the variance of

the latent factor to the background variable.

For identification, the intercept 𝛾0 is fixed at zero on the logarithmic metric, which sets

the factor variance of the G = 0 group to one.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.13.imp data4.dat

https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Czeta%7D%5E2)%3D%5Cgamma_%7B0%7D%2B%5Cgamma_1G#0
https://dl.dropboxusercontent.com/s/5ics1hkjlrvf951/Ex5.13.imp?dl=q
https://www.dropbox.com/s/4mm4us6obmzzx1z/data4.dat?dl=1
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The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ LATENT command defines a latent variable

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels intercept group differences and loading group differences

❖ MODEL command features product terms

❖ MODEL command uses an @ and a label to assign a positive-valued prior
distribution to the first factor loading

❖ MODEL command features a regression equation with the natural logarithm of the
factor variance as the outcome

❖ PARAMETER command defines a positive-valued uniform prior distribution

❖ TEST commands specify Bayesian Wald tests that evaluate the null hypothesis
that intercept and loading differences equal 0

❖ SIMPLE command produces conditional effects (group-specific intercepts and
loadings) at each level of the binary moderator

❖ Longer burn-in period for estimating latent variables

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale n1 d1 g

y1:y6 m1:m7 x1:x6;
ORDINAL: g;
MISSING: 999;
FIXED: g;
LATENT: latenty;
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MODEL:
structural.model:
latenty ~ 1@0 g;
var(latenty) ~ 1@0 g;
measurement.model:
y1 ~ 1 latenty@load1prior;
y2 ~ g@difficept1 latenty g*latenty@diffload1;
y3 ~ g@difficept2 latenty g*latenty@diffload2;
y4 ~ g@difficept3 latenty g*latenty@diffload3;
y5 ~ g@difficept4 latenty g*latenty@diffload4;
y6 ~ g@difficept5 latenty g*latenty@diffload5;
TEST: diffload1:diffload5 = 0;
TEST: difficept1:difficept5 = 0;
PARAMETER:;
load1prior ~ truncate(0, Inf);
SIMPLE:
latenty | g;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

5.14: Latent Growth Curve Model

This example illustrates a two-factor latent growth curve model with unequally

spaced repeated measurements and a binary predictor of the random intercepts and

slopes. A path diagram of the model is shown below.
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex5.14.imp data3.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies complete predictors

❖ LATENT command defines two latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

https://dl.dropboxusercontent.com/s/15kpz2mmkse5ldq/Ex5.14.imp?dl=1
https://www.dropbox.com/s/vi1bfec8sn94g8g/data3.dat?dl=1
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❖ MODEL command estimates the latent variable means, fixes the intercept factor
loadings to 1, fixes the growth factor loadings to the time scores (0, 1, 3, and 6),
and fixes the measurement intercepts to 0

❖ MODEL command uses a label to impose equality constraint on residual variance

❖ Longer burn-in period for estimating latent variables

DATA: data3.dat;
VARIABLES: id y0 y1 y3 y6 d1 d2 v1:v4;
ORDINAL: d1;
MISSING: 999;
FIXED: d1;
LATENT: icept growth;
MODEL:
structural.model:
icept ~ 1 d1;
slope ~ 1 d1;
icept <-> slope;
measurement.model:
y0 ~ 1@0 icept@1 slope@0;
y1 ~ 1@0 icept@1 slope@1;
y3 ~ 1@0 icept@1 slope@3;
y6 ~ 1@0 icept@1 slope@6;
# common residual variance
y0 ~~ y0@resvar;
y1 ~~ y1@resvar;
y3 ~~ y3@resvar;
y6 ~~ y6@resvar;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
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6 Analysis Examples: Multilevel Models

This section illustrates multilevel models in Blimp. In general, it is possible to mix and

match features from any examples to create complex analysis models that honor

features of the data. Following the previous chapter, the examples in this section use a

generic notation system where variable names usually consist of an alphanumeric

prefix and a numeric suffix (e.g., Y1, X1, N1, D1, D2, V1, V2, V3). The letter Y designates a

dependent variable, a D prefix denotes a binary dummy variable, an O prefix indicates

an ordinal variable, and an N prefix indicates a multicategorical nominal variable. Other

letters generally represent continuous variables. Additionally, the examples use a “.i”

suffix to denote level-1 variables, “.j” for level-2 variables, and “.k” for level-3

variables (e.g., d1.j is a level-2 dummy variable, x1.i is a continuous variable

measured at level-1). Blimp determines the levels automatically, so the suffixes are

meant as a visual aid for understanding the scripts. Finally, the model equations use

“cgm” and “cwc” superscripts to indicate grand and group mean centering, respectively.

The following list outlines the examples in this section.

❖ 6.1: Two-Level Regression With Random Intercepts

❖ 6.2: Two-Level Fully Conditional Specification Multiple Imputation

❖ 6.3: Two-Level Regression With Random Coefficients

❖ 6.4: Alternate Prior Distributions

❖ 6:5 Inspecting Residuals

❖ 6.6: Two-Level Regression With Random (Heterogeneous) Within-Cluster
Variances

❖ 6.7: Two-Level Model With Random Effects Predicting a Level-2 Outcome

❖ 6.8: Two-Level Regression With Latent Contextual Effect
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❖ 6.9: Two-Level Regression With Cross-Level Interaction

❖ 6.10: Two-Level 1-1-1 Mediation With Random Slopes

❖ 6.11: Two-Level 1-1-1 Mediation With Moderated Paths

❖ 6.12: Within- and Between-Level Mediation

❖ 6.13: Two-Level Mediation With a Binary Outcome

❖ 6.14: Two-Level Linear Growth Model

❖ 6.15: Three-Level Growth Model

❖ 6.16: Two-Level Measurement Model With Predictors

❖ 6.17: Two-Level Regression With Random Intercepts and Sampling Weights

❖ 6.18: Partially Nested Designs (Singleton Clusters)

❖ 6.19: Discrete-Time Survival Model

❖ 6.20: Two-Level Dynamic Structural Equation Model With Random Intercepts

❖ 6.21: Two-Level Dynamic Structural Equation Model With Random Coefficients

❖ 6.22: Two-Level Dynamic Structural Equation Model With Random
Within-Cluster Variances

❖ 6.23: Two-Level Dynamic Structural Equation Model With a Cross-Level
Interaction Effect

6.1: Two-Level Regression With Random Intercepts

This example illustrates a two-level regression model with random intercepts. The

regression model is shown below.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%5E%7Bcgm%7D%2B%5Cbeta_2X_%7B4ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3D_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_4X_%7B5j%7D%5E%7Bcgm%7D%2B%5Cbeta_5D_%7B3j%7D%2B%5Cvarepsilon_%7Bij%7D#0


Blimp User’s Guide (Version 3) 180

Ex6.1.imp data7.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

❖ ORDINAL command identifies binary predictors

❖ FIXED command defines complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ Unspecified associations for predictor variables

DATA: data7.dat;
VARIABLES: level1id level2id n1.i d1.i d2.i n2.i x1.i x2.i

x3.i x4.i y.i d3.j x5.j x6.j;
CLUSTERID: level2id;
ORDINAL: d2.i d3.j;
MISSING: 999;
FIXED: x4.i d3.j;
CENTER: grandmean = x1.i x4.i d2.i x5.j;
MODEL: y.i ~ x1.i x4.i d2.i x5.j d3.j;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

6.2: Two-Level Fully Conditional Specification Multiple Imputation

This example illustrates multilevel fully conditional specification multiple imputation as

an approach to getting frequentist inference for the analysis from Example 6.1. The

analysis model is shown below.

https://www.dropbox.com/s/ljdf9ri7du9ar0m/Ex6.1.imp?dl=1
https://www.dropbox.com/s/4y5qjpszk2r7o40/data7.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%5E%7Bcgm%7D%2B%5Cbeta_2X_%7B4ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3D_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_4X_%7B5j%7D%5E%7Bcgm%7D%2B%5Cbeta_5D_%7B3j%7D%2B%5Cvarepsilon_%7Bij%7D#0
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Fully conditional specification should be reserved for random intercept analyses, as

applying the procedure to models with random coefficients or interaction terms is

known to induce bias (Enders et al., 2020; Grund, Lüdke, & Robitzsch, 2016).

Model-based multiple imputation is recommended for such analyses (see Example

6.3). Clicking the links below downloads the Blimp scripts and data for this example,

and the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.2.imp Ex6.2.R data7.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts (latent group means) for all level-1 variables

❖ ORDINAL command identifies binary predictors

❖ FCS command specifies fully conditional specification multiple imputation with a
saturated model at level-1 and level-2 (unstructured within- and between-cluster
covariance matrices)

❖ FCS command includes all analysis variables

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data7.dat;
VARIABLES: level1id level2id n1.i d1.i d2.i n2.i x1.i x2.i

x3.i x4.i y.i d3.j x5.j x6.j;
CLUSTERID: level2id;

https://www.dropbox.com/s/94vlkxtntyxrvv9/Ex6.2.imp?dl=1
https://www.dropbox.com/s/0f4ytseozwul7tw/Ex6.2.R?dl=1
https://www.dropbox.com/s/q26ewp0lw9yn9xl/data7.dat?dl=1
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ORDINAL: d2.i d3.j;
MISSING: 999;
FCS: y.i x1.i x4.i d2.i x5.j d3.j;
SEED: 90291;
BURN: 25000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed.

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# level1id level2id n1.i d1.i d2.i n2.i x1.i x2.i x3.i
x4.i y.i d3.j x5.j x6.j

The imputed data sets can be analyzed in other software packages. The script below

uses the R packages lme4 (Bates et al., 2021) and mitml (Grund et al., 2021) to fit the

multilevel regression model to the filled-in data sets. The resulting estimates are

numerically equivalent to the Bayesian results from the Blimp output.

# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("imputation","level1id","level2id","n1.i","d1.i",

"d2.i","n2.i","x1.i","x2.i","x3.i","x4.i", "y.i","d3.j","x5.j","x6.j")
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# center predictors
imps$x1.i.cgm <- imps$x1.i - mean(imps$x1.i)
imps$x4.i.cgm <- imps$x4.i - mean(imps$x4.i)
imps$d2.i.cgm <- imps$d2.i - mean(imps$d2.i)
imps$x5.j.cgm <- imps$x5.j - mean(imps$x5.j)

# analysis and pooling
implist <- mitml::as.mitml.list(split(imps, imps$imputation))
mod <- "y.i ~ x1.i.cgm + x4.i.cgm + d2.i.cgm + x5.j.cgm + d3.j +
(1|level2id)"
ddf <- 23
results <- with(implist, lme4::lmer(mod, REML = T))
mitml::testEstimates(results, extra.pars = T, df.com = ddf)

6.3: Two-Level Regression With Random Coe�cients

This example illustrates a two-level regression model with random intercepts and

random slopes. The analysis model is shown below.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.3a.imp Ex6.3b.imp Ex6.3.R data8.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/964oumru4xiwwjk/Ex6.3a.imp?dl=1
https://www.dropbox.com/s/gcjhijvgu4upxrk/Ex6.3b.imp?dl=1
https://www.dropbox.com/s/p002amuy7gzo2xl/Ex6.3.R?dl=1
https://www.dropbox.com/s/z6ptj3wovx5eg3v/data8.dat?dl=1
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❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL: y.i ~ x1.i x2.i x7.j d1.j | x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

Blimp can save multiple imputations from any model it estimates. Model-based

multiple imputations can be saved for a frequentist analysis by adding the SAVE and

NIMPS commands. The additional syntax highlights are as follows.

❖ CENTER command grand mean centers predictors in the Bayesian output, but
saved imputations are on the original metric

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)
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❖ savelatent keyword on the OPTIONS line saves the latent group means of the
level-1 predictors and the analysis model’s random intercept and random slope
residuals

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL: y.i ~ x1.i x2.i x7.j d1.j | x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
OPTIONS: savelatent;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed. The savelatent keyword also saves the latent group

means of any level-1 predictors, and these can be used to center variables prior to

analyzing the imputations. This example uses X1’s latent group means, which are

referred to by the name x1.i.mean[level2id].
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VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# level1id level2id x1.i x2.i y.i x3.i x4.i d1.j n1.j
x5.j x6.j x7.j x8.j x9.j y.i[level2id] y.i$x1.i[level2id]
x1.i.mean[level2id] x2.i.mean[level2id]

The imputed data sets can be analyzed in other software packages. The script below

uses the R packages lme4 (Bates et al., 2021) and mitml (Grund et al., 2021) to fit the

multilevel regression model to the filled-in data sets. The resulting estimates are

numerically equivalent to the Bayesian results from the Blimp output.

# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <-
c("imputation","level1id","level2id","x1.i","x2.i","y.i","x3.i","x4.i",

"d1.j","n1.j","x5.j","x6.j","x7.j","x8.j","x9.j",
"y.ranicept","x1.ranslp","x1.mean.j","x2.mean.j")

# grand center predictors
imps$x1.i.cwc <- imps$x1.i - imps$x1.mean.j
imps$x2.i.cgm <- imps$x2.i - mean(imps$x2.i)
imps$x7.j.cgm <- imps$x7.j - mean(imps$x7.j)
imps$d1.j.cgm <- imps$d1.j - mean(imps$d1.j)

# analysis and pooling
implist <- mitml::as.mitml.list(split(imps, imps$imputation))
mod <- "y.i ~ x1.i.cwc + x2.i.cgm + x7.j.cgm + d1.j + (1 +
x1.i.cwc|level2id)"
ddf <- 127
results <- with(implist, lme4::lmer(mod, REML = T))
mitml::testEstimates(results, extra.pars = T, df.com = ddf)
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6.4: Alternate Prior Distributions for Random E�ect Covariance Matrix

This example illustrates how to examine the influence of different prior distributions on

the level-2 covariance matrix of the random effects. The analysis model is the

following two-level regression with random intercepts and random slopes.

The between-cluster covariance matrix of the random effects is a 2 by 2 matrix in this

example. Blimp offers three “off-the-shelf” inverse Wishart priors for the covariance

matrix, and it is also possible to use a so-called separation strategy that applies

distinct priors to variances and the intercept-slope correlation. Clicking the links below

downloads the Blimp scripts and data for this example, and the full set of User Guide

examples is available from a pull-down menu in the graphical interface.

Ex6.4a.prior2.imp Ex6.4b.prior1.imp Ex6.4c.prior3.imp

Ex6.4d.separation.imp data8.dat

Considering the inverse Wishart options, the default prior2 setting is less informative

because it subtracts the number of dimensions plus 1 from the degrees of freedom,

and it adds nothing to the sum of squares and cross-products; prior1 is more

informative because it adds the number of dimensions plus 1 to the degrees of

freedom, and it adds an identity matrix to the sum of squares and cross-products;

prior3 adds zero degrees of freedom and adds zero to the sums of squares. The code

block below shows the default specification, the syntax highlights for which are as

follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/bjawmqcg80dtqkp/Ex6.4a.prior2.imp?dl=1
https://www.dropbox.com/s/1izcaig71xz7lnt/Ex6.4b.prior1.imp?dl=1
https://www.dropbox.com/s/uuzxka1qe2l0teg/Ex6.4c.prior3.imp?dl=1
https://www.dropbox.com/s/lg41uh3ihmoencs/Ex6.4d.separation.imp?dl=1
https://www.dropbox.com/s/iu7eib1ukcjhly3/data8.dat?dl=1
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❖ CENTER command applies grand mean and latent group mean centering

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

❖ prior2 keyword on the OPTIONS line (optional) specifies the default inverse
Wishart prior

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x1.i;
grandmean = x2.i;
MODEL: y.i ~ x1.i x2.i | x1.i;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
OPTIONS: prior2;

Similarly, the code block below shows the specification for the more informative

prior1 inverse Wishart option.

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x1.i;
grandmean = x2.i;
MODEL: y.i ~ x1.i x2.i | x1.i;
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SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
OPTIONS: prior1;

Comparing the magnitude of the point estimates provides a gauge about the prior

distribution’s impact. The output table for the default prior2 specification is shown

immediately below, and the second output table shows the results from the more

informative prior1 specification.

# prior2

Parameters Median StdDev 2.5% 97.5%

---------------------------------------------
Variances:
L2 : Var(Intercept) 0.613 0.083 0.478 0.804
L2 : Cov(x1.i,Intercept) 0.016 0.016 -0.014 0.048
L2 : Var(x1.i) 0.020 0.006 0.010 0.034
Residual Var. 0.358 0.011 0.337 0.381

...

Proportion Variance Explained
by Fixed Effects 0.048 0.009 0.032 0.065
by Level-2 Random Intercepts 0.587 0.033 0.524 0.653
by Level-2 Random Slopes 0.021 0.006 0.011 0.036
by Level-1 Residual Variation 0.343 0.027 0.288 0.395

---------------------------------------------

# prior1

Parameters Median StdDev 2.5% 97.5%

---------------------------------------------
Variances:
L2 : Var(Intercept) 0.591 0.078 0.464 0.771
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L2 : Cov(x1.i,Intercept) 0.017 0.018 -0.017 0.053
L2 : Var(x1.i) 0.039 0.007 0.028 0.056
Residual Var. 0.354 0.011 0.333 0.377

...

Proportion Variance Explained
by Fixed Effects 0.048 0.009 0.033 0.068
by Level-2 Random Intercepts 0.569 0.033 0.505 0.635
by Level-2 Random Slopes 0.041 0.008 0.028 0.059
by Level-1 Residual Variation 0.341 0.026 0.289 0.392

---------------------------------------------

The default prior 2’s random slope variance is roughly half as large as that of the more

informative prior (0.020 vs. 0.039), and the two estimates differed by about 2.7

posterior standard deviation units (a very large difference). As a proportion of the total

variance, the R2 effect sizes attributable to the random slopes (Rights & Sterba, 2019)

were also quite different (2.1% vs. 4.1%).

The separation strategy (Barnard, McCulloch, & Meng, 2000; Liu, Zhang, & Grimm,

2016) assigns distinct priors to the diagonal and off-diagonal elements of the

covariance matrix. An analogous strategy can be implemented in Blimp by specifying

the random intercepts and slopes as a pair of level-2 latent variables. The focal model

is cast as a multilevel structural equation model with a pair of normally distributed

level-2 latent variables representing the random intercepts and slopes. The focal

model features these latent variables as predictors, as shown below.

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
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Note that the coefficient of the random slope predictor is implicitly fixed to 1 in this

specification.

This specification assigns separate inverse gamma priors to the random intercept and

slope variances, and it specifies a beta prior distribution to their correlation. Blimp uses

a multilevel extension of the procedure described in Merkle and Rosseel (2018).

Computer simulation studies suggest that the separation strategy gives more accurate

estimates of the variance components, although the correlation estimate may be

attenuated when the number of level-2 units is small (Keller & Enders, 2021). The

unique syntax highlights for the code block are as follows.

❖ LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command estimates the random intercept and slope means

❖ MODEL command sets the intercept of the regression equation equal to the level-2
latent mean (1@beta0.j)

❖ MODEL command omits the random coefficient listed after the vertical pipe

❖ MODEL command includes the interaction between a level-1 predictor and the
level-2 latent slope (x1.i*beta1.j)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1

❖ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

❖ OPTIONS command lists the use_phantom keyword to invoke a phantom variable
specification that assigns distinct priors to latent variable variances and their
correlation
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DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
MISSING: 999;
LATENT: level2id = beta0.j beta1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i;
MODEL:
latent.variables:
beta0.j ~ 1;
beta1.j ~ 1;
beta0.j ~~ beta1.j;
focal.model:
y.i ~ 1@beta0.j x1.i*beta1.j@1 x2.i;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
OPTIONS: use_phantom;

The random effect parameter estimates no longer appear on the same table when

employing the separation strategy because the random intercepts and slopes are

latent variables with their own equations and summary tables. The analysis model

table shows the random intercept variance, and the level-2 latent variable’s (random

slope) variance and correlation appear in separate tables.

# separation strategy

Latent Variable: beta0.j

Parameters Median StdDev 2.5% 97.5%
--------------------------------------------

Variances:
Residual Var. 0.605 0.081 0.472 0.792
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Coefficients:
Intercept 4.170 0.071 4.031 4.309

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000
by Residual Variation 1.000 0.000 1.000 1.000

--------------------------------------------

Latent Variable: beta1.j

Parameters Median StdDev 2.5% 97.5%
--------------------------------------------

Variances:
Residual Var. 0.019 0.005 0.011 0.031

Coefficients:
Intercept -0.094 0.020 -0.132 -0.055

Proportion Variance Explained
by Coefficients 0.000 0.000 0.000 0.000
by Residual Variation 1.000 0.000 1.000 1.000

--------------------------------------------

Phantom Variable Correlations:

Parameters Median StdDev 2.5% 97.5%

--------------------------------------------

beta0.j <-> beta1.j 0.112 0.123 -0.127 0.348

--------------------------------------------

...

Outcome Variable: y.i

Grand Mean Centered: x2.i

Group Mean Centered: x1.i

Parameters Median StdDev 2.5% 97.5%

--------------------------------------------

Variances:

Residual Var. 0.358 0.011 0.337 0.381

Coefficients:
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beta0.j @1.000 --- --- ---

x2.i 0.087 0.008 0.071 0.102

x1.i*beta1.j @1.000 --- --- ---

Standardized Coefficients:

x2.i 0.291 0.025 0.242 0.339

x1.i*beta1.j 0.284 0.025 0.235 0.334

Proportion Variance Explained

by Coefficients 0.177 0.020 0.140 0.218

by Residual Variation 0.823 0.020 0.782 0.860

--------------------------------------------

6.5: Inspecting Residuals

This example illustrates how to inspect the level-1 and level-2 residuals (random

effects) from a two-level regression model with random intercepts and random slopes.

The analysis model, shown below, is the same as the one from Example 6.4.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.5.imp Ex6.5.R data8.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ CENTER command applies grand mean and latent group mean centering to
predictors in the Bayesian output, but saved imputations are on the original metric

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/v6wlujtu467i6q7/Ex6.5.imp?dl=1
https://www.dropbox.com/s/bbl791le4riyupl/Ex6.5.R?dl=1
https://www.dropbox.com/s/ji6xi9rykr17ktf/data8.dat?dl=1
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❖ savelatent keyword on the OPTIONS line saves the latent group means of the
level-1 predictors and the analysis model’s random intercept and random slope
residuals

❖ saveresidual keyword on the OPTIONS line saves level-1 residuals

❖ NIMPS command specifies 20 imputed data sets

❖ Setting CHAINS equal to NIMPS saves one data set from the final iteration of each
MCMC chain (avoids autocorrelated imputations)

❖ Imputations are stacked in a single file with an index variable added in the first
column

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x1.i;
grandmean = x2.i;
MODEL: y.i ~ x1.i x2.i | x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;
CHAINS: 20;
NIMPS: 20;
OPTIONS: savelatent saveresidual;
SAVE: stacked = imps.dat;

Blimp lists the order of the variables in the imputed data sets at the bottom of the

output file, and all variables in the input file appear in the output file regardless of

whether they were imputed. The latent group means, random effects, and level-1

residuals are appended to the end of the file. Latent group means are designated by
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appending the level-2 identifier in square brackets to the end of a predictor variable’s

name (e.g., x1.i.mean[level2id] and x2.i.mean[level2id]). The analysis

model’s random intercepts are denoted by appending the level-2 identifier in square

brackets to the end of an outcome variable’s name (e.g., y.i[level2id]). Random

slope residuals are indicated by joining the outcome and random predictor variables

with a $ sign (e.g., y.i$x1.i[level2id]). Finally, level-1 residuals are indicated by

appending .residual to the end of the outcome variable’s name (e.g.,

y.i.residual).

VARIABLE ORDER IN IMPUTED DATA:

stacked = 'imps.dat'

imp# level1id level2id x1.i x2.i y.i x3.i x4.i d1.j n1.j
x5.j x6.j x7.j x8.j x9.j y.i[level2id]
y.i$x1.i[level2id] x1.i.mean[level2id]
x2.i.mean[level2id] y.i.residual

The imputed data sets can be analyzed in other software packages. The script below

uses the R package rockchalk (Johnson, 2019) to compute excess skewness and

kurtosis, and it uses base R functions to plot the residuals.

# set working directory
fdir::set()

# read data from working directory
imps <- read.table("imps.dat")
names(imps) <- c("imputation","level1id","level2id","x1.i","x2.i",

"y.i","x3.i","x4.i","d1.j","n1.j","x5.j","x6.j","x7.j",
"x8.j","x9.j","y.ranicept","x1.ranslope","x1.mean.j",
"x2.mean.j","y.l1residual")
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# skewness and kurtosis of residuals
rockchalk::skewness(imps$y.ranicept)
rockchalk::kurtosis(imps$y.ranicept)
rockchalk::skewness(imps$x1.ranslope)
rockchalk::kurtosis(imps$x1.ranslope)
rockchalk::skewness(imps$y.l1residual)
rockchalk::kurtosis(imps$y.l1residual)

# plot distribution of level-1 residuals
hist(imps$y.l1residual)
plot(density(imps$y.l1residual))

# plot distribution of level-2 random effects
hist(imps$y.ranicept)
hist(imps$x1.ranslope)
plot(density(imps$y.ranicept))
plot(density(imps$x1.ranslope))

# qq plots
qqnorm(imps$y.ranicept); qqline(imps$y.ranicept)
qqnorm(imps$x1.ranslope); qqline(imps$x1.ranslope)

6.6: Two-Level Regression With Random (Heterogeneous) Within-Cluster Variation

This example illustrates a two-level regression model with random intercepts and

slopes and heterogeneous within-cluster variances. The analysis model below is the

same one as Example 6.3, but the variance of the within-cluster residuals differs across

clusters.

Blimp provides two methods for modeling heterogeneous within-cluster variation. The

first is the so-called location and scale model where observation-level variation is a

function of level-1 and/or level-2 predictors and a cluster-level random effect

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
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(Hedeker, Mermelstein, & Demirtas, 2008). A log-linear model expresses the natural

log of the variance as a level-2 latent variable with a mean and between-cluster

variance that represents cluster-level differences in the within-cluster variances.

This approach allows within-cluster variation to function as both an outcome and a

predictor of distal level-2 outcomes.

A second approach described by Kasim and Raudenbush (1998) views cluster-specific

variation as a level-2 variable that follows a distribution. The Kasim and Raudenbush

method does not allow links between within-cluster variation and other variables.

Clicking the links below downloads the Blimp scripts and data for these examples, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.6a.imp Ex6.6b.imp data8.dat

The code block below shows the basic setup for a location-scale model where

observation-level variation is a function of a level-1 and level-2 predictor and a level-2

random effect. The syntax highlights are listed below, and adding the NIMPS and SAVE

commands generates model-based multiple imputations for a frequentist analysis (see

Example 6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B0j%7D%3D%5Cgamma_%7B0%7D%2Bg_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Cvarepsilon%7Bj%7D%7D%5E2)%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_1X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cgamma_2D_%7B1j%7D%5E%7Bcgm%7D#0
https://dl.dropboxusercontent.com/s/qjfsm0bxno57jtx/Ex6.6a.imp?dl=1
https://dl.dropboxusercontent.com/s/pminkzzqfk8606h/Ex6.6b.imp?dl=1
https://www.dropbox.com/s/kh7dorg3r03ds4k/data8.dat?dl=1


Blimp User’s Guide (Version 3) 199

❖ LATENT command identifies level-2 latent variable named logvar that
represents within-cluster variation on the log metric

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command features a second regression equation with the natural logarithm
of the level-1 variation as the outcome. The 1@logvar constraint sets the
intercept equal to the level-2 latent variable logvar

❖ Unspecified associations for predictor variables

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j n1.j

x5.j x6.j x7.j x8.j y2.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
LATENT: level2id = logvar;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
focal.model:
y.i ~ x1.i x2.i x7.j d1.j | x1.i;
variance.model:
var(y.i ) ~ 1@logvar x2.i d1.j;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
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As noted previously, within-cluster variation can also predict distal outcomes at

level-2. The model command below uses cluster-specific variation to predict a level-2

variable named y2.j.

MODEL:
y.i ~ x1.i x2.i x7.j d1.j | x1.i;
var(y.i ) ~ 1@logvar x2.i d1.j;
y2.j ~ logvar;

MCMC estimation yields a model-predicted variance for each observation (on the

natural log scale). To convey the magnitude of the variational differences, Blimp

converts the mean and quartiles of the log-variance distribution to the variance metric

and includes these summaries on the output. The output excerpt below shows part of

the main summary table from the example.

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

Outcome Variable: y.i
Grand Mean Centered: d1.j x2.i x7.j
Group Mean Centered: x1.i

Parameters Median StdDev 2.5% 97.5%

---------------------------------------------
Variances:
L2 : Var(Intercept) 0.626 0.085 0.488 0.815
L2 : Cov(x1.i,Intercept) 0.026 0.014 0.000 0.056
L2 : Var(x1.i) 0.015 0.005 0.006 0.028
Mean Residual Var. 0.299 0.010 0.281 0.320
Q25% Residual Var. 0.190 0.010 0.170 0.211
Q50% Residual Var. 0.305 0.015 0.278 0.335
Q75% Residual Var. 0.482 0.025 0.436 0.536

...
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The code block below shows the setup for the Kasim and Raudenbush (1998)

approach to modeling heterogeneous variation. .The syntax highlights are listed below,

and adding the NIMPS and SAVE commands generates model-based multiple

imputations for a frequentist analysis (see Example 6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

❖ hev keyword on OPTIONS line specifies heterogeneous within-cluster variances
(Kasim & Raudenbush, 1998)

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j n1.j

x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL: y.i ~ x1.i x2.i x7.j d1.j | x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;
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OPTIONS: hev;

MCMC estimation yields an estimate of the variation within each cluster. To convey the

magnitude of the variational differences, Blimp computes the mean and quartiles of the

variance distribution and includes these summaries on the output. The output excerpt

below shows part of the main summary table from the example.

OUTCOME MODEL ESTIMATES:

Summaries based on 10000 iterations using 2 chains.

Outcome Variable: y.i
Grand Mean Centered: d1.j x2.i x7.j
Group Mean Centered: x1.i

Parameters Median StdDev 2.5% 97.5%

---------------------------------------------
Variances:
L2 : Var(Intercept) 0.648 0.088 0.507 0.851
L2 : Cov(x1.i,Intercept) 0.026 0.014 -0.000 0.056
L2 : Var(x1.i) 0.014 0.006 0.006 0.028
Mean Residual Var. 0.373 0.016 0.345 0.406
Q25% Residual Var. 0.188 0.011 0.168 0.211
Q50% Residual Var. 0.296 0.016 0.267 0.328
Q75% Residual Var. 0.476 0.028 0.426 0.534

...

6.7: Two-Level Model With Random E�ects Predicting a Level-2 Outcome

This example illustrates a two-level path model where the random intercepts and

random slopes from one model predict a level-2 outcome in another model. The

regression equations are shown below.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.7a.imp Ex6.7b.imp data8.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ RANDOMEFFECT command defines random intercept and slope residuals as
level-2 latent variables

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y1.i x3.i x4.i d1.j n1.j

x5.j x6.j x7.j x8.j y2.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;

https://www.codecogs.com/eqnedit.php?latex=Y_%7B2j%7D%3D%5Cgamma_0%2B%5Cgamma_1b_%7B0j%7D%2B%5Cgamma_1b_%7B1j%7D%2B%5Cgamma_3X_%7B7j%7D%5E%7Bcgm%7D%2Br_j#0
https://www.dropbox.com/s/inp43fu2u2f3c77/Ex6.7a.imp?dl=1
https://www.dropbox.com/s/382fyw3dbfjv59b/Ex6.7b.imp?dl=1
https://www.dropbox.com/s/sj7z5g99yy4eb31/data8.dat?dl=1
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RANDOMEFFECT:
ranicepts = y1.i | 1 [level2id];
ranslopes = y1.i | x1.i [level2id];
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
y1.i ~ x1.i x2.i x7.j d1.j | x1.i;
y2.j ~ ranicepts ranslopes x7.j;
SEED: 90291;
BURN: 25000;
ITERATIONS: 25000;

A slightly different way to set up the model is to define the random intercepts and

slopes as level-2 latent variables that predict the outcomes from both models. The

random effect parameter estimates no longer appear in the same table as the other

model parameters because they are distinct latent variables with their own mean

(fixed effect) and variance (random effect). This parameterization converges more

quickly in this example. The new syntax highlights are as follows.

❖ LATENT command defines two between-cluster latent variables

❖ MODEL command removes (fixes to 0 using @0) both the fixed intercept in the
regression equation and the random intercept listed after the vertical pipe

❖ MODEL command estimates the mean and variance of each between-cluster latent
variable (the latter specification happens by default)

❖ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

❖ MODEL command fixes the coefficient for the random intercept latent variable to 1

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and the level-2 latent slope variable to 1
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DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y1.i x3.i x4.i d1.j n1.j

x5.j x6.j x7.j x8.j y2.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
LATENT:
level2id = ranicept;
level2id = ranslope;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
ranicept ~ 1;
ranslope ~ 1;
ranicept ~~ ranslope;
y1.i ~ 1@0 ranicept@1 x1.i*ranslope@1 x2.i x7.j d1.j | 1@0;
y2.j ~ ranicept ranslope x7.j;
SEED: 90291;
BURN: 25000;
ITERATIONS: 25000;

6.7: Two-Level Model With Random E�ects Predicting a Level-2 Outcome

This example illustrates a two-level regression model with random intercepts and

random slopes. The focal analysis model is shown below.

The random intercepts and random slopes in turn predict a distal outcome, as follows.

https://www.codecogs.com/eqnedit.php?latex=Y_%7B1ij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7B2j%7D%3D%5Cgamma_0%2B%5Cgamma_1b_%7B0j%7D%2B%5Cgamma_2b_%7B1j%7D%2Br_i#0
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.7a.imp Ex6.7b.imp data8.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ RANDOMEFFECT command defines random intercepts and slopes as level-2 latent
variables

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ Unspecified associations for predictor variables

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
RANDOMEFFECT:
ranicepts = y1.i | 1 [level2id];
ranslopes = y1.i | x1.i [level2id];
MISSING: 999;
FIXED: d1.j;

https://dl.dropboxusercontent.com/s/inp43fu2u2f3c77/Ex6.7a.imp?dl=1
https://dl.dropboxusercontent.com/s/382fyw3dbfjv59b/Ex6.7b.imp?dl=1
https://dl.dropboxusercontent.com/s/sj7z5g99yy4eb31/data8.dat?dl=1
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CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
focal.model:
y1.i ~ x1.i x2.i x7.j d1.j | x1.i;
structural.model:
y2.j ~ ranicepts ranslopes x7.j;
SEED: 90291;
BURN: 25000;
ITERATIONS: 30000;

An alternate approach defines a pair of level-2 latent variables that represent the

random intercepts and slopes. The setup of this model mimics the separate

specification approach outlined in Section 6.4. The unique syntax highlights for the

code block are as follows.

❖ LATENT command defines a between-cluster latent variable

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command removes the random coefficient listed after the vertical pipe

❖ MODEL command estimates the latent slope mean

❖ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variable)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y1.i x3.i x4.i d1.j n1.j

x5.j x6.j x7.j x8.j y2.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
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MISSING: 999;
LATENT:
level2id = ranicept ranslope;
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
focal.model:
y1.i ~ 1@ranicept x1.i*ranslope@1 x2.i x7.j d1.j;
structural.model:
y2.j ~ ranicept ranslope x7.j;
random.effect.model:
ranicept ~ 1;
ranslope ~ 1;
ranicept ~~ ranslope;
SEED: 90291;
BURN: 20000;
ITERATIONS: 20000;

6.8: Two-Level Regression With Latent Contextual E�ect

This example illustrates a two-level regression model that includes within- and

between-cluster slopes for a level-1 predictor and a latent contextual effect (Lüdtke et

al., 2008).

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.8.imp data8.dat

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B2ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2%5Cmu_%7B2j%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/qeo7iuov049suuz/Ex6.8.imp?dl=1
https://www.dropbox.com/s/sj7z5g99yy4eb31/data8.dat?dl=1
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The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command specifies latent group means as a level-2 predictor with the
.mean suffix on a level-1 predictor

❖ MODEL command labels within- and between-cluster slopes

❖ Unspecified associations for predictor variables

❖ PARAMETERS command uses labeled quantities to compute latent contextual
effect (between- vs. within-cluster slope difference)

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y x3.i x4.i

d1.j n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
FIXED: d1.j;
CENTER:
groupmean = x2.i;
grandmean = x2.i.mean x7.j d1.j;
MODEL:
y ~ x2.i@betaw x2.i.mean@betab x7.j d1.j | x2.i;
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PARAMETERS:
x2.contextual = betab - betaw;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

6.9: Two-Level Regression With Cross-Level Interaction

This example illustrates a two-level regression model that includes a cross-level

interaction involving a continuous level-1 predictor and a continuous level-2

moderator. The regression model is as follows.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.9.imp data1.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command features a product term

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2j%7D%5E%7Bcgm%7D%2B%5Cbeta_3%5Cleft(X_%7B1ij%7D%5E%7Bcwc%7D%5Ctimes%20X_%7B2j%7D%5E%7Bcgm%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/0j4jtmplpqy0nqp/Ex6.9.imp?dl=1
https://www.dropbox.com/s/6kkdf73lw34y51p/data1.dat?dl=1
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❖ SIMPLE command produces conditional effects (simple slopes) at different
standard deviation units of the continuous moderator

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: level1id level2id d1.i o1.i y.i x1.i d2.i x2.j x3.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x1.i;
grandmean = x2.j;
MODEL:
y.i ~ x1.i x2.j x1.i*x2.j | x1.i;
SIMPLE:
x1.i | x2.j;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

6.10: Two-Level 1-1-1 Mediation With Random Slopes

This example illustrates a two-level path model that features an indirect effect of two

level-1 predictors, both of which are within-cluster centered at their latent group

means. The regression models are as follows.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cleft(%5Calpha_0%2Ba_%7B0j%7D%5Cright)%2B%5Cleft(%5Calpha_1%2Ba_%7B1j%7D%5Cright)X_%7Bij%7D%5E%7Bcwc%7D%2Br_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)M_%7Bij%7D%5E%7Bcwc%7D%2B%5Cleft(%5Cbeta_2%2Bb_%7B2j%7D%5Cright)X_%7Bij%7D%5E%7Bcwc%7D%2B%5Cvarepsilon_%7Bij%7D#0
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Ex6.10.imp data1.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ CENTER command applies latent group mean centering to predictors

❖ MODEL command features random coefficients listed after the vertical pipe

❖ MODEL command labels the indirect effect’s component pathways

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: level1id level2id d1.i y.i m.i x.i d2.i v1.j v2.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x.i m.i;
MODEL:
m.i ~ x.i@alpha | x.i;
y.i ~ m.i@beta1 x.i | m.i x.i;
PARAMETERS:
indirect = alpha * beta1;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

https://www.dropbox.com/s/oorulcr33bez82e/Ex6.10.imp?dl=1
https://www.dropbox.com/s/fe43gweu2g56j55/data1.dat?dl=1
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6.11: Two-Level 1-1-1 Mediation With Moderated Paths

This example illustrates a two-level path model that features an indirect effect of two

level-1 predictors, both of which are within-cluster centered at their latent group

means, and a level-2 predictor moderating the direct pathways. The regression models

are as follows.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.11.imp data1.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features random coefficients listed after the vertical pipe

❖ MODEL command features a product term

❖ MODEL command labels the indirect effect’s component pathways

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cleft(%5Calpha_0%2Ba_%7B0j%7D%5Cright)%2B%5Cleft(%5Calpha_1%2Ba_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Calpha_2X_%7B2j%7D%5E%7Bcgm%7D%2B%5Calpha_3%5Cleft(X_%7B1ij%7D%5E%7Bcwc%7D%5Ctimes%20X_%7B2j%7D%5E%7Bcgm%7D%5Cright)%2Br_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)M_%7Bij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_3X_%7B2j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/x09jwcf0vsj28fu/Ex6.11.imp?dl=1
https://www.dropbox.com/s/fe43gweu2g56j55/data1.dat?dl=1
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❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: level1id level2id d1.i y.i m.i x1.i d2.i x2.j x3.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
groupmean = x1.i m.i;
grandmean = x2.j;
MODEL:
m.i ~ x1.i@alpha1 x2.j x1.i*x2.j@alpha3 | x1.i;
y.i ~ m.i@beta1 x1.i x2.j | m.i;
PARAMETERS:
x2.sd = 4;
indirect.low = ((alpha1 - (alpha3 * x2.sd)) * beta1);
indirect.med = alpha1 * beta1;
indirect.high = ((alpha1 + (alpha3 * x2.sd)) * beta1);
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

6.12: Within- and Between-Level Mediation

This example illustrates a two-level path model that features a within-cluster indirect

effect involving centered level-1 variables and a between-cluster indirect effect

involving a pair of latent group means. The regression models are as follows.

The model features distinct within-cluster and between-cluster mediation processes,

as depicted in the path diagram below.

https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cleft(%5Calpha_0%2Ba_%7B0j%7D%5Cright)%2B%5Cleft(%5Calpha_1%2Ba_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Calpha_2%5Cmu_%7BX1%7D%5E%7Bcgm%7D%2Br_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)%5Cleft(M_%7Bij%7D%5E%7Bcwc%7D%5Cright)%2B%5Cbeta_2%5Cmu_%7BMj%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_4%5Cmu_%7BX1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
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The ellipses in the between-cluster model represent latent group means (i.e., random

intercepts). Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex6.12.imp data1.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command features random coefficients listed after the vertical pipe

https://www.dropbox.com/s/5rpdvn3ez706taw/Ex6.12.imp?dl=1
https://www.dropbox.com/s/77tz9qekj8i1fzl/data1.dat?dl=1
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❖ MODEL command specifies latent group means as a level-2 predictor with the
.mean suffix on a level-1 predictor

❖ MODEL command labels within- and between-cluster slopes

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: level1id level2id d1.i y.i m.i x1.i d2.i x2.j x3.j;
CLUSTERID: level2id;
MISSING: 999;
CENTER:
grandmean = x1.i.mean m.i.mean;
groupmean = x1.i m.i;
MODEL:
m.i ~ x1.i@alpha1 x1.i.mean@alpha2 | x1.i;
y.i ~ m.i@beta1 m.i.mean@beta2 x1.i x1.i.mean | m.i;
PARAMETERS:
indirect.w = alpha1 * beta1;
indirect.b = alpha2 * beta2;
SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;

6.13: Two-Level Mediation With a Binary Outcome

This example illustrates a two-level path model that features an indirect effect of two

level-1 predictors, both of which are within-cluster centered at their latent group

means. The regression models are as follows.

https://www.codecogs.com/eqnedit.php?latex=M_%7Bij%7D%3D%5Cleft(%5Calpha_0%2Ba_%7B0j%7D%5Cright)%2B%5Cleft(%5Calpha_1%2Ba_%7B1j%7D%5Cright)X_%7Bij%7D%5E%7Bcwc%7D%2Br_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%5E%7B*%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)M_%7Bij%7D%5E%7Bcwc%7D%2B%5Cleft(%5Cbeta_2%2Bb_%7B2j%7D%5Cright)X_%7Bij%7D%5E%7Bcwc%7D%2B%5Cvarepsilon_%7Bij%7D#0
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where Y * denotes the underlying latent response variable for a binary outcome Y. The

residual variance of the latent response variable is fixed at 1 for identification. All other

features of the model are the same as Example 6.10.

Muthén, Muthén, and Asparouhov (2016) show that the indirect effect alone does not

capture the fact that changes in Y are non-constant on the probability metric. They give

the following expression for computing the probability that Y = 1 given a particular

value of X (Equations 8.4 to 8.6). The script below uses these equations to compute

the probability at different values of X, conditional on random effect values equal to 0.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.13.imp data1.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ TRANSFORM command recodes the continuous Y variable into a binary dummy
code by splitting at the mean

❖ CENTER command applies latent group mean centering to predictors

https://www.codecogs.com/eqnedit.php?latex=E(Y%5E*%7CX)%3DI_Y%2BI_M%7B%5Cbeta%7D%2B%7B%5Calpha%7D%7B%5Cbeta%7DX%2B%7B%5Ctau%7D%5E%7B'%7DX%3D#0
https://www.codecogs.com/eqnedit.php?latex=V(Y%5E*%7CX)%3D%5Cbeta%5E2%5Csigma_M%5E2%2B1#0
https://www.codecogs.com/eqnedit.php?latex=P(Y%3D1%7CX)%20%3D%20%5Cphi%5BE(Y%5E*%7CX)%2F%5Csqrt%7BV(Y%5E*%7CX)%7D%5D#0
https://dl.dropboxusercontent.com/s/rs0uz9tkcmcqd05/Ex6.13.imp?dl=1
https://dl.dropboxusercontent.com/s/f3vqwl86hg2rz5p/data1.dat?dl=1
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❖ MODEL command features random coefficients listed after the vertical pipe

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels intercepts, slopes, and the residual variance of the
mediator

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

❖ PARAMETERS command uses labeled quantities to compute the the probability
that Y equals 1 at three values of X (the mean and plus/minus one standard
deviation from the mean)

❖ Unspecified associations for predictor variables

DATA: data1.dat;
VARIABLES: level1id level2id d1.i y.i m.i x.i d2.i v1.j v2.j;
CLUSTERID: level2id;
MISSING: 999;
TRANSFORM:
ybinary.i = (y.i >= 4);
CENTER:
groupmean = x.i m.i;
MODEL:
m.i ~ 1@m.icept x.i@alpha | x.i;
ybinary.i ~ 1@y.icept m.i@beta1 x.i@beta2 | m.i x.i;
# label residual variance
m.i ~~ m.i@m.resvar;
PARAMETERS:
indirect = alpha * beta1;
xvalue1 = -.50;
xvalue2 = 0;
xvalue3 = .50;
pyeq1.xvalue1 = phi((y.icept + beta1*m.icept +

beta1*alpha*xvalue1 + beta2*xvalue1)/
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sqrt(beta1^2*m.resvar + 1));
pyeq1.xvalue2 = phi((y.icept + beta1*m.icept +

beta1*alpha*xvalue2 + beta2*xvalue2)/
sqrt(beta1^2*m.resvar + 1));

pyeq1.xvalue3 = phi((y.icept + beta1*m.icept +
beta1*alpha*xvalue3 + beta2*xvalue3)/
sqrt(beta1^2*m.resvar + 1));

SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

6.14: Two-Level Linear Growth Model

This example illustrates a two-level linear growth model that includes a cross-level

group-by-time interaction involving the temporal predictor (TIME = 0, 1, 3, 6) and a

binary moderator. The regression model, which is the two-level version of the latent

growth model from Example 5.13, is shown below.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.14.imp data9.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)%7BTIME%7D_%7Bij%7D%2B%5Cbeta_2D_%7B1j%7D%2B%5Cbeta_3%5Cleft(%7BTIME%7D_%7Bij%7D%5Ctimes%20D_%7B1j%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.dropbox.com/s/5qcow5n5d6awoqd/Ex6.14.imp?dl=1
https://www.dropbox.com/s/3yd34w3efjnscrf/data9.dat?dl=1
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❖ FIXED command identifies complete predictors

❖ NOMINAL command identifies a binary predictor

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command features a product term

❖ SIMPLE command produces conditional effects (simple slopes) at each level of the
nominal moderator

DATA: data9.dat;
VARIABLES: level2id y.i time.i n1.i v1.i v2.i d1.j d2.j;
CLUSTERID: level2id;
NOMINAL: d1.j;
MISSING: 999;
FIXED: time.i d1.j;
MODEL: y.i ~ time.i d1.j time.i*d1.j | time.i;
SIMPLE: time.i | d1.j;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

6.15: Three-Level Growth Model

This example illustrates a three-level linear growth model that includes a cross-level

group-by-time interaction involving the temporal predictor (TIME = 0, 1, …, 5, 6) and a

level-2 binary moderator. The regression model is as follows.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bijk%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0jk%7D%2Bb_%7B0k%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1jk%7D%2Bb_%7B1k%7D%5Cright)%7BTIME%7D_%7Bijk%7D%2B%5Cbeta_2X_%7B2jk%7D%5E%7Bcgm%7D#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5C%20%5Cbeta_3D_%7B3k%7D%2B%5Cbeta_4%5Cleft(%7BTIME%7D_%7Bijk%7D%5Ctimes%20D_%7B3k%7D%5Cright)%2B%5Cvarepsilon_%7Bij%7D#0
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Ex6.15a.imp Ex6.15b.imp data10.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies level-2 and level-3 identifiers (order doesn’t
matter), automatically inducing random intercepts for all level-1 and level-2
variables

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ NOMINAL command identifies a binary predictor

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command features a product term

❖ SIMPLE command produces conditional effects (simple slopes) at each level of the
nominal moderator

DATA: data10.dat;
VARIABLES: level1id level2id level3id y.i time.i x1.i

n1.j d1.j d2.j n2.j x2.j d3.k x3.k x4.k;
NOMINAL: d3.k;
CLUSTERID: level2id level3id;
MISSING: 999;
FIXED: time.i d3.k;
CENTER: grandmean = x2.j;
MODEL:
y.i ~ time.i x2.j d3.k time.i*d3.k | time.i;
SIMPLE:
time.i | d3.k;
SEED: 90291;
BURN: 15000;

https://www.dropbox.com/s/cn8vgj7fdbix9vm/Ex6.15a.imp?dl=1
https://www.dropbox.com/s/bwlxgcyxa0pe5bz/Ex6.15b.imp?dl=1
https://www.dropbox.com/s/mqbyg3d6h0a2ii7/data10.dat?dl=1
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ITERATIONS: 10000;

By default, Blimp estimates random intercepts and random slopes (when specified) at

all levels of the data hierarchy. For example, the previous analysis produces a 2 x 2

covariance matrix of random effects at level-2 and level-3. In some situations, it may

be desirable or necessary to override Blimp’s default behavior and fix certain variance

components to zero (or alternatively, select which variances get estimated). This is

achieved by listing the desired random effects on the right side of the vertical pipe and

appending to the effect’s name a cluster-level identifier in square brackets. To

illustrate, the following code block illustrates a three-level model with random

intercepts at both levels and a random coefficient for the temporal predictor at the

second level only.

DATA: data10.dat;
VARIABLES: level1id level2id level3id y.i time.i x1.i

n1.j d1.j d2.j n2.j x2.j d3.k x3.k x4.k;
NOMINAL: d3.k;
CLUSTERID: level2id level3id;
MISSING: 999;
FIXED: time.i d3.k;
CENTER: grandmean = x2.j;
MODEL:
y.i ~ time.i x2.j d3.k time.i*d3.k |

1[level2id] 1[level3id] time.i[level2id];
SEED: 90291;
BURN: 15000;
ITERATIONS: 10000;
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6.16: Two-Level MIMIC Measurement Model

This example illustrates a two-level factor analysis model that features a

measurement model for the within-cluster scores at level-1 and the between-cluster

latent group means at level-2. The model also features predictor variables at each

level, as shown in the path diagram below.

The ellipses in the between-cluster model are latent group means (i.e., random

intercepts that load on a level-2 latent variable. Clicking the links below downloads

the Blimp scripts and data for this example, and the full set of User Guide examples is

available from a pull-down menu in the graphical interface.

Ex6.16.imp data11.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

https://www.dropbox.com/s/udw1igrnr6d8ldy/Ex6.16.imp?dl=1
https://www.dropbox.com/s/353gozov5a8qmr5/data11.dat?dl=1
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❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ LATENT command defines within- and between-cluster latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

❖ MODEL command fixes the within- and between-cluster loading of the first
indicator to 1

❖ Default specification fixes the latent means equal to 0

❖ Longer burn-in period for estimating latent variables

DATA: data11.dat;
VARIABLES: level2id y1.i:y4.i x1.i x2.i x3.j;
MISSING: 999;
CLUSTERID: level2id;
LATENT:
latenty.l1;
level2id = latenty.l2;
CENTER:
grandmean = x1.i x2.i x3.j;
MODEL:
structural.model:
latenty.l1 ~ x1.i x2.i;
latenty.l2 ~ x3.j;
measurement.model:
y1.i ~ latenty.l1@1 latenty.l2@1;
y2.i ~ latenty.l1 latenty.l2;
y3.i ~ latenty.l1 latenty.l2;
y4.i ~ latenty.l1 latenty.l2;
SEED: 90291;
BURN: 10000;
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ITERATIONS: 10000;

6.17: Two-Level Regression With Random Intercepts and Sampling Weights

This example illustrates a two-level regression model with random intercepts and

sampling (inverse probability) weights at each level. The regression model is shown

below.

Goldstein (2011, Section 3.4.2) describes MCMC estimation for multilevel models with

sampling weights. Level-1 and level-2 sampling weights are rescaled following

Goldstein (2011, Section 3.4.1). At level-1, the rescaled weights within a given cluster

sum to the cluster size. This is the same as the so-called “cluster” method from

Asparouhov (2006). Clicking the links below downloads the Blimp scripts and data for

this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Ex6.17.imp data21.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

❖ WEIGHTS command identifies level-1 and level-2 weights (order does not matter)

❖ Unspecified associations for predictor variables

DATA: data21.dat;
VARIABLES: level2id level1wgt level2wgt v1 y.i x1.i x2.i x3.i

x4.i x5.i;

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cbeta_1X_%7B1ij%7D%2B%5Cbeta_2X_%7B2ij%7D%2B%5Cbeta_3X_%7B3ij%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/fopfo4hx0k6rx5u/Ex6.17.imp?dl=1
https://dl.dropboxusercontent.com/s/wnj36mej6z3bmbg/data21.dat?dl=1
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CLUSTERID: level2id;
WEIGHTS: level1wgt level2wgt;
MISSING: 999;
MODEL: y.i ~ x1.i x2.i x3.i;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

Note that some data sets may not include level-2 sampling weights, in which case the

weight command simplifies as follows.

CLUSTERID: level2id;
WEIGHT: level1wgt;

6.18: Partially Nested Design (Singleton Clusters)

This example illustrates a two-level regression model from a partially nested design.

The example below considers a level-2 binary predictor (e.g., a treatment assignment

indicator) where participants in group D = 1 (e.g., treatment participants) are clustered

in level-2 units but observations in group D = 0 are not nested (i.e., are singleton

clusters). The regression model below features an interaction between the binary

indicator and the random intercept, such that the random effect term drops from the

equation if D = 0.

More generally, the variable D does not need to have a fixed effect. Outside of an

intervention context, D could simply be an indicator that differentiates clustered versus

singleton observations (e.g., D = 0 is a singleton cluster with a single member, D = 1 is

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_0%2B%5Cbeta_1D_%7Bj%7D%2BD_%7Bj%7Db_%7B0j%7D%2B%5Cvarepsilon_%7Bij%7D#0
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an observation that shares cluster membership with other observations). The following

random intercept model illustrates this idea.

Blimp estimates this model by defining a level-2 latent variable that interacts with D.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex6.18.imp data19.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

❖ LATENT command defines a level-2 latent variable (the random intercepts), the
mean of which is fixed to 0 in the MODEL section

❖ MODEL command eliminates the default random intercept by fixing it to 0 ( … |
1@0; ), and it adds the interaction between the binary indicator and the level-2
latent variable.

DATA: data19.dat;
VARIABLES: level2id y.i d.j;
MISSING: 999;
CLUSTERID: level2id;
LATENT: level2id = ranicepts;
MODEL:
ranicepts ~ 1@0;
y.i ~ d.j ranicepts*d.j@1 | 1@0;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_0%2B%5Cbeta_1X_%7Bij%7D%2BD_%7Bj%7Db_%7B0j%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://dl.dropboxusercontent.com/s/jxgbpq0hu12w7cy/Ex6.18.imp?dl=1
https://dl.dropboxusercontent.com/s/v9zxgu5ersj52h0/data19.dat?dl=1
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6.19: Discrete-Time Survival Model

This example illustrates a discrete-time survival model using Blimp’s multilevel

modeling features. Clicking the links below downloads the Blimp scripts and data for

this example, and the full set of User Guide examples is available from a pull-down

menu in the graphical interface.

Ex6.19a.imp Ex6.19b.imp data20.dat

The input data set is in stacked (i.e., “person-period”) format with each row

representing a time interval nested within an individual. The data also include a set of

time indicators that dummy code each measurement interval. The example below

illustrates a model with six intervals and thus six dummy codes. The outcome variable

is an event indicator that equals 0 if the event did not happen in the interval and a 1 if

the event did happen in the interval. Figure 11.5 from Singer and Willett (2003)

illustrates the data structure.

The basic model is a logistic regression with the binary event indicator regressed on

the time dummy codes.

Note that the model omits the usual regression intercept. The syntax highlights are

listed below. Adding the NIMPS and SAVE commands generates imputed data sets,

and adding the savepredicted keyword to the OPTIONS command saves predicted

probabilities (see Example 4.20).

https://dl.dropboxusercontent.com/s/lje12cjwoocazv0/Ex6.19a.imp?dl=1
https://dl.dropboxusercontent.com/s/2pwy937g0j67i27/Ex6.19b.imp?dl=1
https://dl.dropboxusercontent.com/s/nrefd0awi3jslwb/data20.dat?dl=1
https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Event%3D1%5Cright)%7D%7B1-Pr%5Cleft(Event%3D1%5Cright)%7D%5Cright)%3D%5Calpha_1(t_%7B1j%7D)%2B%5Calpha_2(t_%7B2j%7D)%2B%5Calpha_3(t_%7B3j%7D)%2B%5Calpha_4(t_%7B4j%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5Calpha_5(t_%7B5j%7D)%2B%5Calpha_6(t_%7B6j%7D)#0
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❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all incomplete level-1 variables

❖ ORDINAL command identifies a binary outcome and predictors

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean centering to predictors

❖ Applying the logit function to the dependent variable on the MODEL line
requests a logit rather than probit link

❖ MODEL command eliminates the default fixed and random intercepts by fixing both
to 0 ( ~ 1@0 … | 1@0; )

❖ MODEL command includes a binary dummy code for each time interval (t7.i to
t12.i)

❖ PARAMETERS command computes predicted probability of the event at each time
point (i.e., hazard probabilities)

DATA: data20.dat;
VARIABLES: level2id time.i t1.i t2.i t3.i t4.i t5.i t6.i

y.i d.j x.j;
ORDINAL: y.i t1.i t2.i t3.i t4.i t5.i t6.i;
CLUSTERID: level2id;
MISSING: 999;
FIXED: t1.i t2.i t3.i t4.i t5.i t6.i;
MODEL:
logit(y.i) ~ 1@0 t1.i@alpha1 t2.i@alpha2 t3.i@alpha3

t4.i@alpha4 t5.i@alpha5 t6.i@alpha6 | 1@0;
PARAMETERS:
hazard.1 = exp(alpha1) / (1 + exp(alpha1));
hazard.2 = exp(alpha2) / (1 + exp(alpha2));
hazard.3 = exp(alpha3) / (1 + exp(alpha3));
hazard.4 = exp(alpha4) / (1 + exp(alpha4));
hazard.5 = exp(alpha5) / (1 + exp(alpha5));
hazard.6 = exp(alpha6) / (1 + exp(alpha6));
SEED: 90291;
BURN: 2000;
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ITERATIONS: 10000;

The next example expands the model by incorporating a person-level dummy code

and continuous covariate as predictors of the hazard function.

As before, the model omits the usual regression intercept and includes a set of six

dummy codes that index the intervals. The code block below is identical to the

previous example, but it defines the binary predictor as ordinal and grand mean

centers the continuous covariate.

DATA: data20.dat;
VARIABLES: level2id time.i t1.i t2.i t3.i t4.i t5.i t6.i

y.i d.j x.j;
ORDINAL: y.i t1.i t2.i t3.i t4.i t5.i t6.i d.j;
CLUSTERID: level2id;
MISSING: 999;
FIXED: t1.i t2.i t3.i t4.i t5.i t6.i d.j x.j;
CENTER: grandmean = x.j;
MODEL:
logit(y.i) ~ 1@0 t1.i@alpha1 t2.i@alpha2 t3.i@alpha3

t4.i@alpha4 t5.i@alpha5 t6.i@alpha6 d.j x.j | 1@0;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

https://www.codecogs.com/eqnedit.php?latex=ln%5Cleft(%5Cfrac%7BPr%5Cleft(Event%3D1%5Cright)%7D%7B1-Pr%5Cleft(Event%3D1%5Cright)%7D%5Cright)%3D%5Calpha_1(t_%7B1j%7D)%2B%5Calpha_2(t_%7B2j%7D)%2B%5Calpha_3(t_%7B3j%7D)%2B%5Calpha_4(t_%7B4j%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%2B%5Calpha_5(t_%7B5j%7D)%2B%5Calpha_6(t_%7B6j%7D)%2B%5Cbeta_1(D_%7Bij%7D)%2B%5Cbeta_2(X_%7Bij%7D)#0
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6.20: Two-Level Dynamic Structural Equation Model With Random Intercepts

This example illustrates a two-level dynamic structural equation model with random

intercepts. The application of this model involves intensive repeated measures data

nested within persons. The first model is a random intercept regression where Y is

regressed on the “pure” within-cluster parts of YLAG and X, such that YLAG is a

lagged version of Y with each cluster’s (e.g., person’s) data record shifted down by one

row and a missing value in the first row (i.e., the first Y measurement appears in the

second row, the second Y measurement in the third row, and so on). Similarly, X is

regressed on the within-cluster parts of YLAG and XLAG, where XLAG is the lagged

version of X. The structural regression equations are

and a path diagram of the focal model is as follows.

Importantly, the random intercepts—𝛽0j and 𝛾0j—are normally distributed level-2

latent variables (i.e., latent group means)

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cbeta_2X_%7Bij%7D%5E%7Bw%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cgamma_2XLAG_%7Bij%7D%5E%7Bw%7D%2B%5Czeta_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D%3DY_j%5E%7Bb%7D#0
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with with means equal to 𝛽0 and 𝛾0 and an unstructured between-cluster covariance

matrix shown in the path diagram below.

The pure within-cluster predictors are created by centering each person’s (cluster’s)

scores at their latent group means. The previous regression equations can thus be

written more explicitly as follows.

To accommodate missing data in the lagged variables, YLAG and XLAG have their own

model that consists of a grand mean, a between-cluster deviation (or equivalently,

latent group means), and a within-cluster deviation, as follows.

The lagged variables have the same means and between-cluster variances as their

nonlagged counterparts, and they too have an unstructured between- and

within-cluster cluster covariance matrices, as shown in the previous path diagrams.

https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B0j%7D%3D%5Cgamma_%7B0%7D%2Bg_%7B0j%7D%3DX_j%5E%7Bb%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cbeta_2(X_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cgamma_2(XLAG_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Czeta_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=YLAG_%7Bij%7D%3D%5Cbeta_%7B0%7D%2B%5Cdot%7Bb%7D_%7B0j%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D%3DYLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=XLAG_%7Bij%7D%3D%5Cgamma_%7B0%7D%2B%5Cdot%7Bg%7D_%7B0j%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D%3DXLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D#0
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These equations can be viewed as nuisance models that are necessary for missing data

handling.

The data structure for dynamic structural equation models requires a brief discussion.

Blimp’s lag1 function essentially assumes that (a) each person has one row of data for

every occasion (rows could be filled with missing values), and (b) time scores are

discrete and consecutively ordered. For example, the time variable in this example

consists of consecutive integers between 0 and 20, and each person has 21 rows of

data. If the data do not follow this format, you can use the R function at Brian Keller’s

github site to restructure the data into time-balanced format.

Clicking the links below downloads the Blimp scripts and data for these examples,

which build on the model above. The full set of User Guide examples is available from

a pull-down menu in the graphical interface.

Ex6.20.imp data25.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ LATENT command introduces four level-2 latent variables (random intercepts)
that represent the level-2 means

❖ TRANSFORM command uses the lag1 function to create variables that are lagged
(shifted down by one row) within each cluster

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://dl.dropboxusercontent.com/s/czwqki5n8b272pi/Ex6.20.imp?dl=1
https://dl.dropboxusercontent.com/s/vhe67gke7s9tnwd/data25.dat?dl=1
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❖ MODEL estimates the means of the level-2 latent variables

❖ MODEL command uses labels (@y_mean and @x_mean) to impose equality
constraints on the means of the original and lagged variables

❖ MODEL command sets the intercept of each regression equation equal to a latent
group mean (e.g., 1@y_b and 1@x_b)

❖ MODEL command centers predictors by subtracting the latent group means

❖ MODEL command specifies within- and between-cluster covariances

DATA: data25.dat;
VARIABLES: level2id time y x m;
CLUSTERID: level2id;
MISSING: 999;
LATENT: level2id = y_b x_b ylag_b xlag_b;
TRANSFORM:
ylag = lag1(y, time, level2id);
xlag = lag1(x, time, level2id);
MODEL:
y.model:
# between
y_b ~ 1@y_mean;
# within
y ~ 1@y_b (ylag - y_b) (x - x_b);
x.model:
# between
x_b ~ 1@x_mean;
y_b ~~ x_b;
# within
x ~ 1@x_b (xlag - x_b) (ylag - y_b);
ylag.model:
# between
ylag_b ~ 1@y_mean;
ylag ~ 1@ylag_b;
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xlag.model:
# between
xlag_b ~ 1@x_mean;
ylag_b ~~ xlag_b;
# within
xlag ~ 1@xlag_b;
ylag ~~ xlag;
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

6.21: Two-Level Dynamic Structural Equation Model With Random Coe�cients

This example illustrates a two-level dynamic structural equation model with random

slopes. The application of this model involves intensive repeated measures data

nested within persons. The first model is a random intercept regression where Y is

regressed on the “pure” within-cluster parts of YLAG and X, such that YLAG is a

lagged version of Y with each cluster’s (e.g., person’s) data record shifted down by one

row and a missing value in the first row (i.e., the first Y measurement appears in the

second row, the second Y measurement in the third row, and so on). Similarly, X is

regressed on the within-cluster parts of YLAG and XLAG, where XLAG is the lagged

version of X. The structural regression equations are

and a path diagram of the focal model is as follows. The solid dots on the arrows

represent the random coefficients.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cbeta_%7B2j%7DX_%7Bij%7D%5E%7Bw%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cgamma_%7B2j%7DXLAG_%7Bij%7D%5E%7Bw%7D%2B%5Czeta_%7Bij%7D#0
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Importantly, the random intercepts—𝛽0j and 𝛾0j—are normally distributed level-2

latent variables (i.e., latent group means)

with with means equal to 𝛽0 and 𝛾0 and an unstructured between-cluster covariance

matrix shown in the path diagram below.

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D%3DY_j%5E%7Bb%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B0j%7D%3D%5Cgamma_%7B0%7D%2Bg_%7B0j%7D%3DX_j%5E%7Bb%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B1j%7D%3D%5Cgamma_%7B1%7D%2Bg_%7B1j%7D#0
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Following Example 6.20, pure within-cluster predictors are created by centering each

person’s (cluster’s) scores at their latent group means. The previous regression

equations can thus be written more explicitly as follows.

To accommodate missing data in the lagged variables, YLAG and XLAG have their own

model that consists of a grand mean, a between-cluster deviation (or equivalently,

latent group means), and a within-cluster deviation, as follows.

The lagged variables have the same means and between-cluster variances as their

nonlagged counterparts, and they too have an unstructured between- and

within-cluster cluster covariance matrices, as shown in the previous path diagrams.

These equations can be viewed as nuisance models that are necessary for missing data

handling.

The data structure for dynamic structural equation models requires a brief discussion.

Blimp’s lag1 function essentially assumes that (a) each person has one row of data for

every occasion (rows could be filled with missing values), and (b) time scores are

discrete and consecutively ordered. For example, the time variable in this example

consists of consecutive integers between 0 and 20, and each person has 21 rows of

data. If the data do not follow this format, you can use the R function at Brian Keller’s

github site to restructure the data into time-balanced format.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cbeta_%7B2j%7D(X_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1j%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cgamma_%7B2j%7D(XLAG_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Czeta_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=YLAG_%7Bij%7D%3D%5Cbeta_%7B0%7D%2B%5Cdot%7Bb%7D_%7B0j%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D%3DYLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=XLAG_%7Bij%7D%3D%5Cgamma_%7B0%7D%2B%5Cdot%7Bg%7D_%7B0j%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D%3DXLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D#0
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34


Blimp User’s Guide (Version 3) 238

Clicking the links below downloads the Blimp scripts and data for these examples,

which build on the model above. The full set of User Guide examples is available from

a pull-down menu in the graphical interface.

Ex6.21.imp data25.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ LATENT command introduces four level-2 latent variables (random intercepts)
that represent the level-2 means and four level-2 latent variables that represent
the random slopes

❖ TRANSFORM command uses the lag1 function to create variables that are lagged
(shifted down by one row) within each cluster

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL estimates the means of the level-2 latent variables

❖ MODEL command uses labels (@y_mean and @x_mean) to impose equality
constraints on the means of the original and lagged variables

❖ MODEL command sets the intercept of each regression equation equal to a latent
group mean (e.g., 1@y_b and 1@x_b)

❖ MODEL command centers predictors by subtracting the latent group means

❖ MODEL command omits the random coefficient listed after the vertical pipe

❖ MODEL command includes the interaction between a level-1 predictor and its
level-2 latent slope (e.g., (ylag - y_b)*y_on_ylag)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1

https://dl.dropboxusercontent.com/s/f2an9i4mgt0hehk/Ex6.21.imp?dl=1
https://dl.dropboxusercontent.com/s/vhe67gke7s9tnwd/data25.dat?dl=1
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❖ MODEL command specifies within- and between-cluster covariances

DATA: data25.dat;
VARIABLES: level2id time y x m;
CLUSTERID: level2id;
MISSING: 999;
LATENT: level2id = y_b x_b ylag_b xlag_b

y_on_ylag y_on_x x_on_xlag x_on_ylag;
TRANSFORM:
ylag = lag1(y, time, level2id);
xlag = lag1(x, time, level2id);
MODEL:
y.model:
# between
y_b ~ 1@y_mean;
y_on_ylag ~ 1;
y_on_x ~ 1;
# within
y ~ 1@y_b (ylag - y_b)*y_on_ylag@1 (x - x_b)*y_on_x@1;
x.model:
# between
x_b ~ 1@x_mean;
x_on_xlag ~ 1;
x_on_ylag ~ 1;
y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag ~~

y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag;
# within
x ~ 1@x_b (xlag - x_b)*x_on_xlag@1 (ylag - y_b)*x_on_ylag@1;
ylag.model:
# between
ylag_b ~ 1@y_mean;
# within
ylag ~ 1@ylag_b;
xlag.model:
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# between
xlag_b ~ 1@x_mean;
ylag_b ~~ xlag_b;
# within
xlag ~ 1@xlag_b;
ylag ~~ xlag;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

6.22: Two-Level Dynamic Structural Equation Model With Random Within-Cluster Variances

This example illustrates a two-level dynamic structural equation model with random

slopes and random within-cluster variances. The application of this model involves

intensive repeated measures data nested within persons. The first model is a random

intercept regression where Y is regressed on the “pure” within-cluster parts of YLAG

and X, such that YLAG is a lagged version of Y with each cluster’s (e.g., person’s) data

record shifted down by one row and a missing value in the first row (i.e., the first Y

measurement appears in the second row, the second Y measurement in the third row,

and so on). Similarly, X is regressed on the within-cluster parts of YLAG and XLAG,

where XLAG is the lagged version of X. The structural regression equations are

and a path diagram of the focal model is as follows. The solid dots on the arrows

represent the random coefficients.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cbeta_%7B2j%7DX_%7Bij%7D%5E%7Bw%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cgamma_%7B2j%7DXLAG_%7Bij%7D%5E%7Bw%7D%2B%5Czeta_%7Bij%7D#0
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Importantly, the random intercepts—𝛽0j and 𝛾0j—are normally distributed level-2

latent variables (i.e., latent group means)

with with means equal to 𝛽0 and 𝛾0. Both X and Y have random within-cluster

variances that differ across clusters (persons). A log-linear model expresses the

natural log of the variance as a level-2 latent variable with a mean and

between-cluster variance that represents cluster-level variance differences.

Level-1 and level-2 predictors of the variance can be incorporated following Example

6.6. The level-2 latent variables (random effects) have an unstructured

between-cluster covariance matrix shown in the path diagram below.

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D%3DY_j%5E%7Bb%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B0j%7D%3D%5Cgamma_%7B0%7D%2Bg_%7B0j%7D%3DX_j%5E%7Bb%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cgamma_%7B1j%7D%3D%5Cgamma_%7B1%7D%2Bg_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Cvarepsilon%7Bj%7D%7D%5E2)%3D%5Calpha_%7BY%7D%2Ba_%7BYj%7D#0
https://www.codecogs.com/eqnedit.php?latex=ln(%5Csigma_%7B%5Czeta%7Bj%7D%7D%5E2)%3D%5Calpha_%7BX%7D%2Ba_%7BXj%7D#0
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Following Example 6.21, pure within-cluster predictors are created by centering each

person’s (cluster’s) scores at their latent group means. The previous regression

equations can thus be written more explicitly as follows.

To accommodate missing data in the lagged variables, YLAG and XLAG have their own

model that consists of a grand mean, a between-cluster deviation (or equivalently,

latent group means), and a within-cluster deviation, as follows.

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cbeta_%7B2j%7D(X_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1j%7D(YLAG_%7Bij%7D-%5Cbeta_%7B0j%7D)%2B%5Cgamma_%7B2j%7D(XLAG_%7Bij%7D-%5Cgamma_%7B0j%7D)%2B%5Czeta_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=YLAG_%7Bij%7D%3D%5Cbeta_%7B0%7D%2B%5Cdot%7Bb%7D_%7B0j%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D%3DYLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Cvarepsilon%7D_%7Bij%7D#0
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The lagged variables have the same means and between-cluster variances as their

nonlagged counterparts, and they too have random within-cluster variances. The

previous path diagrams depict the unstructured within- and between-cluster

covariance matrices of the lagged variables.

The data structure for dynamic structural equation models requires a brief discussion.

Blimp’s lag1 function essentially assumes that (a) each person has one row of data for

every occasion (rows could be filled with missing values), and (b) time scores are

discrete and consecutively ordered. For example, the time variable in this example

consists of consecutive integers between 0 and 20, and each person has 21 rows of

data. If the data do not follow this format, you can use the R function at Brian Keller’s

github site to restructure the data into time-balanced format.

Clicking the links below downloads the Blimp scripts and data for these examples,

which build on the model above. The full set of User Guide examples is available from

a pull-down menu in the graphical interface.

Ex6.22.imp data25.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ LATENT command introduces four level-2 latent variables (random intercepts)
that represent the level-2 means and four level-2 latent variables that represent
the random slopes

https://www.codecogs.com/eqnedit.php?latex=XLAG_%7Bij%7D%3D%5Cgamma_%7B0%7D%2B%5Cdot%7Bg%7D_%7B0j%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D%3DXLAG_j%5E%7Bb%7D%2B%5Cdot%7B%5Czeta%7D_%7Bij%7D#0
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://dl.dropboxusercontent.com/s/nejr2mtspbzgzx7/Ex6.22.imp?dl=1
https://dl.dropboxusercontent.com/s/vhe67gke7s9tnwd/data25.dat?dl=1
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❖ LATENT command identifies level-2 latent variables that represents within-cluster
variation on the log metric (e.g., y_logv and x_logv)

❖ TRANSFORM command uses the lag1 function to create variables that are lagged
(shifted down by one row) within each cluster

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL estimates the means of the level-2 latent variables

❖ MODEL command uses labels (@y_mean and @x_mean) to impose equality
constraints on the means of the original and lagged variables

❖ MODEL command sets the intercept of each regression equation equal to a latent
group mean (e.g., 1@y_b and 1@x_b)

❖ MODEL command centers predictors by subtracting the latent group means

❖ MODEL command omits the random coefficient listed after the vertical pipe

❖ MODEL command includes the interaction between a level-1 predictor and its
level-2 latent slope (e.g., (ylag - y_b)*y_on_ylag)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1

❖ MODEL command features regression equations with the natural logarithm of the
level-1 variation as the outcome. The intercepts of these equations are set equal
to the level-2 latent variables (e.g., 1@y_logv and 1@x_logv)

❖ MODEL command specifies within- and between-cluster covariances

DATA: data25.dat;
VARIABLES: level2id time y x m;
CLUSTERID: level2id;
MISSING: 999;
LATENT:
level2id = y_b x_b ylag_b xlag_b y_on_ylag y_on_x x_on_xlag

x_on_ylag y_logv ylag_logv x_logv xlag_logv;
TRANSFORM:



Blimp User’s Guide (Version 3) 245

ylag = lag1(y, time, level2id);
xlag = lag1(x, time, level2id);
MODEL:
y.model:
# between
y_b ~ 1@y_mean;
y_on_ylag ~ 1;
y_on_x ~ 1;
# within
y ~ 1@y_b (ylag - y_b)*y_on_ylag@1 (x - x_b)*y_on_x@1;
# random within-cluster variances
y_logv ~ 1;
var(y) ~ 1@y_logv;
x.model:
# between
x_b ~ 1@x_mean;
x_on_xlag ~ 1;
x_on_ylag ~ 1;
y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag y_logv x_logv ~~

y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag y_logv x_logv;
# within
x ~ 1@x_b (xlag - x_b)*x_on_xlag@1 (ylag - y_b)*x_on_ylag@1;
# random within-cluster variances
x_logv ~ 1;
var(x) ~ 1@x_logv;
ylag.model:
# between
ylag_b ~ 1@y_mean;
# within
ylag ~ 1@ylag_b;
# random within-cluster variances
ylag_logv ~ 1;
var(ylag) ~ 1@ylag_logv;
xlag.model:
# between
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xlag_b ~ 1@x_mean;
ylag_b xlag_b ylag_logv xlag_logv ~~

ylag_b xlag_b ylag_logv xlag_logv;
# within
xlag ~ 1@xlag_b;
ylag ~~ xlag;
# random within-cluster variances
xlag_logv ~ 1;
var(xlag) ~ 1@xlag_logv;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;

6.23: Two-Level Dynamic Structural Equation Model With a Cross-Level Interaction E�ect

This example illustrates a two-level dynamic structural equation model with random

slopes, random within-cluster variances, and a cross-level interaction. The example is

identical to 6.22 but it incorporates a level-2 moderator M. The application of this

model involves intensive repeated measures data nested within persons. The first

model is a random intercept regression where Y is regressed on the “pure”

within-cluster parts of YLAG and X, such that YLAG is a lagged version of Y with each

cluster’s (e.g., person’s) data record shifted down by one row and a missing value in

the first row (i.e., the first Y measurement appears in the second row, the second Y

measurement in the third row, and so on). Similarly, X is regressed on the

within-cluster parts of YLAG and XLAG, where XLAG is the lagged version of X. The

structural regression equations are

https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cbeta_%7B2j%7DX_%7Bij%7D%5E%7Bw%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=X_%7Bij%7D%3D%5Cgamma_%7B0j%7D%2B%5Cgamma_%7B1j%7DYLAG_%7Bij%7D%5E%7Bw%7D%2B%5Cgamma_%7B2j%7DXLAG_%7Bij%7D%5E%7Bw%7D%2B%5Czeta_%7Bij%7D#0
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and a path diagram of the focal model is as follows. The solid dots on the arrows

represent the random coefficients.

Following previous examples, the random intercepts—𝛽0j and 𝛾0j—are normally

distributed level-2 latent variables (i.e., latent group means).

The level-2 moderator enters the latent variable regression equations as a predictor of

the between-cluster parts of X and Y as well as the random coefficients from the

regression of Y on X. A path diagram of the between-cluster model is shown below.

The cross-level interaction corresponds to the straight arrow connecting M to the

random slope latent variable 𝛽0j. The model for the random within-cluster variances

and lagged variables is identical to Example 6.22, so we omit these details for brevity.
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The data structure for dynamic structural equation models requires a brief discussion.

Blimp’s lag1 function essentially assumes that (a) each person has one row of data for

every occasion (rows could be filled with missing values), and (b) time scores are

discrete and consecutively ordered. For example, the time variable in this example

consists of consecutive integers between 0 and 20, and each person has 21 rows of

data. If the data do not follow this format, you can use the R function at Brian Keller’s

github site to restructure the data into time-balanced format.

Clicking the links below downloads the Blimp scripts and data for these examples,

which build on the model above. The full set of User Guide examples is available from

a pull-down menu in the graphical interface.

Ex6.23.imp data25.dat

https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://gist.github.com/bkeller2/f0f230b9af545f2f9ccc08d906c4af34
https://dl.dropboxusercontent.com/s/i01xbtq0x5hm7lj/Ex6.23.imp?dl=1
https://dl.dropboxusercontent.com/s/vhe67gke7s9tnwd/data25.dat?dl=1
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The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ LATENT command introduces four level-2 latent variables (random intercepts)
that represent the level-2 means and four level-2 latent variables that represent
the random slopes

❖ LATENT command identifies level-2 latent variables that represents within-cluster
variation on the log metric (e.g., y_logv and x_logv)

❖ TRANSFORM command uses the lag1 function to create variables that are lagged
(shifted down by one row) within each cluster

❖ ORDINAL command identifies a binary predictor

❖ FIXED command identifies a complete predictor

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL estimates the means of the level-2 latent variables

❖ MODEL includes the moderator M in the between-cluster models

❖ MODEL command uses labels (@y_mean and @x_mean) to impose equality
constraints on the means of the original and lagged variables

❖ MODEL command sets the intercept of each regression equation equal to a latent
group mean (e.g., 1@y_b and 1@x_b)

❖ MODEL command centers predictors by subtracting the latent group means

❖ MODEL command omits the random coefficient listed after the vertical pipe

❖ MODEL command includes the interaction between a level-1 predictor and its
level-2 latent slope (e.g., (ylag - y_b)*y_on_ylag)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1
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❖ MODEL command features regression equations with the natural logarithm of the
level-1 variation as the outcome. The intercepts of these equations are set equal
to the level-2 latent variables (e.g., 1@y_logv and 1@x_logv)

❖ MODEL command specifies within- and between-cluster covariances

DATA: data25.dat;
VARIABLES: level2id time y x m;
CLUSTERID: level2id;
ORDINAL: m;
MISSING: 999;
LATENT:
level2id = y_b x_b ylag_b xlag_b y_on_ylag y_on_x x_on_xlag

x_on_ylag y_logv ylag_logv x_logv xlag_logv;
TRANSFORM:
ylag = lag1(y, time, level2id);
xlag = lag1(x, time, level2id);
FIXED: m;
CENTER: grandmean = m;
MODEL:
y.model:
# between
y_b ~ 1@y_mean m;
y_on_ylag ~ 1;
y_on_x ~ 1 m;
# within
y ~ 1@y_b (ylag - y_b)*y_on_ylag@1 (x - x_b)*y_on_x@1;
# random within-cluster variances
y_logv ~ 1;
var(y) ~ 1@y_logv;
x.model:
# between
x_b ~ 1@x_mean m;
x_on_xlag ~ 1;
x_on_ylag ~ 1;
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y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag y_logv x_logv ~~
y_b y_on_ylag y_on_x x_b x_on_xlag x_on_ylag y_logv x_logv;

# within
x ~ 1@x_b (xlag - x_b)*x_on_xlag@1 (ylag - y_b)*x_on_ylag@1;
# random within-cluster variances
x_logv ~ 1;
var(x) ~ 1@x_logv;
ylag.model:
# between
ylag_b ~ 1@y_mean;
# within
ylag ~ 1@ylag_b;
# random within-cluster variances
ylag_logv ~ 1;
var(ylag) ~ 1@ylag_logv;
xlag.model:
# between
xlag_b ~ 1@x_mean;
ylag_b xlag_b ylag_logv xlag_logv ~~

ylag_b xlag_b ylag_logv xlag_logv;
# within
xlag ~ 1@xlag_b;
ylag ~~ xlag;
# random within-cluster variances
xlag_logv ~ 1;
var(xlag) ~ 1@xlag_logv;
SEED: 90291;
BURN: 20000;
ITERATIONS: 10000;
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7 Analysis Examples: Missing Not at Random Processes

This section illustrates missing not at random analysis models in Blimp. Following the

previous chapters, the examples in this section use a generic notation system where

variable names usually consist of an alphanumeric prefix and a numeric suffix (e.g., Y1,

X1, N1, D1, D2, V1, V2, V3). The letter Y designates a dependent variable, a D prefix

denotes a binary dummy variable, an O prefix indicates an ordinal variable, and an N

prefix indicates a multicategorical nominal variable. Other letters generally represent

continuous variables. For examples involving multilevel models, the examples use a

“.i” suffix to denote level-1 variables and “.j” for level-2 variables (e.g., d1.j is a

level-2 dummy variable, x1.i is a continuous variable measured at level-1). Blimp

determines the levels automatically, so the suffixes are meant as a visual aid for

understanding the scripts. Finally, the model equations use “cgm” and “cwc”

superscripts to indicate grand and group mean centering, respectively. The following

list outlines the examples in this section.

❖ 7.1: Selection Model for Linear Regression

❖ 7.2: Pattern Mixture Model for Linear Regression

❖ 7.3: Shared Parameter (Wu–Carroll) Latent Curve Model

❖ 7.4: Diggle–Kenward Latent Curve Model

❖ 7.5: Factor Analysis With a Selection Model

❖ 7.6: Mediation Analysis With a Selection Model

❖ 7.7: Two-Level Hedeker-Gibbons Pattern Mixture Growth Model

❖ 7.8: Selection Model for a Two-Level Regression With Random Coefficients

❖ 7.9: Two-Level Shared Parameter Growth Curve Model
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7.1: Selection Model for Linear Regression

This example illustrates a selection model for a missing not at random process where

an incomplete outcome variable predicts its own missingness. The focal analysis model

is the linear regression below.

The most basic selection model is one where the outcome alone predicts its

missingness indicator (MY = 0 if Y is observed and 1 if it’s missing); Gomer and Yuan

(2021) refer to this as a focused missing not at random process. The following

equation is a probit model where the missingness indicator’s latent response variable

(denoted by an asterisk superscript) is regressed on the outcome.

For identification, the residual variance is fixed at 1, and the threshold parameter is

fixed at 0. A path diagram of the model is shown below.

The analysis model also incorporates three auxiliary variables using the sequential

specification from Example 4.7. Clicking the links below downloads the Blimp scripts

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_2%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=M_%7BY%7D%5E%5Cast%3D%5Cgamma_0%2B%5Cgamma_1Y%2Br#0
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and data for this example, and the full set of User Guide examples is available from a

pull-down menu in the graphical interface.

Ex7.1a.imp Ex7.1b.imp data3.dat

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis that no longer

requires a missingness model.

❖ ORDINAL command identifies binary predictors

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ The .missing suffix references the dependent variable’s missing data indicator,
which is automatically defined as ordinal

❖ Unspecified associations for predictor variables

DATA: data3.dat;
VARIABLES: id x1 x2 x3 y d1 d2 v1:v4;
MISSING: 999;
ORDINAL: d1 d2;
FIXED: d1 d2;
CENTER: x1;
MODEL:
focal.model:
y ~ d1 d2 x1;
missingness.model:
y.missing ~ y;

https://www.dropbox.com/s/g75vhb4373yqr9q/Ex7.1a.imp?dl=1
https://www.dropbox.com/s/eqy396f0zlpbw1d/Ex7.1b.imp?dl=1
https://www.dropbox.com/s/9grg7s374nd3087/data3.dat?dl=1
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auxiliary.model:
x2 x3 ~ y d1 d2 x1;
SEED: 90291;
BURN: 1000;
ITERATIONS: 10000;

A more complex selection model features the outcome predicting its missingness

indicator along with other variables, in this case D1; Gomer and Yuan (2021) refer to

this as a diffuse missing not at random process. The following equation is a probit

model where the missingness indicator’s latent response variable is regressed the

outcome and D1.

A path diagram of the model is shown below.

Caution is warranted when including too many predictors from the analysis model in

the selection equation, as doing so weakens identification. Entering and selecting

predictors in a stepwise fashion using fit indices such as the DIC and WAIC is often a

good strategy. The code block for the analysis is shown below.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=M_%7BY%7D%5E%5Cast%3D%5Cgamma_0%2B%5Cgamma_1Y%2B%5Cgamma_2D_%7B1%7D%2Br#0
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DATA: data3.dat;
VARIABLES: id x1 x2 x3 y d1 d2 v1:v4;
MISSING: 999;
ORDINAL: d1 d2;
FIXED: d1 d2;
CENTER: x1;
MODEL:
# focal analysis model
y ~ d1 d2 x1;
# auxiliary variable models
x2 x3 ~ y d1 d2 x1;
# selection model
y.missing ~ y d1;
SEED: 90291;
BURN: 2500;
ITERATIONS: 10000;

7.2: Pattern Mixture Model for Linear Regression

This example illustrates a pattern mixture model for a missing not at random process

where regression model parameters differ between cases with and without dependent

variable scores. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex7.2a.imp Ex7.2b.imp data3.dat

The focal analysis model is the linear regression below

where D1 is a dummy code representing a focal group comparison (e.g., a treatment

assignment indicator), and D2 and X1 are covariates. The most basic pattern mixture

https://www.dropbox.com/s/4a0vfp668u1aeas/Ex7.2a.imp?dl=1
https://www.dropbox.com/s/412e9rsxmza3qla/Ex7.2b.imp?dl=1
https://www.dropbox.com/s/9grg7s374nd3087/data3.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_0%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_2%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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model is one where the intercept (outcome variable mean) differs between people with

and without Y values; Gomer and Yuan (2021) characterize this as a focused missing

not at random process. The fitted model features a binary missing data indicator (MY =

0 if Y is observed and MY = 1 if it’s missing) as a predictor, as follows.

A path diagram of the model is shown below.

The overall population-level intercept estimate is a weighted average of the

pattern-specific intercepts, where the weights are the group proportions. The marginal

intercept estimate for this example is

where p(obs) and p(mis) are the proportions of completers and dropouts, respectively.

Importantly, the intercept difference (the dashed line pointing from MY to Y ) is

inestimable because people in the MY = 1 group have no data on Y. This parameter

must be fixed to a value during estimation, and the magnitude and sign of the

coefficient controls the strength and direction of the missing not at random process.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7DM_%7BY%7D%2B%5Cbeta_1D_%7B1%7D%2B%5Cbeta_2D_%7B2%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_0%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B0(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7D%5Cright)#0
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Enders (2022, Section 9.7) illustrates a strategy that uses off-the-shelf effect size

benchmarks to determine this parameter. For example, if a researcher felt that the

unseen Y scores have a higher mean than the observed data, then the inestimable

intercept coefficient could be solved as a function of the standardized mean difference

effect size and the dependent variable’s standard deviation (or residual standard

deviation).

A positive value of d sets the mean of the unseen scores to a higher value than the

observed data, and a negative value specifies a lower mean. The code block below

sets the effect size equal to +0.20 and uses the residual standard deviation to estimate

the spread of Y (Little, 2009, p. 428). This setting corresponds to a sensitivity analysis

where persons with incomplete data are hypothesized to have a mean difference

roughly equal to Cohen’s (1988) small effect size benchmark. The syntax highlights are

listed below, and adding the NIMPS and SAVE commands generates model-based

multiple imputations for a frequentist analysis that no longer requires the missing data

indicator.

❖ ORDINAL command identifies binary predictors

❖ FIXED command identifies complete predictors

❖ CENTER command applies grand mean centering to predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for all predictor

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0(diff)%7D%3Dd%5Ctimes%5Csigma_Y#0
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❖ The TRANSFORM command creates the dependent variable’s missing data
indicator, m.y

❖ MODEL command labels the missing data indicator’s latent response variable
mean and three parameters from the focal analysis model: the residual variance,
intercept coefficient, and intercept mean difference

❖ PARAMETERS command passes the value of the residual standard deviation into
the formula that determines the intercept mean difference

❖ PARAMETERS command uses labeled quantities to compute missing data group
proportions, pattern-specific intercept coefficients, and a marginal intercept
estimate that averages over the missing data patterns

DATA: data3.dat;
VARIABLES: id x1 x2 x3 y d1 d2 v1:v4;
MISSING: 999;
ORDINAL: d1 d2 m.y;
CENTER: x1 d2;
TRANSFORM:
m.y = ismissing(y);
MODEL:
focal.model:
y ~ 1@b0obs m.y@b0diff d1 d2 x1 ;
# label residual variance
y ~~ y@resvar;
predictor.model:
# sequential specification for predictors
m.y ~ 1@ymissmean;
x1 d1 d2 ~ m.y;
auxiliary.model:
x2 x3 ~ y d1 d2 x1;
PARAMETERS:
# set b0diff equal to +.20 residual std. dev. units
cohensd = .20;
b0diff = cohensd * sqrt(resvar);
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# missingness group proportions
p.mis = phi(ymissmean);
p.obs = 1 - p.mis;
# compute weighted average intercept
b0.obs = b0obs;
b0.mis = b0obs + b0diff;
b0 = (b0.obs * p.obs) + (b0.mis * p.mis);
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

A more complex pattern mixture model is one where people with missing outcome

scores have different intercepts and slopes than people with data; Gomer and Yuan

(2021) characterize this as a diffuse missing not at random process. The fitted model

features the missing data indicator and its interaction with the focal predictor, D1.

A path diagram of the model is as follows.

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7DM_%7BY%7D%2B%5Cbeta_%7B1(obs)%7DD_%7B1%7D%2B%5Cbeta_%7B1(diff)%7D%5C(D_%7B1%7D%5Ctimes%20M_%7BY%7D)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%2B%5Cbeta_2D_%7B2%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B1%7D%5E%7Bcgm%7D%2B%5Cvarepsilon#0
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The marginal slope that averages over the missing data patterns is a weighted average

of the pattern-specific slopes, with weights equal to the group proportions.

Importantly, both the intercept and slope difference for the incomplete cases (the

dashed lines pointing from MY to Y and MY to D1’s slope) are inestimable because

people in the MY = 1 group have no data on Y. As such, these parameters must be fixed

to a value during estimation, and their magnitude and sign control the strength and

direction of the missing not at random process. The same effect size-based strategy

can be applied to the slope difference. In this example, the focal predictor D1 is binary

(e.g, intervention vs. control), in which case β1(obs) is the group mean difference for

people with data on Y, and β1(diff) is the additional group mean difference for persons

with missing Y scores. Specifying the inestimable slope as a standardized mean

difference effect size gives the following solution.

If the focal predictor is continuous, then the solution is

in which case d can be viewed as the additional change in the dependent variable (in

standard deviation units) for every one standard deviation increase in the predictor.

Setting d to a positive value means that the missing data group’s slope is more

positive, and a negative value of d means their slope is more negative.

To illustrate, suppose that Y is scaled such that high scores reflect a negative outcome

(e.g., greater illness severity, a higher symptom count), and D1 is a treatment

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_1%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B1(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B1(obs)%7D%2B%5Cbeta_%7B1(diff)%7D%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1(diff)%7D%3Dd%5Ctimes%5Cleft(%5Csigma_Y%5Cdiv%5Csigma_X%5Cright)#0
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assignment dummy code (D1 = 0 indicates the control group, and D1 = 1 is the

intervention group). Further, consider a missing not at random process where control

group participants with the highest Y scores (e.g., most acute symptoms) leave the

study to seek treatment elsewhere, whereas intervention group participants with the

lowest Y scores (e.g., mildest symptoms) leave the study because they no longer feel

treatment is necessary. This scenario requires a positive value of d for the inestimable

intercept difference and a negative value of d for the slope difference. The code block

below sets both effect sizes equal to 0.20 (they need not be the same) and uses the

residual standard deviation to estimate the spread of Y.

DATA: data3.dat;
VARIABLES: id x1 x2 x3 y d1 d2 v1:v4;
MISSING: 999;
ORDINAL: d1 d2 m.y;
TRANSFORM:
m.y = ismissing(y);
CENTER: x1 d2;
MODEL:
focal.model:
y ~ 1@b0obs m.y@b0diff d1@b1obs d1*m.y@b1diff d2 x1;
# label residual variance
y ~~ y@resvar;
predictor.model:
m.y ~ 1@ymissmean;
x1 d1 d2 ~ m.y;
auxiliary.model:
x2 x3 ~ y x1 d1 d2;
PARAMETERS:
# set b0diff equal to +.20 residual std. dev. units
# set b1diff equal to -.20 residual std. dev. units
cohensd = .20;
b0diff = cohensd * sqrt(resvar);
b1diff = - cohensd * sqrt(resvar);
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# missingness group proportions
p.mis = phi(ymissmean);
p.obs = 1 - p.mis;
# compute weighted average intercept and slope
b0.obs = b0obs;
b0.mis = b0obs + b0diff;
b1.obs = b1obs;
b1.mis = b1obs + b1diff;
b0 = (b0.obs * p.obs) + (b0.mis * p.mis);
b1 = (b1.obs * p.obs) + (b1.mis * p.mis);
SEED: 90291;
BURN: 2000;
ITERATIONS: 10000;

Linking inestimable parameters to the standardized mean difference provides a

practical heuristic for specifying inestimable coefficients, but it is still incumbent on the

researcher to choose values that are reasonable for a given application. As mentioned

previously, the magnitude of the missing data group’s difference parameters dictates

the strength of the missing not at random process. It is incorrect to view “small” values

of d as unimportant, as standardized differences of this magnitude could be very

salient in many situations. For example, consider a randomized intervention where the

true effect size is d = 0.20 (i.e., a small effect size). Setting the missing data group’s

coefficient difference to d = .20 means that the moderating impact of missing data is

just as large as the intervention effect itself. A medium effect size threshold is probably

an upper bound for most practical applications, and much smaller values of d could be

realistic. A sensitivity analysis strategy would examine the changes in the focal model

parameters across a range of d values (see Enders 2022, Section 9.8).
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7.3: Shared Parameter (Wu–Carroll) Latent Curve Model

This example illustrates a two-factor latent growth curve model with the Wu–Carroll

(1998) model for missing not at random dropout that depends on the growth

trajectories. A path diagram of the model is shown below.

The model features binary dropout indicators regressed on the random intercepts and

slopes. Importantly, the missing data indicators code attrition or permanent dropout

rather than intermittent missingness. Accordingly, the D variables equal 0 prior to

dropout, 1 at the occasion participants leave the study, and 999 (missing) at all

post-dropout measurements. There is no missing data indicator for Y1 because this

variable is complete. The path coefficients connecting dropout at occasion t to the

random intercepts are constrained to equality, as are the coefficients connecting the

random slopes to dropout. The dashed lines convey these constraints. Predictor

variables can be incorporated into either the outcome or dropout part of the model



Blimp User’s Guide (Version 3) 265

(e.g., see Example 5.14). Additional details about this model can be found in Enders

(2011) and Muthén, Asparouhov, Hunter, and Leuchter (2011).

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.3.imp data24.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies the binary dropout indicators

❖ LATENT command defines two latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

❖ MODEL command estimates the latent variable means, fixes the intercept factor
loadings to 1, fixes the growth factor loadings to the time scores (0, 1, 2, 3, 4, and
5), and fixes the measurement intercepts to 0

❖ MODEL command uses a label to impose equality constraint on residual variance, a
label to constrain associations between the random intercepts and indicators, and
a label to constrain associations between the random slopes and indicators

❖ Longer burn-in period for estimating latent variables

DATA: data24.dat;
VARIABLES: id y1 y2 y3 y4 y5 y6 d1 d2 d3 d4 d5 d6;
ORDINAL: d2 d3 d4 d5 d6;
MISSING: 999;
LATENT: icept slope;

https://dl.dropboxusercontent.com/s/o9z00py58ytxta9/Ex7.3.imp?dl=1
https://dl.dropboxusercontent.com/s/c1rydwk1f9rxghm/data24.dat?dl=1
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MODEL:
structural.model:
icept ~ 1;
slope ~ 1;
icept <-> slope;
measurement.model:
y1 ~ 1@0 icept@1 slope@0;
y2 ~ 1@0 icept@1 slope@1;
y3 ~ 1@0 icept@1 slope@2;
y4 ~ 1@0 icept@1 slope@3;
y5 ~ 1@0 icept@1 slope@4;
y6 ~ 1@0 icept@1 slope@5;
y1 ~~ y1@vconstraint;
y2 ~~ y2@vconstraint;
y3 ~~ y3@vconstraint;
y4 ~~ y4@vconstraint;
y5 ~~ y5@vconstraint;
y6 ~~ y6@vconstraint;
dropout.model:
d2 ~ icept@iconstraint slope@sconstraint;
d3 ~ icept@iconstraint slope@sconstraint;
d4 ~ icept@iconstraint slope@sconstraint;
d5 ~ icept@iconstraint slope@sconstraint;
d6 ~ icept@iconstraint slope@sconstraint;
SEED: 90291;
BURN: 100000;
ITERATIONS: 10000;

7.4: Diggle-Kenward Latent Curve Model

This example illustrates a two-factor latent growth curve model with the

Diggle–Kenward (1998) model for missing not at random dropout that depends on the

unseen outcome score at time t. A path diagram of the model is shown below.
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The model features binary dropout indicators regressed on the random intercepts and

slopes. Importantly, the missing data indicators code attrition or permanent dropout

rather than intermittent missingness. Accordingly, the D variables equal 0 prior to

dropout, 1 at the occasion participants leave the study, and 999 (missing) at all

post-dropout measurements. There is no missing data indicator for Y1 because this

variable is complete. The path coefficients connecting dropout at occasion t to the

observed data from the previous occasion are constrained to equality, as are the paths

connecting dropout at occasion t with the concurrent (unseen) scores at occasion t. The

dashed lines convey these constraints. Predictor variables can be incorporated into

either the outcome or dropout part of the model (e.g., see Example 5.14). Additional

details about this model can be found in Enders (2011) and Muthén, Asparouhov,

Hunter, and Leuchter (2011).
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Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.4.imp data23.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies the binary dropout indicators

❖ LATENT command defines two latent variables

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ Individual regression equations specified for each indicator (instead of the ->
convention for latent factors)

❖ MODEL command estimates the latent variable means, fixes the intercept factor
loadings to 1, fixes the growth factor loadings to the time scores (0, 1, 2, 3, 4, and
5), and fixes the measurement intercepts to 0

❖ MODEL command uses a label to impose equality constraint on residual variance, a
label to constrain lagged associations between the outcomes and indicators, and a
label to constrain concurrent associations between the outcomes and indicators

❖ Longer burn-in period for estimating latent variables

DATA: data23.dat;
VARIABLES: id y1 y2 y3 y4 y5 y6 d1 d2 d3 d4 d5 d6;
ORDINAL: d2 d3 d4 d5 d6;
MISSING: 999;
LATENT: icept slope;
MODEL:
structural.model:
icept ~ 1;
slope ~ 1;

https://dl.dropboxusercontent.com/s/4sumqxbmx6nblce/Ex7.4.imp?dl=1
https://dl.dropboxusercontent.com/s/2f8a6uxordnqrpg/data23.dat?dl=1
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icept <-> slope;
measurement.model:
y1 ~ 1@0 icept@1 slope@0;
y2 ~ 1@0 icept@1 slope@1;
y3 ~ 1@0 icept@1 slope@2;
y4 ~ 1@0 icept@1 slope@3;
y5 ~ 1@0 icept@1 slope@4;
y6 ~ 1@0 icept@1 slope@5;
y1 ~~ y1@vconstraint;
y2 ~~ y2@vconstraint;
y3 ~~ y3@vconstraint;
y4 ~~ y4@vconstraint;
y5 ~~ y5@vconstraint;
y6 ~~ y6@vconstraint;
dropout.model:
d2 ~ y1@marconstraint y2@mnarconstraint;
d3 ~ y2@marconstraint y3@mnarconstraint;
d4 ~ y3@marconstraint y4@mnarconstraint;
d5 ~ y4@marconstraint y5@mnarconstraint;
d6 ~ y5@marconstraint y6@mnarconstraint;
SEED: 90291;
BURN: 100000;
ITERATIONS: 10000;

7.5: Factor Analysis With a Selection Model

This example illustrates a two-factor measurement model with correlated latent

variables, each measured by six continuous indicators. A path diagram of the analysis

model is shown in Section 5.5. The main difference is that the analysis incorporates a

selection missingness model for the indicators of one latent factor. The selection

equations model a missing not at random process where missingness is explained by

an individual’s standing on the latent trait. A path diagram of the model is shown

below.
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The M variables are binary missing data indicators coded 0 if a response is complete

and 1 if missing. The path coefficients connecting the missingness indicators to the

latent factor are constrained to equality (i.e., one’s standing on the factor exerts the

same influence on the probability of missing not at random missingness). The dashed

lines convey these constraints.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.5.imp data4.dat

The syntax highlights are as follows.

❖ LATENT command defines two latent variables

https://dl.dropboxusercontent.com/s/yefykx3byte8csm/Ex7.5.imp?dl=1
https://dl.dropboxusercontent.com/s/otvxzodnupylmd7/data4.dat?dl=1
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❖ TRANSFORM command uses the ismissing function to create missing data
indicators for the six Y items

❖ Default specification fixes the first loading of each factor to 1 and sets the latent
means equal to 0

❖ MODEL command uses a label to impose equality constraint on the associations
between the latent factor and the missingness indicators

❖ Longer burn-in period for estimating latent variables

DATA: data4.dat;
VARIABLES: id a1 a2 a3 yscale mscale xscale n1 d1 d2 y1:y6

m1:m7 x1:x6;
MISSING: 999;
ORDINAL: y1mis y2mis y3mis y4mis y5mis y6mis;
LATENT: latenty latentx;
TRANSFORM:
y1mis = ismissing(y1);
y2mis = ismissing(y2);
y3mis = ismissing(y3);
y4mis = ismissing(y4);
y5mis = ismissing(y5);
y6mis = ismissing(y6);
MODEL:
factor.model:
latentx -> x1:x6;
latenty -> y1:y6;
latentx <-> latenty;
missingness.model:
y1mis ~ latenty@misconstraint;
y2mis ~ latenty@misconstraint;
y3mis ~ latenty@misconstraint;
y4mis ~ latenty@misconstraint;
y5mis ~ latenty@misconstraint;
y6mis ~ latenty@misconstraint;
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SEED: 90291;
BURN: 40000;
ITERATIONS: 10000;

7.6: Mediation Analysis With a Selection Model

This example illustrates a single-mediator path model with selection models for a

missing not at random process on the mediator and outcome. The focal regression

models are shown below

where α and β are slope coefficients that define the indirect effect or product of the

coefficients estimator, and τ’ is the direct effect of X on Y. A path diagram of the

analysis is shown in Section 5.1. The analysis additionally incorporates missingness

models for both M and Y.

The asterisk superscripts on the binary missing data indicators represent latent

response variables from a probit regression. M’s missingness model features M and X

as predictors, and Y’s missingness model features Y, M, and X. Finally, the model also

incorporates three auxiliary variables following the procedure from Example 4.7.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

https://www.codecogs.com/eqnedit.php?latex=M%3D%5Cbeta_%7B01%7D%2B%5Cbeta_%7B11%7DX%2B%5Cvarepsilon_1%3DI_M%2B%7B%5Calpha%7DX%2B%5Cvarepsilon_M#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y%3D%5Cbeta_%7B02%7D%2B%5Cbeta_%7B12%7DM%2B%5Cbeta_%7B22%7DX%2B%5Cvarepsilon_2%3DI_Y%2B%7B%5Cbeta%7DM%2B%7B%5Ctau%7D%5E%7B'%7DX%2B%5Cvarepsilon_Y#0
https://www.codecogs.com/eqnedit.php?latex=M_%7Bmis%7D%5E%7B*%7D%3D%5Cgamma_%7B01%7D%2B%5Cgamma_%7B11%7DM%2B%5Cgamma_%7B21%7DX%2B%5Cvarepsilon_1#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bmis%7D%5E%7B*%7D%3D%5Cgamma_%7B02%7D%2B%5Cgamma_%7B12%7DY%2B%5Cgamma_%7B22%7DM%2B%5Cgamma_%7B32%7DX%2B%5Cvarepsilon_2#0
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Ex7.6.imp data4.dat

The syntax highlights are as follows.

❖ TRANSFORM command uses the ismissing function to create missing data
indicators for M and Y

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command labels the indirect effect’s component pathways

❖ MODEL command features a syntax shortcut that creates a factored regression
(sequential) specification for auxiliary variables

❖ PARAMETERS command uses labeled quantities to compute the product of
coefficients estimator

DATA: data4.dat;
VARIABLES: id a1:a3 zscale y m n1 x d1 o1:o19;
MISSING: 999;
TRANSFORM:
m.mis = ismissing(m);
y.mis = ismissing(y);
MODEL:
mediation.model:
m ~ x@alpha;
y ~ m@beta x;
missingness.model:
m.mis ~ m x;
y.mis ~ y m x;
auxiliary.model:
# sequential specification for auxiliary variables
a1:a3 ~ y m x;
PARAMETERS:
indirect = alpha * beta;
SEED: 90291;

https://dl.dropboxusercontent.com/s/29ce0fr9eay6vyo/Ex7.6.imp?dl=1
https://dl.dropboxusercontent.com/s/t0uf294iu9u4xrv/data4.dat?dl=1
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BURN: 2000;
ITERATIONS: 10000;

7.7: Two-Level Hedeker-Gibbons Pattern Mixture Growth Model

This example illustrates the random coefficient pattern mixture model from Hedeker

and Gibbons (1997). The model is designed for a missing not at random process where

growth model parameters differ between cases who complete the study versus those

who dropout. Clicking the links below downloads the Blimp scripts and data for this

example, and the full set of User Guide examples is available from a pull-down menu

in the graphical interface.

Ex7.7.imp data18.dat

The complete-data multilevel model features a cross-level (group-by-time) interaction

effect involving a level-2 dummy code D1 (e.g., a treatment assignment indicator) and

the level-1 time scores, as follows.

The pattern mixture model introduces a dropout indicator that differentiates

completers and dropouts, M = 0 and 1, respectively. The fitted model features the

dropout indicator and its interaction effects

where the “obs” subscript denotes the completer group’s (M = 0) parameters, and the

“diff” subscript denotes coefficient differences for the dropout group (M = 1). Following

https://dl.dropboxusercontent.com/s/caxjk9wjqlr710j/Ex7.7.imp?dl=1
https://dl.dropboxusercontent.com/s/r9vi2aaun1278gb/data18.dat?dl=1
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y_%7Bij%7D%3D(%5Cbeta_0%2Bb_%7B0j%7D)%2B(%5Cbeta_1%2Bb_%7B1j%7D)%7BTIME%7D_%7Bij%7D%2B%5Cbeta_2(D_%7B1j%7D)%2B%5Cbeta_3(TIME_%7Bij%7D%20%5Ctimes%20D_%7B1j%7D)%2B%5Cvarepsilon_%7Bij%7D#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B1(obs)%7DTIME_%7Bij%7D%2B%5Cbeta_%7B2(obs)%7D(D_%7B1j%7D)%2B%5Cbeta_%7B3(obs)%7D(TIME_%7Bij%7D%20%5Ctimes%20D_%7B1j%7D)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%2B%5Cbeta_%7B0(diff)%7D(M_j)%2B%5Cbeta_%7B1(diff)%7D(%7BTIME%7D_%7Bij%7D%20%5Ctimes%20M_j)%2B%5Cbeta_%7B2(diff)%7D(D_%7B1j%7D%20%5Ctimes%20M_j%20)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%2B%5Cbeta_%7B3(diff)%7D(TIME_%7Bij%7D%20%5Ctimes%20D_%7B1j%7D)(M_j)%2Bb_%7B0j%7D%2Bb_%7B1j%7D(%7BTIME%7D_%7Bij%7D)%2B%5Cvarepsilon_ij#0
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Example 7.2, the overall population-level estimates (i.e., the marginal estimates that

average over the distribution of missingness) are a weighted average of the

pattern-specific coefficients, where the weights are the group proportions. The

marginal estimates for this example are shown below, where p(obs) and p(mis) are the

proportions of completers and dropouts, respectively.

The syntax highlights are listed below, and adding the NIMPS and SAVE commands

generates model-based multiple imputations for a frequentist analysis (see Example

6.3).

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies binary predictors

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a random coefficient listed after the vertical pipe

❖ MODEL command labels each fixed effect coefficient

❖ MODEL command features a factored regression (sequential) specification for the
binary predictors

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta_0%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B0(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B0(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B0(obs)%7D%2B%5Cbeta_%7B0(diff)%7D%5Cright)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta_1%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B1(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B1(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B1(obs)%7D%2B%5Cbeta_%7B1(diff)%7D%5Cright)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta_2%3Dp_%7B(obs)%7D%5Cbeta_%7B2(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B2(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B2(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B2(obs)%7D%2B%5Cbeta_%7B2(diff)%7D%5Cright)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Cbeta_3%3Dp_%7B(obs)%7D%5Cbeta_%7B3(obs)%7D%2Bp_%7B(mis)%7D%5Cbeta_%7B3(mis)%7D%3Dp_%7B(obs)%7D%5Cbeta_%7B3(obs)%7D%2Bp_%7B(mis)%7D%5Cleft(%5Cbeta_%7B3(obs)%7D%2B%5Cbeta_%7B3(diff)%7D%5Cright)#0
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❖ PARAMETERS command uses labeled quantities to compute population-average
(marginal) coefficients that average over missing data patterns

DATA: data18.dat;
VARIABLES: level2id n1.j d1.j y.i time.i n2.j m.j d3.i;
ORDINAL: d1.j m.j;
CLUSTERID: level2id;
MISSING: 999;
FIXED: time.i;
MODEL:
focal.model:
y.i ~ 1@beta0.obs time.i@beta1.obs d1.j@beta2.obs

(time.i*d1.j)@beta3.obs m.j@beta0.dif (m.j*time.i)@beta1.dif
(m.j*d1.j)@beta2.dif (m.j*time.i*d1.j)@beta3.dif | time.i;

predictor.model:
m.j ~ 1@ymissmean;
d1.j ~ m.j;
PARAMETERS:
# missingness group proportions
p.mis = phi(ymissmean);
p.obs = 1 - p.mis ;
# population-average estimates
beta0 = p.obs * beta0.obs + p.mis * (beta0.obs + beta0.dif);
beta1 = p.obs * beta1.obs + p.mis * (beta1.obs + beta1.dif);
beta2 = p.obs * beta2.obs + p.mis * (beta2.obs + beta2.dif);
beta3 = p.obs * beta3.obs + p.mis * (beta3.obs + beta3.dif);
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

7.8: Selection Model for a Two-Level Regression With Random Coe�cients

This example illustrates a two-level regression model with random intercepts and

random slopes. The analysis model is shown below.
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The analysis additionally incorporates a missingness model for Y.

The asterisk superscript on the binary missing data indicator represents a latent

response variable from a probit regression. Y’s missingness model features Y and X1 as

predictors. The M variable is a binary missing data indicator coded 0 if Y is observed

and 1 if it is missing. This model would be appropriate for a multilevel model that does

not involve a time trend and permanent attrition (e.g., intensive longitudinal data).

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.8.imp data8.dat

The syntax highlights are as follows.

❖ CLUSTERID command identifies a level-2 identifier, automatically inducing
random intercepts for all level-1 variables

❖ ORDINAL command identifies a binary predictor

❖ TRANSFORM command uses the ismissing function to create a missing data
indicator for Y

❖ FIXED command identifies a complete predictor

❖ CENTER command applies grand mean and latent group mean centering to
predictors

❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command features a random coefficient listed after the vertical pipe

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=Y_%7Bij%7D%3D%5Cleft(%5Cbeta_0%2Bb_%7B0j%7D%5Cright)%2B%5Cleft(%5Cbeta_1%2Bb_%7B1j%7D%5Cright)X_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cbeta_2X_%7B2ij%7D%5E%7Bcgm%7D%2B%5Cbeta_3X_%7B7j%7D%5E%7Bcgm%7D%2B%5Cbeta_4D_%7B1j%7D%5E%7Bcgm%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BYij%7D%5E%7B*%7D%3D%5Cgamma_%7B0%7D%2B%5Cgamma_%7B1%7DY_%7Bij%7D%2B%5Cgamma_%7B2%7DX_%7B1ij%7D%5E%7Bcwc%7D%2B%5Cvarepsilon_%7B1ij%7D#0
https://dl.dropboxusercontent.com/s/ve5yuyymtdk1wbl/Ex7.8.imp?dl=1
https://dl.dropboxusercontent.com/s/drpq8y4ijfrjtei/data8.dat?dl=1
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❖ Unspecified associations for predictor variables

DATA: data8.dat;
VARIABLES: level1id level2id x1.i x2.i y.i x3.i x4.i d1.j

n1.j x5.j x6.j x7.j x8.j x9.j;
CLUSTERID: level2id;
ORDINAL: d1.j;
MISSING: 999;
TRANSFORM:
ymis.i = ismissing(y.i);
FIXED: d1.j;
CENTER:
groupmean = x1.i;
grandmean = x2.i x7.j d1.j;
MODEL:
focal.model:
y.i ~ x1.i x2.i x7.j d1.j | x1.i;
missingness.model:
ymis.i ~ y.i x1.i;
SEED: 90291;
BURN: 5000;
ITERATIONS: 10000;

7.9: Two-Level Shared Parameter (Wu–Carroll) Growth Curve Model

This example illustrates how to estimate the Wu–Carroll (1998) model from Section

7.3 as a multilevel regression model. Consistent with that earlier example, the model is

for situations where missing not at random dropout depends on the growth

trajectories. The model features binary dropout indicators regressed on the random

intercepts and slopes. Importantly, the missing data indicators code attrition or

permanent dropout rather than intermittent missingness. Accordingly, the D variables

equal 0 prior to dropout, 1 at the occasion participants leave the study, and 999
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(missing) at all post-dropout measurements. In the multilevel specification, the dropout

indicators are stacked in a single column like other time-varying variables.

The growth curve model is cast as a multilevel structural equation model with a pair of

normally distributed level-2 latent variables representing the random intercepts and

slopes. The focal model features these latent variables as predictors, as shown below.

Note that the slope of the time score predictor is implicitly fixed to 1 in this

specification.

The latent curve model from the earlier example has features that require special

attention when specifying the analysis as a multilevel model. First, there is no dropout

indicator for the baseline assessment because this variable is complete. In the

multilevel framework, the indicator takes on constant values of zero in the first row of

each individual’s missingness vector. Second, the random intercepts and slopes cannot

influence the omitted (and constant) baseline missingness indicator. Third, each

measurement occasion has a unique intercept that determines the occasion-specific

missingness rate. The multilevel selection equation must honor these important

features.

The multilevel missingness model is shown below.

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B0j%7D%3D%5Cbeta_%7B0%7D%2Bb_%7B0j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_%7B1j%7D%3D%5Cbeta_%7B1%7D%2Bb_%7B1j%7D#0
https://www.codecogs.com/eqnedit.php?latex=Y_%7Bij%7D%3D%5Cbeta_%7B0j%7D%2B%5Cbeta_%7B1j%7D%7BTIME%7D_%7Bij%7D%2B%5Cvarepsilon_%7Bij%7D#0
https://www.codecogs.com/eqnedit.php?latex=M_%7BYij%7D%5E%7B*%7D%3D%5Cgamma_1T_%7B1j%7D%2B%5Cgamma_2T_%7B2j%7D%2B%5Cgamma_3T_%7B3j%7D%2B%5Cgamma_4T_%7B4j%7D%2B%5Cgamma_5T_%7B5j%7D%2B%5Cgamma_6T_%7B6j%7D#0
https://www.codecogs.com/eqnedit.php?latex=%2B%20%5Cgamma_7B_%7Bij%7D%5Cbeta_%7B0j%7D%2B%5Cgamma_8B_%7Bij%7D%5Cbeta_%7B1j%7D%2Br_%7Bij%7D#0
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To accommodate occasion-specific intercepts, the missingness model includes a

dummy code for each measurement occasion. The equation denotes the time codes as

T1 through T6. Note that the usual regression intercept is omitted from the equation

(alternatively, the intercept could be estimated if T1 is omitted). Importantly, the

coefficient for the first (baseline) dummy code is fixed at ɣ1 = –3 to induce a near-zero

probability of missingness at baseline. In the latent curve model, this is equivalent to

omitting the first dropout indicator. Next, the variable Bij is a dummy code that equals 0

at the baseline assessment and 1 in all other rows. Including the product of this

dummy code and the random effects acts like an on/off switch that sets the influence of

the random intercepts and slopes to zero at baseline. Recall that this was an important

feature of the latent curve model. The Blimp script below uses Boolean functions in

the selection equation to create the dummy codes, but these could also be generated

using the TRANSFORM function. See the TRANSFORM section in Chapter 2 for a

description of Boolean operators.

Clicking the links below downloads the Blimp scripts and data for this example, and

the full set of User Guide examples is available from a pull-down menu in the

graphical interface.

Ex7.9.imp data17.dat

The syntax highlights are as follows.

❖ ORDINAL command identifies the binary dropout indicators

❖ FIXED command identifies a complete time score predictor

❖ LATENT command defines two between-cluster latent variables representing the
random intercepts and slopes

https://dl.dropboxusercontent.com/s/p8lt5spia9aseur/Ex7.9.imp?dl=1
https://dl.dropboxusercontent.com/s/tf2foaqcsf66m21/data17.dat?dl=1
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❖ MODEL command uses labels ending in a colon to group models and order their
summary tables on the output

❖ MODEL command estimates the random intercept and slope means

❖ MODEL command specifies correlation between random intercepts and random
slopes (level-2 latent variables)

❖ MODEL command fixes the interaction coefficient for the product of the random
slope predictor and its level-2 latent variable to 1

❖ MODEL command omits the random coefficient listed after the vertical pipe

❖ MODEL command uses Boolean operators in parentheses to create dummy
variables

❖ MODEL command features product terms between the Boolean operators (dummy
codes) and the level-2 latent variables

❖ Longer burn-in period for estimating latent variables

DATA: data17.dat;
VARIABLES: level2id time.i y.i dropout.i;
ORDINAL: dropout.i;
CLUSTERID: level2id;
MISSING: 999;
LATENT:
level2id = icept.j slope.j;
FIXED: time.i;
MODEL:
latent.variables:
icept.j ~ 1;
slope.j ~ 1;
icept.j ~~ slope.j;
growth.model:
y.i ~ 1@icept.j time.i*slope.j@1;
missingness.model:
dropout.i ~ 1@0 (time.i == 0)@-3 (time.i == 1) (time.i == 2)
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(time.i == 3) (time.i == 4) (time.i == 5)
(time.i > 0)*icept.j (time.i > 0)*slope.j | 1@0;

SEED: 90291;
BURN: 10000;
ITERATIONS: 10000;
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8 Monte Carlo Studies in Blimp

Blimp also includes a SIMULATE command for creating artificial data sets with Monte

Carlo computer simulation. This command creates a data set based on user-specified

population parameters, after which it fits the equations from the MODEL command to

the simulated data. The simulated data set can be saved by specifying dataset =

filename with the SAVE command. Parameter estimates from the fitted model can also

be saved following the procedure described in the SAVE section of Chapter 2. Note

that each Blimp script generates a single artificial data set. To embed this functionality

in a broader Monte Carlo computer simulation (e.g., inside a loop function), see Section

1.7. This chapter is currently under construction, but the Examples pull-down menu in

Blimp Studio shows the following examples.

❖ 8.1: Simulation With Linear Regression

❖ 8.2: Simulation With Bivariate Regression

❖ 8.3: Simulation With Bifactor Model

❖ 8.4: Simulation With Random Intercept Model

❖ 8.5: Simulation With Random Slopes

❖ 8.6: Simulation With Linear Growth Model

❖ 8.7: Simulation with Two-level Decomposed Effects Model

❖ 8.8: Simulation With Missing Data Generation
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