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The adoption of electric and hybrid-electric propulsion for commercial aircraft has the
potential to significantly reduce the aerospace sector’s environmental impact. To develop the
propulsion systems that meet the critical requirements of these next generation aircraft, new
design tools are needed that accurately model the complex coupled electrothermal behavior of
electric motors. In this paper we present verification and validation studies for a multidisci-
plinary electric motor analysis. In particular, we compare to a well studied electromagnetic
benchmark problem as well as NASA’s X-57 high-lift motor reference design.

I. Introduction
There is growing interest in reducing the greenhouse-gas emissions of aircraft as a means of mitigating the climate

impact of air transportation. Among the possible paths to reduced emissions, electric and hybrid-electric propulsion
systems are considered compelling options. For example, Brelje and Martins [1] suggest that electric propulsion can
help civil aircraft meet the aggressive N+3 performance goals put forth by NASA, which are characterized by stringent
emissions, noise, and fuel burn requirements [2].

There are many technical challenges associated with the electrification of aircraft, but the one we focus on here is
related to the design of electric motors. Specifically, high current draw during takeoff produces strong Joule heating in
the motor’s coils and significant waste heating in the motor’s core. For example, a trajectory optimization study by Falck
et al. [3] predicted that NASA’s X-57 would reach thermal constraints during climb. The use of a low-temperature
superconducting material for the stator coils has been studied, showing elimination of Joule heating in the windings.
However, studies by Brown [4] at NASA on the N3-X propulsion system, and Berg et al. [5] on “cold” superconductor
efficiency, have predicted significant power cost incurred by cryogenic cooling. Without cryogenic cooling, it will be
necessary to design new motors that account for Joule heating and other waste heat generation during critical operating
conditions.

The concerns listed above motivate the use of numerical optimization to produce designs that can meet the
requirements of electric aircraft. Weight reduction provides direct improvements to specific power efficiency, while
component temperature limits and torque requirements during high-load flight stages (e.g. takeoff) constrain the space
of viable designs. To this end, the authors are developing a multidisciplinary shape optimization framework for an
air-cooled high-lift motor. This framework will solve a coupled electromagnetic and thermal analysis problem at each
design iteration to minimize mass while satisfying performance constraints.

We adopt a high-fidelity approach to modeling the engine, and discretize the relevant partial differential equations
using the finite-element method. We first solve a nonlinear electromagnetic problem to compute the electromagnetic
performance and electromagnetic losses in the motor. These losses serve as source terms in the heat equation, which
models thermal diffusion in the motor, with prescribed boundary conditions to simulate convective cooling on the engine
nacelle. The solution to this problem gives the steady-state temperature field in the motor, which can be constrained in
an optimization to avoid melting the windings or demagnetizing the permanent magnets.

While the longer-term goal of this work is the development of a full gradient-based optimization, this paper
focuses on the implementation and verification of the multi-disciplinary analysis. To that end, we verify the nonlinear
electromagnetic solver against the TEAM 13 benchmark problem [6]. We then present simulation results for the full
motor, and compare results to results from the NASA X-57 reference motor [7].

The following sections describe the implementation of the forward analysis of air-cooled high-lift electric motors
and its verification and validation. Section II introduces the motor’s geometry parameterization and presents the relevant
physical and mathematical models that describe a motor’s electromagnetic and thermal behavior. Section III presents
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Fig. 1 Diagram showing how design parameters fully
define the geometry for the topology of interest.

Table 1 Design parameters and their physical
descriptions.

Parameter Description Type

=< Number of magnets Discrete
=B Number of slots/windings Discrete
C; Lamination thickness Discrete
;B Stack length Discrete
AB> Stator outer radius Continuous
AB8 Stator inner radius Continuous
AA> Rotor outer radius Continuous
AA8 Rotor inner radius Continuous
3B Slot depth Continuous
FC Tooth width Continuous
C< Magnet thickness Continuous
Aℎ Heat sink outer radius Continuous
CCC Tooth tip thickness Continuous
0CC Tooth tip angle Continuous
AB; Slot radius Continuous

the finite-element discretization of the electromagnetic and thermal models detailed in Section II. Section IV presents
results from the verification and validation studies. Finally, Section V discusses the presented studies and highlights
future areas of research.

II. Motor Modeling and Parameterization
This section describes the fundamental physical and design assumptions that motivate the models chosen for the

optimization framework. We also address the parameterization adopted for the motor geometry.

A. Geometry Parameterization
While there are a variety of configurations that an electric motor in an aerospace application could be based on,

in this work we assume a three-phase brushless direct current (BLDC) permanent magnet motor in which the rotor
body exists in the interior of the stator body. We parameterize the BLDC motor geometry using the variables listed in
Table 1, and Figure 1 illustrates these parameters. Note that the lamination thickness C; and the stack length ;B refer
to “out-of-the-page” measurements and are not depicted in the diagram. The number of slots, =B, is equivalent to the
number of windings present in the stator; it must be a multiple of the number of phases.

There are other discrete design choices that strongly influence the behavior of the motor. For example, material
choices for the different components of the motor can have a significant impact on performance. Another important
choice is the magnet pattern, which determines the permanent magnet magnetic field that the stator windings interact
with. Different configurations will produce different resultant magnetic fields, which will impact the motor’s torque.
As we are targeting gradient-based optimization, we cannot account for discrete variables in a single optimization; a
parametric sweep with respect to such variables will be required to fully explore the design space, but fast convergence
of a gradient-based optimizer should enable such exploration.

B. Electromagnetic Analysis
We model the electromagnetic behavior of the BLDC motor with the magnetostatic approximation of Maxwell’s

equations, given in differential form by
∇ × N = Psrc, ∀ x ∈ Ω� , (1)

∇ · H = 0, ∀ x ∈ Ω� , (2)
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where N is the magnetic field intensity, H is the magnetic flux density, and Psrc is the applied source current. The set
Ω� denotes the computational domain of the electromagnetic problem, in this case the entire volume of the motor and
the air just outside of the motor. Equation (1) is known as Ampère’s circuital law, and (2) is known as Gauss’s law for
magnetism. Boundary conditions are required to make (1) and (2) well posed. These will be discussed shortly.

Although we are modeling a dynamic system such as a motor with a static approximation of Maxwell’s equations,
this simplifying assumption introduces little error to the problem. When nondimensionalizing Maxwell’s equations
the nondimensional number !̄/2)̄ arises naturally, where !̄ is the characteristic length scale, )̄ is the characteristic
time scale, and 2 the speed of light. It can be shown that Maxwell’s equations reduce to the magnetostatic equations
in the limit as !̄/2)̄ approaches zero [8]. For an electric motor, with characteristic length based on its diameter and
characteristic time scale based on its excitation frequency, it is easy to see that !̄/2)̄ is much less than one. This
indicates that the magnetic field of an electric motor can safely be assumed to be static.

The magnetic field intensity and magnetic flux density are related through the constitutive relation

N = a (H − S) , (3)

where S is the magnetic flux density created by permanent magnets (the remnant flux density), and a is the reluctivity.
In general, the reluctivity is a material-dependent nonlinear function of the magnetic flux density and temperature. We
discuss our implementation of the reluctivity model in Section III.B.

Inspecting (2), we see that it is advantageous to define a magnetic vector potential G such that H = ∇× G, since then
∇ · H = ∇ · ∇ × G = 0 is automatically satisfied. Furthermore, using this vector potential and the constitutive relation
from (3), (1) can be re-written as the following second-order elliptic PDE:

∇ × (a∇ × G) − ∇ × (aS) = Psrc, ∀ x ∈ Ω� . (4)

It is straightforward to see that G is non-unique, as the gradient of any scalar function may be added to G without
changing the value of H. A common approach to remedy this is to impose a gauge condition on G, such as the Coulomb
gauge, ∇ · G = 0. Another is to specify Dirichlet boundary conditions on G along the entire boundary to constrain the
solution. Here, we take the second approach, setting the tangential component of G to be zero along the bounding
surface, which is equivalent to enforcing that no magnetic flux passes through the surface.

Once the solution to (4) is obtained, secondary field quantities such as H can be computed. The H field will be
used to estimate the electromagnetic losses known as core losses using an empirical relation, discussed in detail in
Section II.C.

C. Thermal Analysis
The thermal analysis of a BLDC motor is coupled to the electromagnetic analysis as several electromagnetic

phenomena act as sources of heat. We model the motor’s thermal behavior with the steady-state heat equation, with
the divergence of Fourier’s law governing thermal diffusion and with source terms added to reflect Joule heating and
electromagnetic core losses. The equation is given by

− ∇ · (K∇\) = Psrc ·
(
f−1Psrc

)
+ d,B , ∀ x ∈ Ω) , (5)

where \ is the temperature, K is the thermal conductivity tensor, f is the electrical conductivity tensor, Psrc is the applied
source current from the magnetostatic problem, and d is the mass density. The set Ω) denotes the computational
domain of interest for the thermal problem, which is the volume of just the motor. The last term in (5) involves,B,
which is the specific electromagnetic core losses due to hysteresis and eddy-current effects, and is modeled using the
empirically derived Steinmetz equation [9],

,B =  B 5
U‖H‖V , (6)

where  B, U, and V are empirically derived material-dependent constants, ‖H‖ is the magnitude of the magnetic flux
density, and 5 is the electrical excitation frequency. In general, K and f are temperature-dependent tensors; however,
they are very weak functions of temperature, so we have chosen to model them as temperature-independent. This
simplification results in (5) being a linear elliptic PDE in \.

The only time-varying source in (5) is Psrc, which, for three-phase BLDC motors, exists in two thirds of the windings
at any given time and varies at the characteristic electrical frequency. The time scale associated with the changing
current is much smaller than the time scale associated with thermal diffusion, so we model the current source as a
time-independent source existing in all windings, equal to the average current in the windings at any given time.
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We have chosen boundary conditions that simulate the presence of convective cooling on the exterior of the motor’s
nacelle. These boundary conditions are in general problem dependent, and will be discussed in more detail for each
analyzed design.

III. Numerical Analysis Methods
In this section, we present the discretizations for the electromagnetic and thermal models discussed in Section II.

We use the lightweight Modular Finite Element Methods (MFEM) [10] library to implement the finite-element
formulations for these analyses. We solve the discrete systems with the linear solvers and preconditioners from the
hypre library [11]. Furthermore, towards the goal of optimization, we discuss the methods and frameworks we use for
geometry representation, mesh generation and mesh movement.

A. Geometry Representation, Mesh Generation, and Movement
The magnetostatic and thermal analyses each require a computational mesh on their domains to solve each respective

discretized PDE. We associate each mesh with a parametric CAD model of the motor, so that changes in the design
variables are easily translated into geometric changes in the mesh through the CAD system. We define the vector
of shape design variables in Table 1 as " ∈ R=. We have chosen to use EGADS [12] as the CAD system for its
ability to easily generate a finite element mesh on the model using AFLR [13, 14] and Tetgen [15] through the CAPS
interface [16], as well as it’s capability to provide the sensitivities of the mesh surface nodes with respect to the CAD
system’s parametric design parameters, " [17].

At each design in an optimization iteration, the mesh must be updated to conform to the current geometry. Rather than
regenerate the mesh (which is a non-differentiable operation, in general), we move the mesh based on a linear-elasticity
analogy [18], where we consider the problem domain as an elastic solid. Let uℎ ∈ [+ℎ]3 denote the vector field of mesh
node displacements, each component of which is taken from the standard continuous Lagrange finite-element space +ℎ .
Then the mesh-node displacements satisfy the following weak formulation of linear elasticity: find uℎ ∈ [+ℎ]3 such that∫

Ω

&∗ (vℎ) : 2∗ (uℎ)3Ω = 0, ∀vℎ ∈ [+ℎ]3,

where &∗ is the elastic strain tensor and 2∗ is the stress tensor. There are no forcing terms explicitly in the weak form
since we prescribe displacements on every surface. The resulting algebraic linear system can be represented by the
following 2 × 2 block system:

XD (u, f ) ≡
[
K11 K12

0 I

] [
u1

u2

]
−

[
0
f

]
= 0, (7)

where u1 is a vector holding the coefficients to the solution of uℎ at the interior mesh nodes, u2 is a vector holding
the coefficients to the solution of uℎ at the surface mesh nodes, and f represents the prescribed displacement of the
boundary nodes.

We solve a modified form of the linear system in (7) for u1 (where the boundary degrees of freedom have
been eliminated) using the preconditioned conjugate gradient (PCG) method with an algebraic multigrid (AMG)
preconditioner [19] from the hypre library. We then update mesh node locations through the relation x = x0 + u, where
x0 ∈ R3< denotes the mesh node coordinates for the baseline mesh.

The surface node locations are a function of the shape design variables ". We obtain the surface node displacements
using the initial locations of the surface nodes xΓ ("0) through the simple relationship:

uΓ (") ≡ xΓ (") − xΓ ("0). (8)

In practice, we find xΓ (") by leveraging an EGADS tesselation API that maps the original surface tessellation to a new
CAD model.

B. Magnetostatic Discretization
We choose to discretize (4) using the finite-element method with Nédélec’s � (curl)-conforming vector “edge”-

elements [20]. The use of Nédélec elements avoids the spurious solution modes seen when using � (grad) nodal
elements to solve electromagnetic problems [21]. These modes occur because the continuity enforced by nodal elements
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(both normal and tangential continuity between elements) is non-physical for electromagnetic fields; the magnetic
flux density, H, may be tangentially discontinuous across an interface, while the magnetic vector potential, G, may be
normally discontinuous across an interface. Nédélec elements defined in an � (curl)-conforming space enforce only
tangential continuity between elements, and are thus a natural choice for discretizing the G field. Additionally, if the
G field is computed using basis functions defined in the � (curl) function space, the discretely computed curl will be
exactly in the kernel of the divergence operator, and Gauss’s law for magnetism, (2), will automatically be satisfied in a
discrete sense.

At a discrete level, the weak form of (4) is stated as follows: find Gℎ ∈ X = {vℎ |vℎ ∈ � (curl)} such that∫
Ω�

a

(
∇ × Gℎ

)
·
(
∇ × wℎ

)
dΩE −

∫
Ω�

wℎ · (∇ × (aS)) dΩE −
∫
Ω�

wℎ · PBA2 dΩE = 0, (9)

for all wℎ ∈ V = {vℎ |vℎ ∈ � (curl); vℎ = 0|Γ} with boundary conditions Gℎ × n = 0|Γ, where, again from Section II.B,
Ω� is the entire volume of the BLDC motor and surrounding air. The resulting algebraic form is given as:

X� = X�(G, x) = 0, (10)

where G is a vector holding the coefficients to the solution Gℎ . We solve (10) using Newton’s method with a backtracking
line search to ensure that each step reduces the !2 norm of the residual. Each Newton update is computed using the
generalized minimum residual method [22] with an auxiliary space AMG preconditioner for � (curl) discretizations [23]
from the hypre library.

Again, for ferromagnetic materials (iron), the reluctivity a is a nonlinear function of temperature and magnetic
flux density. We use a temperature independent B-spline fit of an experimentally generated B-H curve to define the
reluctivity model. The B-spline control points and knot vectors for each material used are listed in the Appendix.

C. Heat Equation Discretization
We again choose the finite-element method to discretize (5), this time with nodal � (grad) finite-elements. For this

case, the discrete weak form is stated as follows: find \ℎ ∈ X = {Eℎ |Eℎ ∈ � (grad); Eℎ = 6 (x) |Γ� } such that∫
Ω)

(
∇Fℎ

)
·
(
K∇\ℎ

)
dΩT −

∫
Γ

(
FℎK∇\ℎ

)
· n dΓ −

∫
Ω)

Fℎ PBA2 ·
(
f−1PBA2

)
dΩT −

∫
Ω)

Fℎd,B dΩT = 0, (11)

for all Fℎ ∈ V = {Eℎ |Eℎ ∈ � (grad); Eℎ = 0|Γ� }, where, again from Section II.C, Ω) is the entire volume of the
BLDC motor, and Γ� is the portion of the boundary with Dirichlet boundary conditions. The algebraic form of this
discretization can be written as follows:

X\ = X\ () , G, x) = 0. (12)

We solve (12) using PCG with the AMG [19] preconditioner from the hypre library.

IV. Results
In this section, we present the results of our studies that verify and validate our high-fidelity coupled electric motor

analysis.

A. TEAM 13 Benchmark Problem
The TEAM workshop problems serve as benchmarks for numerical analysis codes simulating electromagnetic field

problems. Here we present results obtained from solving the TEAM 13 benchmark, which is a nonlinear magnetostatic
problem.

The TEAM 13 problem consists of two opposing misaligned steel channels with a thin steel plate inserted between
them that creates very small air gaps. A coil excited by a DC current is set between the channels. The current and
misalignment of the channels creates a three-dimensional magnetic flux density field. The nonlinear B-H curve for the
steel, problem geometry, excitation current, and experimentally obtained values of average magnetic flux density at
cross sections in the domain are provided in [24].

The TEAM 13 problem geometry and magnetic flux density field computed with 1000 AT excitation current are
shown in Figure 2. The measured and numerically computed average flux densities over several cross sections are
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Fig. 2 The calculated magnetic flux density magni-
tude in the TEAM 13 benchmark geometry.

Fig. 3 Average magnetic flux densities from the
TEAM 13 benchmark with 1000 AT excitation cur-
rent across various cross sections from experimental
and computational results. Measure locations 1-7 are
along the middle plate, 8-18 are along the top of a
channel, and 19-25 are along the side of a channel.

plotted in Figure 3, and tabulated in Table 6 in the Appendix. The computed results appear to converge close to but
slightly above the measured values. This behavior is consistent with the numerical results from other Nédélec element
based codes as reported in [24].

The TEAM benchmark problem presents many of the same challenges to a numerical analysis framework as an
electric motor analysis. The small air gaps, high excitation current, and highly saturated steel are present in both
problems, and are known to be problematic for numerical routines [25]. The agreement between the experimental and
numerical results from the TEAM benchmark suggests that the electromagnetic analysis of the motor will be accurate.

B. X-57 Reference Design
The X-57 reference motor design detailed in [7] included thermal, structural, electromagnetic, and rotordynamic

analyses to develop a baseline design for the high-lift motors on NASA’s first all-electric X-plane. Here, we reproduce
the electromagnetic and thermal results as an additional means of verifying our multidisciplinary analysis framework.

We use the same motor geometry as the reference motor, with design parameters given in Table 2. We also use
the same winding layout as the reference design, illustrated in Figure 4. Phases A and B are active at the analyzed
design point, with current density 10.7 A/mm2 and excitation frequency 1000 Hz. The Steinmetz coefficients used
for the stator and rotor material, Hiperco 50, have been obtained by curve-fitting material loss data, and are given as
 B = 0.0044, U = 1.286, and V = 1.76835. In the absence of available loss data to fit for the Nd2Fe14B magnets, we
have artificially added 15 W of loss in the magnets to match the reference motor. The materials used for the analysis and
their relevant thermal properties are listed in Table 3.

For the reference motor analysis we impose Dirichlet temperature boundary conditions on the outer surface of the
motor’s heat sink and the inner surface of the rotor yoke. These boundary conditions are meant to simulate the presence
of convective cooling on the motor’s exterior and thus would need to be coupled with a fluid flow analysis on the motor’s
nacelle to converge to a steady-state temperature. The reference motor design included such an iterative procedure,
which is beyond the scope of this work. Here we simply use the steady-state temperatures on the heat sink reported in
the X-57 reference motor analysis for the verification of the framework. We include a Dirichlet boundary condition on
the inner surface of the rotor yoke because it is thermally connected to the nacelle through its support hardware, as
illustrated in Figure 11 from [7]. As we have not modeled this support hardware, we use the steady-state temperature of
the rotor yoke reported in the reference design.

We present the results of the maximum temperature computed from our steady-state analysis as well as that from the
reference motor paper in Table 4. The table shows good agreement between the reference motor analysis and our own.
Figure 5 shows the temperature field across the motor, and Figure 6 shows the magnetic flux density magnitudes in the
motor, which qualitatively agree with those in Figure 6 from [7].
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Table 2 Design parameters for the X-57 reference mo-
tor geometry.

Parameter Value

=< 40
=B 24
C; 0.1524 mm
;B 34.5 mm
AB> 78.225 mm
AB8 62.25 mm
AA> 56.85 mm
AA8 55.625 mm
3B 12.1 mm
FC 4.3 mm
C< 4.4 mm
Aℎ 80 mm
CCC 1.0 mm
0CC 10.0 degrees
AB; 1.0 mm

Fig. 4 The winding layout diagram for the X-57 ref-
erence motor shows the direction current flows around
each tooth. Phases A (blue) and B (red) are active for
the analysis.

Table 3 Material properties of materials used for the thermal analysis of the high-lift motor, taken from [7].

Material Thermal Conductivity (W / mK) Density (kg / m3)

2024-T3 120 2780
Hiperco 50 20 8120
Nd2Fe14B 9 7500

Windings (at 59% fill) 2.49 8960

Table 4 Themaximum steady-state temperatures calculatedwith our analysis framework show close alignment
to those from [7].

Component Steady-State Temp (◦C) Reference Steady-State Temp (◦C) Max Allowable Temp (◦C)

Stator Windings 133.72 128.65 200
Stator Iron 127.94 127.99 NA

Rotor Magnets 84.30 89.97 120
Rotor Iron 78.29 78.10 NA
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Fig. 5 The temperature distribution over the motor
shows that the heat is concentrated near the windings.

Fig. 6 The magnetic flux density magnitudes in
the motor qualitatively agree with those in Figure 6
from [7].

V. Discussion
The goal of this paper has been to describe, verify, and validate a numerical analysis of a coupled electrothermal

simulation of electric motors for aircraft. This should be viewed as a stepping stone towards an optimization framework
for high-lift electric motors. These motors are constrained by quantities inherent to engineering design: performance
requirements and allowable operating conditions (thermal bounds). Due to the complicated physics and coupled behavior
of electric motors, the optimal geometry is often non-trivial, making them a great target for numerical optimization.

We have presented the formulation and implementation of the forward analysis of a coupled electrothermal simulation
of a high-lift electric motor. We have then verified and validated this analysis by comparing to a common electromagnetic
benchmark problem as well as the results gathered from the X-57 reference motor design. Future work and publications
will detail the development of a full gradient-based optimization for electric motors, and will investigate the potential for
multi-fidelity analysis and optimization.

Appendix

A. B-H Curve Spline Data
We include the control points and knot vector used in our spline fits of the B-H curves for reproducibility. The

spline data for the TEAM 13 benchmark material and the reference motor material are given in Table 5. Both fits are
extrapolated with the equation

� = �B − a0�B + a0�,

where �B and �B are the largest values of H and B from the provided data.

B. TEAM 13 Tabulated Results
We tabulate the results for the TEAM 13 benchmark used to generate Figure 3 in Table 6.
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Table 5 Control points and knot vector for the cubic B-spline fit of the TEAM 13 benchmark material and
reference motor material.

TEAM 13 Material Hiperco 50
Control Points Knots Control Points Knots

0.0 0.0 0.0 0.0
164.464 0.0 8.99319 0.0
301.355 0.0 10.9783 0.0
161.768 0.0 83.2473 0.0
961.705 0.0979 211.231 1.42459
27015.6 1.3841 458.336 1.8798
138424.0 1.8 1159.13 2.08918
196781.0 2.0 2773.49 2.18485

2.22 1.3423e6 2.22945
2.22 2.67533e6 2.26476
2.22 3.99824e6 2.30288
2.22 7.290145827

7.290145827
7.290145827
7.290145827
7.290145827
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22.0 0.913 0.984006
23.0 0.922 0.989081
24.0 0.919 0.992287
25.0 0.922 0.993644
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