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Abstract

Distance functions are at the core of numerous computer vision and machine
learning tasks. For example, a multiple view geometry application (such as
homography estimation), often includes a descriptor matching step. First,
small image patches are selected. Then, descriptors (vectors) are computed
to describe these patches. To decide if two descriptors (from two different
images) are from the same real-world location the descriptors are compared
using a distance function. The choice of the distance function determines
both the accuracy and the speed of the method. Distance functions are also
used for image retrieval and determine both the percent of similar images
returned and the time it takes to return them. In machine learning, k-
nearest neighbor classification performance is effected by the chosen distance
function.

This thesis introduces several new distance functions and investigates
their properties. Special emphasis is on practical applicability with theo-
retical insights. The thesis presents efficient algorithms to compute several
distances. The distances are designed to be robust to common image noise
such as occlusion, geometrical transforms, light changes and non-rigid de-
formations. On the other hand, they are designed to be as distinctive as
possible. Our proposed methods have been successfully used both by com-
puter vision researchers and by researchers in other fields. The success of the
methods in other fields is probably because the noise characteristics in those
fields are similar to image noise characteristics.

The first and second parts of the thesis are devoted to the Earth Mover’s
Distance (EMD) [1]. The EMD is a generalization of the transportation
distance (also known as Monge-Kantorovich, Mallows, 15* Wasserstein and
match distance) for non-normalized histograms. We introduce a new general-
ization of the transportation distance for non-normalized histograms called,
EMD. Unlike the classic EMD, EMD is a metric even when the histograms
are non-normalized. Additionally, in practice, EMD is often better than
EMD. We also show that EMD is a generalization of the L; distance.

Histograms of oriented gradient descriptors are ubiquitous tools in nu-
merous computer vision tasks. Unfortunately, the distances that are used to
match such descriptors do not take into account the special structure of these
histograms. One problem with these distances is that they only compare cor-
responding bins of histograms. Although there are cross-bin distances that
take into account the amount of similarity between all bins, they are not
adequate to the histograms of oriented gradients that are computed from
images. Additionally, most cross-bin distances are too slow. We present a



linear time algorithm for the comparison of orientation histograms. This
method outperforms state-of-the-art distances on a widely used, publicly
available benchmark.

In the second part of the thesis we present a robust family of Earth
Mover’s Distances which is applicable to any type of histograms (not just
orientation histograms). We developed an algorithm that computes these
robust EMDs by an order of magnitude faster than the original approach.
The resulting method has excellent image retrieval performance.

In the third part of the thesis, we present a new histogram distance fam-
ily, the Quadratic-Chi (QC). QC members are Quadratic-Form distances
with a cross-bin y2-like normalization. The cross-bin y?-like normalization
reduces the effect of large bins having undue influence. Normalization was
shown to be helpful in many cases, where the x? histogram distance outper-
formed the L, norm. However, 2 is sensitive to quantization effects, such as
caused by light changes, shape deformations etc. The Quadratic-Form part
of QC members takes care of cross-bin relationships (e.g. red and orange),
alleviating the quantization problem. We present two new cross-bin his-
togram distance properties: Similarity-Matriz-Quantization-Invariance and
Sparseness-Invariance and show that QC distances have these properties.
We also show experimentally that the properties improve performance. QC
distances computation time complexity is linear in the number of non-zero
entries in the bin-similarity matrix and can easily be parallelized. We present
results for image retrieval and shape classification. We show that the new
QC members outperforms state-of-the-art distances for these tasks, and have
a short running time.

Finally, in the fourth part of the thesis, we describe a novel method
for non-Mahalanobis metric learning denoted Interpolated-Discretized Met-
ric Learning. This part of the work was motivated by the success of our
non-Mahalanobis distance, the QC. A QC distance has parameters that can
be learned. However, a serious limitation is that it can only model y2-like
distances. In addition, it is applicable only to non-negative vectors. Finally,
it is non-convex with respect to its parameters, so learning them is hard. To
overcome these problems we suggest a new non-Mahalanobis distance family,
the Interpolated-Discretized (ID) distance family, and show how to efficiently
learn its parameters. An ID distance can approximate any unknown dis-
tance. Many metric learning methods can be used with our ID distances.
We demonstrate one possible way of learning ID distances using the Large
Margin Nearest Neighbor (LMNN) framework [2]. With ID distances, the
LMNN optimization problem is a linear program. Finally, we show that our
method often outperforms other state-of-the-art metric learning approaches.
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Chapter 1

Introduction

Distance functions are at the core of numerous computer vision and machine
learning tasks. For example, a multiple view geometry application (such as
homography estimation), often includes a descriptor matching step. First,
small image patches are selected. Then, descriptors (vectors) are computed
to describe these patches. To decide if two descriptors (from two different
images) are from the same real-world location the descriptors are compared
using a distance function. On one hand, the distance function should be
robust to common image noise or transformation (such as occlusion and light
changes) so that the distance between two patches from the same real-world
location will be small. On the other hand, the distance function should
be as distinctive as possible, so that two patches from different real-world
locations will be well separated. Additionally, we need efficient algorithms
for the computation of the distance function as usually the number of distance
computations is very large.

This thesis introduces several new distance functions and investigates
their properties. Special emphasis is on theory that is built upon real-world
assumptions. This introduction gives an overview of distance functions and
their properties. Then, we describe the novel aspects of the thesis.

1.1 Distance Functions Overview

1.1.1 Bin-to-Bin Distance Functions

Bin-to-Bin distance functions compare corresponding bins of a vector to its
exact corresponding bin in the second vector. That is, let P,Q € RY be two
vectors, P; is only compared to Q);.

The most widely used distance family is the Minkowski-Form, also known



as L, norms:
Ly,(P,Q) = (Z P — Qif")» (1.1)

For p > 1, L, is a metric (see section 1.1.2). The most widely used
distances from this family are the L; distance also known as the Manhattan
distance and the Lo distance also known as the Euclidean distance.

The Kullback—Leibler (KL) divergence is a distance function for proba-
bility distributions (although it is used also for non-negative vectors which
are not normalized). The KL divergence is defined as:

KL(P.Q) = 3" Plog 7 (1.2)

The KL divergence measures the expected number of extra bits required
to code samples from P when using a code based on @). It is non-symmetric.
A serious limitation of the distance is that when P; # 0 and @; = 0, KL
equals infinity.

To overcome KL problems, the Jensen-Shannon (JS) divergence was sug-
gested by Lin [3]. It is defined as:

JS(P,Q) = KL(P, M) + KL(Q, M)
P+Q (1.3)
2

M=

The square root of a Jensen-Shannon divergence is a metric [4,5] and it
can be embeded isometrically as a subspace of a real Hilbert space [6]. Using
the Taylor extension we get that JS is equal to [7]:

= 1 P, — Qi)™
IS(P.Q) =) Fon D) > (E%- " Q%Q)nl (1.4)

n=1 %

where n = 1 corresponds to Taylor degrees of one and two and n = 2 cor-
respond to taylor degrees of three and four, etc. The first term is known in
the computer vision community as x? distance:

(P — @Q;)?
(P + Q)

The practical results of x? and JS are almost identical [8-10]. x? is more
efficiently computed than the JS. The square root of x? is a metric [7].

X*(P,Q) = %Z

i

(1.5)
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The x? histogram distance also emerged independently from the y? test-
statistic [11] where it is used to test the fit between a distribution and ob-
served frequencies. y? distance has recently received considerable attention
in the computer vision literature. It has been used, for example, in state-
of-the-art: contour detection and segmentation algorithms [12], descriptors
matching [13], texture and object categories classification [14-17], near du-
plicate image identification[18] and shape classification [19,20].

1.1.2 Metric Properties

There are four conditions for a distance function, D, to be a metric:

1. D 0 (non-negativity).

3. D

(P,Q) =
2. D(P,Q) =0 if and only if P = Q (identity of indiscernibles).
(P,Q) =D(Q, P) (symmetry).

(P,Q) <

4. D D(P,K) + D(K, Q) (subadditivity).

Non-negativity is implied by the others: 2D(P, Q) = D(P,Q)+D(Q, P) >
D(P,P)=0.

Two useful generalizations of metrics are the semi-metric, which drops
the triangle inequality property and pseudo-metric which weakens the second
condition to:

D(P,Q) =0 if P =@Q (but possibly D(P,Q) = 0 for some P # Q).

1.1.3 Cross-Bin Distances

Bin-to-Bin distance functions such as Lo, L; and x? compare only correspond-
ing bin’s of a vector to its exact corresponding bin in the second vector. The
assumption when using these distances is that the histogram domains are
aligned. However this assumption is violated in many cases due to quantiza-
tion, shape deformation, light changes, etc. Bin-to-bin distances depend on
the number of bins. If it is low, the distance is robust, but not discriminative,
if it is high, the distance is discriminative, but not robust. Distances that
take into account cross-bin relationships (cross-bin distances) can be both
robust and discriminative.



The Quadratic-Form Distance

Let A € RV*YN the bin-similarity matrix. That is, a;; encodes how much bin
i is similar to bin j. The Quadratic-Form (QF) distance is defined as [21]:

QFA(P,Q) = V(P - Q)TA(P — Q) (1.6)

When the bin-similarity matrix A is the inverse of the covariance matrix,

the QF distance is called the Mahalanobis distance [22]. If the bin-similarity

matrix is positive-semidefinitive, the A matrix can be expressed as A = LLT

for some real matrix L. Thus, the distance can be computed as the Euclidean
norm between linearly transformed vectors:

QFA(P,Q) = ||LP — LQ)|l (1.7)

In this case the QF distance is a psuedo-metric (as it is possible that
QFA(P,Q) = 0 for some P # Q). If A is positive-definitive, the QF distance
is a metric.

Recently there have been a lot of research effort on learning a positive-
semidefinitive matrix, A, from labeled examples or given relative distances
constraints [2,23-31]. Although much of the metric-learning work has focused
on the QF distance!, this measure has some inherent limitations. The most
important one is that it is a function only of the difference between input
vectors ' — 7. Thus, it will give the same distance whenever two vectors
have the same difference vector. For example, a QF distance will not able to
differentiate between (' = 42,77 = 40) and (& = 2,77 = 0). To overcome
this limitation several metric learning methods have been proposed [2,27,
29,32,33]. Chopra et al. [32] proposed to learn a convolutional neural net
as a non-linear transformation before applying the /5 norm. Babenko et al.
[33] suggested a boosting framework for learning non-Mahalanobis metrics.
These methods are non-convex and thus they might suffer from local minimas
and training is sensitive to parameters. Kernel methods were also proposed
in order to learn a QF distance over non-linear transformations of the data
[2,27,29]. Computing such a distance between two vectors scales linear in the
number of training examples, which makes it impractical for large datasets.

The Transportation and Earth Mover’s Distances

The second type of distance that takes into account cross-bin relationships
is the transportation distance (also known as Monge-Kantorovich, Mallows,

!The QF distance is called Mahalanobis distance in machine learning community even
when A is not the inverse of the covariance matrix.



15" Wasserstein and match distance) which is defined between probability
distributions:

transportation” (P, Q) = min Fi;D;; st
P.0)= gy D,

> Fy=h
> Fy =@ (1.8)
Yr=There s

Fi; >0

where {F};} denotes the flows. Each Fj; represents the amount transported
from the ¢th supply to the jth demand. We call D;; the ground distance
between bin ¢ and bin j. When D;; is a metric the transportation distance
is also a metric.

The transportation problem was formalized in 1781 by Gaspard Monge
[34]. Major advances were made in the field by Leonid Kantorovich [35].
Consequently, the problem is sometimes known as the Monge-Kantorovich
transportation problem. Wasserstein proposed to use the definition of the
transportation problem as a distance function [36]. Mallows also studied this
distance [37].

Early work using the transportation distances for histogram comparison
in the computer vision community can be found in [38-41]. Shen and Wong
[38] proposed to unfold two integer histograms, sort them and then compute
the L, distance between the unfolded histograms. To compute the mod-
ulo matching distance between cyclic histograms they proposed taking the
minimum from all cyclic permutations. This distance is equivalent to trans-
portation distance between two normalized histograms. Werman et al. [39]
showed that this distance is equal to the L; distance between the cumula-
tive histograms. They also proved that matching two cyclic histograms by
examining only cyclic permutations is in effect optimal. Werman et al. [40]
proposed an O(M log M) algorithm for finding a minimal matching between
two sets of M points on a circle. Peleg et al. [41] suggested using the EMD
for grayscale images and using linear programming to compute it.

Rubner et al. [1] suggested a new generalization of the transportation
distance to non-normalized histograms, which he called the Earth Mover’s
Distance (EMD):



>y FiiDij
EMD? (P, Q) = min ——==¢

(FQ) {Fyy min(d_; P, >0 Q)
Z F; <P

i
ZFM ) (1.9)
Y Fy=min(} P,) Q)

i i J

Fy; >0

s.t

The Earth Mover’s Distance is the least amount of work needed in order
to transform the smaller histogram into part of the bigger histogram (best
partial matching), normalized with minimum between the sums of the his-
tograms. It is a metric only if the histograms are normalized (then it equals
the transportation distance) and D;; is a metric. Rubner et al. suggested
using EMD for color and texture images. They computed the EMD using
a specific linear programming algorithm - the transportation simplex. The
algorithm worst case time complexity is exponential. Practical run time was
shown to be super-cubic (Q(N?3) N O(N?)). Interior-point algorithms or Or-
lin’s algorithm [42] both have a time complexity of O(N?log N) and can also
be used.

A major research effort has been done on computing EMD-L4, that is,
EMD with L; as the ground distance. Ling and Okada [43] showed that
if the points lie on a Manhattan network (e.g. an image), the number of
variables in the LP problem can be reduced from O(N?) to O(N). To exe-
cute the EMD-L; computation, they employed a tree-based algorithm, Tree-
EMD. Tree-EMD exploits the fact that a basic feasible solution of the simplex
algorithm-based solver forms a spanning tree when the EMD-L; is modeled
as a network flow optimization problem. The worst case time complexity
is exponential. Empirically, they showed that this algorithm has an aver-
age time complexity of O(N?). Gudmundsson et al. [44] also put forward
this simplification of the LP problem. They suggested an O(N log?™' N)
algorithm that creates a Manhattan network for a set of N points in R%.
The Manhattan network has O(N log ' N ) vertices and edges. Thus, us-
ing Orlin’s algorithm [42] the EMD-L; can be computed with a time com-
plexity of O(N?1log?*™ N). Indyk and Thaper [45] proposed approximating
EMD-L; by embedding it into the L; norm. Embedding time complexity is
O(Ndlog A), where N is the feature set size, d is the feature space dimension
and A is the diameter of the union of the two feature sets. Grauman and



Darrell [46] substituted L; with histogram intersection in order to approxi-
mate partial matching. Shirdhonkar and Jacobs [47] presented a linear-time
algorithm for approximating EMD-L; for low dimensional histograms using
the sum of absolute values of the weighted wavelet coefficients of the dif-
ference histogram. Khot and Naor [48] showed that any embedding of the
EMD over the d-dimensional Hamming cube into L; must incur a distortion
of Q(d), thus losing practically all distance information. Andoni et al. [49]
showed that for sets with cardinalities upper bounded by a parameter s, the
distortion reduces to O(log slogd). A practical reduction in accuracy due to
the approximation was reported by [47,50].

A major limitation of EMD-L; is its sensitivity to outliers. That is, Lq, as
a ground distance between bins, assign different outliers different distances.
Thus, in real-world applications the accuracy of EMD-L; (and same for EMD
with Ly ground distance) is often very low (often even lower than simple L;
or x? distances) [10,51-54].

1.2 Novel Aspects
The main novelties of this thesis and several successful applications are:

L We present E/]W\D, a new generalization of the transportation dis-
tance for non-normalized histograms. Unlike the classic generaliza-
tion (EMD), EMD is a metric even when the histograms are non-
normalized. In practice, EMD is often better than EMD.

II.  We present a new linear time algorithm for the computation of EMD
or EMD between two normalized cyclic histograms (e.g. histograms of
oriented gradients) with L; as the ground distance. However, we show
that using this distance for image descriptors matching, the accuracy is
low. We explain the theoretical reason which is sensitivity to outliers.

—

ITII.  We present a new linear time algorithm for the computation of a EM D
or EMD between two not necessarily normalized cyclic histograms with
a robust ground distance. We show that this distance has excellent
image descriptors matching performance on a widely used and publicly
available benchmark. Gupta et al. [54] also reported excellent image
descriptors matching results using our distance.

IV. We present a new efficient algorithm for the computation of robust

EMD or EMD between general non-negative vectors. The algorithm
is faster by an order of magnitude than the classic algorithm. We show

7
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VII.

excellent results for image retrieval. This algorithm was successfully
used by other researchers both from the computer vision community
and from other communities. For example, Boltz et al. used it for
superpixels matching. In a comparison study between various image
retargeting algorithms, Rubinstein et al. [55] reported that our distance
had the best correlation with human judgements of image perceptual
similarity (between an image and its retargeted version). Macindoe
and Richards [56] used our method for social graph comparisons.

We present a new family of histogram distances, called Quadratic-
Chi (QC). Members of this family are robust to quantization effects
and have a y2-like normalization. Excellent image retrieval and shape
classification results are demonstrated. Xu et al. [57] reported state-
of-the-art wood recognition results using our QC distances.

We present two new cross-bin distances properties Similarity-Matriz-
Quantization-Invariance and Sparseness-Invariance and a proof that
EMD and QC distances have these properties. We show, experimen-
tally, that these properties are practically important.

We present a new family of distances called Interpolated-Discretized
(ID) distances. These distances can approximate any kind of bin-to-bin
distance and that their parameters are easy to learn. We show that our
method often outperforms state-of-the-art metric learning approaches.

I., II. and III. are presented in chapter 2, IV. is presented in chapter 3,

V. and VI. are presented in chapter 4 and VII. is presented in chapter 5.
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School of Computer Science and Engineering
The Hebrew University of Jerusalem
{ofirpele,werman}@cs.huji.ac.il

Abstract. We present a new metric between histograms such as SIFT
descriptors and a linear time algorithm for its computation. It is common
practice to use the L2 metric for comparing SIFT descriptors. This prac-
tice assumes that SIFT bins are aligned, an assumption which is often
not correct due to quantization, distortion, occlusion etc.

In this paper we present a new Earth Mover’s Distance (EMD) vari-
ant. We show that it is a metric (unlike the original EMD [1] which is
a metric only for normalized histograms). Moreover, it is a natural ex-
tension of the L1 metric. Second, we propose a linear time algorithm for
the computation of the EMD variant, with a robust ground distance for
oriented gradients. Finally, extensive experimental results on the Miko-
lajczyk and Schmid dataset [2] show that our method outperforms state
of the art distances.

1 Introduction

istograms of oriented gradient descri tors [3 4 5 6] are ubi uitous tools in nu
merous com uter vision tas s. ne of the most successful is the cale nvariant
Feature Transform ( FT) [3]. n a recent erformance evaluation [2] the FT
descri tor was shown to out erform other local descri tors. The FT descri tor
has roven to be successful in a lications such as ob ect recognition [3 8 9]
ob ect class detection [10 11 12] image retrieval [13 14 15 16] robot locali ation
[1 | building anoramas [18] and image classi cation [19].

t is common ractice to use the Lo metric for com aring FT descri tors.
This ractice assumes that the histogram domains are aligned. owever this
assum tion is violated through uanti ation sha e deformation detector local
i ation errors etc. Ilthough the FT algorithm has ste s that reduce the e ect
of wuanti ation this is still a liability as can be seen by the fact that increasing
the number of orientation bins negatively a ects erformance [3].

The arth Movers istance ( M ) [1] is a cross bin distance that addresses
this alignment roblem. M is de ned as the minimal cost that must be aid
to transform one histogram into the other where there is a ground distance
between the basic features that are aggregated into the histogram. There are two
main roblems with the M . First it is not a metric between non normali ed
histograms. econd for a general ground distance it has a high run time.

D. Forsyth, P. Torr, and A. Zisserman (Eds.): ECCV 2008, Part III, LNCS 5304, pp. 495-508, 2008.
© Springer-Verlag Berlin Heidelberg 2008



496 O. Pele and M. Werman

n this a er we resent an arth Movers istance ( M ) variant. e show
that it is a metric if it is used with a metric ground distance. econd we resent
a linear time algorithm for the com utation of the M variant with a robust
ground distance for oriented gradients. Finally we resent ex erimental results
for ~FT matching on the Mi ola ¢ y and chmid dataset [2] showing that our
method out erforms state of the art distances suchas Ly M L; [20] di usion
distance [21] and M op [22 23].

This a er is organi ed as follows. ection 2 is an overview of revious wor .
ection 3 introduces the new M variant. ection 4 introduces the new FT
metric and the linear time algorithm for its com utation. ection 5 describes the
ex erimental setu and ection 6 resents the results. Finally conclusions are
drawn in ection

2 Previous Work

arly wor using cross bin distances for histogram com arison can be found in
[22 24 25 26]. henand ong[24] ro osed to unfold two integer histograms sort
them and then com ute the L; distance between the unfolded histograms. To
com ute the modulo matching distance between cyclic histograms they ro osed
ta ing the minimum from all cyclic ermutations. This distance is e uivalent to
M  between two normali ed histograms. erman et al. [25] showed that this
distance is e ual to the L; distance between the cumulative histograms. They
also roved that matching two cyclic histograms by examining only cyclic er
mutations isin e ect o timal. haand rihari[2 ] rediscovered these algorithms
and described a character writer identi cation a lication. erman et al. [22]
ro osed an O(M log M) algorithm for nding a minimal matching between two
sets of M oints on a circle. The algorithm can be ada ted to com ute the
M  between two N bin normali ed histograms with time com lexity O(N)
( endix in [23]).
eleg et al. [26] suggested using the M for grayscale images and using
linear rogramming to com ute it. ubner et al. [1] suggested using M for
color and texture images. They com uted the M wusing a s eci c linear ro
gramming algorithm the trans ortation sim lex. The algorithm worst case
time com lexity is ex onential. ractical run time was shown to be su er cubic
( (N3) N O(N?)). nterior oint algorithms with time com lexity O(N3logV)
can also be used. 1l of these algorithms have high com utational cost.
ndy and Tha er [28] ro osed a roximating the M by embedding it
into an uclidean s ace. mbedding time com lexity is O(Ndlog ) where N
is the feature set si e d is the feature s ace dimension and  is the diameter of
the union of the two feature sets.
ecently ing and ada ro osed general cross bin distances for histogram
descri tors. The rstis M L;[20] i.e. M with L; as the ground distance.
To executethe M L; com utation they ro osea tree based algorithm Tree
M . Tree M ex loits the fact that a basic feasible solution of the sim lex
algorithm based solver forms a s anning tree when the M [L; is modeled
as a networ ow o timi ation roblem. The worst case time com lexity is
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ex onential. m irically they show that this new algorithm has an average
time com lexity O(N?). ing and ada also ro osed the di usion distance
[21]. They de ned the di erence between two histograms to be a tem erature
eld. The di usion distance was derived as the sum of dissimilarities over scales.
The algorithm run time is linear.
For a com rehensive review of M and its a lications in com uter vision
we refer the reader to ing and adas a er [20].

—_—
3 The New EMD ariant - EMD
This section introduces EMD anew arth Mover s istance variant. e show
that it is a metric (unli e the original M [1] which is a metric only for nor
mali ed histograms). Moreover it is a natural extension of the L; metric.

The arth Movers istance ( M ) [1] is de ned as the minimal cost that
must be aid to transform one histogram into the other where thereis a ground
distance between the basic features that are aggregated into the histogram.

iven two histograms P, @ the M as de ned by ubner et al. [1] is

> i figdij
EMD(P,Q) = min ~’ s.t 1
( ) {fij} Zi,j fij ( )

Zfz'jépi : Zfz'jSQj ; Zfijzmin(zpi,ZQj) , fiy >0 (2)
J ( ] ( J

where {f;;} denotes the ows. ach f;; re resents the amount trans orted from
the ith su ly to the jth demand. e call d;; the ground distance between bin
¢ and bin j in the histograms.

€ TIO0 oOse ﬂI\D

E]W/\Da(P, Q) = (g}l% E fijdij)+| g P— g Qj| xamax{d;;} st .2 (3)
ij T - - 2¥)
(2% g J

ote that for two robability histograms (i.e. total mass e ual to one) EM D

and EMD are e uivalent. owever if the masses are not e ual EMD adds
one su lier or demander such that the masses on both sides becomes e ual.
The ground distance between this su lier or demander to all other demanders
or su liers res ectively is set to be a times the maximum ground distance. n
addition the EMD is not normali ed by the total ow.

ote that EMD with a = 0.5 and with the ronc er § ground distance
multi lied by two (d;; = 0if i = j 2 otherwise) is e ual to the L; metric.

f o« > 0.5 and the ground distance is a metric EMD is a metric (unli e the
original EM D [1] which is a metric only for normali ed histograms). roof
is given in endix  [23]. eing a metric can lead to more e cient data
structures and search algorithms.
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e now give two exam les of when the usage of EMD is more a ro riate
(both of which are the case for the FT descri tors). The rst is when the total
mass of the histograms is im ortant. For exam le let P = (1,0) @ = (0,1)
P'=(9,0) Q" =(0,9). sing L; as a ground distanceand « =1 EMD(P,Q) =
1 = EMD(P',Q') while EMD(P,Q) =1< 9= EMD(P',Q’). The second is
when the di erence in total mass between histograms is a distinctive cue. For
exam le let P = (1,0) Q = (1, ). sing L; as a ground distance and o = 1

EMD(P,Q) =0 while EMD(P,Q) =

4 The SIFT,,.. Metric

This section introduces FTp s+ a new metric between FT descri tors. t
is common ractice to use the Lo metric for com aring FT descri tors. This
ractice assumes that the FT histograms are aligned so that a bin in one
histogram is only com ared to the corres onding bin in the other histogram. This
is often not the case due to uanti ation distortion occlusion etc. ur distance
has three instead of two matching costs ero cost for exact corres onding bins
one cost for neighboring bins and two cost for farther bins and for the extra
mass. Thus the metric is robust to small errors and outliers.
The section rst de nes FTpsr and then resents a linear time algorithm
for its com utation.

4.1 SIFT,;s+ Definition

This section rst describes the FT descri tor. econd it ro oses Thresholded
Modulo arth Mover s istance ( M 1yop) an M variant for oriented gra
dient histograms. Finally it de nes the FTpgr.

The FT descri tor [3] is a M x M x N histogram. ach of the M x M
s atial cells contains an N bin histogram of oriented gradients. ee Fig. 1 for a
visuali ation of FT descri tors.

et A={0,...,N —1} be N oints e ually s aced on a circle. The modulo

L, distance for two oints i,j € A is

Dyop(i,j) = min(|i — j, N — |i — j[) (4)
<« — e < — —

~ K| | - ~ || T

— = || | == |-

] r 7\~ [ A R ke

Fig.1. (a) 4 x 4 x 8 SIFT descriptor. (b) 4 x 4 x 16 SIFT descriptor.
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Fig. 2. The flow network of EMDryop for N = 8. The brown vertexes on the inner
circle are the bins of the “supply” histogram, P. The cyan vertexes on the outer circle
are the bins of the “demand” histogram, ). We assume without loss of generality that
> P> Z]. Q@;; thus we add one infinite sink in the middle. The short gray edges
are zero-cost edges. The long black edges are one-cost edges. Two-cost edges that turn
the graph into a full bi-partite graph between sinks and sources are not colored for
visibility.

The thresholded modulo Ly distance is de ned as

Drpumo(i,j) = min (Dyop(i, 5),2) (5)

M  rumop 1s de ned as EMD (. 3) with ground distance Drpyro(i,j) and
a = 1. Drpyo is a metric. t follows from endix  [23] that M ryop is
also a metric. sing M 1,op the trans ortation cost to the two nearby bins is
1 while for farther bins and for the extra mass it is 2 (see Fig. 2). For exam le
for N = 16 we assume that all di erences larger than 22.5° are caused by outliers
and should be assigned the same trans ortation cost.

The FTpsr between two  FT descri tors is de ned as the sum over the

M  1uvop between all the M x M oriented gradient histograms. FTp4r is also
an M  where edges between s atial bins have an in nite cost.

EMD (. 3) has two advantages over ubners M ( .1) for com aring

FT descri tors. First the di erence in total gradient magnitude between FT
s atial cells is an im ortant distinctive cue. sing ubner s de nition this cue
is ignored. econd EMD is a metric even for non normali ed histograms.

4.2 A Linear Time SIFT,s+ Algorithm

s FTpirisasumof M 1,op solutions we resent a linear time algorithm
for M rtyobn.
i e all other arth Movers istances M 1,op can be solved by a max
ow min cost algorithm. ach bin ¢ in the rst histogram is connected to bin
¢ in the second histogram with a zero-cost edge two nearby bins with one-cost
edges and to all other bins with fwo-cost edges. ee Fig. 2 for an illustration of
this ow networ .
The algorithm starts by saturating all zero-cost edges. s the ground distance
( .5) obeys the triangle ine uality this ste does not change the minimum cost
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solution [22]. ote that after the rst ste nishes from each of the su lier
demander airs that were connected with a zero-cost edge either the su lier is
em ty or the demander is full.
To minimi e the cost after the rst ste the algorithm needs to maximi e the
ow through the one-cost edges 1i.e. the roblem becomes a max ow roblem
on a gra h with N vertexes and at most N edges where the maximum ath
length is 1 as ow goes only from su ly to demand (see Fig. 2). This ste starts
by chec ing whether all vertexes are degree 2 if yes we remove an arbitrary edge.
econd we traverse the su liers vertexes cloc wise twice. For each degree one
vertex we saturate its edge. f we did not remove an edge at the beginning of this
ste there will be no augmenting aths. f an edge was removed the algorithm
ows through all augmenting aths. 1l these aths can be found by returning
the edge and ex anding from it.
The algorithm nishes by owing through all two-cost edges which is e uiva
lent to multi lying the maximum of the total remaining su ly and demand by
two and adding it to the distance.

5 Experimental Setup

e evaluate FTpor using a test rotocol similar to that of Mi ola ¢ y and

chmid [2]. The dataset was downloaded from [29]. The test data contain eight
folders each with six images with di erent geometric and hotometric transfor
mations and for di erent scene ty es. Fig. 3 shows the rst and the third image
from each folder. ix image transformations are evaluated view oint change
scale and rotation image blur light change and com ression. The images
are either of lanar scenes or the camera osition was xed during ac uisition.
The images are therefore always related by a homogra hy. The ground truth
homogra hiesaresu lied with the dataset. For further details about the dataset
we refer the reader to [2].

The evaluation criterion is based on the number of correct and false matches
obtained for an image air. The match de nition de ends on the matching strat
egy. The matching strategy we use is a symmetric version of owe s ratio match
ing [3]. eta€ Aand b€ be two descri tors and n(a, A) and n(b, ) be their
s atial neighbors that is all descri tors in A and res ectively such that the
ratio of the intersection and union of their regions with a and b res ectively is
larger than 0.5. a and b are matched if all the following conditions hold a =
argmingea D(a’,b) az = argming e a\n(a,4) D(a’,b) b = argminyep D(a,b’)

by = argming ¢ p\n(», ) D(a, ') and min %((aaz’bb)), %((aa’blf)) > . value is varied
to obtain the curves. ote that for = 1 the matching strategy is the symmetric

nearest neighbor strategy. The techni ue of not using overly close regions as a
second best match was used by Forssen and owe [30].
The match correctness is determined by the overlap error [2]. t measures how

well regions A and  corres ond under a nown homogra hy and is de ned
ANHTBH

by the ratio of the intersection and union of the regions ¢ =1 — AUHTBH"
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Bark

Fig. 3. Examples of test images (left): Graf (viewpoint change, structured scene),
Wall (viewpoint change, textured scene), Boat (scale change + image rotation, struc-
tured scene), Bark (scale change + image rotation, textured scene), Bikes (image
blur, structured scene), Trees (image blur, textured scene), Leuven (light change,
structured scene), and Ubc (JPEG compression, structured scene)

s in [2] a match is assumed to be correct if g < 0.5. The corres ondence
number ( ossible correct matches) is the maximum matching si e in the correct

match bi artite gra h. The results are resented with recall versus1 precision

__ #correct matches . . _ #false matches
recall = F#correspondences 1 precision = #all matches °

n all ex eriments we used edaldis FT detector and descri tor im lemen
tation [31]. 1l arameters were set to the defaults exce t the oriented gradient
bins number where we also tested our method with a FT descri tor having
16 oriented gradient bins (see Fig. 1 (b) in age 498).

6 Results

n this section we resent and discuss the ex erimental results. The erformance
of FTpsr is com ared to that of Ly M L; [20] di usion distance [21] and
M wopn! [2223] for view oint change scale and rotation image blur light

! Note that as the fast algorithm for EMDyop assumes normalized histograms, we
normalized each histogram for its computation.
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change and com ression. The matching was done between FT descri
tors with eight and sixteen orientation bins (see Fig. 1 in age 498). Finally we
resent run time results.

Figs. 456 are 1 recision vs. recall gra hs. wue to s ace constraints we

resent gra hs for the matching of the rst to the third and fth images from
each folder in the Mi ola ¢ y and chmid dataset [29]. esults for the rest of
the data are similar and are in [32].
n all of the ex eriments FTpsr com uted between FT descri tors with
sixteen oriented gradient bins ( FT 16) out erforms all other methods.
FTpsr com uted between the original FT descri tors with eight oriented
gradient bins ( FT 8) is usually the second. lso using FTpsr consistently
roduces results with greater recision and recall for the symmetric nearest
neighbor matching (the rightmost oint of each curve).
ncreasing the number of orientation bins from eight to sixteen decreases
the erformance of Lo and increases the erformance of FTp5r. This can
be ex lained by the FTp st robustness to uanti ation errors.

Fig. 4 shows matching results for view oint change on structured (Graf) and
textured (Wall) scenes . FTpor has the highest ran ing. sin [2] erformance
is better on the textured scene. erformance decreases with view oint change
(com are Graf-3 to Graf-5 and Wall-3 to Wall-5) while the distance ran ing
remains the same. For large view oint change erformance is oor (see Graf-5)
and the resulting gra hs are not smooth. This can be ex lained by the fact that
the FT detector and descri tor are not a ne invariant.

Fig. 5 shows matching results for similarity transformation on structured
(Boat) and textured (Bark) scenes. FTpor out erforms all other distances.

s in [2] erformance is better on the textured scene.

Fig. 6 shows matching results for image blur on structured (Bikes) and tex
tured (Trees) scenes. FTpyor has the highest ran ing. The FT descri tor
is a ected by image blur.  similar observation was made by Mi ola ¢ y and

chmid [2].

Fig. Leuven shows matching results for light change. FTp5r obtains
the best matching score. The erformance decreases with lac of light (com are
Leuven-3 to Leuven-5) although not drastically.

Fig. Ubc shows matching results for com ression. FTpqp out er
forms all other distances. erformance decreases with com ression level (com are
Ubc-3 to Ubc-5).

Table 1 resent run time results. 1l runs were conducted on a wual ore

M teron 2.6 rocessor. The table contains the run time in seconds of

Table 1. Run time results in seconds of 10 distance computations

SIFTpisr  (L2)> EMDyop [22,23]  Diffusion [21]  EMD-L; [20]

SIFT-8 1.5 0.35 18 28 192
SIFT-16 2.2 1.3 29 56 637
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Fig. 4. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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Fig. 5. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.
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Fig. 7. Results on the Mikolajczyk and Schmid dataset [2]. Should be viewed in color.



A Linear Time Histogram Metric for Improved SIFT Matching 507

each distance com utation between two sets of 1000 FT descri tors with eight
and sixteen oriented gradient bins. ote that we measured the run time of (Lz)?
and not Lo as com uting the root does not change the order of elements and is
time consuming. FTpr is the fastest cross bin distance.

7 Conclusions

e resented a new cross bin metric between histograms and a linear time algo
rithm for its com utation. xtensive ex erimental results for FT matching on
the Mi ola ¢ y and chmid dataset [2] showed that our method out erforms
state of the art distances.

The s eed can be further im roved using techni ues such as ayesian se uen
tial hy othesis testing [33] sub linear indexing [34] and a roximate nearest
neighbor [35 36]. The new cross bin histogram metric may also be useful for
other histograms either cyclic (e.g. hue in color images) or non cyclic (e.g. in
tensity in grayscale images). The ro ect home age including code ( ++ and
Matlab wra ers) is at http://www.cs.huji.ac.il/~ofirpele/SiftDist.
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Abstract

We present a new algorithm for a robust family of Earth
Mover’s Distances - EMDs with thresholded ground dis-
tances. The algorithm transforms the flow-network of the
EMD so that the number of edges is reduced by an order
of magnitude. As a result, we compute the EMD by an or-
der of magnitude faster than the original algorithm, which
makes it possible to compute the EMD on large histograms
and databases. In addition, we show that EMDs with
thresholded ground distances have many desirable proper-
ties. First, they correspond to the way humans perceive dis-
tances. Second, they are robust to outlier noise and quanti-
zation effects. Third, they are metrics. Finally, experimental
results on image retrieval show that thresholding the ground
distance of the EMD improves both accuracy and speed.

1. Introduction

Histograms are ubiquitous tools in numerous computer
vision tasks. It is common practice to use distances such as
Ly or x? for comparing histograms. This practice assumes
that the histogram domains are aligned. However this as-
sumption is violated through quantization, shape deforma-
tion, light changes, etc.

The Earth Mover’s Distance (EMD) [29] is a cross-bin
distance that addresses this alignment problem. EMD is de-
fined as the minimal cost that must be paid to transform
one histogram' into the other, where there is a “ground dis-
tance” between the basic features that are aggregated into
the histogram. The EMD as defined by Rubner is a met-
ric only for normalized histograms. However, recently Pele
and Werman [26] suggested EMD and showed that it is a
metric for all histograms.

A major issue that arises when using EMD is which
ground distance to use for the basic features. This, of
course, depends on the histograms, the task and practical

'Rubner’s noted that EMD can be used with sparse histograms which
he coined signatures. Our algorithm is applicable to both histograms and
signatures.

Michael Werman
The Hebrew University of Jerusalem

werman@cs.huji.ac.il
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(@) (b)

Figure 1. An example of the transformation on a flow network
of an EMD or EMD with a ground distance of: d(a,b) =
min(2,|a — b|). (a) is the original flow network with N2 + N
edges. Note that V(N — 3) of these edges have cost 2. The bot-
tom cyan vertex on the left is the sink that handles the difference
between the total mass of the two histograms (ingoing edges cost
is 0 for EMD and a max;; d;; for E/\]\JD). (b) is the transformed
flow network. The striped yellow square is the new transhipment
vertex. Ingoing edge cost is the threshold (e.g. 2) and outgoing
edge cost is 0.

considerations. In many cases we would like the distance
to correspond to the way humans perceive distances (image
retrieval, for example). In other cases we would like the
distance to fit the distribution of the noise (keypoint match-
ing, for example). Practical considerations include speed of
computation and the metric property that enables fast algo-
rithms for nearest neighbor searches [41, 7], fast clustering
[10] and large margin classifiers [15, 36].

We propose using thresholded ground distances. i.e. dis-
tances that saturate to a constant value. These distances
have many desirable properties. First, saturated distances
correspond to the way humans perceive distances [34]. Sec-
ond, many natural noise distributions have a heavy tail; i.e.
outlier noise. Thresholded distances assign different out-
liers the same large distance. Finally, we present an algo-
rithm that computes EMD with a thresholded ground dis-
tance faster by an order of magnitude than the original al-
gorithm. The algorithm transforms the flow-network of the
EMD so that the number of edges is reduced by an order of
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magnitude (see Fig. 1).

The Earth Mover’s Distance has been used successfully
in many applications such as image retrieval [29, 23], edge
and corner detection [30], keypoint matching [26, 8, 20],
near duplicate image identification [40], classification of
texture and object categories [42, 19], NMF [31] and con-
tour matching [12]. Many of these works used saturated dis-
tances, usually the negative exponent function. The major
contribution of this paper is a fast algorithm for the com-
putation of the EMD with thresholded ground distance. We
argue that thresholded distances have all the benefits of the
negative exponent function that is typically used as a satu-
rated distance; its big advantage is its much shorter compu-
tation time.

This paper is organized as follows. Section 2 is an
overview of previous work. Section 3 describes the Earth
Mover’s Distance. Section 4 discusses thresholded dis-
tances and proves that they are metrics. Section 5 describes
the fast algorithm. Section 6 presents the results. Finally,
conclusions are drawn in Section 7.

2. Previous Work

This section first describes EMD algorithms. Second, it
describes the use of saturated ground distances in the EMD
framework.

2.1. EMD Algorithms

Early work using cross-bin distances for histogram com-
parison can be found in [33, 39, 38, 28]. Shen and Wong
[33] suggested unfolding two integer histograms, sorting
them and then computing the L; distance between the un-
folded histograms. To compute the modulo matching dis-
tance between cyclic histograms they took the minimum
from all cyclic permutations. This distance is equivalent to
the EMD between two normalized histograms. Werman et
al. [39] showed that this distance is equal to the L distance
between the cumulative histograms. They also proved that
matching two cyclic histograms by only examining cyclic
permutations is optimal. Werman et al. [38] proposed an
O(M log M) algorithm for finding a minimal matching be-
tween two sets of M points on a circle. The algorithm was
adapted by Pele and Werman [26] to compute the EMD be-
tween two N-bin, normalized histograms with time com-
plexity O(N). Peleg et al. [28] suggested using the EMD
for grayscale images and using linear programming to com-
pute it. Rubner et al. [29] suggested using the EMD for
color and texture images and generalized the definition of
the EMD to non-normalized histograms. They computed
the EMD using a specific linear programming algorithm -
the transportation simplex. The algorithm’s worst case time
complexity is exponential. Practical run time was shown
to be super-cubic. Interior-point algorithms or Orlin’s algo-

rithm [25] both have a time complexity of O(N3log/N) and
can also be used.

Ling and Okada proposed EMD-L[20]; i.e. EMD with
L as the ground distance. They showed that if the points
lie on a Manhattan network (e.g. an image), the number of
variables in the LP problem can be reduced from O(N?)
to O(NNV). To execute the EMD-L; computation, they em-
ployed a tree-based algorithm, Tree-EMD. Tree-EMD ex-
ploits the fact that a basic feasible solution of the sim-
plex algorithm-based solver forms a spanning tree when the
EMD-L; is modeled as a network flow optimization prob-
lem. The worst case time complexity is exponential. Empir-
ically, they showed that this algorithm has an average time
complexity of O(N?). Gudmundsson et al. [14] also put
forward this simplification of the LP problem. They sug-
gested an O(N log™ ' N ) algorithm that creates a Manhat-
tan network for a set of N points in R?. The Manhattan
network has O(N log?~! N) vertices and edges. Thus, us-
ing Orlin’s algorithm [25] the EMD-L; can be computed
with a time complexity of O(N?log?*~' N). Indyk and
Thaper [17] proposed approximating EMD-L; by embed-
ding it into the L; norm. Embedding time complexity is
O(Ndlog A), where N is the feature set size, d is the fea-
ture space dimension and A is the diameter of the union
of the two feature sets. Grauman and Darrell [13] substi-
tuted L; with histogram intersection in order to approxi-
mate partial matching. Shirdhonkar and Jacobs [35] pre-
sented a linear-time algorithm for approximating EMD-L;
for low dimensional histograms using the sum of absolute
values of the weighted wavelet coefficients of the difference
histogram. Lv et al. [23] proposed embedding an EMD with
thresholded ground distance into the L4 norm. Khot and
Naor [18] showed that any embedding of the EMD over the
d-dimensional Hamming cube into L must incur a distor-
tion of Q(d), thus losing practically all distance informa-
tion. Andoni er al. [5] showed that for sets with cardinali-
ties upper bounded by a parameter s, the distortion reduces
to O(log slogd). A practical reduction in accuracy due to
the approximation was reported by [12, 23, 35]. In order to
increase precision, Grauman and Darrell [12] and Lv et al.
[23] used the approximation as a filter that returns a set of
similar objects, and then used the exact EMD computation
to rerank these objects. Khanh Do Ba et al. [6] presented
optimal algorithms for estimating EMD-L; or EMD with a
tree-metric as the ground distance.

Pele and Werman [26] proposed EMD - a new defi-
nition of the EMD for non-normalized histograms. They
showed that unlike Rubner’s definition, the E/]\ﬁ? is also
a metric for non-normalized histograms. In additiorﬁlgy

proposed a linear-time algorithm that computes the EM D
with a ground distance of 0 for corresponding bins, 1 for
adjacent bins and 2 for farther bins and for the extra mass.
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2.2. Saturated Ground Distances with the EMD

Rubner er al. [29] and Ruzon and Tomasi [30] used a
negative exponent function to saturate their ground distance
for the tasks of image retrieval and edge detection, respec-
tively. The negative exponent function practically saturates
large distances to a fixed threshold (see Fig. 2). The neg-
ative exponent function is used for saturating a metric, be-
cause it does not break the triangle inequality. We show that
this is true as well for a thresholding function. Note that sat-
urating with a negative exponent might have the drawback
of changing the behavior of small distances (see Fig. 2).

Lv et al. [23] conducted image retrieval experiments
from a database of 10000 images. They showed that thresh-
olding the ground distance improves precision.

Pele and Werman [26] compared several distances for the
task of SIFT matching. They proposed an EMD variant.
The ground distance of this EMD is 0 for corresponding
bins, 1 for adjacent bins and 2 for farther bins and for the
extra mass; i.e. a thresholded distance. They showed that
this distance improves SIFT matching, while E/]\E) with
non-thresholded distances negatively affects performance.

3. The Earth Mover’s Distance

The Earth Mover’s Distance (EMD) [29] is defined as the
minimal cost that must be paid to transform one histogram
into the other, where there is a “ground distance” between

the basic features that are aggregated into the histogram.

Given two histograms P, () the EMD as defined by Rub-
ner et al. [29] is:

EMD(P, Q) = ({l?irl} S fidig) /O fig) st fiy 20
it i
S <P Y fi; Q5 D fiy =min(d>_ Py Qj)
J i ©J i J

where {f;;} denotes the flows. Each f;; represents the
amount transported from the ith supply to the jth demand.
We call d;; the ground distance between bin ¢ and bin j in

the histograms. Pele and Werman [26] suggested EMD:

EMDa(P,Q) = ({I?_il_ﬂ} D fudip) +1Y> Pi=) Q;lormax di;
ERRN i j ’

s.t EMD constraints

Pele and Werman proved that EMD is a metric for
any two histograms if the ground distance is a metric and
a > 0.5 [26]. The metric property enables fast algorithms
for nearest neighbor searches [41, 7]), fast clustering [10]
and large margin classifiers [15, 36]. Because of these ad-
vantages we will use the Pele and Werman definition in the
remainder of this paper (with v = 1).

1200 Distances to the blue color

distance

o Small distances to the blue color

distance

(a-zoom)
ciede2000
min (ciede2000, 20)
20(1 — exp(—ciede2000/5
20(1 — exp(—ciede2000/ 1

o)
Figure 2. This figure should be viewed in color, preferably on a
computer screen. The x-axes are colors, sorted by their distance to
the blue color. The distances are the ciede2000 distance [22] and
three monotonic saturating transformations applied to it: two neg-
ative exponent functions and a thresholding function; i.e. a mini-
mum function. There are several observations we can derive from
these graphs. First, although ciede2000 is considered as state of
the art, it is still far from perfect, especially in the medium to large
distance range. Second, color distances should be saturated. For
example, although red and yellow are both simply different from
blue, the ciede2000 distance between blue and red is 56, while the
ciede2000 distance between blue and yellow is 102. This was al-
ready noted by Rubner et al. [29] and Ruzon and Tomasi [30] who
suggested using a negative exponent function because it is a met-
ric, if the distance that is raised to the power is a metric. In this
paper we show that the thresholding function is also a metric if the
thresholded distance is a metric. Finally, for most of the range,
the negative exponent and thresholded functions are very similar.
They mostly differ for small distances, where the negative expo-
nent changes the original distance, while the thresholding func-
tion does not. Since the ciede2000 was designed and perceptually
tested on this range [22], changing the distances on this range can
negatively affect performance as was noted by Rubner ef al. for
the Euclidean distance on L*a*b* space [29].

4. Thresholded Distances

Thresholded distances are distances that saturate to a
threshold; i.e. let d(a, b) be a distance measure between two
features - a, b. The thresholded distance with a threshold of
t > 0 is defined as: d:(a,b) = min(d(a, b), t).

We now prove that if d is a metric then d; is also a met-
ric. Non-negativity and symmetry hold trivially, so we only
need to prove that the triangle inequality holds.

di(a,b) 4+ di(b,¢) > di(a,c) if d is a metric.

We consider three cases:
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1. (dt(a, b) < t) A (dt(b,c) < t) A (dt(a, ) < t) =
(dt (a,b) = d(a, b)) A (dt(b, ¢) = d(b, c))/\
(dt (a,c) = d(a, c)) = dt(a,b) + di(b,c) > di(a,c)

2. (dt(a, b) = t) v (dt(b, ) = t) =
di(a,b) +di(b,c) >t > di(a,c)
3. di(a,c) =t =

Assume for contradiction that:
di(a,b) +d¢(b,c) < di(a,c) =t =
(dea,b) <) A (dt(b, e) < t) =

(dt(a, b) = d(a, b)) A (dt(b, ¢) = d(b, c)> =
d(a,b) +d(b,c) < t =d¢(a,c) < d(a,c) =
d(a,b) +d(b, c) < d(a,c)

The last statement contradicts the triangle inequality of the
metric d. The union of cases 2 and 3 is complement of
case 1. Thus, cases 1-3 constitute the entire event space.
Therefore we proved that d; is a metric if d is a metric. It is
noteworthy that d; can be a metric even if d is not a metric.

5. Fast Computation of the EMD with a
Thresholded Ground Distance

This section describes an algorithm that computes

EMD or EMD with a thresholded ground distance an order
of magnitude faster than the original algorithm 2.

EMD can be solved by a min-cost-flow algorithm. Our
algorithm makes a simple transformation of the flow net-
work that reduces the number of edges. If N is the number
of bins in the histogram, the flow network of E/]\ﬁ) has
exactly N2 + N edges (see (a) in Fig. 1). N2 edges con-
nect all sources to all sinks. The extra [NV edges connect all
sources to the sink that handles the difference between the
total mass of the two histograms (we assume without loss
of generality that the source histogram total mass is greater
or equal to the sink histogram total mass).

The transformation (see Fig. 1) first removes all edges
with cost t. Second, it adds a new transhipment vertex. Fi-
nally we connect all sources to this vertex with edges of cost
t and connect the vertex to all sinks with edges of cost 0.

Let K be the average number of edges going out of each
bin that have a cost different than the threshold ¢. The new
flow network has NK + N edges from the original net-
work, N edges connecting all sources to the transhipment
vertex and N edges connecting the transhipment vertex to
all sinks. Thus the total number of edges is N (K + 3). If

2Note that the optimization problems in EMD and EMD are exactly
the same. Thus, any algorithm that computes EMD can compute EM D
and vice versa with the same time complexity.

K is a constant the number of edges is O(N') as opposed to
the original ©(N?). Note that the new flow network is no
longer a transportation problem, but a transhipment prob-
lem [2]. However, both are special cases of the min-cost-
flow problem. Thus any algorithm that solves min-cost-flow
can be used for both problems.

Let K = O(1); the min-cost-flow optimization problem
can be solved with a worst case time complexity of:

(N?1log U+/1og C),

(N?log? N)))

O(min((N?loglog U log(NC)),
(N?logUlog N),

The algorithms are taken from: Ahuja et al. [1], Edmonds

and Karp [9], used with Ahuja et al.’s shortest path algo-
rithm [3], Edmonds and Karp [9], used with Fredman and
Tarjan’s shortest path algorithm [11] and Orlin [25]. Algo-
rithms with a C' term assume integral cost coefficients that
are bounded by C. Algorithms with a U term assume inte-
gral supply and demands that are bounded by U.

‘We now prove that the original and the transformed flow
networks have the same minimum-cost solution. Let O be
the original flow network and let 7 be the transformed flow
network. We first show how to create a feasible flow in T,
given a feasible flow in O. Both flows will have the same
cost. This will prove that the min-cost-flow solution for 7
is smaller or equal to the min-cost-flow solution for O.

Given a feasible flow in O, all flows on edges that were
not removed are copied to the new flow for 7. For flows
on edges with the cost of the threshold, we transfer the flow
through the transhipment vertex. This gives us a feasible
flow in 7" with the same cost.

We now show how to create a feasible flow in O, given
a feasible flow in 7. The flow in O will have a cost smaller
or equal to the cost of the flow in 7. This will prove that
the min-cost-flow solution for 7 is greater or equal to the
min-cost-flow solution for @. Together with the previous
proof, this shows that the two flow networks have the same
min-cost solution.

Given a feasible flow in 7T, all flows on edges not con-
nected to the transhipment vertex are copied to O. Second,
each unit of mass that flows from vertex 4 to the tranship-
ment vertex and then from the transhipment vertex to vertex
7 is transferred directly from vertex ¢ to vertex j. We note
that this is possible since O is fully bi-partite. We also note
that the cost of the new flow will be smaller or equal to the
cost of the flow in 7 as all edges in O have a cost smaller
or equal to the threshold. This completes the proof.

It is noteworthy that the algorithmic technique presented
in this paper can be applied not only with thresholded
ground distance, but in any case where a group of vertexes
can be connected to another group with the same cost. For
example, we can add a transhipment vertex for all vertexes
with a specific color (e.g. blue) such that the cost of the
transportation between them will be smaller than the cost of
the transportation to other colors.
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5.1. Implementation notes

Flow-netowrk set-up time. For a fixed histogram
configuration (e.g. SIFT) the flow-network can be pre-
computed once. For sparse histograms (signatures), the
flow-network set-up time complexity is O(M N ); where N
is the number of non-zero bins and M is the average number
of neighbors that need to be checked if the distance is lower
than the threshold. M is at most IV but it can be lower. For
example, let ¢ be the threshold. If we are comparing two
images and the ground distance is a linear combination of
the spatial distance and the color distance, then the distance
computation to vertexes with L distance bigger or equal
to ¢ can be skipped. That is, the set-up time in this case is
O(min(t?N, N?)).

Pre-flowing Monge sequences. A Monge sequence
contains edges in the flow-network that can be pre-flowed
(in the order of the sequence) without changing the min-
cost solution [24, 16]. For example, if the ground-distance
is a metric, zero-cost edges are Monge sequence [38]. Alon
et al. [4] introduced an efficient algorithm which determines
the longest Monge sequence.

Pre-flowing to/from isolated nodes. If a source is con-
nected only to the new transhipment vertex, we can pre-flow
all its mass to the transhipment vertex and eliminate it. If
a sink is connected only to the transhipment vertex, we can
add its deficit to the transhipment vertex and eliminate it.

6. Results

In this section we present results for image retrieval.
However, note that we do not claim that this is the opti-
mal way to achieve image retrieval. Image retrieval is used
here as an example of an application where the EMD has
already been used, to show that thresholded distances yield
good results. The major contribution is the faster algorithm.
We show that by using our algorithm the running time de-
creases by an order of magnitude.

We use a database that contains 773 landscape images
from the COREL database, that were also used in Wang et
al. [37]. The dataset contains 10 classes®: People in Africa,
Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephants,
Flowers, Horses, Mountains and Food. The number of im-
ages in each class ranges from 50 to 100.

From each class we selected 5 images as query images
(numbers 1, 10, ..., 40). Then we searched for the 50 near-
est neighbors for each query image. We computed the dis-
tance of each image to the query image and its reflection
and took the minimum. We present results for three types of
image representations: histograms of orientations, L*a*b*

3The original database contains some visually ambiguous classes such
as Africa that also contains images of beaches in Africa. We manually
removed these ambiguous images.

color space and finally linear combinations of the two. We
conclude this section with running times.

6.1. SIFT

Our first image representation is orientation histograms.
The first representation - SIFT is a 6 x 8 x 8 SIFT descriptor
[21] computed globally on the whole image. The second
representation - CSIFT is a SIFT-like descriptor. This de-
scriptor tackles two problems related to the SIFT descriptor
for color image retrieval. First, it takes into account color
edges by computing the SIFT descriptor on the compass
edge image [30]. Note that on an edge image there should
be no distinction between opposite directions (0 and 180 for
example). Thus, opposite directions are considered equal.
The second drawback of the SIFT descriptor for color im-
age retrieval is its normalization. The normalization is prob-
lematic as we lose the distinctive cue of the amount of edge
points in the image. In the CSIFT computation we skip the
normalization step. The final CSIFT descriptor has 6 x 8 x 8
bins. We used the following distances for these descriptors:

L1, Lo, 2, EMD-L; [20], SIFTyus [26] and EMD. Let
M be the number of orientation bins. The ground distances
between bins (x;, y;, 0;) and (x5, y;, 0;) we use are:

dr =||(zi,y:) — (x5, y5)|l2 + min(Jo; — 0j|, M — |o; — 0;])
dT :min(dR,T)

The results are given in Fig. 4(a). Due to lack of space
we present for each distance measure, the descriptor with
which it performed best. Results of all pairs of descriptors
and distance measures can be found at:
Ws.huji.ac.il/%7eofirpele/FastEMD/. The
EM D with a thresholded ground distance performs much
better than EM D with a non-thresholded ground distance.
In fact, while EMD with a non-thresholded ground dis-
tance negatively affects performance, EMD with a thresh-
olded ground distance improves performance. L is equiv-
alent to m with the Kroncker ¢ ground distance [26].

SIFT,sr is the sum of E/]\TD over all the spatial cells
(each spatial cell contains one orientation histogram). The
ground distance for the orientation histograms is: min(|o; —
0], M —|o;— 0], 2). It was shown in [26] and here that this
addition of a small invariance to the orientations shifts im-
proves performance. Our distance also adds a small invari-
ance to spatial shifts and thus improves performance even
more. However, using a non-thresholded distance adds too
much invariance at the expense of distinctiveness, thus re-
ducing performance.

6.2. L*a*b* Color Space

The state of the art color distance is Agg - ciede2000
on L*a*b* color space[22, 32] (see also Fig. 2). Thus,
our second type of image representation is simply a resized
color image in the L*a*b* space. We resized each image to
32 x 48 and converted them to L*a*b* space. Let I, [ be
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dC a = 0.3

dC2 o = 0.3

Figure 3. Example of image retrieval using the best distance - EMD with thresholded ground distances (top row) and the second best
distance - L like distance (bottom row). The nearest neighbor images are ordered from left to right by their distance from the query image.
Note that by allowing small deformations in the EMD we obtain results that are visually similar to the query image. Allowing larger
deformations; i.e. using a non-thresholded distance negatively affects results.

the two L*a*b* images. We used the following distances:

L1iAoo = Y (Moo (I (x,y), I2(x,)))
z,y

LlAgO = Z(min(AOO(Il ({E, y)7 12(:1?, y))7 T))
z,Y

LaBoo = Y _(Aoo(I1(z,y), I2(z, 1))

z,Y

LaAfy = Y (min(Aoo (11 (z,y), I2(x,v)), T))?
z,y

We also used E/M\D, where the ground distance between
two piX@lS (LL‘Z', Yi, Li, a;, bl), (.Z‘j, Yj, Lj, a;, b]) is:
der = min(|[(zs,yi) — (2, y;)|l2 + Doo((Li, ai, bi), (Lj, a;,b5))

1)

The results for EMD with a non-thresholded ground dis-
tance are not reported here since the experiments have not
finished running (more than ten days). Results are presented
in Fig. 4(b). As shown, EMD with a thresholded ground
distance outperforms all other distances.

6.3. Color and SIFT Combined

In the experiments described in this section, we used lin-
ear combinations of the orientation histograms and color.
We combined the two best distances for each of the methods
(note that each distance was normalized so that its average
is 1):

dC =« (E/]-W\D dT:Q,CSIFT> + (1 — a) (E/]\-J\D dCT:20>
We also used a combination of the two L1 -like distances:

dC2 = a (L1, SIFT) + (1 — a) (LIAOTO:”)

We used three different «v values: 0.1, 0.3, 0.5. The
results appear in Fig. 4(c)-(f). The combination of two
E M D with thresholded distances performs best, especially
for hard classes such as People in Africa and Food. The im-
age results examples for one “Food” query image are given
in Fig. 3. More image results can be found at:
www.cs.huji.ac.il/%7eofirpele/FastEMD/

6.4. Running Time Results

The algorithm we used for the computation of the EMD
is successive shortest path [2]. This algorithm has a worst
time complexity of O(N2Ulog N). All runs were con-
ducted on a Pentium 2.8GHz. A comparison of the prac-
tical running time of our algorithm and other methods are
given in tables 1,2 and in Fig. 5. It is noteworthy that EMD-
L1 accuracy is much lower than our method and even lower
than the simple L; norm (see Fig. 4(a)). Indyk and Thaper
[17] and Shirdhonkar and Jacobs [35] approximate EMD-
Ly, so their accuracy is even lower. SIFT,; gives good
accuracy (second best, see Fig. 4(a)) and is faster than our
method. Our method has better accuracy. More importantly,
SIFT s is limited to a thresholded L1 norm with a thresh-
old of 2 for 1-dimensional histograms. Our method is much
more general. For example, SIFTs; cannot be applied to
colors. Lv et al. [23] report that their approximation runs 5
times faster than Rubner’s. Our method runs 75-700 times
faster and returns the exact distance.

Our Rubner’s [29] EMD-L[20]
0.04s 3s 0.04s

SIFTys:[26]
0.00007s

Table 1. 384-dimensional SIFT-like descriptors matching time

Our Rubner’s [29] EMD-L¢[20] SIFT,s[26]
6s 4400s N.A. N.A.

Table 2. L*a*b* images matching time. Note that EMD- L can be
applied only to regular grids and SIFTp;sr can be applied only to
1-dimensional histograms.
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Figure 4. Results for image retrieval. Our method is in bold font. (a) Orientation histogram results. Due to lack of space we present for
each distance measure, the descriptor with which it performed best. Results of all pairs of descriptors and distance measures can be found

at:

www.cs.huji.ac.il/%7eofirpele/FastEMD/. (b) L*a*b* color space results. (c)-(f) Linear combinations of color and orien-
tation results, where (c) is an average over all classes and (d)-(f) are for specific classes: (d) People in Africa (e) Food (f) Flowers. There

are two key observations. First, EMD with thresholded ground distances performs best. Second, some of the classes are easy, e.g. (f)
Flowers. For these classes £ M D does not improve performance. However, for harder classes, such as (d) People in Africa and (e) Food,

EMD significantly improves results. Image result examples for one “Food” query image are given in Fig. 3.
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Figure 5. log-log running time graph for matching grayscale im-
ages with N pixels.. Linear fit for our algorithm: 2.3 x log(N) —
16. Linear fit for Rubner’s algorithm: 3.6 x log(N) — 21.

7. Conclusions

We presented a new family of Earth Mover’s Distances.
Members of this family correspond to the way humans per-

ceive distances, and are robust to outlier noise and quanti-
zation effects. We proved that they are metrics. We also
proposed a fast algorithm. The algorithm runs an order of
magnitude faster than the original algorithm, which makes
it possible to compute the EMD on large histograms and
databases. Experimental results show that EMD has the best
performance when it is used with thresholded distances.
This has also been shown by Rubner et al. [29] and Ru-
zon and Tomasi [30] for saturated distances, which are es-
sentially thresholded. This has also been demonstrated for
thresholded distances by Lv et al. [23] and Pele and Wer-
man [26]. Our results strengthen these findings. Most im-
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portantly, our paper shows that using a thresholded distance
not only improves accuracy, but reduces the run time, us-
ing our algorithm. The speed can be further improved using
techniques such as Bayesian sequential hypothesis testing
[27]. The project homepage, including code (C++ and Mat-
lab wrappers) is at:
www.cs.huji.ac.il/%7eofirpele/FastEMD/.
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Abstract. We present a new histogram distance family, the Quadratic-Chi (QC).
QC members are Quadratic-Form distances with a cross-bin y2-like normaliza-
tion. The cross-bin y?-like normalization reduces the effect of large bins having
undo influence. Normalization was shown to be helpful in many cases, where the
x? histogram distance outperformed the Lo norm. However, x? is sensitive to
quantization effects, such as caused by light changes, shape deformations etc. The
Quadratic-Form part of QC members takes care of cross-bin relationships (e.g.
red and orange), alleviating the quantization problem. We present two new cross-
bin histogram distance properties: Similarity-Matrix-Quantization-Invariance
and Sparseness-Invariance and show that QC distances have these properties. We
also show that experimentally they boost performance. QC distances computation
time complexity is linear in the number of non-zero entries in the bin-similarity
matrix and histograms and it can easily be parallelized. We present results for im-
age retrieval using the Scale Invariant Feature Transform (SIFT) and color image
descriptors. In addition, we present results for shape classification using Shape
Context (SC) and Inner Distance Shape Context (IDSC). We show that the new
QC members outperform state of the art distances for these tasks, while having a
short running time. The experimental results show that both the cross-bin prop-
erty and the normalization are important.

1 Introduction

It is common practice to use bin-to-bin distances such as the L; and Ly norms for
comparing histograms. This practice assumes that the histogram domains are aligned.
However this assumption is violated in many cases due to quantization, shape deforma-
tion, light changes, etc. Bin-to-bin distances depend on the number of bins. If it is low,
the distance is robust, but not discriminative, if it is high, the distance is discrimina-
tive, but not robust. Distances that take into account cross-bin relationships (cross-bin
distances) can be both robust and discriminative.

There are two kinds of cross-bin distances. The first is the Quadratic-Form distance
[1]. Let P and @) be two histograms and A the bin-similarity matrix. The Quadratic-
Form distance is defined as:

QF (P,Q)=V(P-Q)TAP-Q) M
When the bin-similarity matrix A is the inverse of the covariance matrix, the
Quadratic-Form distance is called the Mahalanobis distance. If the bin-similarity ma-
trix is positive-definitive, then the Quadratic-Form distance is a metric. In this case the

K. Daniilidis, P. Maragos, N. Paragios (Eds.): ECCV 2010, Part II, LNCS 6312, pp. 749-762, 2010.
¢ Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. This figure should be viewed in color, preferably on a computer screen. A toy example
showing the behavior of distances that reduce the effect of large bins and the behavior of distances
that take cross-bin relationships into account. We show four color histograms, each histogram has
four colors: red, blue, purple, and yellow. The Quadratic-Form (QF), the Earth Mover Distance
(EMD) and the L; norm do not reduce the effect of large bins. Thus, they rank (query) to
be more similar to (c) than to (a). X2 considers (a) to be more similar, but as it does not take
cross-bin relationships into account it fails with (). Our proposed members of the Quadratic-Chi
histogram distance family, QCN and QCS consider (a) to be most similar, (b) the second and (c)
the least similar as they take into account cross-bin relationships and reduce the effect of large
bins, using an appropriate normalization.

Quadratic-Form distance is the L, norm between linear transformations of P and Q). If
the bin-similarity matrix is positive-semidefinite, then the Quadratic-Form distance is a
semi-metric.

The second type of distance that takes into account cross-bin relationships is the
Earth Mover’s Distance (EMD). EMD was defined by Rubner et al. [2] as the minimal
cost that must be paid to transform one histogram (P) into the other (Q)):

EMD (P,Q) = mln Z Fi;Dij)/( Z Fi;) st Fi; >0

ZFz‘j <P ZFij < Qj ZFij = min(ZPi,ZQj)
J i 6 i j

2

where { ;;} denotes the flows. Each ;; represents the amount transported from the
ith supply to the jth demand. We call D;; the ground distance between bin 7 and bin
J. If D;; is a metric, the EMD as defined by Rubner is a metric only for normalized

histograms. Recently Pele and Werman [3] suggested EMD:

EMD,, (P, Q) = (min Y Fi;Dij) +|)_ P =) Q;lamax Dy
2 : J N 3)

s.t EMD constraints

%, EMD is a metric for all histograms [3]. For normalized

histograms EMD and EMD are equal (e.g. Fig. 1).

If D;; is a metric and o >
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In many natural histograms the difference between large bins is less important than
the difference between small bins and should be reduced. See for example Fig. 1. The
Chi-Squared (x?) is a histogram distance that takes this into account. It is defined as:

(Pi
=23 (mro) @

The x? histogram distance comes from the x? test-statistic [4] where it is used to test

the fit between a distribution and observed frequencies. In this paper the histograms
are not necessarily normalized, and thus not probabilities vectors. X2 was success-
fully used for texture and object categories classification [5,6,7], near duplicate im-
age identification[8], local descriptors matching [9], shape classification [10,11] and
boundary detection [12]. The X2, like other bin-to-bin distances such as the L; and the
Lo norms, is sensitive to quantization effects.

2  Our Contribution

In this paper we present a new cross-bin histogram distance family: Quadratic-Chi
(QC). Like the Quadratic-Form, its members take cross-bin relationships into account.
Like the 2, its members reduce the effect of differences caused by bins with large
values. We discuss QC members’ properties, including a formalization of a two new
cross-bin histogram distance properties: Similarity-Matrix-Quantization-Invariance
and Sparseness-Invariance. We show that all QC members and the EMD have these
properties. We also show importance experimentally.

For full histograms QC distances computation time is linear in the number of non-
zero entries in the bin-similarity matrix. In this case, QC distances can be implemented
with 5 lines of Matlab code (see Algorithm 1). For two sparse histograms (for exam-
ple bag-of-words histograms) with a total of non-zeros entries and an average of K
non-zeros entries in each row of the similarity matrix, a QC distance computation time
complexity is O( K). See code (C++ and Matlab wrappers) at:
http://www.cs.huji.ac.il/~ofirpele/QC/. Finally, QC distances’ paralleliza-
tion is trivial.

We present results for image retrieval on the Corel dataset using the SIFT descrip-
tor [13] and small color images. We also present results for shape classification using

Algorithm 1. Quadratic-Chi Matlab Code for Full Histograms
function dist= QC(P,Q,A,m)

Zz= (P+Q)

% 1 can be any number as 7Z_i==0 iff D_1i=0
Z(z==0)= 1;

Z= 7. m;

D= (P-Q)./Z;

[¢)

% max is redundant if A is positive-semidefinite
dist= sqgrt( max(D*AxD’,0) );
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Shape Context (SC) [10] and Inner Distance Shape Context (IDSC) [11]. QC mem-
bers performance is excellent. They outperform state of the art distances including x?2,

QF, L, Lo, EMDI[14], SIFT,[3], EMD-L,[15], Diffusion[16], Bhattacharyya [17],
Kullback-Leibler[18] and Jensen-Shannon[19] while having a short running time. We
have found that the normalization is very important. Surprisingly, excellent performance
was achieved using a new bin-to-bin distance from the QC family, that has a large nor-
malization factor. Its cross-bin version yielded an additional improvement, outperform-
ing all other distances for SIFT, SC and IDSC.

3 The Quadratic-Chi Histogram Distance Family

3.1 The Quadratic-Chi Histogram Distance Definition

Let P and @ be two non-negative bounded histograms. That is, P,Q € [0, U]". Let
A be a non-negative symmetric bounded bin-similarity matrix such that each diagonal
element is bigger or equal to every other element in its row (this demand is weaker than
being a strongly dominant matrix). Thatis, A € [0, U] x [0, U]" and Vi, j Ai; > A;j.
Let 0 < < 1 be the normalization factor. A Quadratic-Chi (QC) histogram distance
is defined as:

PZ'—Qi B _Q.
Ca(P,Q) = Py i ©
QCL(PQ) = S (P4 0)As " S (Pt QoA ™ O

]

where we define 8 = 0. If A is positive-semidefinite, the argument inside the square
root (the sum) is non-negative. If A is not positive-semidefinite we can get non-real
(complex) distances. This is true also for the Quadratic-Form (Eq. 1). We prefer not to
restrict ourselves to positive-semidefinite matrices. On the other hand, we don’t want
non-real distances. So, we define a complex distance as zero. In practice, this was never
needed, even with non-positive-semidefinite matrices. This is due to the fact that the
eigenvectors of the similarity matrices corresponding to negative eigenvalues were very
far from smooth, while the difference vector for natural histograms P and () is usually
very smooth, see Fig. 2.

Each addend’s denominator inside the square root is zero if and only if the addend’s
numerator is zero. A QCZ} (P, Q) distance is continuous. In particular, if the addend’s
denominator tends to zero, the whole addend tends to zero. Proofs are in [20].

The Quadratic-Chi distance family generalizes both the Quadratic-Form (QF) and
a monotonic transformation of x2. That is, QC(;‘(P, Q) =QF4(P,Q) and if I is the

identity matrix, QC{ 5(P, Q) = v/2x2(P, Q).

3.2 Metric Properties

There are three conditions for a distance function, D, to be a semi-metric. The first is
non-negativity (i.e. D(P, Q) > 0), the second is symmetry (i.e. D(P,Q) = D(Q, P))
and the third is subadditivity (i.e. D(P,Q) < D(P, K)+D(K, Q)). D is a metric if it is
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Fig.2. This figure illustrates why it is not likely to get negative values in the square root ar-
gument of a QC distance for natural histograms and a typical similarity matrix. P and @) are
two SIFT histograms. Z is the normalized difference vector. That is: Z; = > i —

. m
C (& c1

¢ = - Negative values are represented with red, positive values are represented with
black. F is one of the eigenvectors of the similarity matrix that we used in the experiments which
correspond to a negative eigenvalue. 7 is very smooth while F is very non-smooth. This is typical

of eigenvectors with negative values with typical parameters.

a semi-metric and it also has the property of identity of indiscernibles (i.e. D(P, Q) = 0
if and only if P = Q).

A QCA distance without the square root, is non-negative if the bin-similarity matrix,
A, is positive-semidefinite. If A is positive-definitive, then it also has the property of
identity of indiscernibles. This follows directly from the fact that the argument inside
the square root in a QC histogram distance is a quadratic-form between two vectors. A
QC histogram distance is symmetric if the bin-similarity matrix, A, is symmetric.

We now discuss subadditivity (i.e. D(P, Q) < D(P, K) + D(K, Q)) for several dis-
tances. The y? histogram distance is not subadditive. For example let ¢« = 0, k = 1,
j = 2we get X2(i,j) = 1 > x?(i,k) + x*(k,j) = 2. However, V/x2 is sub-
additive for one and two dimensional non-negative histograms (verified by analysis).
Experimentally it appears that \/ x? is subadditive for an N-dimensional non-negative
histograms. Experimentally, QC members with the identity matrix seems to be subaddi-
tive for non-negative histograms. However, QC members with some positive-definitive
bin-similarity matrices are not subadditive. The question when the QQC histogram dis-
tances are subadditive is currently unresolved. An additional discussion about triangle
inequality can be found in Jacobs et al. [21].

4 Cross-Bin Histogram Distance Properties

4.1 The Similarity-Matrix-Quantization-Invariance Property

The Similarity-Matrix-Quantization-Invariance property ensures that if two bins in the
histograms have been erroneously quantized, this will not affect the distance. Mathe-
matically we define this as:

Definition 1. Let D be a cross-bin histogram distance between two histograms P and
Q and let A be the bin-similarity/distance matrix. We assume P, ) and A are non-
negative and that A is symmetric. Let Ay, . be the kth row of A. Let = 1,..., N
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be a non-negative vector and 0 < o < 1. We define **° =1[...,a p,..., p+ (1 —
Q) k,...J. Thatis, %P isa transformation of ~ where (1 — )  mass has moved
from bin k to bin b. We define D to be Similarity-Matrix-Quantization-Invariant if:

A, =A =V 0<a<l1,0<8<1D (PQ)=D (P"",Q" ") (6)

We prove that EMD, EMD and all the Quadratic-Chi histogram distances are
Similarity-Matrix-Quantization-Invariant in the appendix [20].

4.2 The Sparseness-Invariance Property

The Sparseness-Invariance property ensures that distances between sparse histograms
will be equal to distances between full histograms. Mathematically we define this as:

Definition 2. Let D be a cross-bin histogram distance between two histograms P €

Noand Q € N and let A be the N x N bin similarity/distance matrix. Let A" be
any (N + 1) x (N + 1) matrix whose upper-left sub-matrix equals A. We define D to
be Sparseness-Invariant if:

D ([P,....,P1,]@1,....,Q ) =D ([P1,...,P ,0],[Q1,...,Q ,0]) 7
QC members, EMD and the EMD are Sparseness-Invariant directly from their defi-
nitions. A stronger property called Extension-Invariance was proposed by D’ Agostino
and Dardanoni for bin-to-bin distances [22]. This property requires that, if both his-
tograms are extended by concatenating each of them with the same vector (not nec-
essarily zeros), the distance is left unaltered. Cross-bin distances assumes dependence
between histogram bins, thus this requirement is too strong for them.

4.3 Cross-Bin Histogram Distance Properties Discussion

A Sparseness-Invariant cross-bin histogram distance does not depend on the specific
representation of the histograms (full or sparse). A Similarity-Matrix-Quantization-
Invariant cross-bin histogram distance encompass its cross-bin relationships only in
the bin-similarity matrix. Intuitively such properties are desirable. In the appendix [20],
we compare experimentally distances which resembles QC distances, but are either not
Similarity-Matrix-Quantization-Invariant or not Sparseness-Invariant. The comparison
shows that these properties considerably boost performance (especially for sparse color
histograms).

Rubner et al. [2,23] claim that one of the key advantages of the Earth Mover’s Dis-
tance is that each compared object may be represented by an individual (possibly with
a different number of bins) binning that is adapted to its specific distribution. The
Quadratic-Form is regarded as not having this property (see for example, Table 1 in
[23]). Since all the Quadratic-Chi histogram distances (including the Quadratic-Form)
are both Similarity-Matrix-Quantization-Invariant and Sparseness-Invariant there is no
obstacle to using them with individual binning; i.e. to use them to compare histograms
that were adapted to each object individually.

Similarity-Matrix-Quantization-Invariant and Sparness-Invariant can contradict.
For example, any distance applied to the transformed vectors P} = > (P.)A.; and
Q: = > .(Qc)Aci is Similarity-Matrix-Quantization-Invariant. However the x? dis-
tance between P’ and Q' is not Sparseness-Invariant (with respect to P and Q).
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S Implementation Notes

5.1 The Similarity Matrix and the Normalization Factor

It is desirable to have a transformation from a distance matrix into a similarity matrix,
as many spaces are equipped with a useful distance (e.g. color space [24]). Hafner et al.
[1] proposed this transformation:

Ai' =1
J maxij(Dij)

®)

Another possibility for choosing a similarity matrix is by using cross validation. How-
ever, we think that like for the Quadratic-Form, learning the similarity matrix (and for
QC also the normalization factor) will be the best way to adjust them. This is left for
future work. Currently we suggest to use thresholded ground distances as was used in
[2,25,3,14] and choosing the normalization factor by cross validation.

5.2 Efficient Online Bin-Similarity Matrix Computation

For a fixed histogram configuration (e.g. SIFT, SC and IDSC) the bin-similarity matrix
can be pre-computed once. Then, each distance computation is linear in the number of
non-zero entries in the bin-similarity matrix.

There are cases where the bin-similarity matrix can not be pre-computed. For exam-
ple, in our color experiments (Section 6.1), we used NV x M color images as sparse
histograms. That is, the query histogram was: [1,...,1,0,...,0] and each image being
compared to the query was represented by the histogram: [0,...,0,1, ..., 1]. Note that
the full histogram dimension is M x N x 2563, computing an (M x N x 2563)? sim-
ilarity matrix offline is not feasible. We can compute the similarity online for each pair
of sparse histograms in O((N M )?) time. We now discuss how to do it more efficiently.

If we are comparing two images (as in Section 6.1) we can use a similarity matrix
that gives far-away pixels zero similarity (see Eq. 10). Then, we can simply compare
each pixel in one image to its corresponding 7" x T spatial neighbors in the second
image. This reduces running time to O(N MT?). Using this technique, it is important
to use a sparse representation for the bin-similarity matrix.

6 Results

We present results using the newly defined distances and state of the art distances, for
image retrieval using SIFT-like descriptors and color image descriptors. In addition,
we present results for shape classification using Inner Distance Shape Context (IDSC).
More results for shape classification using SC, can be found in the appendix [20].

6.1 Image Retrieval Results

In this section we present results for image retrieval using the same benchmark as Pele
and Werman [14]. We employed a database that contained 773 landscape images from
the COREL database that were also used in Wang et al. [26]. The dataset has 10 classes!:

! The original database contains some visually ambiguous classes such as Africa that also con-
tains images of beaches in Africa. We used the filtered image dataset that was downloaded
from: http://www.cs.huji.ac.il/~ofirpele/FastEMD/



756 O. Pele and M. Werman

People in Africa, Beaches, Outdoor Buildings, Buses, Dinosaurs, Elephants, Flowers,
Horses, Mountains and Food. The number of images in each class ranges from 50 to
100. From each class we selected 5 images as query images (images 1, 10,...,40).
Then we searched for the 50 nearest neighbors for each query image. We computed the
distance of each image to the query image and its reflection and took the minimum. We
present results for two types of image representations: SIFT-like descriptors and small
L*a*b* images.

SIFT-like Descriptors. The first representation - SIFT is a 6 x 8 x 8 SIFT descriptor
[13] computed globally on the whole image. The second representation - CSIFT is a
SIFT-like descriptor on a color-edge image. See [14] for more details.

We experimented with two new types of QC distances. The first is QCS‘_ 5, which is
a cross-bin generalization of \/ 2x2, which we call Quadratic-Chi-Squared (QCS). The
second is QCE,A_g, which has a larger normalization factor, which we call Quadratic-Chi-
Normalized (QCN). We do not use QC;?L with > 1 due to discontinuity problems,
see appendix [20] (practically, QC’l4 had slightly poorer results compared to ch‘_g).
We also experimented with the Quadratic-Form (QF) distance which is QCS‘. For all
of these distances we used the bin-similarity matrix in Eq. 8. Let M = 8 be the num-
ber of orientation bins, as in Pele and Werman [14], the ground distance between bins
(331'7 Yi, OZ') and (l‘j, Yi, Oj) 1s:

dr(i,j) = min  |[(x:,y:) — (z5,y5)||2 + min(lo; — 0|, M — [o; —0j]) , T )

We also used the identity matrix as a similarity matrix for all the above distances. We
also compared to Lo and x2. QF! = Lo, and nearest neighbors of x? and QCS are the
same.

D
We also compared to four EMD variants. The first was EMD; with D = dr (Eq.9) as

D
in Pele and Werman [3]. The second was the L; norm which is equal to EMD, 5 with D
equals to the Kronecker delta multiplied by two. The third is SIFT,s;[3] which is the sum

of EMD over all the spatial cells (each spatial cell contains one orientation histogram).
The ground distance for the orientation histograms is: min(|o; — 0|, M — |o; — 0;/,2)
(M 1s the number of orientation bins). The fourth was the EMD-L[15] which is EMD
with L; as the ground distance. We also tried non-thresholded ground distances (which
produce non-sparse similarity matrices). However, the results were poor. This is in line
with Pele and Werman’s findings that cross-bin distances should be used with thresh-
olded ground distances [14]. Finally, we compared to the Diffusion distance proposed
by Ling and Okada [16] and to three probabilistic based distances: Bhattacharyya [17],
Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19] (we added Matlab’s epsilon
to all histogram bins when computing KL and JS throughout the paper, as they are not
well defined if there is a zero bin, without doing so accuracy was very low).

For each distance measure, we present the descriptor (SIFT/CSIFT) with which it
performed best. The results for all the pairs of descriptors and distance measures can
be found in the appendix[20]. The results are presented in Fig. 3(a) and show that

=2

e h
QCN!~ E (QCN with the similarity matrix: 4;; = 1 — dT:QZ(m)) outperformed

T=2

all other methods. EMD‘llT:2 ranked second. The computation of QCN'~ TP was 266
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times faster than EMDilT:2 , see Table 2 in page 760. QCN ranked third, which shows
the importance of the normalization factor.

All cross-bin distances that use thresholded ground distances outperformed their bin-
by-bin versions. The figure also shows that y? and QF improve upon Ly. QCN and QCS
which are mathematically sound combinations of x? and QF outperformed both.

L*a*b* Images. Our second type of image representation is a small L*a*b* image. We
resized each image to 32 x 48 and converted them to L*a*b* space. The state of the art
color distance is o9 - CIEDE2000 on L*a*b* color space[24,27]. As it is meaningful
only for small distances we threshold it (as in [2,25,14]).

Again, we experimented with QCS, QCN and QF distances using the bin-similarity
matrix in Eq. 8. The ground distance between two pixels (x;, y;, L;, a;, b;),

(z5,y;, Lj, aj, bj):
s(4,7) = |(zi,v:) — (z5,95)]|2

min ((S(’L,j) + Aoo((Li, Qs , bz), (Lj, aj, b]))),Tl) if S(i,j) < Ty (10)

dCT T Z',' = .
172 (6, 7) T otherwise

This distance is similar to the one used by [14], except that distances with spatial
difference larger than the threshold 75 are set to the maximum threshold 7. This was
done to accelerate the online computation of the bin-similarity matrix. The accuracy
using this distance is the same as using the distance from Pele and Werman [14]. See

appendix [20]. We also used EMD with dcr, 1, (Eq. 10) as a ground distance. Let I, I>
be the two L*a*b* images. We also used the following distances:

L1Aoo = Z(Aoo([1($,y),12(m,y))) LlAgO = Z(min(AOO(Il(mvy)vI2($7y))7T))

LyAoo = > (Aoo(I1(x,y), I2(2,)))”  L2Agy = Y _ (min(Aoo(Ni(x,y), I2(x,9)),T))?

QCNI , X2, Lo, L1, SIFT:[3], EMD-L[15], the Diffusion[16], Bhattacharyya [17],
KL [18] and JS [19] distances cannot be applied to L*a*b* images as they are either
bin-to-bin distances or applicable only to Manhattan networks.

: : 1 ©T1=20,T2=5 der) —20,75=5
We present results in Fig. 3. As shown, QCS 20 and EMD,
dey =20, T9=5

[14] distances ranked first. QCSl_ 20 ran 300 times faster (see Table 2). How-

ever, since the computation of the bin-similarity matrix cannot be offline here, the real
L ey =20,To=5 . .
gain is a factor of 17. The QF* 20 distance ranked last, which shows the im-

portance of the normalization factor of the QC histogram members.

Although a QC distance alleviates quantization problems, EMD does it better, in-
stead of matching everything to everything it finds the optimal matching. EMD how-
ever, does not reduce the effect of large bins. We conjecture that a variant of EMD
which will reduce the effect of large bins will have an excellent performance.

6.2 Shape Classification Results

In this section we present results for shape classification using the same framework as
Ling et al. [11,15,28]. We test for shape classification with the Inner Distance Shape
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dscp—
Table 1. Shape classification results. QCN*~ El outperformed all other distances.

Top 1 Top 2 Top 3 Top 4 AUC% Top 1 Top 2 Top 3 Top 4 AUC%
dscp_— Sasdsep —

QON'~ 277 39 38 38 34 0950 EMD, = SR ot
NT 4 94 1 :
Qc dseq—n 0 37 3633 090 gpr g 38 37 27 22 0848
QCsS'™ 2 39 35 38 28 0912 EMD-L1[15] 39 35 38 30 0917
QCSI 40 34 37 27  0.907 Diffusion[16] 39 35 34 23 0.880
X2 40 36 36 21 0.902 Bhattacharyya[17] 40 37 32 23 0.895

L dser_g KL[18] 40 38 36 29 0.938
LQF 2 ‘3‘8 ;g‘ 22 }g 823; JS[19] 40 35 37 21 0.900
2 .

Context (IDSC) [11]. The original Shape Context (SC) descriptor was proposed by
Belongie et al. [10]. Belongie et al. [10] and Ling and Jacobs [11] used the x? distance
for comparing shape context histograms. Ling and Okada [15] showed that replacing
x? with EMD-L; improves results. We show that QC members yields the best results.

We tested on the articulated shape data set [11,28], that contains 40 images from 8
different objects. Each object has 5 images articulated to different degrees. The dataset
1s very challenging because of the similarity between different objects. The original SC
had a very poor performance on this dataset, see appendix [20].

Again, we experimented with QCS, QCN and QF distances with the bin-similarity
matrix in Eq. 8. The ground distance between two bins ( ;,0;), ( ;,0;) was (M is the
number of orientation bins):

dser (i, j) = min ((Jd; — d;] + min(o; — o], M — |o; — 0,1}, T) (an

We also used the identity matrix as a similarity matrix, and thus we also compare to L.
x2 and QCS’ distances are not equivalent here as the distance is not used for nearest
neighbors. We refer the reader to Belongie et al. paper to see its usage [10]. Practically,
QCS/ slightly outperformed x? in this task, see Table 1.

We also compared to four EMD variants: EMDf with D = dscr (Eq. 11), the L,
norm, SIFT[3] and EMD-L[15]. Finally, we compared to the Diffusion distance
proposed by Ling and Okada [16] and to three probabilistic based distances: Bhat-
tacharyya [17], Kullback-Leibler (KL) [18] and Jensen-Shannon (JS) [19].

To evaluate results, for each image, the four most similar matches are chosen from
other images in the dataset. The retrieval result is summarized as the number of 1st,

2nd, 3rd and 4th most similar matches that come from the correct object. Table 1 shows
T=2

the retrieval results. The QCN*~ "4 outperformed all the other methods. QCN” per-
formance is again excellent, which shows the importance of the normalization factor.

Again all cross-bin distances outperformed their bin-by-bin versions. Again, x? and
QF improved upon Ls. QCN and QCS which are mathematically sound combinations
of x? and QF outperformed both.

6.3 Running Time Results

All runs were conducted on a Pentium 2.8GHz. A comparison of the practical running
time of all distances is given in Table 2. Clearly QCN and QCS distances are fast to
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Fig. 3. Results for image retrieval.

(a) SIFT-like descriptors. For each distance measure, we present the descriptor (SIFT/CSIFT)
with which it performed best. The results for all the pairs of descriptors and distance measures
can be found in the appendix[20]. There are several key observations. First, the QC members
performance is excellent. QCN'~ N (QCN with the similarity matrix: A;; =1 — 7=2 Iy
outperformed all other distances. EMD,” =2 ranked second, but its computation was 266 times

dp_

slower than QCN'~ 5 computation (see Table 2). Second, all cross-bin versions of the dis-
tances (with dr or a transformation of it) performed better than their bin-by-bin versions (with
the identity matrix or the Kronecker delta function). Third, QCN ranked third, although its a
bin-to-bin distance. This shows the importance of the normalization factor. Finally, x* and QF
improve upon Lz. However, x* does not take cross-bin relationships into account and QF does
not reduce the effect of large bins. QCS and QCN histogram distances, which are mathematically

sound combinations of x? and QF have the two properties and outperformed both.
(b) L*a*b* images results. QCN , x? Lo, L1, SIFTpsr[3], EMD-L1[15], Diffusion[16],

dey =20, T9 =
Bhattacharyya[17], KL[18] and JS[19] distances are not applicable here. QCS'~ 1T
dCT1:20,T2:5

and EMD?CTFQO’TQ:5 [14] ranked first. QCS'~ 20 computation is 300 times faster

de, = = . . . C e . . . .
than EMD 1CT1 ~207275 without taking the bin-similarity matrix computation into account and 17
de =20,T9=5 )
times faster when it is taken into account (see Table 2). QF'~ 20 ranked last, which

shows the importance of the normalization factor in QC members.
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Table 2. (SIFT) 384-dimensional SIFT-like descriptors matching time (in milliseconds). The dis-
tances from left to right are the same as the distances in Fig. 3 (a) from up to down.

(IDSC) 60-dimensional IDSC histograms matching time (in microseconds). The distances from
left to right are the same as the distances in Table 1 from up to down.

(L*a*b*) 32 x 48 L*a*b* images matching time (in milliseconds). The distances from left to
right are the same as the distances in Fig. 3 (b) from up to down. In parentheses is the time it
takes to compute the distance and the bin-similarity matrix as it cannot be computed offline.

Descriptor QCN42 QCN’ QCS#2 Qcs?! 2  QF42 L, EMDP2[14] L;  SIFTpsr[3]

(SIFT) 0.15 0.1 0.07 0.014 0.013 0.05 0.011 40 0.011 0.07
(IDSC) 6.41 299 232 035 034 1.25 0.14 13375 0.32 0.31

Descriptor EMD-L[15] Diffusion[16] JS[19]  KL[18] Bhattacharyya[l7]

(SIFT) 40 0.27 0.088 0.048 0.015

(IDSC) 20.57 3.15 1.40 853 17.17

Descriptor QCN420 QCS#20 QF420  EMDP20[14] Ly AT=20 Ly Aoy LaAL=20 LyAgg

(L*a*b*) 20 (370) 19 (369) 11 (361) 6000 (6350) 3.2 32 32 3.2

compute. This is consistent with their linear time complexity. The only non-linear time

distances are EMD [14] and EMD-L[15] which are also practically much slower than
the other methods. Our method can be easily parallelized, taking advantage of multi-
core computers or the GPU.

7 Conclusions

We presented a new cross-bin distance family - the Quadratic-Chi (QC). QC distances
have many desirable properties. Like the Quadratic-Form histogram distance they take
into account cross-bin relationships. Like x? they reduce the effect of large bins. We for-
malized two new cross-bin properties, Similarity-Matrix-Quantization-Invariance and
Sparseness -Invariance. QC members were shown to have both. Finally, QC distance
computation time is linear in the number of non-zero entries in the bin-similarity ma-
trix. Experimentally, QC outperformed state of the art distances, while having a very
short run-time.

There are several open questions that we still need to explore. The first is for which
QC distances does the the triangle inequality holds for. The second is whether we can
change the Earth Mover’s Distance so that it will also reduce the effect of large bins.
Concave-cost network flow [29] seems to be the right direction for future work although
it presents two major obstacles. First, the concave-cost network flow optimization is NP-
hard [29]. However, there are available approximations [29,30]. Second, simply using
concave-cost flow networks will result in a distance which is not Similarity-Matrix-
Quantization-Invariant. We would also like to explore whether metric learning methods
such as [31,32,33,34,35,36,37,38] can be generalized for the Quadratic-Chi histogram
distance. Assent et al. [39] have suggested methods that accelerate database retrieval
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that uses Quadratic-Form distances. Generalizing these methods for the Quadratic-Chi
distances is of interest. Finally, other computer vision applications such as tracking
can use the QC distances. The project homepage, including code (C++ and Matlab
wrappers) is at: http://www.cs.huji.ac.il/~ofirpele/QC/.
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I nterpolated-Discretized Metric Learning using
Linear Programming

Abstract

Non-Mahalanobis distances suchy@sand robust estimators increase accuracy in
many machine learning and computer vision applicationsvéver, the distances
are usually hand picked and cannot be learned efficientiy ftata. In this paper,
we present a new non-Mahalanobis distance family/ mkex polated-Discretized
(ID) distance family, and show how to efficiently learn itsg@aeters. Once an ID
distance is learned, computation of the distance is limetird dimension and does
not depend on the number of training examples (unlike kerrethods in which
computing a distance scales linearly in the number of tngirixamples). Many
metric learning methods can be used with our ID distancesg&¥eonstrate one
possible way of learning ID distances using the Large Malggarest Neighbor
(LMNN) framework [1]. With ID distances, the LMNN optimizah problem
is a linear program. Finally, we show that our method oftetpetiorms other
state-of-the-art metric learning approaches.

1 Introduction

Distance learning is of fundamental importance in machéaerling. Learned distances can be used
to improve algorithms which rely on distance computatiamshsas nearest neighbor classification
[1, 2], energy-based models [1, 3], supervised kernel nmash{such as GPs or SVMs) and even
unsupervised clustering algorithms [4].

Most of the work on metric learning [1, 2, 4, 5, 6, 7, 8, 9, 10] ids concentrated on learning a
Mahalanobis distance, which is equivalent to learning edirtransformation of the data and then
using the standard Euclidean distance. Fett’ be two vectors, the squared Mahalanobis distance
between them is parameterized by a positive-semidefin&®{Pnatrix, M :

Mahalanobiéz’, 77) = (7' — )T M (z' — i) @)

The PSD constraint oi/ is required for obtaining non-negative distances. Alsamiplies that
the M matrix can be expressed a$ = LLT for some real matrix.. Thus, the distance can be
computed as the squared Euclidean norm between lineanlsftnaned vectors:

Mahalanobi&z’, #7) = ||L# — L# ||2 )

Note that, as defined above, the square root of a Mahalanaasure is a pseudo-metric, as the
distance between two different vectors might be zero. Cdimgthe distance between never-seen
examples using Mahalanobis distances scales quadraiicdile dimension. Thénterpolated Dis-
cretized (ID) distance we introduce in the current work scales liheir the dimension with just a
small constant memory overhead.

Although much of the metric-learning work has focused onNfadalanobis distance, this measure
has some inherent limitations. The most important one isitliga function only of the difference
between input vectorg’ — #/. Thus, it will give the same distance whenever two vectoke lihe
same difference vector. For example, a Mahalanobis distasiitnot able to differentiate between



(# = 42,77 = 40) and (7' = 2,77 = 0). To overcome this limitation several metric learning
methods have been proposed [1, 3, 7, 9, 12]. We discuss thetbeds in section 4.

Another approach to overcoming the above limitation is tplaja function directly tax?, 27 such
that the distance is not invariant# — 7. One particularly successful instance of this approach is
they? distance, which has recently received considerable ateint the computer vision literature.

It has been used in state-of-the-art: contour detectiorsegthentation algorithms [13], descriptors
matching [14, 15], shape classification [15, 16] and imageeral [15] to name a few. Another
related approach is robust estimators which were sucdlsefied optical flow computation [17].
Although successfuly? and robust estimators ahard-coded and cannot be naturally learned or
improved using data.

Another related shortcoming of the Mahalanobis distangeasit is invariant to where® and i’
are in space, as long as their difference vector is the saris. i undesirable in many cases, as
we would often like to normalize the distances by the rangenefinput vectors, e.g., as in thé
metric. In other words, the Mahalanobis distance is limiteterms of the bin to bin (or feature to
feature) relationships it can capture.

In this work, we propose thinterpolated-Discretized (ID) distance. Our measure can overcome
some of the key inherent limitations of the Mahalnobis distg and is also more flexible than other
approaches such &8. Specifically, an ID distance can model different distarwes different parts
of the space.

Our approach contains two key elements. The first is a digat&in of each feature int6' values
such that the interaction between any two features is repted by an arbitrary’ x C' matrix.
This allows us to model arbitrary relations between the teatdres. However, such a coarsely
guantized representation neglects relevant informatidhe original value, and is thus undesirable.
To overcome this, we employ a careful interpolation apphnpachich does take into account the
original feature values.

The resulting ID measure is continuous in feature space ightyhexpressive due to its different
treatment of different feature regimes. Before going irgtads, we provide an illustrative example
in Fig. 1. The figure shows how thg measure can be well approximated via ID with o@ly= 10
clusters per feature. Note that in general, the goal is nepfiwoximate a known distance such as
x?2, but to learn to approximate the bestknown distance. A nice property of ID, that can also be
seen in Fig. 1 is that fof’ = 2 it exactly equals thé, norm. This again highlights the fact that ID
is continuous, but becomes more and more detailed ssncreased.

In the current work, we do not represent cross-bin deperiegnit is possible to extend our method
such that ID distances will also be able to model relatigpshietween features, so it will be able to
learn both Mahalanobis type of distances and bin-to-bitades and variants in between. This can
be done by discretizing pairs of values. However, this widrease the computational complexity
considerably. We decided to concentrate on bin-to-bin IRagtice since it is interesting to check

ID,C = 2 equiv. toly ID,.C =3 ID,C =10

20 A(a) 60 80 20 A()b) 60 80 20 A(C) 60 80 20 At)d) 60 80

Figure 1: An illustration of a 1-dimensional® distance approximation using ID distances with
different numbers of discretization points. Panel (d) shtke originaly? distance. In (a) we see
that using just two points of discretization (i.€!,= 2 corresponding to the rang@, 90]), the ID
distance in this case is equal to thenorm. In (b), using three points of discretizatifin45, 90]
(i.e., C = 3), the ID distance starts to resemb{é, although the difference is noticeable. In (c),
usingC = 10 corresponding to the rande, 10, ..., 90], the ID distance is almost identical §G.
We emphasize that the goal is not to approximate a knownntistauch as¢?, but to learn to
approximate the besinknown distance.



what can be achieved with those, especially since other svalleady showed that the diagonal
Mahalanobis Metric Learning achieves competitive req@lt48] and they are very fast to compute.

A useful property of an ID distance is that it is a linear conattion of its parameters. Thus, many of
the proposed metric learning optimization problems are@sfly suited for use with an ID distance.
We demonstrate learning ID distance parameters using tige Margin Nearest Neighbor (LMNN)
framework [1]. LMNN with an ID distance is a linear program.

We evaluate our method on a variety of standard datasetshamdthat it often outperforms state-
of-the-art metric learning approaches. We thus believelibalistances are very useful distances
which can be learned effectively from data.

2 Thelnterpolated-Discretized Distance Family

We begin by describing the ID distance between two scalars’. The vector case will easily
follow. An ID distance between two scalar features is patanwed via a vector and a matrix. The
first parameter is a sorted vector@fcluster centers of possible values of the feat{we;. . ., v¢].
The second parameter is a mathik € R€*¢, wherel/, ;, corresponds to the distance betwegn
andv,. See Fig. 2.

14 14
11 11

<

X

%\
0 0
<\,

Figure 2: An lllustration ofi-dimensional ID distance parameters. Feature values asgecéd into
C = 5 cluster centers—4, 0,6, 11, 14]. The full 5 x 5 matrix of distances between pairs of cluster
centers values is illustrated as edges.

However, we would not like the distance to have the same wshenz?, 2/ belong to a given pair
of clusters. Rather, we would like the measure to smoothty wéth the feature values. One natural
way to achieve this is via interpolation. Given two scal#ns,two closest cluster centers are found
for each. Next, four coefficients are computed. Each coefftatorresponds to one pair of cluster
centers and is a normalized triangle area. See Fig. 3 forigésa and illustration of how the
coefficients are computed. Finally, the ID distance is thra stithe coefficients multiplied by their
corresponding entries from the matrix of the distances betwpairs of cluster centers values:

4
ID(2",27) =) tag)s0) Ma(e) b(t)

a(l) = ;E;) = argmax{ve < o'}
a(3) = a(4) = arg;nin{vc >z} (3)
b(1) = b(3) = argrjnax{vc <2’}
b(2) = b(4) = argi}lin{vc > 27}

In the above the coefficients, ;) correspond to the interpolation coefficient. See Fig. 3.

We now discuss properties of the ID distance. There are toaditions for a distance function,
D, to be a semimetric. The first ion-negativity (i.e. D(7%,#7) > 0). The second isdentity (i.e.
D(#,37) = 0iff & = 27). The third issymmetry (i.e. D(Z%,27) = D(#7,#")). A natural question
is what properties does the matrix need to satisfy in order for the resulting ID measoréd a
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Figure 3: An illustration of how the coefficients are complfer z* = 8, 27 = 4 where the cluster
centers aref—4, 0,6, 11, 14] (as in Fig. 2). In (al), the closest cluster centers(@ré1) for 2* = 8
and(0,6) for 27 = 4. Thus, the four discrete distances ard; », M5 3, My o and My 3 which
correspond to the four cluster center pai(8§;0), (6,6), (11,0) and(11,6). To compute thex
coefficients (the interpolation step), we check in (a2) Wbkethe poin{z® = 8,27 = 4) is above or
below the line connecting, 0) with (11, 6). Then, the normalized triangle areas are the coefficients
of the corresponding discrete distances. Note that sirepdint was above the line, the coefficient
of M, o is zero.

In (b1), (b2) we see a degenerate case where the interpoiativetween)/; 5 and My 4. If we
enforced the identity property alt, these will be zero and the resulting distance is also zero.
This interpolation has several advantages. First, thdtmeguistance will have the identity prop-
erty if we enforce the distance between two identical clusémiters to be zero. Second, using this
interpolation results in a distance which is always cordirsiand differentiable except at the dis-
cretization points. This means, for example, that an |Dadis¢ is not very sensitive to the number
of clusters chosen. Finally, an ID distance is equivalerd tweighted/; norm if the number of
cluster centers is two and the distance between identigsierl centers is set to zero.

semimetric. It’s straightforward to see that the condiion/ are simply that it satisfies/; ; > 0
forall i # j, as well asM; ; = 0 for all i andM; ; = M, ; for all 4, 5. All these can be easily
enforced via linear constraints on the elements/of

A semimetric is also a metric if it has the propertysobadditivity (i.e. D(z%,#7) < D(z%, &%) +
D(z*,77)). We can transform a semimetric into a non-continuous méyilinearly mapping all
strictly bigger than zero distances to the rafige]. Thus itis very easy to transform an ID distance
into a metric. An additional discussion about triangle gy can be found in Jacobs et al. [19].

To generalize taVv features we define a separate matiik? for each feature.

3 Interpolated-Discretized Large Margin Nearest Neighbor Metric Learning

In this section we show how to learn an ID distance using thige.Margin Nearest Neighbor Metric
Learning framework [1]. We start by describing the LMNN fartation.

Let {(z%,y")}7, denote a set of labeled examples with input8’ € R" and discrete (but not
necessarily binary) class labgl. We use the binary matriy;; € {0, 1} to indicate whether or not
the labelg’ andy’ match.

In addition to the class labey;, for each input?’ we also specifyt “target” neighbors, that is;
other inputs with the same labgi that we wish to have minimal distance . In the absence

of any knowledge, the target neighbors can beftlodosest nearest neighbors using the Euclidean
distance. This is also what we use in this paper. We denoterthia a target neighbor of’ as
7~

The LMNN framework has a loss function with two terms. Thetfinses to minimize the distance
between allz’ and their corresponding target neighbors. The second, tmigoush vectors with
different labels away, such that the distance to them miheslistance to the target neighbor (the
margin) will be bigger or equal to 1. Since this might be usfeke, slack variables are added and



the second term is the sum of slack variables. The two terenseighted with a parametgr Using
ID distances the optimization of LMNN is:

min  (1—p) > ID@F, &) +p Y (1—yu)éj subjectto:

M. i ji iy~
Vi j il D@, 7)) — ID(@, &) > 1— &y
Vi, gl >0 (4)
N 4
D@, &) => > ol vy My o)
n=1t=1

vV n,a,b Mg, >0

This linear program allows to learn any bin-to-bin distafggction. In order to learn a semi-metric,
the following constraints should be added:

vV on,a Mg,=0
Vna#b Mjy>e 5)
Y n,a,b M(Zb:]nga

wheree is some strictly positive small scalar. We use- 10~°. We can also use an upper bound on
M™ entries as a regularizer. We used one as an upper bound.

As we discussed before, we can transform a semimetric intenacontinuous metric by linearly
mapping all strictly bigger than zero distances to the rdiig8l. Thus it is very easy to transform
an ID distance into a metric.

Finally, we can add monotone constraints as a regularizer:
Vn,a<b<c My <M. M. <M, (6)

4 Related Work

Our method builds in a novel direction on the success of pte/metric learning approaches. As
Weinberger and Saul [1] conjectured, more adaptive tramsftions of the input space can lead to
improved performance. Our method allows to enlarge the murobthe learned parameters, while
the computation of the distance between two never-seenm@gans only linear in the dimension.

Chopra et al. [3] proposed to learn a convolutional neurabsea non-linear transformation before
applying the/s norm. They showed excellent results on image data. Baberdo[@2] suggested

a boosting framework for learning non-Mahalanobis metridsey also presented excellent results
on image data. These methods are non-convex and thus théy suifer from local minimas and
training is sensitive to parameters.

Kernel methods were also proposed in order to learn a Mabbisulistance over non-linear trans-
formations of the data [1, 7, 9]. Computing such a distande/éen two vectors scales linear in
the number of training examples, which makes it impractfioalarge datasets. Computing our 1D
distances does not depend on the number of training examples

A family of non-Mahalanobis distances recently proposethé&sQudaratic-Chi (QC) [15]. The
QC family generalizes both the Mahalanobis distance andytheistance. A QC distance have
parameters that can be learned. However, a serious lioitédi that it can only modey?-like
distances. In addition, it is applicable only to non-negatiectors. Finally, it is non-convex with
respect to its parameters, so learning them is hard.

Rosales and Fung [5] also propose learning metrics viadipesgramming. However, while we
learn a non-Mahalanobis distance, their method learnsfamsiillg of Mahalanobis distance. That s,
their method is restricted to learning a Mahalanobis distamhich is parameterized with a diagonal
dominant matrix.



5 Results

We evaluated our approach on ten UCI data sets of varyingasidalifficulty. Table 1 summarizes
the data sets properties. Except for Spectf all experinheasalts are averaged over several runs
of randomly generated stratified 70/30 splits of the data Fpectf data set has a predefined train-
ing/test split. All experiments are averaged over 100 rersept for the Steel database where it is
averaged over 20 runs and for the Cardio dataset where ieraged over 5 runs.

Iris  Wine lon Sonar Transf Spectf Breast Glass Steel Cardio

examples 150 178 351 208 748 267 106 214 1941 2126
classes 3 3 2 2 2 2 6 6 7 10
dimension 4 13 34 60 9 44 9 9 27 21

Table 1: Properties of data sets

We applied kNN classifiers with different distances. We canag using our learned ID distances to
using Mahalanobis distance learned with ITML [9] and witk triginal LMNN [1].

All methods were used with target neighbdts= 3. ITML was used with the default pa-
rameters in the distribution of the code. That is, the slaakiable parametery which in-
versely correspond to the regularization magnitude wasdwsing cross-validation over the values
{0.0001, 0.001, 0.01,0.1, 1, 10, 100, 1000, 10000}. The LMNN and ID-LMNN . parameter was set
as0.5 (the default in LMNN code). Our ID-LMNN approach was testeithviwo different numbers
of clustersC'. First, C = 2 which is equivalent to learning weightéd norm using the LMNN
framework. Second;’ = 10 which allows to capture the non-linearities in the data.

We used Mosek [20] as the LP solver, except for Steel and Gardére we used a subgradient solver
as the problems do not fit in memory. We are working on acciheréhe subgradient method using
active set method as in LMNN and using stochastic subgradiethods. We believe that it will
allow us to work on much larger datasets.

The results are presented in Fig. 4. There are several @sars. First, for almost all databases,
metric learning is better than naive Euclidean distancecof®, learned ID distance with' =

2, which is equivalent to a learned weightaddistance, has an excellent performance. Learned
diagonal Mahalanobis distances (equivalent to weight®ds known to have competitive results
[2, 18]. In our experiments, learned weightedoutperforms the full Mahalanobis distances in
many cases.

Finally, learning our proposed ID distances with= 10 is a strong competitor on all datasets and
outperformed other methods on most of the datasets, efipébmlarger datasets and those with a
large number of classes.

6 Conclusions

We presented a new distance family - thier polated-Discretized (ID) distances. ID distances have
many desirable properties. First, they can approximatebemyo-bin distance. Second, as they
are linear combination of parameters, they can be learrieicetly. Third, using linear constraints
we can enforce them to be a metric without needing more cotrg@mi-definite requirements on
the parameters as in Mahalanobis distances. Finally, we $taswn that experimentally learned 1D
distances have excellent performance and they often dotpestate-of-the-art learned distances.

We note that on data with a large quantization problems, asdmage pixels values, our method
is likely not to perform well. However, modern computer gisimethods do not use image pixels
values as a feature, but use state-of-the-art descriptiots & SIFT [21] which do not suffer too
much from quantization problems.

Future work will include the generalization of ID distanceniodel “cross-bin” relationships. This
can be done by discretizing pairs of values. However, thikb& much more time demanding and
this issue need to be resolved.
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Figure 4: Test errors with standard deviations for KNN dfasgtion using several distances. In our
experiments, learned weightédoutperforms the full Mahalanobis distances in many cases. O
proposed ID distances with = 10 is a strong competitor on all datasets and outperformed othe
methods on most of the datasets, especially the largeredatard those with a large number of
classes.
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Chapter 6

Conclusions

We presented several new distance functions and efficient algorithms for their
computation. The distance functions were designed to be robust to common
image noise and deformation. On the other hand, the distance functions
were designed to be as distinctive as possible. The distances which balance
between robustness and distinctiveness improved on the state-of-the-art of
several computer vision applications such as image retrieval and shape clas-
sification. Improved results using our distance functions were also reported
by other researchers, both from the computer vision community and outside
of it (e.g. [54-57]).

Our first conjecture was that real-world noise has two main components.
First, limited deformation noise. Second, not limited outlier noise. For ex-
ample, deformation noise can change blue to some other shade of blue; On
the other hand, outlier noise (e.g. occlusion) can change blue to any other
color. We proposed using saturated cross-bin distances, that is, distances
where different outliers receive the same value.

We also presented EM D, a new generalization of the transportation
distance for non-normalized histograms. Unlike the classic generalization
(EMD), EMD is a metric even when the histograms are non-normalized.

Additionally, EMD is often better than EMD in practice. We have shown
that these distances outperformed state-of-the-art distance functions in many
computer vision applications.

A second observation was that image histograms have a unique statis-
tical behavior since large values usually indicates large variance. y? was
proposed as a distance function that overcomes this problem [8, 9]. x? is
the second order Taylor expansion of the Jensen Shannon (JS) divergence
[7] and thus x? and JS results are almost identical [8-10]. We suggested a
new family of histogram distances, called Quadratic-Chi (QC). Members of

this family are robust to quantization effects and have a y*-like normaliza-

o7



tion. We also proposed two new cross-bin distances properties Similarity-
Matriz- Quantization-Invariance and Sparseness-Invariance and a proof that
EMD and QC distances have these properties. We demonstrated excellent
experimental results, also showing the practical importance of the two new
properties.

Finally, we described a novel method for non-Mahalanobis metric learn-
ing, Interpolated-Discretized Metric Learning. This was motivated by the suc-
cess of our non-Mahalanobis distance, the QC. A QC distance has parameters
that can be learned. However, a serious limitation is that it can only model
x?-like distances. In addition, it is applicable only to non-negative vectors.
Finally, it is non-convex with respect to its parameters, so learning them is
hard. To overcome these problems we suggested a new non-Mahalanobis dis-
tance family, the Interpolated-Discretized (1D) distance family, and showed
how to efficiently learn its parameters. An ID distance can approximate any
unknown distance. Many metric learning methods can be used with our ID
distances. We demonstrated one possible way of learning ID distances us-
ing the Large Margin Nearest Neighbor (LMNN) framework [2]. With ID
distances, the LMNN optimization problem is a linear program. Finally,
we showed that our method often outperforms other state-of-the-art metric
learning approaches.

Future work

The work described in this thesis can be extended in several directions:

e Several algorithmic improvements are planned for the algorithm pre-
sented in chapter 3.

e The algorithms speed can be further improved using techniques such
as Bayesian sequential hypothesis testing [58], metric trees [59-61] and
approximate nearest neighbor [62,63].

e An interesting question is whether we can change the Earth Mover’s
Distance so that it will also reduce the effect of large values. Concave-
cost network flow [64] seems to be the right direction for future work
although it presents two major obstacles. First, the concave-cost net-
work flow optimization is NP hard [64]. However, there are available ap-
proximations [64,65]. Second, simply using concave-cost flow networks
will result in a distance which is not Similarity-Matriz- Quantization-
Invariant.

28



e Generalization of the Interpolated-Discretized distance to model cross-
bin relationships. This can be done by discretizing pairs of values.
However, this will be much more time demanding and this issue need

to be resolved.
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Appendix A. Linear Time EMD,,,, Algorithm

This appendix presents a linear time algorithm for the computation of the Mod-
ulo Earth Mover’s Distance between normalized cyclic histograms. The algorithm
is an adaption of Werman et al. algorithm for bipartite graph matching for points
on a circle [22].

Let A = {0,...,N — 1} be N points, equally spaced, on a circle. Let Q
and P be two normalized histograms of such points. The Modulo Earth Mover’s
Distance (EMD,,op) between @ and P is defined as:

F:{fw
SESP LY f5<Q . > fii=Y Pi=> Qi , fi; =0 ()
3 5 i i j

where Dyop(i,7) is the modulo Ly distance:

EMDyiop(@, P) = min }Z fijDmonl(i, j) st (6)
,J

Dyop (i, j) = min(|i — j|, N — [i = j|) (8)

The linear time EMDyop pseudo code is given in Alg. 1. Lines 2-8 compute
the F function from [22] for masses instead of points; i.e. F'[7] is the total mass
in bins smaller or equal to 7 in @), minus the total mass in bins smaller or equal
to 4 in P. As was noted by Cabrelli and Molter [37] the cutting point of the circle
for the match can be found with a weighted median algorithm when the points
on the circles are sorted. In histograms the points are sorted and equally spaced;
thus it is enough to find the median. Lines 10-16 in Alg. 1 cut the circles into
two lines. Finally, lines 17-31 match groups of points instead of single points.
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Algorithm 1 EMD,,,(Q, P, N)

:D<«<=0

@ < Q[

cP < P[0]

Fl0] < Q[o] — P[]

fori=1to N —1do
cQ < cQ + Q7
cP <= cP + PJi]
Fli] € cQ —cP

9: i < ((index of the median of F') +1) mod N

10: for t =0to N — 1 do

11: It <4

12: i< (i+1) mod N

13: tQ <=0

14: tP <=0

15: iQ < I[tQ)]

16: iP < I[tP]

17: while true do

18:  while Q[iQ]=0 do

19: tQ <=1tQ +1

20: if tQQ = N then
21: return D
22: iQ < I[tQ)]

23: while P[iP]=0 do
24: tP < tP+1

25: if tP = N then
26: return D
27: iP < I[tP]

28: [ < min(Q[iQ), P[iP])

20:  QliQ) < QliQ| -

30:  P[iP]«< PliP]—f

31: D<= fxmin(liQ — iP|,N — |iQ — iP|)
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Appendix B. EMD Metric Proof

In this appendix we prove that if @ > 0.5 and the ground distance is a metric,
EMD (see Eq. 3 in page 3) is a metric. Non-negativity and symmetry hold
trivially in all cases, so we only need to prove that the triangle inequality holds.

Theorem 1. Let A, B,C be three vectors in (]R+)N and let EMD be with a
metric ground distance and o > 0.5, then:

EMDo(A, B) + EMDo(B,C) > EMD4(A,C) (9)

Proof. Given an N x N distance matrix dj;, let d;; be an (N + 1) x (N + 1)
distance matrix such that:

dij 1<i,j<N
Q= amax; j{d;j} i=N+1,j#N+1 (10)
Y Y amaxj{dy} i#AN+1,j=N+1

0 i=N+1,j=N+1

Let S = max(YN, 4;, YN Bi, S | Ci). We define three vectors in RN*1:

A=1[4,8->" A (11)

B=[B,S-> B (12)
Z;l

C=10,8-Y ci (13)

The sum of each of the three vectors equals S. In addition:

EMDy(A,B) = EMD(A, B) x S (14)
EMDu(B,C) = EMD(B,C) x S (15)
EMDo(A,C) = EMD(A,C) x S (16)

where EMD is with the ground distance d;; and EMD is with the ground
distance cilj Rubner et al. [1] proved that the triangle inequality holds for EMD
when the ground distance is a metric and the histograms are normalized. A, B, C
are normalized histograms. If the ground distance d;; is a metric and a > 0.5,
the ground distance (L—j is a metric (an enumeration of all cases proves this).
Thus we get:
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EMD(A, By+EMD(B,C) > EMD(A,C)
J(S>0)
(EMD(A,B) x S)+(EMD(B,C) x §) > (EMD(A,C) x S)
| (Egs. 14, 15, 16)
EMDo (A, B)+EMD,(B,C) > EMDo(A,C)
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Fig. 11. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 12. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 13. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 14. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 15. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 16. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.



18 Pele, Werman

Ubc-3

1

0.52

0.5

o
™~
(0 0]

o
~
(@)}

o
™~
N

recall(#correct/6779)
o
N
IS

o
N

1

0 0.1 0.2 0.3

1-precision
- ==+ [ —— SIFTpisr, SIFT-8/16 / EMDwonp [3,4], SIFT-8/16
- == [ —— L, SIFT-8/16 -=-= EMD-L, [5], SIFT-8/16
-—-=-] Diffusion [2], SIFT-8/16

Fig. 17. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 18. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.



20 Pele, Werman

Ubc-5

0.2

0.19

.:
[
(0 0)

o
H
~

o
=
()]

0.15

recall(#correct/5906)
o
N
N

.:
[
w

—
=
N

0.11ff

0 0.2 0.4 0.6 0.8

1-precision
- ==+ [ —— SIFTpisr, SIFT-8/16 / EMDwop [3,4], SIFT-8/16
- == [ —— L, SIFT-8/16 -=-= EMD-L, [5], SIFT-8/16
-—-=-] Diffusion [2], SIFT-8/16

Fig. 19. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 20. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 21. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 22. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 23. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 24. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 26. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 28. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 29. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 30. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 32. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 33. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 34. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 35. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 36. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 37. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 38. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fig. 39. Results on the Mikolajczyk and Schmid dataset [6]. Should be viewed in color.
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Fast and Robust Earth Mover’s Distances Additional Results -
Image Retrieval Examples

Ofir Pele Michael Werman
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This document contains additional image retrieval redoltshe paper - “Fast and Robust Earth Mover’s Distancép” |
The results are for image retrieval as described in the palpach figure contain a query image on the left and nearest
neighbors images which are ordered from left to right byrtbisstance from the query image. Top row is for the best detan

- EM D with thresholded ground distances. Bottom row is for th@eddest distancek, like distance. By allowing small
deformations in théZ M D we obtain results that are visually similar to the query imagis noteworthy that in some cases
the returned images are not from the same class, but areistiilly similar. For example, Fig.
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Fast and Robust Earth Mover’s Distances Additional Results -
Comparing SIFT/CSIFT with All Distances

Ofir Pele
The Hebrew University of Jerusalem
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This document contains additional results for image re-
trieval that were omitted from the paper - “Fast and Robust
Earth Mover’s Distances™j due to lack of space. The re-
sults are for image retrieval as described in the paper. The
results are for all pairs of descriptors and distance measur
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The Quadratic-Chi Histogram Distance Family -
Appendices

Ofir Pele and Michael Werman

School of Computer Science
The Hebrew University of Jerusalem
{ofirpele,wermah@cs.huiji.ac.il

1 Introduction

This document contains the appendices for the paper “Thel@tie-Chi Histogram
Distance Family” 1], proofs and additional results. In secti@we prove that all
Quadratic-Chi histogram distances are continuous. Ir@eétwe prove that EMD,
EMD and all Quadratic-Chi histogram distances Similarity-Matrix-Quantization-
Invariant In section4 we present additional shape classification results. Iricge6t
we compare experimentally color image distances with artHowut spatial pruning.
In section6 we compare experimentally distances which resembles Q@ndiss, but
are either noSimilarity-Matrix-Quantization-Invarianbr notSparseness-Invariann
section7 we compare the results for all the pairs of descriptors (8USTFT) and dis-
tance measures used in the image retrieval experiments.

2 Quadratic-Chi Histogram Distance Continuity Proof

In this section we prove that a Quadratic-Chi (QC) histogdhstance is continuous.
We first recall its definition.

Let P and @ be two non-negative bounded histograms. Thafig) < [0, U]V,
where the bound/ can be any finite number. Let be a non-negative symmetric
bounded bin-similarity matrix such that each diagonal &letris bigger or equal to
every other element in its row (this demand is weaker thangbaistrongly dominant
matrix) and to 1. Thatisd € [0, U] x [0, U] andVi,j A; > A;; andVi A;; > 1.
Let0 < m < 1 be the normalization factor. A Quadratic-Chi (QC) histogrdistance
is defined as:

A _ (P — Qi) (P — Q) -
QG Q) = $Z ((Zcm m @L.)Aci)”L) ((ZC(PC T Qcmcj)m) Ay (1)

j

Theorem 1. Each addend denominatafy  (P. + Q) Aci)™ (O (Pe +Qc)Ac)™, is
zero only if the addend numeratdi®; — Q;)(P; — Q;)A;;, isS zero.
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Proof.
O (P + Q) Act) ™ (O (Pe +Qc) Acy)™ = 0 = @)
(P + Qi) Au)™ (P + Q) Aj)™ = = (3)
(Pi=0AQi=0)V(P; =0AQ; =0) = 4
(P = Qi) =0)V((P; — Q;) =0) = (5)

(Pi = Qi)(P; — Q;)Ai; =0 (6)
Eqgs.3,4 and6 are true as everything is non-negative ahgd > 1.

We defineo% = 0. So, in order to prove continuity, we need to prove that wiéh
addend’s denominator tends to zero, the whole addend term=d (this is the only
point where discontinuity can occur).

Theorem 2.
O (Pe+ Qo) Ac)™ (D (Pe 4 Qc)Aey)™ — 0 =
( (P — Qi) ) ( (P — Qj) )A,%o @
(Ec(Pc + QC)ACi)m (Zc(Pc + QC)ACj)m !
Proof.
(Z(P + Qc)Aci)™ (Z (Pe+Qc)Aci)™ — 0 = (8)
(P + Qi )A-i)m((P +Q;)A4;;)™ — 0 = 9)
(P + Qi)™ = 0)V((P; +Q;)™ —0) = (10
)V(

(P %0)/\ Qlao (P; = 0) A (Q; — 0))

I

(11)

Vv
7 (P — Qi) Aij =0 =  (12)
(P + Q )Au (P +Qj)A;)™"

(P - Qi) (P — Q) )
<(ZC(PC +QC)A“)’"> ((ZC(PC T @)Aa)’") A=t = 1

Eq.9is true as everything is non-negative and> 0. Eq.10is true as if the whole
product tends to zero, at least one of its multiplicands khtand to zero andl;; > 1
andA;; > 1. Eq.11is true as everything is non-negative and> 0. Eq.12is true
as|(P, — Qi) < |(P: + Q)| Ai; and|(P; — Q)| < [(P; +Q;)|A4;; and0 < m < 1
(note that the strictly smaller than one is required here)ewerything is bounded. Eq.
13finishes the proof and is true as:

(P — Qi) _(P-Q)
(s <@ 5 arag=) -
(P —Qj) (P — Q)
‘ <(ZC(P«: + Qc)ch)m> ‘ - ‘ < ((P; + Qj)Ajj)m> ‘ .
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3 EMD, EMD and Quadratic-Chi Histogram Distances
Similarity-Matrix-Quantization-I nvariance Proof

In this section we prove that EM[E/I\/ITD and all Quadratic-Chi histogram distances are
Similarity-Matrix-Quantization-InvarianiWe recall
Similarity-Matrix-Quantization-Invarianceefinition:

Definition 1. Let D be a cross-bin histogram distance between two histogrBraad
@ and let A be the bin-similarity/distance matrix. We assufig and A are non-
negative and that! is symmetric. Le#,, . be thekth row of A. LetV = [V4,..., Vx]
be a non-negative vector aid< o < 1. We defind’ %> = [... aVj,..., Vi, + (1 —
a)Vi,...]. Thatis,V**? is a transformation ofV where(1 — a)V; mass has moved
from bink to binb. We definéD to beSimilarity-Matrix-Quantization-Invariant:

Ap. =4, =V 0<a<1,0<8<1 DAYPQ)=DAP*" QFFb) (16)
If D is symmetric then EdL6is equivalent to:
Ap.= Ay, = Y 0<a<1 DAPQ)=DAPYM Q) 17)

EMD [2] andEMD [3] distances ar8imilarity-Matrix-Quantization-InvarianSince
both are min-cost-flow problemé]} taking mass from one source/sink and moving it to
another one, where both sources/sinks are connected tthyetkecsame sinks/sources,
with exactly the same costs, will not change the min-costtgm.

We begin the proof that a Quadratic-Chi (QC) histogram dista(Eq.1) is
Similarity-Matrix-Quantization-Invarianvith a lemma:

(P + Qo) Ac)™ = (O (P + Qe)Act)™ (18)
Proof.

SR + Qo)A = (19)
( ;b(PS'“ +Qo)Ac) + (B + Qi) Aw) + (B! + Qo) Av:) = (20)

( ;};l (P + Qc)Aci) + ((aPy + Qr)Aki) + (P + (1 — )Py + Qp)Api) = (21)

( ;Zk)b(Pc +Qc)Aci) + ((aPr + Qr)Aki) + ((Po + (1 — @) Pr + Qb) Agi) = (22)

( ;b(Pc +Qc)Aci) + (P + Qr + Po + Qu) Ari) = (23)

( ;b(Pc +Qc)Aci) + (Px 4 Qr)Aki) + ((Po + Qu)Api) = (24)
Z(;DC +Qc)Aci (25)

1; (26)
QPRI + Qo) Ac)™ = (Zj(Pc +Qo)Ac)™ @7)

In the proof we use the definitions and in EB8,24we useAy; = Ap;.
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We now prove that Quadratic-Chi histogram distanc&insilarity-Matrix-Quantization-
Invariantusing Eq.17. That is we prove that:

A=A, = VYV 0<a<l QCA(P,Q)=QCA(P* " Q) (28)

We will prove that(QCA (P, Q))? = (QCA(P>** Q))? which directly implies
Eq.28.

We start by separating)C4 (P**? ))? addends into three disjoint and comple-
mentary types. The first type is when baéthnd; are different fromk andb. For these
addends the equality is direct from the definition. The sddgpe is when both and;
are eitherk or b. For this type the proofis:

(PPY — QOB — Q) Ay

- 29
e (B @A) (B @A) @
(Pia,k,b _ Qi)(ch,k,b _ QJ)AU
2 = 30
ey (Sl QA (Sl + Q)] 0
(P — Q)P — Qi) A (P — QP — Qo)A
(S (P + Qe)Ack)®™ (P4 Qc)Ack)™ (X o(Pe + Qe)Acy)™
(PR — Qu)(P M — Q) Ang (B — Q) (B! — Qu)Awy _ -
(Xe(Pe+Qc)Ac) ™ (X (Pe 4 Qe)Ack)™ (X (Pe+ Qe)Acp)™™
((CYPk —Qr)2+2(aP, — Qr)(Py + (1 —a)Py) — Qp) + (P + (1 — @) Py,) — Qb)2) Agk
— - (32
(Xe(Pe+ Qc)Ack)
2
((OlPk - Qi)+ ((Po+ (1 —a)Pr) — Qb)) Apk
— = @33)
(X e(Pe+ Qc)Ack)
2
((Pk —Qr) + (P, — Qb)> Ak
v = (34)
(3. (Pe+ Qe)Ack)
((Plv —Qr)®+2(Pr — Qr)(Po — Qp) + (Py — Qb)z)Akk
— = (35)
(X o(Pe+ Qc)Ack)
(Pi - Qi)(Pj - QJ)Aij (36)

i:(k\/b?j::(kvb) (ZC(P(: + Qc)Aci)m(Ec(Pc + Q(:)ch)m

Eq. 30 is based on the lemma in Ef8. Eqs.32,36 are true asd., = A, and
Apr = Ay = Apy = Apg.
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The third type of addends is when orilgqualsh or k or only j equals or k. These
sub-cases are symmetric, so it is enough to prove equaltitynly one of them:

(P — QPP — Q) Ay

- (37)
i:m%ﬂm (Zo(PE™? + Qo) Act) ™ (X (PEH" + Qo) Acy)™
(Pia,k,b —Qi)(P; — Qj)A;j
’ _ 38
o (5o T QA " (e + @01 38)
> ( (™" — Q) (P — Q) Awy +
j#(kVb) (Zo(Pe 4 Qe)Ack)™ (X o(Pe + Qc)Acy)™
(PO — Qu)(Py — Q) Ay, ) = (39)
(So(Pe + Q) Aw) ™ (L. (Pe + Q) Ac)™
<(c,pk C Qi+ (Pt (1—a)Py) — Q) (P —QﬂA’w’) = (40)
JA VD) (Zo(Pe 4 Qe)Aek) ™ (Zo(Pe + Qe)Acy)™
(Pr = Qi) + (Py — Qu))(P; — Q) Arg
| ’ _ 41
j;é%c:vb) ( (X o(Pe+Qe)Ack) ™ (X (Pe + Qc)Acy) m) ()
(P = Q1)(P; — Q) Ay “2)

i:(kvlﬂ;;ﬁ(k\/b) (ZC(PC + Q(:)Aci)”b(zc(Pc + Qc)ch)”L

Eq. 38 is based on the lemma in E48. Eqs.40,42 are true asd;; = A;; and
Ack = Acb-

Since we covered the three disjoint and complementary easdmve proved that
a Quadratic-Chi histogram distanceSanilarity-Matrix-Quantization-Invariant

4 Additional Shape Classification Results

This section presents shape classification results usmgdime framework as Ling
et al. [5,6,7]. We first present results for the articulated shape datfcsdt Then we
present results for the Kimia-216 data sét [

4.1 Articulated Data Set

The articulated shape data s&f/] has 40 images from 8 different objects. Each object
has 5 images articulated to different degrees, se€lfag. The dataset is very challeng-
ing because of the similarity between different objectpéeglly the scissors).

We used Belongie et al.'s Shape Context (S¢)gnd Ling and Jacobs’ Inner Dis-
tance Shape Context (IDSC)][

To evaluate results, for each image, the 4 most similar neatelne chosen from
other images in the dataset. The retrieval result is sunz@am@s the number of 1st,
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RRAAY
ARRAIA

KX = XRKINA
ISP

(@)
Results using SCJ| Results using IDSC]

Top 1 Top 2 Top 3 Top 4 AUC% Top 1 Top 2 Top 3 Top 4 AUC%

dsop—o dsop—o
QCN'™ 2 20 6 10 5 0.307 QCN'~ 2 39 38 38 34 0.950
QCN! 18 7 5 8 0278 QCN! 40 37 36 33 0.940

dsop_o dsop—o
QCcs 2 23 11 11 4 0378 QCS' ™ 2 39 35 38 28 00912
Qcs 19 9 9 6 0318 Qce 40 34 37 27 0.907
X2 25 13 13 7 0.430 X2 40 36 36 21 0.902

dsop—o dsop—o
QF'~ 2 25 16 10 7 0.438 QF'~ 2 40 34 39 19 0.897
Lo 25 15 8 7 0.420 Lo 39 35 35 18 0.873
EMD;T=2 23 13 11 7 0400 EMDT=2 39 36 35 27 0902
Ly 20 10 9 5 0333 L1 39 35 35 25 0.890
SIFToisT[10] 20 9 6 9 0320 SIFToisT[10] 38 37 27 22 0.848
EMD-L,[6] 15 10 6 10 0.280 EMD-L,[6] 39 35 38 30 00917
Diffusion[11] 19 10 7 6 0315 Diffusion[11] 39 35 34 23 0.880
Bhattacharyyal[?] 25 14 9 9 0.422 Bhattacharyyal?] 40 37 32 23 0.895
KL[13] 12 8 4 9 0223 KL[13] 40 38 36 29 0.938
Js[14] 25 16 9 7 0432 Js[14] 40 35 37 21 0.900

(b) (c)

Fig. 1. (a) Articulated shape database. This dataset contains d@eisnfrom 8 objects.
Each column contains five images of the same object withréiffiearticulation.

(b) Shape classification results using Belongie et al.p8@ontext (SC}]. All dis-
tances performance is poor.

(c) Shape classification results using Ling and Jacobs'ribigtance Shape Context

dscp_—o

(IDSC)[5]. QCN'~ % outperformed all other distances. Q€pirformance was ex-
cellent, which shows the importance of the normalizati@tda All cross-bin distances
outperformed their bin-by-bin versions. Agaip? and QF improved upof.;. QCN
and QCS which are mathematically sound combinationg®oéind QF outperformed
both.
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2nd, 3rd and 4th most similar matches that come from the coolgect. Tables (b) and
(c) in Fig.1 show the retrieval results for SC and IDSC respectivelyngy§C descrip-

tors, the performance was poor on this dataset for all kifidistances. Using IDSC
dsop ) ) .
descriptors, the QCN o histogram distance outperformed all the other distances.

QCN! performance was excellent, which shows the importance ehtirmalization
factor. All cross-bin distances outperformed their binkiy versions,y? and QF im-
proved uponL,. QCN and QCS which are mathematically sound combinationg’ of
and QF outperformed both.

4.2 Kimia-216 Data Set

The Kimia-216 shape data sei] [has 216 images grouped into 18 classes with 12
images in each class, see Figa).

We tested for shape classification with Belongie et al. Siizgaext (SC) §]. We
do not present results for Ling and Jacob’s IDSE, &s the code that computes IDSC
[7] crashes on this data set (segmentation fault).

To evaluate results, for each image, the 11 most similar meatare chosen from
other images in the dataset (as there are 12 images in ead). Clhe retrieval result
is summarized as the number of 1st, 2nd, ..., 11th and mo#asimatches that come
from the correct object. Table (b) in Fig(b) show the retrieval results. Again, the

QCNl‘dSOTz:2 histogram distance outperformed all the other distancgairAy? and
QF improved upori, and QCN and QCS outperformed both.

5 Comparison of Color Image Distances With and Without Spatal
Pruning

In this section we compare experimentally the color imagtadices that have spatial
pruning (those used inl]) to distances without such a pruning (those usedzi. [
Results are presented in F&y.Pruning slightly improved accuracy for QF and slightly
reduced accuracy for QCN, QCS aByD. However, pruning considerably reduced
running time (see Tablgin pagel5).

6 Comparison to Non-Similarity-Matrix-Quantization-l nvariant
and Non-Sparseness-I nvariant Quadratic-Chi-like Histogram
Distances

In this section we compare experimentally distances wteskmbles QC distances, but
are either notSimilarity-Matrix-Quantization-Invarianbr not Sparseness-Invariant
The comparison shows that these properties considerabst berformance, especially
for sparse color histograms.

As in the QC definition, let P and @ be two non-negative bounded histograms.
Thatis, P,Q € [0,U]". Let A be a non-negative symmetric bounded bin-similarity
matrix such that each diagonal element is bigger or equalg¢oyether element in its
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Results using SCJ
Top1 Top2 Top 3 Top 4 Top 5 Top 6 Top 7 Top 8 Top 9 Top 10 Top 11 AUC%

1 dsop_o
QCN 2 215 216 215 216 214 214 207 207 200 192 173 0.981
QCN! . 215 208 212 201 198 198 190 177 164 150 127 0.920

So—
Qcs' ~ %2 216 215 215 212 212 205 204 205 193 184 155 0.969
Qce 215 215 214 214 215 208 209 205 197 190 167 0.976
2 216 215 212 211 210 203 199 199 192 177 156 0.960

1— dsep_o
QF 2 214 211 207 206 197 190 183 183 167 162 146  0.920
Lo 213 210 203 204 195 189 183 178 167 149 139 0.910
EMD*T=2 215 215 215 215 214 207 207 202 201 187 162 0.974
Ly 215 215 215 214 213 209 211 207 199 192 170 0.978
SIFToist[10] 215 215 215 215 215 211 210 207 201 189 162 0.979
EMD-L[6] 215 215 212 213 212 208 204 203 197 184 161 0.969
Diffusion[11] 215 215 214 214 214 214 208 204 200 196 174 0.979
Bhattacharyyal[?] 216 215 213 212 212 206 203 206 193 177 159 0.967
KL[13] 212 203 200 199 195 186 187 179 166 151 130 0.899
JS[L4] 216 215 212 210 208 205 200 197 189 182 152 0.959

(b)

Fig. 2.(a) Kimia-216 shape database. This dataset has 216 image4 & classes. Each
row contains 12 images of the same class.

(b) Shape classification results using the Shape Contej}{{BE@Ve do not present re-
sults for Ling and Jacob’s IDSC], as the code that computes IDSG Erashed (seg-

mentation fault). Again, the QCN =2 histogram distance outperformed all other
distances. Againy? and QF improved upofi,. QCN and QCS which are mathemati-

cally sound combinations gf? and QF outperformed both.
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Average number of correct images retrieved

Number of %garest neighborgci)mages retrieve:}0 20

Fig. 3. Results for image retrieval comparing distances which anaipg spatially far
away pixels (painted with solid lines) to those that are pair{ted with broken lines).
Pruning slightly improved accuracy for QF and slightly redd accuracy for QCN,
QCs andEMD. However, pruning considerably reduced running tinee($ablel in

pagelb).

row (this demand is weaker than being a strongly dominanti)and to 1. That is,
A€ [0,UN x [0,U]N andVi,j A;; > A;; andVi A; > 1. Let0 < m < 1 be the
normalization factor. A QC-like histogram distance whismbtSparseness-Invariant
is defined as:

NSI-QC., (P, Q) =

J > ((Zc PAG-Y, QcAm-)) ((ZCPCACJ- -y, QCACJ-)>

]

(Pt Qo) Ac)™ (Xo(Pe+Qc)Acy)™

ij

(43)

A QC-like histogram distance which is nBimilarity-Matrix-Quantization-Invariant
is defined as:

NQI-QCA (P, Q) = \IZ ((g;—@%)m) (gﬂg%) Ay (44)

ij

If Iis the identity matrix then:

QC/,(P,Q) = NSI-QC,, (P, Q) = NQI-QC/,(P, Q) (45)

For any bin-similarityA we get the following equality:

NQI-QC/, (AP, AQ) = NSI-QC,, (P, Q) (46)

9
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We present results for image retrieval comparing QCN, NENINSI-QG, o),
NQI-QCN(NQI-QG, ), QCS, NSI-QCS(NSI-QE5) and NQI-QCS(NQI-Qg 5) in Fig.
4(a) for SIFT-like descriptors (CSIFT as the CSIFT descriptompared to SIFT was
better for all distance measures, see Figand in Fig.4(b) for small L*a*b* im-
ages with the pruning distance used in the papgrhpd in 4(c) for small L*a*b*
images with a non-pruning distance as was used]irmhe results show th&imilarity-
Matrix-Quantization-InvariancandSparseness-Invarian@®nsiderably boost perfor-
mance. The gain in performance is large using the L*a*b* ismgvhich are sparse
5-dimensional histograms (x, y, L*, a*, b*). That is, the gquéistogram was always:
[1,...,1,0,...,0] and each image being compared to the query was represerntiee by
histogram:[0,...,0,1,...,1]. That is, the dimension of the space3s x 48 x 2563
where only32 x 48 entries are non-zero in each histograms. The bin-simjlarétrix
is computed for each pair of images. For these histograms:

NQI-QCN*(P, Q) = NQI-QCS* (P, Q) = QF*(P,Q) (47)

The time complexity of all the distances tested in this secis linear. In practice
(see Tablel), QCS distances are faster to compute than QCN distancesldition,
NQI-QC distances are the fastest to compute, QC distancesdeand NSI-QC dis-
tances have the longest running time. However, the diffessfetween the running
times are minor as all distances have linear time complexity

7 Comparing SIFT/CSIFT with All Distances for Image Retrieval

In this section we present results for image retrieval asrite=d in the paper. The
results are for all pairs of descriptors (SIFT/CSIFT) arstatice measures and given in
Figs.5, 6,7.
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Fig. 4. Results for image retrieval comparing QC whichSparseness-Invariargnd
Similarity-Matrix-Quantization-Invarianto NSI-QC and to NQI-QC which are not
Sparseness-Invaria@ind notSimilarity-Matrix-Quantization-Invariantespectively.

(a) SIFT-like descriptors. For each distance measure, we present the descriptor
(SIFT/CSIFT) with which it performed best. The results féirthe pairs of descrip-
tors and distance measures can be found in Fig8.and?. It can be seen that QCN
which is bothSparseness-Invariarnd Similarity-Matrix-Quantization-Invarianhas
the best performance. However, the differences in perfoo@are small.

(b) L*a*b* images with pruning and (c) without pruning Here, theSparseness-
Invariant and Similarity-Matrix-Quantization-Invarianproperties are very important.
This is probably because L*a*b* images are represented gssgarse histograms in
a very high dimensional space (the dimension of the spad® is 48 x 2563 where
only 32 x 48 entries are non-zero in each histograms). Comparing to éxam also
note that performance using this representation is bétter those obtained with the
SIFT-like descriptor.
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Fig. 5. Comparison of SIFT with CSIFT for all distances, part 1.
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Fig. 6. Comparison of SIFT with CSIFT for all distances, part 2



[EnY
N

Ofir Pele, Michael Werman

Average number of correct images retrieved Average number of correct images retrieved

Average number of correct images retrieved

357 5 35
— KL[19], CSIFT o — Bhattacharyyal?], CSIFT
““““““““““ KL[13], SIFT 2 - Bhattacharyya[], SIFT
30r ‘é‘ 30t
%]
(]
L % 25,
25 £
3
20r g 20r
(]
kS
15 5 15
o
£
>
= lo,
]
j=2)
o
[ -
z 5
0 10 20 30 40 50 0 10 20 30 40 50

35

30r

Number of nearest neighbors images retrieved

drp—2

— NSIQCN'™ ;= ', CSIFT

NSI-QCN'~ 32 SIFT

0

35

30r

25¢

10 20 30 40 50
Number of nearest neighbors images retrieved

r d
— NSIQCS ™5, CSIFT

“ NSI-QCS'~—=2 , SIFT

0

20 30 40 50

10
Number of nearest neighbors images retrieved

Average number of correct images retrieved

Average number of correct images retrieved

Number of nearest neighbors images retrieved

35- 1 _Adr=2
~ NQMQCN'~ 72 CSIFT
o NQI-QCN'~ — 2 —, SIFT

0 10 20 30 40 50
Number of nearest neighbors images retrieved

35 dr=
- NQl_QC§*d;2:2,CSIFT
“““““““““““ NQI-QCS'~—=2 | SIFT
30! QI-Q
25}

% 10
Number of nearest neighbors images retrieved

20 30 40 50

Fig. 7. Comparison of SIFT with CSIFT for all distances, part 3
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Descriptor QCN'2 NSI-QCN*2 NQI-QCN#2 QCS*2 NSI-QCS*2 NQI-QCS*2
(SIFT) 0.15 0.18 0.14 0.07 0.1 0.06

Descriptor  QCN'20,5 NSI-QCN*20.5 QF420,5 QCS*20,5 NS|-QCS*20.5
(L*a*b*) 20(370) 21(371) 11(361)19(369) 18(368)

Descriptor QCN'20  NSI-QCNA20 QF~20 QCs*20  NSI-QCS*20
(L*a*b*) 20(3020) 21(3021) 11(3011)19(3019)18(3018)

Table 1. (SIFT) 384-dimensional SIFT-like descriptors matchingei (in millisec-
ondg. The distances from left to right are the same as the distaimcFig.4 (a) from
up to down.

(L*a*b*) 32 x 48 L*a*b* images matching time (immillisecond$ using a distance
which prunes spatially far away pixels (middle row) and aatise which does not
(bottom row). On the middle row, the distances from left ghtiare the same as the
distances in Fig4 (b). On the bottom row, the distances from left to right amd$hme
as the distances in Fid.(c). In parentheses is the time it takes to compute the distan
and the bin-similarity matrix as it cannot be computed oflin

To summaries results, QCS distances are faster to compaielEN distances. Also,
NQI-QC distances are the fastest to compute, QC distancesdeand NSI-QC dis-
tances have the longest running time. However, the diffagemetween the running
times are minor as all distances have linear time compléexibally, pruning spatially
far away pixels considerably reduced running time, alma#taut reducing accuracy
(see Fig3).
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