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Abstract. A local volatility model is enhanced by the possibility of a single jump to default. The jump has
a hazard rate that is the product of the stock price raised to a prespecified negative power and a
deterministic function of time. The empirical work uses a power of −1.5. It is shown how one may
simultaneously recover from the prices of credit default swap contracts and equity option prices both
the deterministic component of the hazard rate function and revised local volatility. The procedure
is implemented on prices of credit default swaps and equity options for General Motors and the Ford
Motor Company over the period October 2004 to September 2007.
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1. Introduction. The development of liquid markets in credit default swaps (CDSs) has
made it clear that some of the value of deep downside put options must be due to the proba-
bility of default rendering equity worthless. Stock price models that assume a strictly positive
price for equity potentially overstate downside volatilities to compensate for the assumed ab-
sence of the default event in the model. To rectify this situation one needs to recognize the
default possibility in the stock price model. This could be done in a variety of parametric
models [9], [2], [1], [14], [3], [4], and one could then seek to infer the parameters of the model
from traded option prices. Having done so, one would extract in principle a risk neutral
default probability from option prices that could then be compared to a similar probability
obtained from the prices of CDSs.

Alternatively one could recognize that option prices constitute an indirect assessment of
default, while the CDS is clearly more directly focused on this event. This suggests that we
jointly employ data on CDSs and equity options to simultaneously infer the risk neutral stock
dynamics in the presence of default as a likely event. Such an approach is called for all the
more in the context of local volatility stock price dynamics [12], [11] that introduce a two
dimensional local volatility surface describing the instantaneous volatility of the innovations
in the stock price as a deterministic function of the stock price and calendar time. All the
equity option prices are then needed to infer the local volatility surface, and one needs other
traded assets to infer the parameters related to the default likelihood. Given the popularity of
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LOCAL VOLATILITY WITH DEFAULT 3

local volatility in assessing equity risks, we consider enhancing this model to include a default
event. For other enhancements that have recently been considered we refer the reader to Ren,
Madan, and Qian [17].

One could seek to perform such an enhancement by allowing the stock to diffuse to zero
and to then be absorbed there. There are such models referenced above that lack a local
volatility structure, and one may seek to enhance these with a local volatility formulation.
However, it has long been recognized that a purely diffusive formulation has difficulties with
credit spreads especially at the shorter maturities. Hence the popularity of reduced form
credit models [13] that incorporate jumps in the asset price. In the interests of parsimony we
introduce just a single jump to default with a hazard rate or instantaneous default probability
that is just a function of the stock price and time. Unlike local volatility with its eye on the
two dimensional surface of implied volatilities, we recognize that our additional assets are at
best the one dimensional continuum of CDS quotes and so we model the hazard rate as a
product of two functions, one a deterministic function of calendar time, while the other is just
given by the stock price raised to a negative power. The latter recognizes the intuition that
default gets more likely as equity values drop.

With this enhancement we show how one may use CDS and equity option prices jointly
to infer the deterministic function of calendar time in the hazard rate and the local volatility
surface of this default extended local volatility model for a prespecified level of the elasticity
of hazard rates to the stock price. The procedures developed are implemented on CDS and
equity option prices for the Ford Motor Company and General Motors (GM) covering the
period October 2004 to September 2007.

It is observed that on average the elasticity of the proportion of traditional local volatil-
ity attributed to the default component declines with respect to strike and is −.4768 and
−.3967 for GM and Ford, respectively. This proportion is positively related to maturity with
elasticities of .0646 and .0504 for GM and Ford, respectively.

Additionally the deterministic component of the hazard function is generally increasing
with maturity and has semielasticities and elasticities of .1306 and .2163 for GM and .0975
and .2641 for Ford.

The outline of the rest of the paper is as follows. Section 2 presents the formal model
for the stock price evolution. In section 3 we develop the equations for the deterministic
component of the hazard rate and the default enhanced local volatility surface. Section 4
presents the methods employed to evaluate truncated power prices in the embedded default
free dynamics that are needed for the local volatility construction. Section 5 presents the
application of the methods to Ford and GM and summarizes the results. Section 6 concludes
the paper.

2. Local volatility enhanced by a single jump to default. We enhance a local volatility
formulation for the risk neutral evolution of the stock price by including a single jump to
default. The jump occurs at random time given by the first time a counting process N(t)
jumps by unity. Thereafter we set the arrival rate of jumps to zero, and the process N(t)
remains frozen at unity. Prior to the jump in the process N(t) it has an instantaneous arrival
rate λ(t) of a jump given by the product of a deterministic function of time f(t) and the stock
price raised to the power p, which will be a negative number in our applications:

λ(t) = (1−N(t )) f(t)S(t )p.
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4 PETER CARR AND DILIP B. MADAN

This model for the default intensity in the context of a constant volatility was previously
considered and solved in closed form by Linetsky [14]. An extension to the context of a con-
stant elasticity of variance for the volatility specification was solved by Carr and Linetsky [8].
We generalize here to the local volatility context.

Let σ (S, t) denote the volatility in the stock price when the stock price is at level S at
time t and default has not yet occurred. The stock price dynamics may then be written as

dS = (r(t)− q(t))S(t )dt+ σ(S(t ), t)S(t )dW (t)(1)

−S(t ) [dN(t)− (1−N(t ))f(t)S(t )pdt] ,

where W (t) is a Brownian motion and r(t), q(t) are deterministic continuously compounded
interest rates and dividend yields, respectively.

Equation (1) may be explicitly solved in terms of the product of two martingales, one
continuous, M(t), and the other, J(t), that is continuous until it jumps to zero and then stays
there.

The stock price may also be written as

S(t) = A(t)M(t)J(t),

A(t) = S(0) exp

(∫ t

0
(r(u)− q(u))du

)
,

M(t) = exp

(∫ t

0
σ(S(u , u))S(u )dW (u)− 1

2

∫ t

0
σ2(S(u , u))S(u )2du

)
,

J(t) = exp

(∫ t

0
(1−N(u ))f(u)S(u )pdu

)
(1−N(t)) .

The only path to default or a zero equity value is the jump in the process N(t) to the level 1.
The dynamics are risk neutral, and the stock growth rate is the interest rate less the dividend
yield.

Embedded in the stock evolution subject to the possibility of default is the default free
stock price model, or the law of the stock price conditioned on no default or, equivalently, on
being positive. This is a useful process, and we shall use it in reconstructing the local volatility
functions, in particular from quoted option prices. Hence we now proceed to describe this
process to which we henceforth refer as the default free process.

We begin by noting that the probability of surviving t units of time is given by

(2) P (no default to t) = V (t) = E

[
exp

(
−
∫ t

0
f(u)(1−N(u ))S(u )pdu

)]
.

Consider now any path dependent claim paying at t: F (S(u), u ≤ t) if there is no default
until time t, and zero otherwise. The time t forward price, w, of this claim is

(3) w = E

[
exp

(
−
∫ t

0
λ(u)du

)
F (S(u), u ≤ t)

]
.

Let Q̃ be the default free law or the law of the stock conditional on no default to time t.
It follows by definition that

(4) w = V (t)EQ̃ [F (S(u), u ≤ t)] .
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LOCAL VOLATILITY WITH DEFAULT 5

Combining (3) and (4) we observe that

(5)
dQ̃

dQ
=

exp
(
− ∫ t

0 λ(u)du
)

E
[
exp

(
− ∫ t

0 λ(u)du
)] .

Define by p(S, t) the density of the stock at time t under the measure Q̃. This density can
in principle be recovered from call option prices conditioned on no default via the methods
of Breeden and Litzenberger [5]. The prices conditional on default may be recovered from
market prices and the CDS curve using (7) and (8) as explained later. By construction this
density integrates to unity over the positive half-line, and it may be extracted from data on
default free prices or option prices under the law Q̃.

Of particular interest is the growth rate of the stock under the law Q̃. This is determined
by evaluating the expectation of S(t) under Q̃. This is given by

EQ̃ [S(t)] = EQ

[
exp
(− ∫ t

0 λ(u)du
)

E
[
exp
(− ∫ t

0 λ(u)du
)]S(t)]

= S(0)EQ

[
exp
(− ∫ t

0 λ(u)du
)

E
[
exp
(− ∫ t

0 λ(u)du
)] exp(∫ t

0
(r(u)− q(u))du

)
× exp

(∫ t

0
σ(S(u , u))S(u )dW (u)− 1

2

∫ 1

0
σ2(S(u , u))S(u )2du

)
× exp

(∫ t

0
λ(u)du

)]

= S(0)
EQ
[
exp
(∫ t

0 (r(u)− q(u))du
)]

V (t)

as under Q̃, N(t) = 0.
Let us now write

V (t) = exp

(
−
∫ t

0
h(u)du

)
,

where by construction

h(t) = −∂ log V (t)

∂t
.

We then obtain that

EQ̃ [S(t)] = S(0) exp

(∫ t

0
(r(u)− (q(u)− h(u)))du

)
.

We then see that under the Q̃ measure we have a dividend yield adjustment to

(6) qa(t) = q(t)− h(t).
The exposure to the default hazard appears in the default free model as a negative dividend
yield of h(t). This is quite intuitive, as an operational way to get default free is to buy insurance
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6 PETER CARR AND DILIP B. MADAN

against it at the premium flow h(t) that is an expense to be paid out of the dividend stream.
Hence the reduced dividend flow.

Default free option prices or prices of options under the measure Q̃ may be constructed
by a simple transformation. Suppose we have estimated V (t), the survival probability curve,
from CDS prices. We can then construct prices of default free call and put options by

C̃(K, t) =
C(K, t)

V (t)
,(7)

P̃ (K, t) =
P (K, t) −Ke−

∫ t
0 r(u)du(1− V (t))

V (t)
.(8)

Equation (7) reflects the computation that the defaultable call price is the probability of no
default times the conditional expectation of the call payoff given no default. For (8) we must
recognize in addition that the defaultable put price also includes the receipt of the strike in
default.

We also have by definition of p(S, t) that these prices satisfy the equations

C̃(K, t) = e−
∫ t
0 r(u)du

∫ ∞

K
(S −K)p(S, t)dS,

P̃ (K, t) = e−
∫ t
0
r(u)du

∫ K

0
(K − S) p(S, t)dS.

We may evaluate the put call parity condition for these prices and observe that

C̃(K, t) − P̃ (K, t) = C

V (t)
− P −Ke−

∫ t
0
r(u)du(1− V (t))

V (t)

=
S(0)e−

∫ t
0 q(u)du

V (t)
−Ke−

∫ t
0 r(u)du.

We see again that for these default free prices the value of the forward stock is as shown
earlier,

Ẽ[S(t)] =
S(0)e−

∫ t
0 q(u)du

V (t)
.

We may define term dividend yields and hazard rates by

q̃(t) =

∫ t
0 q(u)du

t
,

η(t) =

∫ t
0 h(u)du

t

and write

(9) Ẽ[S(t)] = S(0)e−(q̃(t)−η(t))t .

We may now apply any standard default free model to the prices C̃(K, t), P̃ (K, t) with the
dividend yield adjusted to qa(t) = q̃(t)− η(t) to recover the default free densities p(S, t), and
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LOCAL VOLATILITY WITH DEFAULT 7

we shall shortly show how we use this density to build the deterministic component of the
hazard rate f(t) and the local volatility function.

We note here that the actual default free law given by the density (5) has a path dependent
hazard rate λ(t) that depends on the path of the stock price. The pricing of path dependent

claims under Q̃ would require the use of this hazard rate. However, for mere functions of
the final stock price we may proceed from the prices (7), (8) to extract the densities p(S, t),
and for this we make the appropriate adjustment to the forward price given by the default
free forward price (9). As these are all the functions we need, we do not work with the more
involved path dependent hazard rates.

3. Recovering hazard and volatility functions from CDS and option markets. In this
section we describe how to recover the deterministic component of the hazard rate and the local
volatility function from prices of CDSs and equity options. A similar analysis was conducted
in Carr and Javaheri [7] in a slightly different context. For completeness and the specificity
of our context we provide a comparable derivation.

The first step is to recover the survival function V (t) from CDS quotes, and for this we
employ the Weibull model for the life curve and the methods described in Madan, Konikov,
and Marinescu [15].

We next observe on differentiating lnV (t) with respect to t that

(10)
1

V (t)

∂V (t)

∂t
= −f(t)EQ̃ [S(t)p] .

Hence the function f(t) may be recovered from V (t) and the prices of options under Q̃. We
see immediately how we will use the law of S(t) under Q̃ or the density p(S, t) to recover the
function deterministic component of hazard rates or the function f(t). In fact the characteristic
function of lnS(t) under Q̃ evaluated at −ip gives us directly the default free power price

EQ̃ [S(t)p] from which we may construct f(t) in accordance with (10).

For the recovery of the local volatility function with deterministic interest rates we proceed
as follows. By definition market call prices are given by

C(K, t) = exp

(
−
∫ t

0
r(u)du

)
E

[
exp

(
−
∫ t

0
λ(u)du

)
(S(t)−K)+

]
.

Differentiation with respect to K yields

CK = −e−
∫ t
0 r(u)duE

[
exp

(
−
∫ t

0
λ(u)du

)
1S(t)>K

]
,

CKK = CKK = e−
∫ t
0 r(u)duE

[
exp

(
−
∫ t

0
λ(u)du

)
1S(t )=K

]
,

C −KCK = E

[
exp

(
−
∫ t

0
λ(u)du

)
S(t)1S(t)>K

]
.
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8 PETER CARR AND DILIP B. MADAN

Applying the Meyer–Tanaka formula [16], [10], [18] to the call price payoff yields

(S(t)−K)+ = (S(0) −K)+ +

∫ t

0
(1−N(u ))1S(u )>KdS(u)

+
1

2

∫ t

0
(1−N(u )) 1S(u−)=K σ2(S(u), u)S(u)2du

+ K

∫ t

0
1S(u )>K(1−N(u ))dN(u).

Taking expectations on the left and expectations of time u conditional expectations of the
integrands on the right, we get

e
∫ t
0
r(u)duC(K, t) = (S(0) −K)+ +

∫ t

0
E

[
exp

(
−
∫ u

0
λ(v)dv

)
S(u )(r(u)− q(u))

]
du

+
1

2

∫ t

0
E

[
exp

(
−
∫ u

0
λ(v)dv

)
1S(u )=K

]
σ2(K,u)K2du

+ K

∫ t

0
f(u)E

[
exp

(
−
∫ u

0
λ(v)

)
S(u )p1S(u )>K

]
du.

Differentiating with respect to t and multiplying by the discount factor, we get that

r(t)C(K, t) + Ct = e−
∫ t
0
r(u)du E

[
exp

(
−
∫ t

0
λ(u)dv

)
S(t )(r(t)− q(t))1S(t )>K

]
+

1

2
e−

∫ t
0 r(u)duE

[
exp

(
−
∫ t

0
λ(u)du

)
1S(t )=K

]
σ2(K, t)K2

+ Ke−
∫ t
0 r(u)duf(t)E

[
exp

(
−
∫ t

0
λ(u)du

)
S(t )p1S(t )>K

]
.

It follows that

r(t)C(K, t) + Ct = (r(t)− q(t)) (C −KCK) +
1

2
K2CKKσ

2(K, t)

+Kf(t)V (t)e−
∫ t
0 r(u)duEQ̃

[
S(t )p1S(t )>K

]
.

We define the truncated power price under Q̃ as ζ(K, t):

(11) ζ(K, t) = e−
∫ t
0
r(u)duEQ̃

[
S(t )p1S(t )>K

]
.

Hence we construct

(12) σ2(K, t) = 2
Ct + q(t)C + (r(t)− q(t))KCK −Kf(t)V (t)ζ(K, t)

K2CKK
.

Both the functions f(t) and σ(K, t) may then be recovered from the prices of options
under Q̃. We consider in the next section the procedures for constructing the truncated power
prices (11) under Q̃.
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We may usefully rewrite (12) in the form

K2σ2(K, t) +
Kf(t)V (t)ζ(K, t)

CKK
= 2

Ct + q(t)C + (r(t)− q(t))KCK

CKK
(13)

= σ2LV (K,T ),

where the right-hand side of (13) is the traditional local dollar variance formulation of Dupire
[12] and Derman and Kani [11]. We then see that the new local variance is reduced by the
survival probability times the expected hazard in the region S(t) > K from where we can jump
to zero and earn K dollars on the call, relativized by the density at K. We shall report on the
relative magnitudes of the diffusion component and the jump component in the partitioning
of Dupire local variance.

4. Truncated power prices. We use CDS quotes to construct Weibull density parameters
for the survival function V (t). We then transform market prices to default free prices using
(7), (8). The dividend yields are adjusted using (6). One may now estimate on this data with
these adjusted dividend yields any default free model of option prices. We employ for this
purpose the VGSSD model reported in Carr et al. [6]. We thereby estimate the characteristic
function of the logarithm of S(t) for each t under the law Q̃. Our use of this model here is
merely in its capacity as an interpolator permitting smooth access to prices of all strikes and
maturities as synthesized in the relevant marginal distribution. We subsequently use these
prices in (12) for the recovery of the local volatility dynamics.

We now describe the explicit construction of truncated power prices of (11) from the
estimated VGSSD default free parameters. We seek the value of

W (K) = exp

(
−
∫ t

0
r(u)du

)
EQ̃

[
S(t)p1S(t)>K

]
.

We have the characteristic function of

x = ln(S(t)),

which we denote by φx(u). We are interested in

w(k) = e−rt

∫ ∞

k
(exp − ek)f(x)dx,

where r is now the term discount rate.
Consider the Fourier transform

γ(u) = e−rt

∫ ∞

−∞
e(α+iu)k

∫ ∞

k
expf(x)dxdk

= e−rt

∫ ∞

−∞
dx f(x)

∫ x

−∞
exp+(α+iu)kdk

= e−rt

∫ ∞

−∞
dx f(x)

e(α+p+iu)x

α+ iu

= e−rtφx(u− i(α+ p))

α+ iu
.(14)
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10 PETER CARR AND DILIP B. MADAN

Table 1
Weibull parameters from CDS curves.

GM Ford
c a c a

mean 8.2788 1.2610 8.5832 1.2889
std 3.0418 0.1962 3.0655 0.1633
max 15.6194 1.5579 16.2712 1.5469
min 3.2041 0.7798 5.0914 0.8949

We obtain the truncated power prices by Fourier inversion as

(15) w(k) =
e−αk

2π

∫ ∞

−∞
e−iukγ(u)du.

These may then be substituted into (12) to obtain the local volatility surface. We compute
these at a grid of strikes and maturities for which we seek the local volatilities σ(K,T ).

Once we have estimated the parameters for the no default process we may compute
C̃(K,T ) at a grid of strikes and maturities. We then use our estimated survival function
to define

C(K,T ) = V (T )C̃(K,T ).

These prices are then used in the expression (12) along with the no default truncated
power prices computed as per section 4 to find the local volatility surface σ(K,T ). For the
function f(t) we use (10) and the characteristic function for log prices evaluated at −ip.

5. Sample computations for GM and Ford. We now illustrate these procedures for data
on GM and Ford from October 2004 to September 2007.We estimated the Weibull parameters
for 795 and 784 days, respectively, out of 1085 and 1078 days for GM and Ford, respectively.
The results are summarized in Table 1.

The price of a CDS is analytically expressed in terms of the survival function and hence
in terms of the parameters c, a. A least squares minimization between market and model CDS
prices across all maturities results in the estimates for c, a for each company on each day.

We then used the implied Weibull survival functions to adjust market prices to default
free prices along with adjusting dividend yields to get the right default free forwards. This is
done in line with (7), (8), and (6) with V (t) being analytically specified in the Weibull form
given c, a.

The resulting candidates for default free prices and dividend yields are employed to fit the
interpolating VGSSD model to get the parameters for a smooth version of the default free
option prices. These are summarized in Tables 2 and 3 for GM and Ford, respectively.

The next step is the computation of truncated power prices with the no default dynamics
and the adjusted dividend yields. These are constructed for an expanding strike range as we
raise maturity from 0.05 to 1. We used the strike range

kd(t) = p/1.1 − .2 ∗ p ∗ sqrt(t− tmin),

ku(t) = p ∗ 1.1 + .2 ∗ p ∗ sqrt(t− tmin),
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Table 2
GM default free surface.

σ ν θ γ

mean 0.2796 0.3471 −0.3579 0.3628
std 0.0743 0.3764 0.3584 0.1014
max 0.5036 2.2549 0.6492 0.5266
min 0.0035 0 −2.5097 0.0339

Table 3
Ford default free surface.

σ ν θ γ

mean 0.2821 0.3155 −0.1732 0.4101
std 0.0837 0.3601 0.2949 0.0717
max 0.5381 2.4358 3.1131 0.6925
min 0.0099 0 −1.2926 0.1827

where kd(t) is the lowest strike in the grid at maturity t, while ku(t) is the highest strike in
the grid at maturity t, and p here is the initial spot price.

On this grid we construct truncated power prices under the Q̃ measure by the Fourier
inversion described in (15) and (14). We use a power of −1.5. We now have the power price
under Q̃ as well as the truncated power prices and we can use the Weibull c.d.f. and (10) for
f(t) to build the function f(t).

In the next step we construct Q̃ call prices using the adjusted dividend yields (6) and the
smooth interpolation, VGSSD parameters. These prices are then transformed back to market
call prices that are defaultable prices via

C(K, t) = V (t)C̃(K, t),

where V (t) comes from the Weibull model. We now have all the ingredients to implement
the revised local volatility construction of (12). The final output consists of a local volatility
function and the function f(t).

These are graphed in Figure 1 for GM and Ford over four to five subsets partitioning
levels of the parameter c in the survival function and the level of aggregate volatility of the
default free surface as measured by σ2 + θ2ν. We observe that when c is high and the mean
lifetime is large the deterministic component of the hazard rate is fairly flat. For low mean
lifetimes and hence c, the deterministic component rises sharply when default free volatility
is low but rises more slowly for a high default free volatility. Given a fixed observed volatility
in the defaultable market volatilities, there is a trade-off in how volatility splits between the
hazard rate and the implied default free structure. The higher the volatility in the hazard rate,
the lower it is in the default free options. This trade-off is observed in comparing the local
volatility graphs and the hazard rate graphs. The kinks occurring in the tails are numerical
consequences of being deep out of the money when the volatility has dropped to a low level.

For Ford we had four subsets, while for GM we had five subsets.

With a view toward summarizing the results we computed the proportion of the traditional
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Figure 1. Deterministic components of hazard rate functions for GM and Ford.

local volatility that is allocated to the default component, or the fraction

σ2def (K, t) =
Kf(t)V (t)ζ(K, t)

CKKσ
2
LV (K, t)

.

This proportion of volatility allocated to the default component is graphed in Figure 2 for
GM and Ford. It generally varies with strike and maturity, and we computed the elasticities
of this proportion by regressing the logarithm of this ratio on the logarithm of the strike and
maturity. Additionally we also regressed the logarithm of f(t) on maturity and the logarithm
of maturity. To avoid the effects of cases where these summary functional forms did not fit
well, we report summary statistics of these regressions only when the R2 exceeded 90% along
with the proportion of times that this criterion was met. Table 4 provides the results for the
default proportion of local volatility, while Table 5 presents the results for the deterministic
hazard function f(t).

We see from Table 4 that the elasticity with respect to the strike of the default proportion
is −0.4768 and −0.3967 for GM and Ford, respectively. The corresponding elasticities with
respect to maturity are 0.0646 and 0.0504, respectively.

We see from Table 5 that the hazard function is generally increasing with maturity with
semielasticities and elasticities of 0.1306 and 0.2163 for GM and 0.0975 and 0.2641 being the
corresponding values for Ford.
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Figure 2. Implied local volatilities for GM and Ford.

Table 4
log default proportion regressions.

GM (R2 criterion satisfaction 79.89%)
constant log(K/100) log(t)

mean 2.3585 −0.4768 0.0646
std 1.7332 0.3487 0.0537
min 0.7516 −1.7387 0.0042
max 8.5069 −0.1531 0.2555

Ford (R2 criterion satisfaction 71.43%)

mean 1.9454 −0.3967 0.0504
std 1.0498 0.2145 0.0275
min 0.8528 −1.5003 0.0097
max 7.3322 −0.1731 0.1937

6. Conclusion. We enhance a local volatility model by the addition of the possibility of a
single jump to default with a hazard rate that is a deterministic function of time scaled by the
stock price raised to a prespecified negative power. Our empirical work uses the prespecified
power of −1.5. We show in this context how one may simultaneously recover from prices of
CDS contracts and the equity option prices both the deterministic component of the hazard
rate function and revised local volatility. The procedure requires one to construct, after
estimating the survival probabilities to various maturities, the prices of default free options
to which one fits a standard default free model with revised dividend yields to account for the
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Table 5
log f(t).

GM (R2 criterion satisfaction 88.77%)
constant maturity log(maturity)

mean 4.3717 0.1306 0.2163
std 0.6799 0.1654 0.1999
min 3.2663 −0.4932 −0.1839
max 5.7113 0.4656 0.6203

Ford (R2 criterion satisfaction 94.33%)

mean 4.1925 0.0975 0.2641
std 0.5754 0.1234 0.1533
min 3.1920 −0.5760 −0.0122
max 5.4697 0.3426 0.5740

payment of premia necessary to get default free in a defaultable world. This default free model
is critically used to infer the prices of powers of the stock price truncated to be above strike
levels for a variety of maturities. These truncated power prices are needed in constructing
the revised local volatility function from a grid of defaultable call prices that may be inferred
from the default free model coupled with the survival function.

The entire procedure was implemented on prices of CDSs and equity options for GM
and Ford over the period October 2004 to September 2007. We found that the revised lo-
cal volatility must be reduced to accommodate the possibility of default by a proportion
that is dependent on both the strike and the maturity. On average the elasticity of the de-
fault proportion of local volatility is −.4768 and −.3967 for GM and Ford, respectively. The
corresponding elasticities with respect to maturity are positive at 0.0646 and 0.0504. The de-
terministic component of the hazard function is generally increasing with respect to maturity
with semielasticities and elasticities of 0.1306 and 0.2163 for GM and 0.0975 and 0.2641 for
Ford.

Acknowledgment. We acknowledge helpful discussions on the subject matter of this pa-
per with Bruno Dupire, Alireza Javaheri, and Liuren Wu. Any remaining errors are our
responsibility.
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Minimizing the Expected Market Time to Reach a Certain Wealth Level∗

Constantinos Kardaras† and Eckhard Platen‡

Abstract. In a financial market model, we consider variations of the problem of minimizing the expected time
to upcross a certain wealth level. For exponential Lévy markets, we show the asymptotic optimality
of the growth-optimal portfolio for the above problem and obtain tight bounds for the value function
for any wealth level. In an Itô market, we employ the concept of market time, which is a clock that
runs according to the underlying market growth. We show the optimality of the growth-optimal
portfolio for minimizing the expected market time to reach any wealth level. This reveals a general
definition of market time which can be useful from an investor’s point of view. We utilize this last
definition to extend the previous results in a general semimartingale setting.

Key words. numéraire portfolio, growth-optimal portfolio, market time, upcrossing, overshoot, exponential
Lévy markets, Itô markets, semimartingale markets
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1. Introduction. The problem of quickly reaching certain goals in wealth management is
one of the most fundamental tasks in the theory and practice of finance. However, making
this idea mathematically precise has been a challenge. In particular, this would require a
quantification of what is meant by achieving goals “quickly” in a model-independent manner,
or, even better, coming endogenously from the description of the market as perceived by its
participants. Such a mathematically precise description of the flow of time, as well as the cor-
responding optimal investment strategy, is clearly valuable. If a robust, model-independent
answer to the previous questions can be given, it would go a long way towards a better under-
standing of the problem, as its statement should provide a deep insight into key quantitative
characteristics of the market. Our aim in this paper is to present a way of addressing the
aforementioned issues.

We proceed with a more thorough description of the problem. Imagine an investor holding
some minute capital-in-hand, aiming to reach as quickly as possible a substantial wealth
level by optimally choosing an investment opportunity in an active market. No matter what
the mathematical formalization of the objective is, as long as it reasonably describes the
above informal setting, intuition suggests that the investor should pick an aggressive strategy
that provides ample wealth growth. The most famous wealth-optimizing strategy that could
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potentially achieve this is the growth-optimal strategy, which is sometimes also called the
Kelly strategy, as the latter was introduced in [16]. Therefore, the portfolio generated by
the growth-optimal strategy is a strong candidate for solving the aforementioned problem,
at least in an approximate sense. This last point is augmented by the long line of research
on the importance and optimality properties of the growth-optimal portfolio; we mention,
for example, the following very incomplete list: [17], [1], [3], [18], [7], [12]. Note also that
minimizing expected time to reach a wealth level is not the only interesting objective that one
can seek. For example, maximizing the probability that a wealth level will be reached before
some future time is also interesting; in this respect, see [6], [9].

Here, we shall identify a variant of the “quickest goal reach” problem for continuous-time
models where the growth-optimal portfolio is indeed the best. The problem we consider then
is that of minimizing the expected market time that it will take to reach a certain wealth level.
Market time will be defined as a natural time scale which runs fast when the compensation
for taking risk in the market is high and vice versa. In a market with continuous asset prices,
this will be achieved by setting the slope of the market time equal to half the squared risk
premium. In this case, it equals the growth rate of the corresponding growth-optimal portfolio,
which leads to the interpretation of market time as integrated maximum growth rate.

The first attempt to minimize the expected upcrossing time in a discrete-time gambling-
system model was described in [5], where indeed the near optimal wealth process was found
to be characterized by Kelly’s growth-optimal strategy. Models of gambling systems, as con-
sidered in [5], could be interpreted as discrete-time financial markets where the log-asset-price
processes are random walks with a finite number of possible values for the increment of each
step. The natural continuous-time generalization of the above setting is to consider expo-
nential Lévy markets, i.e., markets where the log-asset-price processes have independent and
stationary increments. For these markets, we establish here the exact analogues of the results
in [5].

A continuous-time problem in the context of a Black–Scholes market was treated in [11],
and then as an application of a more abstract problem in [10], essentially using methods
of dynamic programming. In this case, the numéraire portfolio of the market, which was
introduced in [17] and is also called the growth-optimal portfolio, as it is generated by the
analogue of Kelly’s growth-optimal strategy, is truly optimal for minimizing the expected
calendar time to reach any wealth level. Unfortunately, the moment that one considers more
complex Itô-process models, for example ones that are modelling feedback effects, such as the
leverage effect in [4], the growth-optimal portfolio is no longer optimal for the problem of
minimizing expected calendar time for upcrossing a certain wealth level. In fact, for general
non-Markovian models there does not seem to be any hope in identifying what the optimal
strategy and wealth process are when minimizing expected calendar time. We note, however,
that for Markovian models one can still characterize the optimal strategy and portfolio in
terms of a Hamilton–Jacobi–Bellman equation, which will most likely then have to be solved
numerically.

We introduce in this paper a market clock which does not count time according to the
natural calendar flow but rather according to the overall market growth. Under the objective
that one minimizes expected market time, we show here that the solution again yields the
growth-optimal portfolio as nearly optimal. There is a slight problem that results in the
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nonoptimality of the growth-optimal portfolio, if for finite wealth levels some overshoot is
possible over the targeted wealth level at the time of the upcrossing. If there is no overshoot,
which happens in particular in models with continuous asset prices, then the growth-optimal
portfolio is indeed optimal. In [2], the author considers a ramification of the problem by
offering a rebate for the overshoot that results in the growth-optimal portfolio again being
optimal. Of course, we could do this even in the most general case. Since this rebate inclusion
is somewhat arbitrary, we shall refrain from using it in our own analysis.

The optimality of the growth-optimal portfolio for minimizing expected time according to
a clock counting time according to the overall market growth sounds a bit like a tautological
statement. However, we shall make a conscious effort to convey that the concept of market
time is very natural, by taking a stepwise approach in the model generality that we consider.
The exponential Lévy process case is considered first. There, the market-time flow coincides
with the calendar-time flow up to a multiplicative constant, since the model coefficients remain
constant through time. As soon as the model coefficients are allowed to randomly change,
one can regard the passage of time in terms of the opportunities for profit that are available.
We first discuss this in the realm of markets where asset-prices are modeled via Itô processes,
where the arguments are more intuitive. As soon as the natural candidate for the market time
is understood, we proceed to discuss the results in the very general semimartingale model.

The results presented in this work are generalizations of the constant-coefficient result in
[11]. The use of martingale methods and a natural definition of market time that we utilize
make the proof of our claims more transparent and widens the scope and validity of the
corresponding statements.

The structure of the paper is as follows. In section 2 we introduce the general financial
market model, we define the problem of minimizing expected market time, and we present
the standing assumptions, which are basically the existence of the numéraire portfolio. In
section 3 we specialize in the case of exponential Lévy market models, where market time
and calendar time coincide up to a multiplicative constant. Our first main result gives tight
bounds for the near optimal performance of the growth-optimal portfolio for any wealth level
that also result in its asymptotic optimality for increasing wealth levels. In section 4 we use
Itô processes to model the market. After some discussion on the concept of market time, our
second main result also shows here the optimality of the growth-optimal portfolio. In section
5, the concept of market time in a general semimartingale setting is introduced and a general
result that covers all previous cases is presented. Finally, section 6 contains the proofs of the
results in the previous sections.

2. Description of the problem. In the following general remarks we fix some notation
that will be used throughout.

By R+ we shall denote the positive real line, Rd the d-dimensional Euclidean space, and N

the set of natural numbers {1, 2, . . .}. Superscripts will be used to indicate coordinates, both
for vectors and for processes; for example z ∈ R

d is written z = (z1, . . . , zd). On R
d, 〈·, ·〉 will

denote the usual inner product: 〈y, z〉 :=
∑d

i=1 y
izi for y and z in R

d. Also | · | will denote
the usual norm: |z| := √〈z, z〉 for z ∈ R

d.

On R+ equipped with the Borel σ-field B(R+), Leb will denote the Lebesgue measure.

All stochastic processes appearing in what follows are defined on a filtered probability
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space (Ω, F , F, P). Here, P is a probability on (Ω,F), where F is a σ-algebra that will make
all involved random variables measurable. The filtration F = (Ft)t∈R+ is assumed to satisfy
the usual hypotheses of right-continuity and saturation by P-null sets. It will be assumed
throughout that F0 is trivial modulo P.

For a càdlàg (right-continuous with left limits) stochastic process X = (Xt)t∈R+ , define
Xt− := lims↑tXs for t > 0 andX0− := 0. The processX− will denote this last left-continuous
version of X, and ΔX := X −X− will be the jump process of X.

2.1. Assets and wealth processes. The d-dimensional semimartingale S = (S1, . . . , Sd)
will be denoting the discounted, with respect to the savings account, price process of d financial
assets.

Starting with initial capital x ∈ R+, and investing according to some predictable and
S-integrable strategy ϑ, an investor’s discounted total wealth process is given by

(2.1) Xx,ϑ := x+

∫ ·

0
〈ϑt, dSt〉 .

Reflecting the investor’s ability to hold only a portfolio of nonnegative total tradeable
wealth, we then define the set of all nonnegative wealth processes starting from initial capital
x ∈ R+:

X (x) :=
{
Xx,ϑ as in (2.1)

∣∣∣ ϑ is predictable and S-integrable, and Xx,ϑ ≥ 0
}
.

It is straightforward that X (x) = xX (1) and that x ∈ X (x) for all x ∈ R+. We also set
X :=

⋃
x∈R+

X (x).
2.2. The problem. We shall be concerned with the problem of quickly reaching a wealth

level � starting from capital x. This, of course, is nontrivial only when x < �, which will
be tacitly assumed throughout. The challenge is now to rigorously define what is meant by
“quickly.” Take O = (Ot)t∈R+ to be an increasing and adapted process such that, P-a.s.,
O0 = 0 and O∞ = +∞. O will be representing some kind of internal clock of the market,
which we shall call market time. In the following sections we shall be more precise on choosing
O, guided by what we shall learn when identifying the consequences of applying the growth-
optimal strategy.

For any càdlàg process X and � ∈ R+, define the first upcrossing market time of X at
level �:

(2.2) T (X; �) := inf {Ot ∈ R+ |Xt ≥ �} .
Of course, if � ≤ x, then T (X; �) = 0 for all X ∈ X (x). With the aforementioned inputs,
define for all x < � the value function

(2.3) v(x; �) := inf
X∈X (x)

E [T (X; �)] .

Our aims in this work are to
• identify a natural definition for the market time O,
• obtain an explicit formula, or at least some useful tight bounds, for the value function
v(x; �) of (2.3), and

• find the optimal, or perhaps near optimal, portfolio for the above problem.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

20 CONSTANTINOS KARDARAS AND ECKHARD PLATEN

2.3. Standing assumptions. In order to make headway with the problem described in
section 2.2, we shall make two natural and indispensable assumptions regarding the financial
market that will be in force throughout.

Assumptions 2.1. In our financial market model, we assume the following:

(1) There exists X̂ ∈ X (1) such that X/X̂ is a supermartingale for all X ∈ X .
(2) For every � ∈ R+, there exists X ∈ X (1), possibly depending on �, such that, P-a.s.,
T (X; �) < +∞.

A process X̂ with the properties described in Assumption 2.1(1) is unique and is called
the numéraire portfolio. Existence of the numéraire portfolio is a minimal assumption for the
viability of the financial market. It is essentially equivalent to the boundedness in probability
of the set {XT |X ∈ X (1)} of all possible discounted wealth starting from unit capital and
observed at any time T ∈ R+. We refer the interested reader to [7], [12], and [15] for more
information in this direction. We shall frequently refer to the numéraire portfolio as the
growth-optimal portfolio, as the two notions coincide.

Assumption 2.1(2) constitutes what has been coined a “favorable game” in [5], and it is
necessary in order for the problem described in (2.3) to have finite value and therefore to
be well-posed. Under Assumption 2.1(2), and in view of the property X (x) = xX (1) for
x ∈ R+, it is obvious that for all x ∈ R+ and � ∈ R+ there exists X ∈ X (x) such that
P [T (X; �) < +∞] = 1.

Actually, if Assumption 2.1(1) is in force, Assumption 2.1(2) has a convenient equivalent.

Proposition 2.2. Under Assumption 2.1(1), Assumption 2.1(2) is equivalent to

(2′) limt→+∞ X̂t = +∞, P-a.s.

This last result enables one to easily check the validity of Assumptions 2.1 by looking only
at the numéraire portfolio. In each of the specific cases we shall consider in what follows,
equivalent characterizations of Assumptions 2.1 will be given in terms of the model under
consideration.

3. Exponential Lévy markets.

3.1. The setup. For this section we assume that the discounted asset-price processes
satisfy dSi

t = Si
t− dRi

t for t ∈ R+, where, for all i = 1, . . . , d, Ri is a Lévy process on
(Ω,F ,F,P). Each Ri for i = 1, . . . , d is the total returns process associated with Si.

In order to make sure that the asset-price processes remain nonnegative, it is necessary
and sufficient that ΔRi ≥ −1 for all i = 1, . . . , d. We shall actually impose a further restriction
on the structure of the jumps of the returns processes, also bounding them from above. This
is mostly done in order to obtain later in Theorem 3.3 a statement which parallels the result
in [5]. For the asymptotic result that will be presented in section 3.6 this bounded-jump
assumption will be dropped.

Assumption 3.1. For all i = 1, . . . , d we have −1 ≤ ΔRi ≤ κ for some κ ∈ R+.

Denote by R the d-dimensional Lévy process (R1, . . . , Rd). In view of the boundedness of
the jumps of R, as stated in Assumption 3.1, we can write

(3.1) RT = aT + σWT +

∫
[0,T ]×Rd

z (μ( dz, dt)− ν( dz) dt)
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for all T ∈ R+. In view of Assumption 3.1, the elements in the above representation satisfy
the following:

• a ∈ R
d.

• σ is a (d×m)-matrix, where m ∈ N.
• W is a standard m-dimensional Brownian motion on (Ω,F ,F,P).
• μ is the jump measure of R, i.e., the random counting measure on R+ × R

d defined
via μ([0, T ]× E) :=

∑
0≤t≤T IE\{0}(ΔRt) for T ∈ R+ and E ⊆ R

d.

• ν, the compensator of μ, is a Lévy measure on (Rd,B(Rd)), where B(Rd) is the Borel
σ-field on R

d. More precisely, ν is a measure with ν[{0}] = 0, ν
[
R
d \ [−1, κ]] = 0, and∫

Rd |x|2ν[ dx] < +∞.

For more information on Lévy processes one can check, for example, [19].

Define the (d× d) matrix c := σσ
, where “	” denotes matrix transposition. The triplet
(a, c, ν) will play a crucial role in the discussion below.

In the notation of (2.1), let Xx,ϑ ∈ X (x). The nonnegativity requirement Xx,ϑ ≥ 0 is

equivalent to ΔXx,ϑ ≥ Xx,ϑ
− , or further to 〈ϑ, ΔS〉 ≥ Xx,ϑ

− . Since ΔSi = Si−ΔRi for each
i = 1, . . . , d, and recalling that ν is the Lévy measure of R, we conclude that Xx,ϑ ≥ 0 if and
only if (

ϑit(ω)S
i
t−(ω)

)
i=1,...,d

∈ Xx,ϑ
t− (ω)C for all (ω, t) ∈ Ω× R+,

where C is the set of natural constraints defined via

C :=
{
η ∈ R

d
∣∣∣ ν[z ∈ R

d | 〈η, z〉 < −1] = 0
}
.

It is easy to see that C is convex; it is also closed, as follows from Fatou’s lemma.

3.2. Growth rate. For any π ∈ C, define

(3.2) g(π) := 〈π, a〉 − 1

2
〈π, cπ〉 −

∫
Rd

[〈π, z〉 − log(1 + 〈π, z〉)] ν[ dz].

For π ∈ C, g(π) is the drift rate of the logarithm of the wealth process X ∈ X (1) that satisfies
dXt = Xt− 〈π, dRt〉 = Xt− d 〈π,Rt〉 for all t ∈ R+; for this reason, g(π) is also called the
growth rate of the last wealth process.

Define g∗ := supπ∈C g(π) to be the maximum growth rate. Since 0 ∈ C, we certainly have
g∗ ≥ g(0) = 0. Actually, under the bounded-jump Assumption 3.1, the standing Assumptions
2.1 are equivalent to 0 < g∗ < ∞. In order to achieve this last claim, we shall connect the
viability of the market with the concept of immediate arbitrage opportunities, as will now be
introduced.

3.3. Market viability. Define the set I of immediate arbitrage opportunities to consist of
all vectors ξ ∈ R

d such that cξ = 0, ν
[
z ∈ R

d | 〈ξ, z〉 < 0
]
= 0, and 〈ξ, a〉 ≥ 0 and where

further at least one of ν
[
z ∈ R

d | 〈ξ, z〉 > 0
]
> 0 or 〈ξ, a〉 > 0 holds. As part of the next

result, we get that the previously described exponential Lévy market is viable if and only if
the intersection of I with the recession cone of C, defined as Č :=

⋂
u>0 uC, is empty.
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Proposition 3.2. Assumptions 2.1 are equivalent to requiring both I ∩ Č = ∅ and g∗ > 0.
Suppose now that the above is true, as well as that Assumption 3.1 is in force. Then,

g∗ < ∞ and there exists ρ ∈ C such that g(ρ) = g∗. Furthermore, the numéraire portfolio X̂
satisfies the dynamics dX̂t = X̂t− 〈ρ, dRt〉 = X̂t− d 〈ρ,Rt〉. In other words, for T ∈ R+,

(3.3) log
(
X̂T

)
= 〈ρ,RT 〉 − 1

2
〈ρ, cρ〉T −

∑
0≤t≤T

(〈ρ,ΔRt〉 − log (1 + 〈ρ,ΔRt〉)) .

Instead of using the general Assumptions 2.1 in this section, we shall use the equivalent
conditions I ∩ Č = ∅ and g∗ > 0. We also note that the vector ρ ∈ C in the statement
of Proposition 3.2 that leads to the numéraire portfolio is essentially unique, modulo any
degeneracies that might be present in the market and lead to nonzero portfolios having zero
returns.

3.4. The main result. Since Lévy processes have stationary and independent increments,
the natural candidate for market time is to consider calendar time up to a multiplicative
constant γ > 0, i.e., to set Ot = γt for t ∈ R+. In Theorem 3.3, we shall actually choose
γ = g∗. This turns out to be the appropriate choice of market velocity that reflects a universal
characteristic of the market and will result in the bounds (3.4) for the optimal upcrossing time
in Theorem 3.3 not depending on the actual model under consideration.

Theorem 3.3. We work under Assumption 3.1 and also assume that I∩ Č = ∅ and g∗ > 0.
Define the finite nonnegative constant α := inf

{
β ∈ R+ | ν

[
z ∈ R

d | 〈ρ, z〉 > β
]
= 0

}
. Let

the market time O be defined via Ot = g∗t for all t ∈ R+. With X̂(x) := xX̂, we have the
inequalities

(3.4) log

(
�

x

)
≤ v(x; �) ≤ E

[T (X̂(x); �)
] ≤ log

(
�

x

)
+ log(1 + α).

Actually, Theorem 3.3 is an instance of a more general statement that will be presented
in section 5. We note that the bounds (3.4) are in complete accordance with the discrete-time
result in [5] and that the nonnegative constant log(1 + α) does not involve x or �.

Remark 3.4. Under a mild condition, namely that the marginal one-dimensional distribu-
tions of log(X̂) are nonlattice, the overshoot of log(X̂) over the level log(�) actually has a
limiting distribution as �→∞ that is supported on [0, log(1 + α)]. In that case,

lim
�→∞

(
E
[T (X̂(x); �)

]− log

(
�

x

))
exists and is exactly equal to the mean of that limiting distribution.

3.5. True optimality. There is a special case when the growth-optimal portfolio is indeed
optimal for all levels �, which covers in particular the Black–Scholes market result in [11]. The
following result directly stems out of the statement of Theorem 3.3.

Corollary 3.5. Suppose that the numéraire portfolio X̂ of (3.3) has no positive jumps:
〈ρ, ΔR〉 ≤ 0. Then,

v(x; �) = log

(
�

x

)
= E

[T (X̂(x); �)
]
.
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For an easy example where the last equality occurs, consider in (3.1) the case where d = 1,
κ = 0, and a = a1 > 0. This is a reasonable model where the excess rate of return is strictly
positive and only negative jumps are present in the dynamics of the discounted asset-price
process.

3.6. Asymptotic optimality without the bounded-jump assumption. Theorem 3.3 gives
the asymptotic (for large �) optimality of the growth-optimal portfolio, since, by (3.4),

(3.5) lim
�→∞

v(x; �)

log(�)
= 1 = lim

�→∞
E
[T (X̂(x); �)

]
log(�)

.

The validity of the asymptotic optimality in (3.5) goes well beyond the bounded-jump
Assumption 3.1, as we shall describe now. For the total returns process R = (R1, . . . , Rd),
we can write the canonical representation (3.1) if and only if the Lévy measure ν is such that∫
Rd

(|x| ∧ |x|2) ν[ dx] < +∞. In that case, the definition in (3.2) of the growth rate is still the
same, even without the validity of Assumption 3.1. We then have the following result.

Proposition 3.6. Suppose that the canonical representation (3.1) is valid. Then, if I∩ Č = ∅
and g∗ > 0 hold, we have g∗ < ∞ and there exists ρ ∈ C such that g(ρ) = g∗. One can
then define the growth-optimal portfolio X̂ using (3.3). Defining O via Ot = g∗t, and with
X̂(x) := xX̂, the asymptotics (3.5) hold.

4. Itô markets and market time. As already mentioned in the introduction, the growth-
optimal portfolio is not optimal for the problem of minimizing the expected calendar time
to reach a wealth level when considering models where the coefficients may change randomly
through time. If the objective is somewhat altered into minimizing expected market time, as
we shall define below, then the growth-optimal portfolio is indeed optimal. It is our belief that
the notion of market time, as it naturally emerges in our paper, has a very clear and natural
interpretation and makes deep sense, and is therefore worth studying beyond the context of
the questions raised.

To keep the technical details simple, in this section we assume that S is an Itô process.
Later, in section 5, we shall see how to relax this assumption to more complex models and
still keep the main result holding.

4.1. The setup. The dynamics of the discounted asset-prices are

(4.1) dSi
t = Si

t

⎛⎝ait dt+ m∑
j=1

σijt dW j
t

⎞⎠
for each i = 1, . . . , d and t ∈ R+. Here a = (ai)i=1,...,d is the predictable d-dimensional process
of excess appreciation rates, σ = (σij)i=1,...,d, j=1,...,m is a predictable (d × m)-matrix-valued
process of volatilities, and W = (W j)j=1,...,m is a standard m-dimensional Brownian motion
on (Ω,F ,F,P). We let c := σσ
 denote the (d×d)-matrix-valued process of local covariances.

4.2. Assumptions. The general Assumptions 2.1 have a well-described equivalent for the
Itô market we are considering.

Proposition 4.1. Assumptions 2.1 are equivalent to the following:
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(1) There exists a d-dimensional predictable process ρ such that, (P ⊗ Leb)-a.e., cρ = a.
(In that case, ρ = c†a, where c† is the Moore–Penrose pseudoinverse of c.)

(2)
∫ T
0 |λt|2 dt <∞ for all T ∈ R+, where λ := σ
c†a is the m-dimensional risk premium
process. (Then, |λ|2 = 〈

a, c†a
〉
= 〈ρ, cρ〉.)

(3)
∫∞
0 |λt|2 dt =∞, P-a.s.

In this case, it follows that the logarithm of the numéraire portfolio X̂ is given by

(4.2) log(X̂) =
1

2

∫ ·

0
|λt|2 dt+

∫ ·

0
λt dWt.

It follows from (4.2) that g∗t := (1/2)|λt|2 equals the maximum growth rate at time t ∈ R+

in the given Itô market.
As we did in the case of exponential Lévy markets, we shall use statements (1), (2), and

(3) of Proposition 4.1 in place of the general Assumptions 2.1 in what follows.

4.3. Market time. With the above notation define now, similar to the previous section,
the market time process O = (Ot)t∈R+ by setting it equal to the integral over the maximum
growth rate, i.e.,

Ot :=

∫ t

0
g∗s ds =

1

2

∫ t

0
|λs|2 ds

for t ∈ R+. Observe that, under the validity of statements (1), (2), and (3) of Proposition
4.1, we have P[O∞ =∞] = 1 as follows from Proposition 4.1(3). As explained in section 2.2,
for given x < �, our aim is to find the wealth process X ∈ X (x) that minimizes E [T (X; �)].

We briefly explain why the problem of minimizing expected market time to reach a wealth
level using such a random clock and not calendar time is natural and worth studying. Consider
for simplicity the one-asset case d = 1. Then, at any time t ∈ R+, |λt|2 = |at/σt|2 is
the “squared signal to noise ratio” of the asset-price process or more precisely the squared
risk premium. When this quantity is small, the opportunities for making profits over those
obtainable from the savings account are rather small; on the other hand, when |λt|2 is large, at
time t ∈ R+ an investor has a lot of opportunities to use the favorable fact that the premium
for taking risk is high. Stalling to reach the wealth level � when opportunities are favorable
should be punished more severely, especially for fund managers, and this is exactly what the
market time O does. From an economic point of view, market time simply conforms with the
underlying growth of the market.

4.4. The main result. We are ready to present the solution to the optimization problem
of section 2.2, both giving an expression for the value function v and again showing that the
growth-optimal portfolio is optimal.

Theorem 4.2. Under the validity of statements (1), (2), and (3) of Proposition 4.1 for an
Itô market, and with X̂(x) := xX̂ ∈ X (x), for x < � we have

v(x; �) = log

(
�

x

)
= E

[T (X̂(x); �)
]
.

Once again, this last result is a special case of Theorem 5.3 that will be presented in the
next section.
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5. Market time in general semimartingale markets. The purpose of this section is to
give a wide-encompassing definition of market time for semimartingale financial markets and
to present a general result on the expected market time to reach a given wealth level, of which
both Theorems 3.3 and 4.2 are special cases. We are now in the very general market model
described in section 2.

5.1. Market time. Guided by the discussions and results in both the exponential Lévy
market case of section 3 and the Itô market case of section 4, it makes sense to define market
time as the underlying optimal growth of the market, i.e., the drift part of the logarithm of
the growth-optimal portfolio. We shall have to make minimal assumptions for market time to
be well defined, namely, that the drift part of the logarithm of the growth-optimal portfolio
does exist. The following result, which is a refined version of Proposition 2.2, ensures that the
discussions that follow make sense.

Proposition 5.1. Under the validity of Assumption 2.1(1), further assume that the logarithm
of the numéraire portfolio X̂ is a special semimartingale and write log(X̂) = O +M for its
canonical decomposition, where O is a predictable nondecreasing process and M is a local
martingale. Then, Assumption 2.1(2) is equivalent to

(2′′) limt→+∞Ot = +∞, P-a.s.

The following slightly strengthened version of Assumptions 2.1 will enable us to state our
general result in Theorem 5.3.

Assumption 5.2. With Assumptions 2.1 in force, we further postulate that the logarithm
of the numéraire portfolio X̂ is a special semimartingale.

Under Assumption 5.2, we can write log(X̂) = O+M , whereO is a predictable nondecreas-
ing process and M is a local martingale. We then define market time to be the nondecreasing
predictable process O. According to Proposition 5.1, we have, P-a.s., O0 = 0 and O∞ = ∞.
This makes O a bona fide clock.

5.2. A general result. In what follows, α will denote a nonnegative, possibly infinite-
valued random variable such that

(5.1)
ΔX̂

X̂−
≤ α.

Of course, α can be chosen in a minimal way as α := supt∈R+
(ΔX̂t/X̂t−).

Theorem 5.3. Let Assumption 5.2 be in force. With the above definition of the market time
O and a random variable α satisfying (5.1), we have

(5.2) log

(
�

x

)
≤ v(x; �) ≤ E

[T (X̂(x); �)
] ≤ log

(
�

x

)
+ E [log(1 + α)] .

It is straightforward that Theorem 5.3 covers both Theorem 3.3 and Theorem 4.2 as special
cases. For Theorem 3.3, α is the constant defined in its statement, while for Theorem 4.2 we
have α = 0.

Dividing the inequalities (5.2) with log(�) throughout, we get the following corollary of
Theorem 5.3.
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Corollary 5.4.In the setting of Theorem 5.3, suppose that E[log(1 + α)] <∞. Then,

lim
�→∞

v(x; �)

log(�)
= 1 = lim

�→∞
E
[T (X̂(x); �)

]
log(�)

.

This last result shows that, under some integrability condition on the possible size of the
jumps of the logarithm of the growth-optimal portfolio, the problem of possible overshoots
vanishes asymptotically when considering increasing wealth levels �.

6. Proofs. Before we embark on proving all the results of the previous sections, we define,
in accordance to (2.2), for any càdlàg process X and � ∈ R+,

τ(X; �) := inf {t ∈ R+ |Xt ≥ �}

to be the first upcrossing calendar time of X at level �. It is clear that τ(X; �) is a stopping
time and that Oτ(X;�) = T (X; �) for all càdlàg processes X and � ∈ R+.

6.1. Proof of Proposition 2.2. Recall that the clock O satisfies P[O∞ =∞] = 1. There-
fore, for any X ∈ X and � ∈ R+, P[τ(X; �) <∞] = 1 is equivalent to P[T (X; �) <∞] = 1.

Condition (2′) of Proposition 2.2 obviously implies Assumption 2.1(2). Conversely, assume
that Assumptions 2.1 are in force. For any n ∈ N, pick X ∈ X (1) such that P[τn < ∞] = 1,
where τn := τ(X;n). Since X/X̂ is a nonnegative supermartingale, the optional sampling
theorem (see, for example, section 1.3.C of [13]) gives

1 ≥ E

[
Xτn

X̂τn

]
≥ nE

[
1

X̂τn

]
.

It follows that (1/X̂τn )n∈N converges to zero in probability. As 1/X̂ is a nonnegative super-
martingale, this implies that limt→∞(1/X̂t) = 0, P-a.s., which establishes the result.

6.2. Proof of Proposition 5.1. Under the assumption that the numéraire portfolio X̂ is
a special semimartingale with canonical decomposition X̂ = O +M , the event equality{

lim
t→∞ X̂t = +∞

}
=

{
lim
t→∞Ot = +∞

}
,

which is to be understood in a modulo P sense, is a consequence of Proposition 3.21 in [12].
Then, the result of Proposition 5.1 readily follows in view of Proposition 2.2.

6.3. Proof of Proposition 3.2. The fact that I ∩ Č = ∅ is equivalent to the existence
of ρ ∈ C such that g(ρ) = g∗ < ∞, as well as that X̂ as defined in (3.3) is the numéraire
portfolio, is a consequence of Lemma 4.1 in [14], as soon as one also uses the bounded-jump
Assumption 3.1.

Now, it is straightforward to check that g∗ = 0 is equivalent to X̂ being a positive local
martingale, in which case we have that, P-a.s., limt→∞ X̂t <∞. On the other hand, if g∗ > 0,
then the Lévy process log(X̂) is integrable and has strictly positive drift g∗; therefore, P-a.s.,
limt→∞ X̂t =∞. In view of Proposition 2.2, the result follows.
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6.4. Proof of Proposition 4.1. The fact that (1) and (2) of Proposition 4.1 are equivalent
to the existence of the numéraire portfolio X̂, as well as that X̂ is given by (4.2), is a special
case of Theorem 3.15 in [12]—see also [8]. Under the validity of (1) and (2) of Proposition
4.1, it is straightforward to see that (3) of Proposition 4.1 is equivalent to limt→∞ X̂t = ∞.
Using Proposition 2.2, the result follows.

6.5. Proof of Theorem 5.3. Let L̂(x) := log(X̂(x)). Observe that, since ΔX̂ ≤ αX̂−,

(6.1) ΔL̂(x) = log

(
1 +

ΔX̂

X̂−

)
≤ log(1 + α).

Write L̂(x) = log(x) + O +M , where M is a local martingale. Let (τn)n∈N be a localizing
sequence for M . The estimate (6.1) gives, for all n ∈ N,

log(x) + E

[
Oτn∧τ(X̂(x);�)

]
= E

[
L̂τn∧τ(X̂(x);�)(x)

]
≤ log(�) + E[log(1 + α)].

Now letting n tend to infinity and using the monotone convergence theorem, we get

(6.2) E
[T (X̂(x); �)

] ≤ log(�/x) + E[log(1 + α)].

Now take any X ∈ X (x). If P[T (X, �) =∞] > 0, we have E [T (X, �)] =∞ and log(�/x) ≤
E [T (X, �)] is trivial. It remains to consider the case P[T (X, �) < ∞] = 1, or equivalently
P[τ (X, �) <∞] = 1.

For all ε ∈ (0, 1), define Xε := (1−ε)X+εx. Then, Xε ∈ X (x) and τ (Xε, εx+ (1− ε)�) =
τ (X, �). The drift part of the process Lε := log (Xε) is bounded above by O. Therefore,

Lε ≤ log(x) +O +M ε

for some local martingaleM ε. Let (τ ε,n)n∈N be a localizing sequence forM ε. Since the stopped
process M ε

τ(X,�)∧τε,n∧· is a martingale, we have that

E

[
Lε
τ(X,�)∧τε,n

]
≤ log(x) + E

[Oτ(X,�)∧τε,n
]

= log(x) + E [T (X, �) ∧ Oτε,n ] .

Now, Lε is uniformly bounded from below by log(εx). Furthermore, ↑ limn→∞Oτn = ∞
holds in a P-a.s. sense. Therefore, applications of Fatou’s lemma and the monotone convergence
theorem will give

log(�) + log(1− ε) ≤ E

[
Lε
τ(X,�)

]
≤ lim inf

n→∞ E

[
Lε
τ(X,�)∧τn

]
≤ log(x) + lim inf

n→∞ E [T (X, �) ∧Oτn ]

= log(x) + E [T (X, �)] .

Now sending ε to zero, we also get log(�/x) ≤ E [T (X, �)] for all X ∈ X (x) that satisfy
P[T (X, �) <∞] = 1. This, coupled with (6.2), finishes the proof.
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6.6. Proof of Proposition 3.6. The existence of ρ ∈ C such that g(ρ) = g∗ < ∞ follows
from Lemma 4.1 in [14] in view of I ∩ Č �= ∅. Note that the finiteness of g∗ is straightforward
from the defining equation (3.2) for g.

Call L̂ := log(X̂). For each n ∈ N, let

L̂n := L̂−
∑
t≤·

(ΔL̂t)I{ΔL̂t>n}.

Then, L̂n is a Lévy process and we can write

L̂n
t = gnt+Mn

t

for all t ∈ R+, where M
n is a Lévy martingale and ↑ limn→∞ gn = g∗ > 0. Then,

E[T (X̂(x); �)] = g∗E[τ(X̂(x); �)] ≤ g∗E
[
τ
(
L̂n(x); log(�)

)]
≤ g∗

gn

(
log

(
�

x

)
+ log(1 + n)

)
holds for all n ∈ N such that gn > 0, where the last inequality follows along the same lines of
the proof of (6.2). It then follows that

lim sup
�→∞

E[T (X̂(x); �)]

log(�)
≤ g∗

gn

holds for all n ∈ N such that gn > 0. Since ↑ limn→∞ gn = g∗ > 0, sending n to infinity in the
last inequality we get

lim sup
�→∞

E[T (X̂(x); �)]

log(�)
≤ 1.

Of course, in view of the bounds (5.2) of Theorem 5.3, we always have

1 = lim
�→∞

v(x; �)

log(�)
≤ lim inf

�→∞
E[T (X̂(x); �)]

log(�)
,

which completes the proof.
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[17] J. B. J. Long, The numéraire portfolio, J. Financial Economics, 26 (1990), pp. 29–69.
[18] E. Platen, A benchmark approach to finance, Math. Finance, 16 (2006), pp. 131–151.
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with Jump Diffusion and Their Free Boundaries∗
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Abstract. An American put option with jump diffusion can be modeled as an integro-variational inequality.

With a penalization approximation and under the stability condition σ2Δt
Δx2 � 1, where Δx = ln

Sn+1

Sn

(St-underlying asset price), we obtain the optimal convergence rate O((Δx)+(Δt)1/2) of the binomial
tree scheme for this variational inequality. Moreover, we define an approximate optimal exercise
boundary within the framework of the binomial tree scheme and derive the convergence rate estimate
O((Δt)1/4) to the actual free boundary.

Key words. convergence rate, jump diffusion, explicit difference scheme, American options, free boundary,
binomial tree method

AMS subject classifications. 91G80, 91G60, 65M06, 35R35

DOI. 10.1137/090746239

1. Introduction. An American put option is a contract which gives a holder a right to
sell the underlying asset at any time before the expiration date for a certain price. In the
Black–Scholes framework [7], the valuation of an American put option is a free boundary
problem.

Assume that the underlying asset price {St} is a random process, which can be modelled
by the following stochastic differential equation in a given probability space (Ω,F ,P) (see also
[22] by Kou):

dSτ
Sτ

= μdτ + σdWτ + d

⎛⎝ N̂τ∑
j=1

Uj

⎞⎠ ,(1.1)

where μ, σ are positive constants; {Wτ}τ>0 is the standard Brownian motion with

E(dWτ ) = 0, Var(dWτ ) = dτ ;

{N̂τ}τ>0 is a Poisson process with positive constant intensity λ; and the sequence {Uj}j�1

consists of square integrable, independent, identically distributed random variables taking
values in (−1,∞).
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In this paper, the jumps are assumed to be lognormally distributed; however, our work
extends to other types (e.g., described as Kou’s models in [22]) of jumps satisfying (2.7)–(2.8).

If (1.1) is used to describe the dynamics under the pricing measure of the stock market,
then for the corresponding American put option pricing at time τ , given by

Vτ = V (Sτ , τ),

the function V (s, τ) satisfies the following variational inequality (see, e.g., [32], [33], [34], [36],
[38]):

min
(
r−1L̃[V ], V (S, τ) − g̃(S)) = 0, (S, τ) ∈ R

+ × [0, T ],(1.2)

V (S, T ) = g̃(S), S ∈ R
1,(1.3)

where

L̃[V ] =
∂V

∂τ
+

1

2
σ2S2∂

2V

∂S2
+ (r − λω)S ∂V

∂S
(1.4)

−(r + λ)V + λ

∫ ∞

−1
V (S(1 + z), t)dÑ (z),

g̃(S) = max
(
K − S, 0),(1.5)

with Ñ(z) being the distribution of U1 and r,K, σ > 0 being the interest rate, striking price,
and volatility of the option, respectively. Also μ = r−λω, ω = EU1. For simplicity, throughout
the paper, we suppose that K = 1.We remark here that the factor r−1 in (1.2) is not essential;
in fact, the problem is equivalent to the one without this factor. However, we use this factor
in the problem for the normalization purpose for the later proof.

An intuitive explanation about (1.1) is given as follows: the stock price Sτ may have
finitely many discontinuities on each interval [0, τ ]; i.e., it may jump at some random times
controlled by the Poisson process {N̂τ}τ>0 with λ and Uj describing the frequency and the
relative amplitude of jump, respectively. Between two jumps, it follows a continuous lognormal
random walk modeled by Brownian motion {Wτ}τ>0.

American option pricing in Merton’s jump-diffusion model was developed by Zhang [38],
[39] as a variational inequality problem with a free boundary. Using the results of free bound-
ary and probability theories, Pham [33] studied the behavior of the optimal stopping boundary
and proved its continuity with some restriction on the size of jump risks. By using the penal-
ization technique to approximate the free boundary problem of American options with jump
diffusion, Yang, Jiang, and Bian [37] obtained many properties of the free boundary.

It is well known that no closed-form solutions are available even for the American vanilla
option. In 1979, Cox and Rubinstein (see [11]) were the first to propose the binomial tree
method (BTM), which is a discrete time model to value vanilla options. Since then, it has
been a very popular choice for computing the pricing of many options including American
options. The method is widely used.

Now, let us consider an American put option with a jump diffusion. Suppose that the
lifetime of the option [0, T ] is divided into equally spaced nodes with a distance h apart, N
is the number of discrete time points, and h = T/N. Let Z = {l : l = 0,±1,±2, . . .}. Amin
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[4] developed a simple, discrete model to value options when the underlying asset follows a
jump-diffusion process. It is assumed that S is the stochastic stock price at time t and Sτ takes
values in a discrete set {Sl = Sul : l ∈ Z} after a small time interval h. Here the Brownian
motion {Wτ}τ>0 in the continuous time case is responsible for “local” change of the stock
price: Su and Su−1. When a Poisson jump occurs, the stock price “jumps” to potentially any
state on the space grid at the next time.

Let λ̂ be the probability that a Poisson jump happens in small time interval h; i.e.,
approximately, λ̂ = hλ. Then the American put option with jump diffusion price V n

i =
V (Sn

i , τn), i ∈ Z, can be defined by the following inverse induction process [4]:⎧⎪⎪⎪⎨⎪⎪⎪⎩
V N
i = g(SN

i );

if V n+1
i is already known, then V n

i is defined as

V n
i = max

(
1

ρ

(
(1− λ̂)(qV n+1

i+1 + (1− q)V n+1
i−1

)
+ λ̂

∑
l∈Z

V n+1
l+1 p̂l

)
, g(Sn

i )

)
,

where 0 � n � N − 1, ρ = erh, u = eσ
√
h , and

q =
(ρ− λ̂(ω + 1))/(1 − λ̂)− u−1

u− u−1
,(1.6)

p̂l = Prob

(
ln(1 + U1) ∈

[(
l − 1

2

)
σ
√
h,

(
l +

1

2

)
σ
√
h

))
= Ñ

((
l +

1

2

)
σ
√
h

)
− Ñ

((
l − 1

2

)
σ
√
h

)
,(1.7)

where, as mentioned before, Ñ(x) is the distribution of jump amplitude U1, and Ñ(x) =
N(ex − 1) takes the form of norm distribution (for some μ, σ̂ > 0), i.e.,

(1.8) N(x) =
1

σ̂
√
2π

∫ x

−∞
e−

(η−μ)2

2σ̂2 dη.

Xu, Qian, and Jiang [36] proved that the explicit finite difference scheme (EFDS) of a
European option with jump diffusion is stable and convergent (with rate O(Δx +

√
Δt))

under the stability condition

σ2
Δt

Δx2
� 1.(1.9)

They also showed that the BTM described as above is equivalent to an EFDS for a European
option with jump diffusion under the condition (Δx = lnu, Δt = h) when the equality holds
in (1.9).

In a recent paper, Qian et al. [34] extended the proof of equivalence of an EFDS and an
explicit difference scheme to an American option with jump diffusion when the equality holds
in (1.9). They also proved the uniform convergence of the EFDS under (1.9) for American
options in the sense of viscosity solution.

An option pricing model with jump diffusion is a PDE with a nonlocal integral term.
There has been much interest in the model with jump diffusions [2], [3], [4], [5], [6], [8], [10],
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[14], [18], [22], [30], [33], [34], [36], [37], [39]. An explicit scheme like the BTM is easy to use.
However, as an implicit scheme has an advantage on the stability, many studies have been
carried out. In [39], Zhang first applied an implicit-explicit mixed scheme on a jump-diffusion
model; the scheme was explicit on the integral term and implicit on the partial derivative
terms in the equation of the problem. An error estimate was obtained by using an energy
estimate. In [14], [8], and [2], implicit/mixed schemes were used to calculate a jump-diffusion
model, where convergence was discussed. However, the convergence rate of these schemes
remains an open interesting question.

In this paper, the penalization technique is used to study the convergence rate of the
EFDS for the American option with jump diffusion model, which includes the BTM as a
special case of the EFDS. We derive the optimal convergence rate O((Δx) + (Δt)1/2). This
work extends the results in [29] and [30], where the convergence rate O((Δx)2/3 + (Δt)1/3)
was obtained for the American vanilla options and the American option with jump diffusion,
respectively. We also establish the rate of convergence of the free boundary under certain
additional assumptions. The convergence study for the American vanilla options was also done
in [20], [21] in a PDE framework without using probability theory, where uniform convergence
was obtained.

Lamberton [26] in 1998 obtained the BTM convergence rate between O((Δt)2/3) and
O((Δt)3/4) for an American put option at a fixed time; the estimate is improved to O

(
(Δt)

(
√| log(Δt)|)4/5) under additional conditions. At the fixed time level this estimate is better
than ours. Our work is different in the sense that we look for the estimate on the entire time
interval including the initial time where the data is not smooth. To our knowledge, the idea
of using an approximating smooth solution as a bridge first came from Krylov [23], [24], who
worked on Hamilton–Jacobi–Bellman (HJB) equations arising from stochastic control prob-
lems. For the FDS on these equations, in [23], [24] the convergence rates of O((Δx)1/3) for
constant coefficients equations and of O((Δx)1/27) for variable coefficients were established,
using a combination of analytic and probabilistic methods. Jakobsen studied general Bellman
equations [17]. Later, Jakobsen, Karlsen, and La Chioma worked on an HJB equation associ-
ated with jump diffusion [18], which was similar to our equation; they got the error estimates
to O((Δx)1/2) for certain situations, using purely analytic methods. In [15], we improved PDE
estimates and obtained the optimal convergence rate of the BTM for the American vanilla
option. The current work not only extends the error estimates to the current model with
jump diffusion but also gives the error estimates of the free boundary.

When we work on maximum-norm error estimates of the EFDS for the variational inequal-
ity problem (1.2)–(1.3), there are three intrinsic difficulties to this discrete scheme: First, the
optimal regularity of the solution V (S, τ) of the variational inequality (1.2) is only of W 2,1∞ ;
in fact, VSS is bounded but not continuous at the free boundary; i.e., the truncation error
near the free boundary is more difficult to estimate. Second, the initial datum g̃ is only in
W 1∞; the derivative g̃′ is bounded but not continuous. Third, the problem has a nonlocal
jump-diffusion term, which can be reduced to an integro-partial differential problem. The
method to overcome the first difficulty is partially motivated by the work [24], which deals
with Bellman’s equations. We introduce a regularized solution V ε to a penalized problem
with a penalty βε(·). The error |V −Vh| between the original solution and the finite difference
solution can be estimated by the sum of two parts: |V − V ε| and |Vh − V ε|; then we find a
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balance between ε and h to obtain the optimal convergence rate. For the second difficulty, we
eliminate the singularity of the initial datum g̃ by subtracting the corresponding European
option price U(S, τ). Combining these two techniques, we obtain the error estimate O(Δx)
for |V −Vh|. The general method dealing with the integro-differential equation is used to solve
the third difficulty. We believe that the method is also suitable for deriving error estimates of
the BTM for other American style options.

It is well known that an American option has an optimal exercise boundary, which is called
a free boundary in PDE theory. Explicitly locating this free boundary is always significant
in applications. This boundary can be estimated within the BTM scheme; however, the
convergence rate remains open. In this paper, we give a definition of an approximate boundary
within the BTM scheme and prove that this approximate boundary is convergent to the actual
free boundary by the rate O(h1/4) under certain conditions.

This paper is organized as follows: In section 2, we state the variational problem and its
properties. In section 3, the FDS of the problem is presented. A comparison theorem for
the FDS is shown in this section. In section 4, we consider a penalized problem and obtain
a regularized solution. The estimates to this regularized solution are derived in section 5. In
section 6, the estimates of the truncation error of the regularized solution are obtained. These
estimates are used to derive the main theorem in section 7. The estimates for errors between
the finite difference free boundary and the actual free boundary are derived in section 8. Some
remarks and some numerical results are collected in section 9.

2. Variational inequality problem. As stated in the introduction, the pricing of an Amer-
ican option can be reduced to a variational problem (1.2)–(1.3). By changing variables

x = logS, t = T − τ, y = log(1 + z),(2.1)

u(x, t) ≡ V (S, τ), g(x) ≡ g̃(S), N(y) = Ñ(z),(2.2)

the problem is reduced to

F [u] := min
(
r−1L[u], u− g(x)) = 0, (x, t) ∈ R

1 × (0, T ),(2.3)

u(x, 0) = g(x), x ∈ R
1,(2.4)

where

L[u] = ut − σ2

2
uxx −

(
r − λω − σ2

2

)
ux + (r + λ)u

−λ
∫
R1

u(x+ y, t)dN(y),(2.5)

g(x) = (1− ex)+, x ∈ R
1,(2.6)

and

(2.7)

∫
R1

dN(y) = 1,

∫
R1

(ey − 1)dN(y) = ω <∞.

Note that if N is given by (1.8), then it also satisfies

(2.8)

∫
R1

e|y|dN(y) <∞.
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The discussion of this paper actually applies to general N satisfying (2.7)–(2.8).
For this variational problem, it is well known that there exists a unique solution in C(R1×

[0, T ]) ∩W 2,1
p,loc(R

1 × (0, T ]) (e.g., see [12, section 1.6]), where W 2,1
p,loc(R

1 × (0, T ]) consists of

functions u(x, t) which belong to W 2,1
p ((x0 − 1, x0 + 1) × [τ, T ]) for any x0 ∈ R

1 and any
0 < τ < T .

Throughout this paper, we discuss the problem in spaces W 2,1
p (Q) and Cm+α,(m+α)/2(Q)

for Q = Ω× [0, T ], Ω ⊂ R
1, p � 1, 0 � α, β < 1, and m is any nonnegative integer. The norms

of these spaces are defined as follows:

‖f‖Lp(Q) =

(∫
Q
|f |pdxdt

)1/p

,

‖f‖W 2,1
p (Q) = ‖f‖Lp(Q) + ‖D2

xf‖Lp(Q) + ‖D1
t f‖Lp(Q),

[f ]Cα,β(Q) = sup
(x,t),(y,τ)∈Q,(x,t)�=(y,τ)

|f(x, t)− f(y, τ)|
|x− y|α + |t− τ |β ,

‖f‖Cα,β(Q) = sup
(x,t)∈Q

|f |+ [f ]Cα,β(Q),

‖f‖C2m+α,m+α/2(Q) = sup
(x,t)∈Q

|f |+ [D2m
x f ]Cα,α/2(Q) + [Dm

t f ]Cα,α/2(Q),

[f ]
Cβ

t (Q)
= sup

(x,t),(x,τ)∈Q, t�=τ

|f(x, t)− f(x, τ)|
|t− τ |β ,

‖f‖
Cβ

t (Q)
= ‖f‖L∞(Q) + [f ]

Cβ
t (Q)

,

[f ]Cα
x (Q) = sup

(x,t),(y,t)∈Q, x �=y

|f(x, t)− f(y, t)|
|x− y|α ,

‖f‖Cα
x (Q) = ‖f‖L∞(Q) + [f ]Cα

x (Q),

where Dl
xf = ∂lf

∂xl , D
l
tf = ∂lf

∂tl
for any positive integer l.

Furthermore, the following comparison principle holds.
Lemma 2.1 (comparison principle 1). If uj ∈ C(R1×[0, T ])∩W 2,1

p,loc(R
1×(0, T ]) (j = 1, 2, p �

2) are functions such that u1 − u2 is bounded from below by a constant,
∫
R1 uj(x+ y, t)dN(y)

(j = 1, 2) are finite for all (x, t), and

L[u1] + c(x, t)u1 � L[u2] + c(x, t)u2 for (x, t) ∈ R
1 × (0, T ),

u1(x, 0) � u2(x, 0) for x ∈ R
1,

where c(x, t) � 0, then

(2.9) u1(x, t) � u2(x, t) for (x, t) ∈ R
1 × [0, T ].

Proof. Using (2.7) we can take c0 to be sufficiently large so that

L[c0 + x2] = −σ2 − 2
(
r − λω − σ2

2

)
x+ r(c0 + x2)

−λ
∫
R1

(2xy + y2)dN(y)

� 1 for x ∈ R
1.(2.10)
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Thus for any small δ > 0, we have, for uδ1 = u1 + δ(c0 + x2),

(2.11) L[uδ1 − u2] + c(x, t)(uδ1 − u2) � δ for (x, t) ∈ R
1 × (0, T ).

We want to show that, for any δ > 0, uδ1 � u2 for 0 � t � T . Then the lemma follows by
letting δ → 0.

The introduction of c0+x
2 reduces the problem to a finite domain which also excludes the

initial time t = 0. In fact, using the boundedness of uj, the assumption on the initial value,
and the continuity of uj, we conclude that there exist tδ > 0 and Rδ > 0 such that

uδ1(x, t) > u2(x, t) on {(x, t); |x| � Rδ, 0 � t � T} ∪ {(x, tδ); |x| � Rδ},
Rδ →∞, tδ → 0 as δ → 0.

If λ = 0, we can immediately conclude that uδ1 � u2 for |x| � Rδ, tδ � t � T by the classical
weak maximum principle for parabolic equations.

If λ > 0, we write L[u] = L0[u] − λ
∫
R1 u(x + y)dN(y). For each δ > 0, we take uδ1 and

tδ, Rδ as above. Let [tδ, T1] (T1 � T ) be the maximal interval such that

(2.12)

∫
R1

{uδ1(x+ y, t)− u2(x+ y, t)}dN(y) > − δ
λ

for x ∈ R
1, tδ � t < T1.

It follows from (2.11) that L0[u
δ
1−u2]+c(x, t)(uδ1−u2) > 0 for tδ < t < T1. Applying the weak

maximum principle to the operator L0 we obtain uδ1 � u2 for tδ � t � T1. In particular, this
implies, for t = T1, the integral in (2.12) satisfies

∫
R1{uδ1(x+ y, T1)−u2(x+ y, T1)}dN(y) � 0.

If T1 < T , then by the continuity and boundedness of the functions uj , the inequality (2.12)
can be extended beyond t = T1, which is a contradiction to the maximality of the interval
[tδ, T1]. We conclude that T1 = T , and this concludes the proof.

We introduce the regularized solution uε to the penalized problem

L[uε] = βε(g − uε), (x, t) ∈ R
1 × (0, T ),(2.13)

uε(x, 0) = g(x) = (1− ex)+, x ∈ R
1,(2.14)

where βε(z) = β(z/ε), and β satisfies

β(z) = 0 for z < 0, β(z) = z − 1 for z > 2,

β ∈ C∞(R), β′(z) � 0, β′′(z) � 0,

β′(z) > 0, β′′(z) > 0 for 0 < z < 2.

By using Lemma 2.1, the existence of a classical solution uε ∈ C∞ to (2.13)–(2.14) for all
ε > 0, and its convergence to the solution of (2.3), (2.4) can be derived in the same way as in
[12, Chapter 1].

Lemma 2.2 (comparison principle 2). If uj ∈ C(R1×[0, T ])∩W 2,1
p,loc(R

1×(0, T ]) (j = 1, 2, p �
2) are functions such that u1 − u2 is bounded from below by a constant,

∫
R1 uj(x+ y, t)dN(y)

(j = 1, 2) are finite for all (x, t), and

L[u1]− βε(g − u1) � L[u2]− βε(g − u2) for (x, t) ∈ R
1 × (0, T ),

u1(x, 0) � u2(x, 0) for x ∈ R
1,
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then

(2.15) u1(x, t) � u2(x, t) for (x, t) ∈ R
1 × [0, T ].

Proof. If we set w = u1 − u2, then w satisfies

L[w] + β′ε(ξ(x, t))w � 0 for (x, t) ∈ R
1 × (0, T ),

w(x, 0) � 0 for x ∈ R
1,

where ξ(x, t) is a number between g(x)− u2(x, t) and g(x)− u2(x, t). By Lemma 2.1 and the
definition of βε, the lemma follows.

Lemma 2.3 (comparison principle 3). If uj ∈ C(R1×[0, T ])∩W 2,1
p,loc(R

1×(0, T ]) (j = 1, 2, p �
2) are functions such that u1 − u2 is bounded from below by a constant,

∫
R1 uj(x+ y, t)dN(y)

(j = 1, 2) are finite, and

F [u1] � F [u2] for (x, t) ∈ R
1 × (0, T ),

u1(x, 0) � u2(x, 0) for x ∈ R
1,

then

(2.16) u1(x, t) � u2(x, t) for (x, t) ∈ R
1 × [0, T ].

Proof. Notice that on the set ΩT
1 := {(x, t); u2(x, t)− g(x) � r−1L[u2]} we automatically

have u1(x, t)− g(x) � F [u1(x, t)] � F [u2(x, t)] = u2(x, t)− g(x), so that u1(x, t) � u2(x, t) on
ΩT
1 .
On the set ΩT

2 := {(x, t); u2(x, t)−g(x) > r−1L[u2]}, we have r−1L[u1] � F [u1] � F [u2] =
r−1L[u2].

We are now in a situation where

L[u1] � L[u2] for (x, t) ∈ ΩT
2 ,

u1(x, t) � u2(x, t) for (x, t) ∈ R
1 × (0, T ) \ΩT

2 .

If λ = 0, then we can apply the maximum principle on ΩT
2 to conclude u1(x, t) � u2(x, t)

on ΩT
2 . On the other hand, if λ > 0, we can repeat the proof for Lemma 2.1 by defining

uδ1 and letting [tδ, T1] (T1 � T ) be the maximal interval such that (2.12) holds. Following
the maximum principle, we conclude that uδ1 � u2 for (x, t) ∈ ΩT

2 ∩ (R1 × [0, T1]). However,
since we already proved uδ1 � u2 for (x, t) ∈ ΩT

1 ∩ (R1 × [0, T1]), we actually have uδ1 � u2
for (x, t) ∈ R

1 × [0, T1]. In particular, this implies, for t = T1, the integral in (2.12) satisfies∫
R1{uδ1(x + y, T1) − u2(x + y, T1)}dN(y) � 0. If T1 < T , then the inequality (2.12) can be
extended beyond t = T1 as before, which is a contradiction to the maximality of the interval
[tδ, T1]. We conclude that T1 = T , and this concludes the proof.

An American option price without jump diffusion and its free boundary is well studied.
Recently, Yang, Jiang, and Bian [37] developed results into the one with jump diffusion. We
write these results as follows.

Lemma 2.4. The American put option price u with jump diffusion is the solution of the
variational inequality (2.1), (2.3), which can be decomposed into two parts: the first is a Euro-
pean option price U and the second is a so-called early exercise premium (u− U). The optimal
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exercise boundary is a free boundary x = s(t) which is continuous and strictly decreasing. The
free boundary x = s(t) divides the domain into two regions: the continuation region x > s(t)
and stopping region x < s(t). In the stopping region u ≡ g, and in the continuous region
u > g and L[u] = 0. Moreover, the solution u belongs to W 2,1∞ (R1 × [δ, T ]) for any δ > 0. For
t > 0, u, ux are continuous across the free boundary.

Remark 2.1. Further regularity has been discussed in [37]. Note that our system (2.3)–(2.7)
corresponds to the system (1.1) in [37] with q = 0 there and N(y) here as N(ey − 1) there.
By setting q = 0 in their system and using a transform y → ey − 1, [37, Theorem 5.6] implies
that if

(2.17) ν := r − λ
∫ ∞

0
(ey − 1) dN(y) � 0

for our system (2.3)–(2.7), then s ∈ C1(0, T ]. The condition (2.17) was recently removed in
Bayraktar and Hao [5, Theorem 4.1]. Higher order regularity was also obtained in [5, Theorem
5.1] under the assumption that N has a density which is smooth.

Since our initial datum contains a cusp, it is convenient to use a European option price U
with jump diffusion as a comparison function, which is a solution to the problem

L[U ] = 0 for 0 < t < T, x ∈ R
1,(2.18)

U(x, 0) = g(x) for x ∈ R
1.(2.19)

The properties of U are shown in the following lemma.
Lemma 2.5. Under the transformation of (2.1)–(2.2), the European option price with jump

diffusion U is the solution of the problem (2.18), (2.19), which satisfies∥∥U∥∥
L∞(R1×[0,T ])

+ [U ]
C

1/2
t (R1×[0,T ])

+
∥∥Ux

∥∥
L∞(R1×[0,T ])

� C,(2.20) ∥∥[−Ut]
+
∥∥
L∞(R1×[0,T ])

+
∥∥[−Uxx]

+
∥∥
L∞(R1×[0,T ])

� C,(2.21)

Uxx(x, t) �
C√
t
exp

(
− x2

Ct

)
, Ut(x, t) �

C√
t
exp

(
− x2

Ct

)
,(2.22)

and for m � 1, 0 � α < 1,∥∥U∥∥
Cm+α,(m+α)/2(R1×[τ,T ])

� Cτ−(m−1+α)/2,(2.23)

where we use the notation ‖[f ]+‖L∞ = ‖max{f, 0}‖L∞ .

Proof. Define L̂[u] = ut − σ2

2 uxx −
(
r̂ − σ2

2

)
ux + r̂u, where r̂ = r − λω. In order to prove

(2.20)–(2.23), we decompose U(x, t) into the following:

U(x, t) = U1(x, t) + U2(x, t),

where U1(x, t) is the solution to the standard Black–Scholes equation associated with L̂ (i.e.,
L̂[U1] = 0) with initial condition g(x), given by an explicit formula, which can be found in
many text books, e.g., [16, Chapter 13] and [19, section 5.3]. It can be verified directly from
the explicit formula that U1 satisfies (2.20)–(2.23).
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Clearly, U2(x, t) satisfies that

L̂U2 = λ

{
(ω − 1)

[
U1 + U2

]
+

∫
R1

[
U1 + U2

]
(x+ y, t)dN(y)

}
,(2.24)

U2(x, 0) = 0.(2.25)

Thus, by Schauder estimates (cf. [31, Theorem 4.9, p. 59]; see also [13], [25]) modified to include
the jump-diffusion term (this is a lower order term), (U2)t and (U2)xx are both bounded (and
Hölder continuous). It follows that U(x, t) has the same regularities as U1(x, t); i.e., (2.20)–
(2.22) hold true for U(x, t) as well. We can then proceed to derive (2.23) by differentiating in
x and t, respectively, and applying the parabolic estimates.

The proof can also be found in [36, Theorem 3.1, Proof in Appendix] for a European call
option with jump diffusion.

Remark 2.2. Actually, the problem (2.18), (2.19) has an explicit solution which has an
infinite series form. See [32, Chapter 9].

Remark 2.3. In this section we use W 2,1
p solutions. These solutions are called strong solu-

tions since they satisfy only the equation excluding a zero measure set. However, the solution
to the penalized problem is smooth and therefore is classical. The differentiations, although
formal, are still rigorous under appropriate function spaces.

3. Explicit difference scheme. The corresponding explicit finite difference scheme (EFDS)
for variational problem (1.2)–(1.3) is defined by

Fh[uh] := min
(
r−1Lh[uh], uh − g(x)

)
= 0 for (x, t) ∈ R

1 × [0, T ],(3.1)

uh(x, t) = g(x) for − h � t � 0, x ∈ R
1,(3.2)

where

Lh[u] =
u(x, t)− u(x, t− h)

h

−σ
2

2

u(x+ σk, t− h) + u(x− σk, t− h)− 2u(x, t − h)
(σk)2

+

(
σ2

2
+ λω − r

)
u(x+ σk, t− h)− u(x− σk, t− h)

2σk

+(r + λ)u(x, t)− λ
∞∑

l=−∞
u(x+ lσk, t− h)pl

=
u(x, t)

h
+ (r + λ)u(x, t) +

(
1

k2
− 1

h

)
u(x, t− h)

−
{[

1

2k2
− 1

2σk

(
σ2

2
+ λω − r

)]
u(x+ σk, t− h)

+

[
1

2k2
+

1

2σk

(
σ2

2
+ λω − r

)]
u(x− σk, t− h)

}
−λ

∞∑
l=−∞

u(x+ lσk, t− h)pl,
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where k, h > 0, and

(3.3) pl =

∫ (l+1/2)σk

(l−1/2)σk
dN(y) = N

((
l +

1

2

)
σk

)
−N

((
l − 1

2

)
σk

)
.

We assume that the following Courant–Friedrichs–Lax condition holds:

(3.4) 0 <
√
h � k.

Note that if σ > 0 and k is small enough, then

(3.5)
∣∣∣σ2
2

+ λω − r
∣∣∣k � σ.

Remark 3.1. The EFDS (3.1)–(3.2) indeed defines an algorithm for computing uh. Indeed,
given uh(·, t− h), we can rewrite (3.1) as

min

{
r−1

(
1

h
+ (r + λ)

)
uh(x, t) + f(x, t), uh(x, t)− g(x)

}
= 0,

where the function f(x, t) denotes all those terms involving only uh(·, t−h). From this equation
we find that uh(x, t) is uniquely determined by

uh(x, t) = max

( −rf(x, t)
h−1 + r + λ

, g(x)

)
.

Lemma 3.1. Under the conditions (3.4) and (3.5), the EFDS (3.1) and (3.2) is uniformly
convergent with respect to (x, t) ∈ R

1 × [0, T ]. Moreover, when equality holds in (3.4), the
scheme reduces to the BTM for the American option with jump diffusion.

This result is proved by Qian et al. in [34].

Lemma 3.2 (comparison principle 4). Let Fh be defined by (3.1) satisfying conditions (3.4)
and (3.5). If u and v are piecewise continuous and satisfy

Fh[u] � Fh[v] for (x, t) ∈ R
1 × (0, T ],(3.6)

u(x, t) � v(x, t) for − h < t � 0, x ∈ R
1,(3.7)

then

(3.8) u(x, t) � v(x, t) for (x, t) ∈ R
1 × (−h, T ].

Proof. We shall prove by induction

(3.9) u(x, t) � v(x, t) for (x, t) ∈ R
1 × (

(n − 1)h, nh
]

for n = 0, 1, 2, . . . , N , where Nh = T . When n = 0, (3.9) coincides with the assumption (3.7).
Assuming that (3.9) holds for n = m, we shall prove that (3.9) also holds for n = m+ 1.
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We set

a =
1

h
− 1

k2
, a± =

1

k2

[
1

2
± k

2σ

(
σ2

2
+ ωλ− r

)]
.

From (3.4), (3.5),

a � 0, a± � 0.

For any (x, t) with mh < t � (m+ 1)h, if

v(x, t) − g(x) = min
(
r−1Lh[v], v(x, t) − g(x)

)
= Fh[v],

then clearly

u(x, t)− g(x) � Fh[u] � Fh[v] = v(x, t)− g(x),
which implies u(x, t) � v(x, t) in this case. On the other hand, if

r−1Lh[v] = min(r−1Lh[v], v(x, t) − g(x)) = Fh[v],

then

r−1Lh[u] � Fh[u] � Fh[v] = r−1Lh[v].

It follows from (3.9) for n = m and the above inequality that(
1

h
+ r + λ

)
u(x, t)

= Lh[u] + au(x, t− h) + a−u(x+ σk, t− h) + a+u(x− σk, t− h)

+λ

∞∑
l=−∞

u(x+ lσk, t− h)pl

� Lh[v] + av(x, t− h) + a−v(x+ σk, t− h) + a+v(x− σk, t− h)

+λ

∞∑
l=−∞

v(x+ lσk, t− h)pl

=

(
1

h
+ r + λ

)
v(x, t),

and thus we also have u(x, t) � v(x, t) in this case. The lemma is established.

To simplify notation, we shall take without loss of generality k =
√
h throughout the rest

of this paper.

4. Penalized problems and regularized solution. In this section we shall derive some
basic estimates for the penalized problem (2.13), (2.14). We begin by a simple lemma which
removes the singularity of the obstacle.

Lemma 4.1.The solution uε to the problem (2.13), (2.14) also satisfies

L[uε] = βε(1− ex − uε), (x, t) ∈ R
1 × (0, T ),(4.1)

uε(x, 0) = g(x) = (1− ex)+, x ∈ R
1.(4.2)
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Proof. We shall establish

(4.3) βε
(
1− ex − uε(x, t)) ≡ βε(g(x) − uε(x, t)).

If x � 0, the above equality is obvious.
By comparison principle 2 (Lemma 2.2), uε � 0 everywhere. Thus for x � 0, we have

1− ex − uε(x, t) � 0 and g(x) − uε(x, t) � 0. Therefore from the definition of βε, we get
βε(1− ex − uε(x, t)) ≡ βε(g(x) − uε(x, t)) ≡ 0 for x � 0.

Remark 4.1. Since βε is a smooth function with bounded first order derivative (although
the bound depends on ε), the solution uε is smooth in (R1 × [0, T ]) \ (Bδ(0)× [0, δ]), for any
δ > 0, by the parabolic theory. In particular, uε is continuous and bounded on (R1 × [0, T ]),
and (uε)x, (u

ε)xx, (u
ε)t are bounded and continuous on (R1 × [0, T ]) \ (Bδ(0)× [0, δ]) for any

δ > 0.
Lemma 4.2. There hold

∂

∂x

(
uε(x, t)− (1− ex)

)
� 0 for (x, t) ∈ R

1 × (0, T ),(4.4)

∂uε(x, t)

∂x
� −1 for (x, t) ∈ R

1 × (0, T ),(4.5)

∂uε(x, t)

∂x
� 0 for (x, t) ∈ R

1 × (0, T ).(4.6)

Proof. First, by a direct computation using (2.7), we derive

L[1− ex] = r.

Differentiating (4.1) in x and using the above equality, we obtain

(4.7) L
[(
uε − (1− ex))

x

]
= −β′ε(1− ex − uε) ·

(
uε − (1− ex))

x
.

From the initial condition we can easily verify that when t = 0, (4.4) holds. Note that uεx
has a discontinuity at (x, t) = (0, 0). But we can always approximate the initial data with
smooth functions and take the limit. Since the solution to system (4.1)–(4.2) is unique (for
each fixed ε), we can approximate the initial data in any way we wish while yielding the same
limit. To prove (4.4), we shall approximate the initial data with smooth function gδ such
that (gδ − (1− ex))x � 0. Applying comparison principle 1 (Lemma 2.1) to the approximated
system and then taking the limit, we obtain (4.4).

Similarly, differentiating (4.1) in x,

L[uεx] + β′ε(1− ex − uε) · uεx = −β′ε(1− ex − uε) · ex � 0,

so that we can apply comparison principle 1 (Lemma 2.1) in a manner similar to the approx-
imated system to derive (4.6).

Finally

L[uεx + 1] + β′ε(1− ex − uε) · (uεx + 1)

= r + β′ε(1− ex − uε) · (1− ex) > β′ε(1− ex − uε) · (1− ex).
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Recalling, from the end of the proof of Lemma 4.1, that βε(1 − ex − uε) ≡ 0 for x � 0, we
conclude that

β′ε(1− ex − uε) · (1− ex)
{

= 0 if x � 0,
> 0 if x < 0.

Again, we can apply comparison principle 1 (Lemma 2.1) in a manner similar to the approx-
imated system to derive (4.5).

Lemma 4.3. There holds

(4.8) βε(g − uε) � r,

and therefore

(4.9) g − uε � (r + 1)ε.

Proof. For any δ > 0, let z = 1 − ex − uε, zδ = z − δ(c0 + x2), where c0 is the positive
constant defined in (2.10). By (2.10) we also have

L[zδ] = [1− ex]− L[uε]− δL[c0 + x2] � r − βε(z)− δ.
Clearly, z and zδ are bounded from above. At the time t = 0, zδ|t=0 < 0. For fixed t > 0,

limx→±∞ zδ(x, t) = −∞. Thus the maximum of zδ on R
1× [0, T ], if positive, must be attained

at an interior point (x0, t0), with

L[zδ]
∣∣∣
x=x0,t=t0

� 0

for any δ > 0. Since β′ε � 0, we obtain

max
x∈R1,0�t�T

βε(zδ(x, t)) � βε(zδ(x0, t0))

� βε(z(x0, t0)) =
(
r − L[zδ]− δL[c0 + x2]

)∣∣∣
x=x0,t=t0

� r − δ.

If the maximum of zδ on R
1 × [0, T ] is negative, then

max
x∈R1,0�t�T

βε(zδ(x, t)) � βε(zδ(x0, t0)) = 0 < r.

Letting δ → 0, in both cases, we obtain

βε(z(x, t)) � r.

Also using (4.3) we derive (4.8).
Since β′′ � 0, we have β(z) � z − 1 for all z, and thus (4.9) is now an immediate

consequence from the definitions of β and βε.
By using the bounds on βε, u

ε
x and the equation, we immediately obtain the following

lemma.
Lemma 4.4.

(4.10) [uε]
C

1/2
t (R1×[0,T ])

� C.
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Proof. For any function ϕ with continuous first order t-derivative and continuous second
order x-derivative in the interior of the domain, and for any x and t2 > t1 > 0, take x1 < x <
x2. Then

ϕ(x, t2)− ϕ(x, t1) =
∫ x2

x1

{
ϕ(x, t2)− ϕ(x, t1)

x2 − x1 − ϕ(ξ, t2)− ϕ(ξ, t1)
x2 − x1

}
dξ

+
1

x2 − x1

∫ x2

x1

∫ t2

t1

{
ϕt(ξ, τ)− σ2

2
ϕxx(ξ, τ)

}
dτdξ

+
σ2

2(x2 − x1)
∫ t2

t1

(
ϕx(x2, τ)− ϕx(x1, τ)

)
dτ.

Applying the mean value theorem to the first term, we find that

|ϕ(x, t2)− ϕ(x, t1)| � 2‖ϕx‖L∞(x2 − x1) +
∥∥∥ϕt − σ2

2
ϕxx

∥∥∥
L∞

t2 − t1
x2 − x1

+
σ2

2
2‖ϕx‖L∞

t2 − t1
x2 − x1 .

Upon taking x2−x1 =
√
t2 − t1 and taking “sup” over x ∈ R

1 and 0 < t1 < t2 < T , we obtain

[ϕ]
C

1/2
t (R1×[0,T ])

� (2 + σ)‖ϕx‖L∞ +
∥∥∥ϕt − σ2

2
ϕε
xx

∥∥∥
L∞
.

Applying this inequality and Lemmas 4.2 and 4.3 to uε, we obtain

[uε]
C

1/2
t (R1×[0,T ])

� C
(
‖uεx‖L∞ +

∥∥∥uεt − σ2

2
uεxx

∥∥∥
L∞

)
� C,

where the norms of the spaces are defined before Lemma 2.1.
Lemma 4.5. The solution uε of the problem (2.13), (2.14) satisfies, for 0 < α < 1,

(4.11) ‖uε‖C1+α,(1+α)/2(R1×[τ,T ]) � Cτ−α/2,

where C = Cα is independent of ε and τ .
Proof. Let U be the European option defined in (2.18)–(2.19). We decompose uε into two

terms:

(4.12) uε = U + vε.

Then vε does not have any singularities at t = 0, and

L[vε] = βε(1− ex − U − vε) for (x, t) ∈ R
1 × (0, T ),(4.13)

vε
∣∣∣
t=0
≡ 0.(4.14)

Since βε(1 − ex − U − vε) is uniformly bounded, vε is uniformly bounded. Thus, by [31,
Theorem 4.30, p. 79], we obtain

(4.15) ‖vε‖C1+α,(1+α)/2(R1×[0,T ]) � C
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for some uniform constant C. Hence uε = U + vε satisfies

(4.16) ‖uε‖C1+α,(1+α)/2(R1×[τ,T ]) � ‖U‖C1+α,(1+α)/2(R1×[τ,T ]) + C.

The lemma now follows from the estimate for U (cf. (2.23)).
Lemma 4.6. The solution uε of the problem (2.13), (2.14) satisfies

−(r + 1)ε � F [uε] � 0 for (x, t) ∈ R
1 × (0, T ),(4.17)

0 � u− uε � (r + 1)ε for (x, t) ∈ R
1 × [0, T ].(4.18)

Proof. From the definition of βε, it is clear that

min
(
r−1L[uε], uε − g) = min

(
r−1βε(g − uε), uε − g

)
� 0.

It follows from Lemma 4.3 that

min
(
r−1L[uε], uε − g) = min

(
r−1βε(g − uε), uε − g

)
� min

(
0, −(r + 1)ε

)
� −(r + 1)ε.

Now we have proved (4.17). For (4.18), since

F [u] = 0 � F [uε], (x, t) ∈ R
1 × (0, T ),(4.19)

u(x, 0) ≡ uε(x, 0),(4.20)

we conclude from Lemma 2.3 that u(x, t) � uε(x, t) for (x, t) ∈ R
1 × [0, T ].

Similarly, using (4.17), we obtain

F [u− (r + 1)ε] = −(r + 1)ε + F [u]

= −(r + 1)ε � F [uε], (x, t) ∈ R
1 × (0, T ).

By Lemma 2.3 again, we derive u(x, t)− (r + 1)ε � uε(x, t) for (x, t) ∈ R
1 × [0, T ].

5. Higher order derivative estimates for regularized solutions. In order to get estimates
for higher order derivatives of the regularized solution of the penalized problem, we have to
deal with the penalized term βε(g − vε) and its derivatives. We start with an interpolation
inequality (cf. [31, inequality (4.51), p. 73 with b = d = 0]).

Lemma 5.1 (interpolation inequality). Suppose that

0 � α, β, γ � 1, l + γ < k + α < m+ β,

0 < σ < 1, σ(m+ β) + (1− σ)(l + γ) = k + α.

If the domain satisfies the uniform interior cone condition, then

(5.1) ‖u‖Ck+α,(k+α)/2 � C‖u‖σ
Cm+β,(m+β)/2‖u‖1−σ

Cl+γ,(l+γ)/2 .

We also need the following lemma.
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Lemma 5.2.

[u · v]Cα,α/2 � ‖u‖L∞ [v]Cα,α/2 + [u]Cα,α/2‖v‖L∞ ,(5.2)

‖u · v‖Cα,α/2 � ‖u‖L∞‖v‖Cα,α/2 + ‖u‖Cα,α/2‖v‖L∞ .(5.3)

Inequality (5.2) can be found in [9, Lemma 1.1, p. 19], and inequality (5.3) is a corollary
of (5.2) and the definition.

We next derive estimates for vεt and vεxx, where v
ε is defined by (4.12).

Lemma 5.3. For (x, t) ∈ R
1 × (0, T ), there hold

vεt (x, t) � C,(5.4)

vεxx(x, t) � C,(5.5)

where the constant C is independent of ε (but may depend on T ).

Proof. For each fixed ε, the solution to system (4.13)–(4.14) is unique. Thus we can
approximate the right-hand side of (4.13) in any way we wish while yielding the same limit.
Using (2.21), we can take C > 0 such that C+Ut > 0. We shall approximate U(x, t) in (4.13)
by smooth functions U δ(x, t) such that C +U δ

t (x, t) > 0 and βε(1− ex +U δ(x, 0)) = 0. Then
the approximated solution vε,δ is smooth with (vε,δ)t bounded and continuous on R

1 × [0, T ].

Differentiating the approximated system of (4.13) in t, we obtain

L[vε,δt − C] + β′ε(1− ex − U δ − vε,δ) · (vε,δt − C)

= −Cr − β′ε(1− ex − U δ − vε,δ) · (C + U δ
t ) � 0, (x, t) ∈ R

1 × (0, T ).

It is clear that vε,δt − C|t=0 = −C � 0, so that, by comparison principle 1 (Lemma 2.1),

vε,δt � C for (x, t) ∈ R
1 × (0, T ).

Taking the limit as δ → 0, we obtain (5.4).

Inequality (5.5) now follows from (5.4), (4.15), (4.8), and (4.13).

Corollary 5.4. For (x, t) ∈ R
1 × (0, T ), there hold

−C � uεt (x, t) � C +
C√
t
exp

(
− x2

Ct

)
,(5.6)

−C � uεxx(x, t) � C +
C√
t
exp

(
− x2

Ct

)
,(5.7)

uεxx(x, t) � −ex,(5.8)

where the constant C is independent of ε (but may depend on T ).

Proof. The upper bounds in (5.6)–(5.7) follow from Lemma 5.3 and (2.22). It is clear that
for any positive constant C0, u

ε
t + C0 satisfies

L[uεt +C0] + β′ε(1− ex − uε) · (uεt + C0)

= C0(r + β′ε(1− ex − uε)) � 0 for (x, t) ∈ R
1 × (0, T ).
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Note that the initial datum for uεt +C0 is smooth except x = 0. At x = 0, uε(x, 0) = g(x)
is only Lipschitz continuous and the second derivative gxx produces a delta function at x = 0
(Dirac measure, or point mass) which is nonnegative. Again, since the solution uε to the
system (4.1)–(4.2) is unique, we can approximate the system in any way we wish while yielding
the same limit. We shall approximate the initial data in (4.2) with smooth function gδ(x)
such that (gδ)xx(x) � −1. Then the approximated solution uε,δ satisfies

lim
t→0+

uε,δt (x, t) � −C0,

where some constant C0 is independent of ε, δ. Applying comparison principle 1 (Lemma 2.1)

to uε,δt , we conclude that

uε,δt (x, t) � −C0 for (x, t) ∈ R
1 × [0, T ].

Taking the limit as δ → 0, we obtain the lower bound for uεt in (5.6).
Using (4.8), (4.15), and (4.13), we also obtain uεxx � −C.
To establish (5.8), we differentiate (4.7) in x and use the fact that β′′ε � 0 to obtain, for

ϕε = uε − 1 + ex, the equation

L[ϕε
xx] + β′ε(−ϕε) · ϕε

xx = β′′ε (−ϕε) · (ϕε
x)

2 � 0.

Again, approximating the initial data for uε with smooth functions such that ϕε,δ
xx (x, 0) � 0,

applying comparison principle 1 (Lemma 2.1) to the approximated system then taking the
limit, we obtain ϕε

xx(x, t) � 0, and this implies (5.8).
To derive further quantitative regularity of the approximating system we want to study

the function

(5.9) f ε := βε(g − uε) + λ

∫
R1

uε(x+ y, t)dN(y).

Lemma 5.5. There hold

|f εt (x, t)| � Cε−1t−1/2,(5.10)

|f εx(x, t)| � Cε−1/2t−1/4, |f εx(x, t)| � Cε−1,(5.11)

|f εxx(x, t)| � Cε−1t−1/2.(5.12)

Proof. Differentiating (5.9) in t, we obtain

(5.13) f εt = −β′ε · uεt + λ

∫
R1

uεt(x+ y, t)dN(y).

Using (5.6) and the definition of βε, we immediately obtain (5.10).
Differentiating (5.9) in x, we obtain

f εx = β′ε ·
(
gx − uεx

)
+ λ

∫
R1

uεx(x+ y, t)dN(y),(5.14)

f εxx = β′ε ·
(
gxx − uεxx

)
+ β′′ε ·

(
gx − uεx

)2
+ λ

∫
R1

uεxx(x+ y, t)dN(y).

(5.15)
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By Lemma 4.5 and (5.7), it is not difficult to see that the integral terms in (5.14) and
(5.15) satisfy, when 0 < ε < 1, 0 < t < T,

λ

∫
R1

uεx(x+ y, t)dN(y) � C � min{ε−1/2t−1/4, ε−1},(5.16)

λ

∫
R1

uεxx(x+ y, t)dN(y) � Ct−1/2 � Cε−1t−1/2.(5.17)

This gives the estimates for the integral terms in (5.14) and (5.15).

To estimate the terms in (5.14) and (5.15) involving βε, we need only consider the region
{(x, t); g − uε > 0}, since βε(g − uε) ≡ 0 outside this region.

For x � 0, t > 0, we have uε > 0 = g(x). For each t > 0, we can derive from (4.4) that
there exists sε(t) < 0 such that

{x; g(x) − uε(x, t) > 0} = {x; x < sε(t)}.

Thus, for each fixed t, we can use (4.9), (5.7), and the interpolation inequality (Lemma 5.1)
on the interval (−∞, sε(t)) to obtain (the domain condition for interpolation is satisfied)

‖gx − uεx(·, t)‖L∞(−∞,sε(t))

� C‖g − uε‖1/2
W 2,∞(−∞,sε(t))

‖g − uε‖1/2L∞(−∞,sε(t))
� Cε1/2t−1/4.(5.18)

Substituting this estimate and (5.16) into (5.14) we establish the first inequality in (5.11).
The second inequality in (5.11) is a direct consequence of the first order derivative estimates
and the definition of βε.

To establish (5.12) in the region x < 0, we note that in this region gxx = −ex is bounded
and uεxx is estimated by (5.7). Thus the absolute value of the first term in (5.15) is estimated
by Cε−1t−1/2. The second term in (5.15) can be estimated in a similar way, using the definition
of βε and (5.18). The third estimate comes from (5.17).

Lemma 5.6. The solution uε of the problem (2.13), (2.14) satisfies, for 0 < α < 1,

(5.19) ‖uε‖C2+α,(2+α)/2(R1×[τ,T ]) � Cτ−(1+α)/2 + C(ε
√
τ )−α/2,

where C = Cα is independent of ε and τ .

Proof. We write uε = U + vε as in (4.12). Then vε satisfies (4.13)–(4.14). We take a
cut-off function ζ ∈ C∞(R1) (ζ depends on τ) such that

ζ(t) = 0 for t < τ/2, ζ(t) = 1 for t > τ,(5.20)

0 � ζ(t) � 1, 0 � ζ ′(t) � Cτ−1, |ζ ′′(t)| � Cτ−2.(5.21)

By the interpolation inequality (Lemma 5.1) and (5.21), we immediately derive

(5.22)
‖ζ‖Cα/2 � C‖ζ‖(2−α)/2

C0 ‖ζ‖α/2
C1 � Cτ−α/2,

‖ζ ′‖Cα/2 � C‖ζ ′‖(2−α)/2
C0 ‖ζ ′‖α/2

C1 � Cτ−1−α/2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONVERGENCE RATE FOR BINOMIAL TREE METHOD 49

Clearly, ζvε satisfies

(5.23) L0[ζv
ε] = ζ · f ε + ζ ′ · vε := F ε,

where L0 is a linear parabolic differential operator defined by

L0[u] = ut − σ2

2
uxx −

(
r − λω − σ2

2

)
ux + (r + λ)u.

By the interpolation inequality (Lemma 5.1) and Lemma 5.5,

‖f ε‖Cα,α/2(R1×[τ/2,T ]) � C‖f ε‖α/2
C2,1(R1×[τ/2,T ])

‖f ε‖1−α/2
L∞ � C(ε

√
τ)−α/2,

so that (notice that ζ(t) ≡ 0 for t � τ/2)

(5.24)

‖ζ · f ε‖Cα,α/2(R1×[0,T ])

� ‖ζ‖L∞‖f ε‖Cα,α/2(R1×[τ/2,T ]) + ‖ζ‖Cα/2([τ/2,T ])‖f ε‖L∞

� C(ε
√
τ)−α/2 + Cτ−α/2.

Next, since vε|t=0 ≡ 0, we can apply Lemma 4.4 and (2.20) to obtain

(5.25) ‖vε‖L∞(R1×[0,τ ]) � [vε]
C

1/2
t (R1×[0,τ ])

τ1/2 � Cτ1/2.

By the interpolation inequality (Lemma 5.1), (5.25), and (4.15), we obtain

‖vε‖Cα,α/2(R1×[0,τ ]) � C‖vε‖α
C1,1/2(R1×[0,τ ])

‖vε‖1−α
L∞(R1×[0,τ ])

� Cτ (1−α)/2.(5.26)

Since ζ ′(t) ≡ 0 for t � τ/2 or t � τ , we derive (using (5.3))

‖ζ ′ · vε‖Cα,α/2(R1×[0,T ])

� ‖ζ ′‖L∞[τ/2,τ ]‖vε‖Cα,α/2(R1×[τ/2,τ ]) + ‖ζ ′‖Cα/2([τ/2,τ ])‖vε‖L∞[τ/2,τ ]

� Cτ−1τ (1−α)/2 + Cτ−1−α/2τ1/2 � Cτ−(1+α)/2.(5.27)

Combining (5.24) and (5.27) we find that the F ε defined in (5.23) satisfies

(5.28) ‖F ε‖Cα,α/2(R1×[0,T ]) � Cτ−(1+α)/2 + C(ε
√
τ)−α/2.

Thus by the Schauder estimate (cf. [31, Theorem 4.9, p. 59]) on (5.23), we have

(5.29) ‖ζ · vε‖C2+α,(2+α)/2(R1×[0,T ]) � Cτ−(1+α)/2 + C(ε
√
τ)−α/2.

Restricting the norm on the left-hand side of the above inequality to R
1× [τ, T ] (where ζ ≡ 1),

we obtain the estimates for vε. Combining it with the estimates for the European option U ,
the lemma follows.
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In order to estimate the truncation error between differential operator L and finite differ-
ence operator Lh for regularized solutions of penalized problem, we need the following main
estimate.

Lemma 5.7 (main estimates). For any 1/3 < η < 1/2, there holds

(5.30) |uεtt|+ |uεxxxx|+ |uεxxt| � Ct−3/2 + Cε−1t−1+η,

where C = Cη is independent of ε.

Proof. First, we shall use the same cut-off function ζ(t) as defined in (5.20)–(5.22) and
multiply it to uεt ; then ζu

ε
t satisfies

(5.31) L0[ζu
ε
t ] = ζ · f εt + ζ ′ · uεt := F̃ ε.

From (5.13), (5.6), and Lemma 5.6 we find that

‖f εt ‖Cα,α/2(R1×[τ/2,T ]) � (‖β′ε(g − uε)‖L∞ + λ)‖uεt‖Cα,α/2(R1×[τ/2,T ])

+‖β′ε(g − uε)‖Cα,α/2(R1×[τ/2,T ])‖uεt‖L∞(R1×[τ/2,T ])

� Cε−1{τ−(1+α)/2 + (ε
√
τ )−α/2}

+Cτ−1/2‖β′ε(g − uε)‖Cα,α/2(R1×[τ/2,T ])

� Cε−1−α/2τ−α/4 + Cε−1τ−(1+α)/2

+Cτ−1/2‖β′ε(g − uε)‖Cα,α/2(R1×[τ/2,T ]).(5.32)

To estimate ‖β′ε(g − uε)‖Cα,α/2(R1×[τ,T ]), we note that ψ(x, t) := β′ε(g − uε) satisfies

ψx = β′′ε (g − uε) · (gx − uεx), ψt = −β′′ε (g − uε) · uεt ,

so that the same techniques in the proof of Lemma 5.5 can be used to obtain

|ψx| � Cε−2(ε1/2t−1/4) � Cε−3/2t−1/4, |ψt| � Cε−2t−1/2.

By applying interpolation separately in x and t (i.e., fixing x or t), respectively, we obtain

‖ψ(·, t)‖Cα
x (R1) � C‖ψ(·, t)‖α

W 1,∞
x (R1)

‖ψ‖1−α
L∞

� C(ε−3α/2t−α/4)ε−(1−α) � Cε−1−α/2t−α/4

and

‖ψ(x, ·)‖
C

α/2
t ([τ/2,T ])

� C‖ψ(x, ·)‖α/2
W 1,∞

t ([τ/2,T ])
‖ψ‖1−α/2

L∞

� C(ε−ατ−α/4)ε−(1−α/2) � Cε−1−α/2τ−α/4,

so that

(5.33) ‖β′ε(g − uε)‖Cα,α/2(R1×[τ,T ]) � Cε−1−α/2τ−α/4.
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Substituting these estimates into (5.32), we obtain

‖f εt ‖Cα,α/2(R1×[τ/2,T ])

� Cε−1−α/2τ−α/4 + Cε−1τ−(1+α)/2 + Cε−1−α/2τ−1/2−α/4

� Cε−1τ−(1+α)/2 + Cε−(2+α)/2τ−(2+α)/4.(5.34)

Since, by Hölder’s inequality,

ε−1τ−(1+α)/2 = (ε
√
τ )−1τ−α/2

� 2

2 + α

(
ε−1τ−1/2

)(2+α)/2
+

α

2 + α

(
τ−α/2

)(2+α)/α

� ε−(2+α)/2τ−(2+α)/4 + τ−(2+α)/2,(5.35)

the estimate (5.34) implies that

(5.36) ‖f εt ‖Cα,α/2(R1×[τ/2,T ]) � Cε−(2+α)/2τ−(2+α)/4 + Cτ−(2+α)/2.

A similar argument as in the previous lemma shows (using (5.10) and (5.36))

‖ζ · f εt ‖Cα,α/2(R1×[0,T ])

� ‖ζ‖L∞‖f εt ‖Cα,α/2(R1×[τ/2,T ]) + ‖ζ‖Cα/2([τ/2,T ])‖f εt ‖L∞

� C
{
ε−(2+α)/2τ−(2+α)/4 + τ−(2+α)/2

}
+ Cτ−α/2(ε−1τ−1/2)

� C
{
(ε
√
τ )−(2+α)/2 + τ−(2+α)/2

}
,(5.37)

where (5.35) is again used in deriving the last inequality. From (5.3), Lemma 5.6, and (5.6),
we derive

‖ζ ′ · uεt‖Cα,α/2(R1×[0,T ])

� ‖ζ ′‖L∞[τ/2,τ ]‖uεt‖Cα,α/2(R1×[τ/2,τ ]) + ‖ζ ′‖Cα/2([τ/2,τ ])‖uεt‖L∞[τ/2,τ ]

� Cτ−1
{
τ−(1+α)/2 + (ε

√
τ)−α/2

}
+ Cτ−1−α/2τ−1/2

� Cτ−(3+α)/2 + Cτ−1(ε
√
τ)−α/2.(5.38)

By Hölder’s inequality again,

τ−1(ε
√
τ)−α/2 � 2

2 + α

(
τ−1

)(2+α)/2
+

α

2 + α

(
(ε
√
τ )−α/2

)(2+α)/α

� τ−(2+α)/2 + (ε
√
τ )−(2+α)/2.(5.39)

Combining (5.37)–(5.39), we obtain

(5.40) ‖F̃ ε‖Cα,α/2(R1×[0,T ]) � Cτ−(3+α)/2 + C(ε
√
τ )−(2+α)/2.
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Applying the Schauder estimate (cf. [31, Theorem 4.9, p. 59]) to ζ ·uεt on (5.31), we obtain

‖uεt‖C2+α,(2+α)/2(R1×[τ,T ]) � ‖ζ · uεt‖C2+α,(2+α)/2(R1×[0,T ])

� Cτ−(3+α)/2 + C(ε
√
τ )−(2+α)/2.(5.41)

By the interpolation inequality (Lemma 5.1) again,

‖uεt‖W 2,1∞ (R1×[τ,T ]) � C‖uεt‖2/(2+α)

C2+α,(2+α)/2(R1×[τ,T ])
‖uεt‖α/(2+α)

L∞(R1×[τ,T ])

� C(τ−(3+α)/(2+α) + ε−1τ−1/2)τ−α/[2(2+α)]

� Cτ−3/2 + Cε−1τ−1/2−α/[2(2+α)].

This establishes (5.30) for uεtt and u
ε
xxt if we take α such that η = 1/(2 + α). Since α can be

any value in (0, 1), we have 1/3 < η < 1/2.

To establish the bounds for uεxxxx, we can first differentiate the equation in x to get the
estimate for uεxxx in terms of the quantities already estimated. Then we again differentiate the
equation in x and solve uεxxxx in terms of the other quantities, and then we use (5.12).

6. Estimate of truncation error for regularized solutions. To avoid possible difficulties
near t = 0, we let wε(x, t) = uε(x, t + 3h). For wε(x, t), we have the estimate of truncation
error between differential operator L and finite difference operator Lh as follows.

Lemma 6.1 (truncation error estimate).∣∣∣Lh[w
ε]− L[wε]

∣∣∣
t�τ

� C
(
(τ + 2h)−3/2 + ε−1(τ + 2h)−1+η

)
h.(6.1)

Proof. By the Taylor expansion, for any smooth function u,

u(x+ σk, t− h) + u(x− σk, t− h)− 2u(x, t− h)
(σk)2

− uxx(x, t− h)

=
1

6(σk)2

{∫ σk

0
uxxxx(x+ ξ, t− h)(σk − ξ)3dξ

+

∫ 0

−σk
uxxxx(x+ ξ, t− h)(σk + ξ)3dξ

}
,

so that, for t � τ + h,∣∣∣u(x+ σk, t− h) + u(x− σk, t− h)− 2u(x, t− h)
(σk)2

− uxx(x, t)
∣∣∣

� |uxx(x, t− h)− uxx(x, t)| + Ck2‖uxxxx‖L∞

� h‖uxxt‖L∞(R1×[τ,T ]) + Ck2‖uxxxx‖L∞(R1×[τ,T ])

� C(k2 + h),

where the last inequality is from Lemma 5.7. Other derivative terms in the finite difference
operator Lh can be similarly estimated.
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For the integral term of Lh, by the definition of pl in (3.3),∣∣∣∣∣∑
l∈L

u(x+ lσk, t− h)pl −
∫
R1

u(x+ y, t)dN(y)

∣∣∣∣∣
=

∣∣∣∣∣∑
l∈L

u(x+ lσk, t− h)
∫ (l+ 1

2
)σk

(l− 1
2
)σk

dN(y)−
∑
l∈L

∫ (l+ 1
2
)σk

(l− 1
2
)σk

u(x+ y, t)dN(y)

∣∣∣∣∣
�

∑
l∈L

∫ (l+ 1
2
)σk

(l− 1
2
)σk

(∣∣u(x+ y, t− h)− u(x+ y, t)
∣∣

+
∣∣u(x+ lσk, t− h)− u(x+ y, t− h)∣∣)dN(y)

� C
(‖uxx‖L∞(R1×[τ,T ])k

2 + ‖ut‖L∞(R1×[τ,T ])h
)
,

where Taylor’s expansion of u(x+ y) up to second order around the midpoint is used.

By Lemma 5.7 and Sobolev imbedding theorems (see Chapter 5 of [1]), recalling that we
take k =

√
h, for any τ � 0,∣∣∣Lh[w

ε]− L[wε]
∣∣∣
t�τ

� C‖wε‖C4,2(R1×[τ,T−3h])h � C‖uε‖C4,2(R1×[τ+3h,T ])h

� C
(
(τ + 2h)−3/2 + ε−1(τ + 2h)−1+η

)
h.

7. Optimal convergence rate of the BTM. Our main theorem is the following.

Theorem 7.1 (main theorem 1). Under the assumption (3.4), the solution of the problem
(3.1), (3.2) is convergent to the solution of the problem (2.3), (2.4) with error rate estimates
of O(h1/2).

In order to establish this theorem, we shall apply the discrete comparison lemma presented
in section 3 to the following auxiliary functions:

Φ±
h (x, t) = wε ±

[
Cε−1h

∫ t

−h

dξ

(ξ + 2h)1−η

+Ch

∫ t

−h

dξ

(ξ + 2h)3/2
+ Ĉε+ Ĉ

√
h

]
,(7.1)

where the constant C is defined in (6.1) and the constant Ĉ will be defined below.

Lemma 7.2. Let uh be the solution of the problem (3.1)–(3.2) and Φ±
h (x, t) be defined in

(7.1); then we have

Φ−
h (x, t) � uh(x, t) � Φ+

h (x, t), R
1 × [0, T ].(7.2)

Proof. First, we claim

Fh[Φ
−] � 0 � Fh[Φ

+], R
1 × [0, T ].(7.3)
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In fact, from truncation error estimate (6.1), a direct computation shows that, for t � 0,

Lh

[
Cε−1h

∫ t

−h

dξ

(ξ + 2h)1−η
+ Ch

∫ t

−h

dξ

(ξ + 2h)3/2

]
� Cε−1h(t+ 2h)−1+η + Ch(t+ 2h)−3/2

�
∣∣∣Lh[w

ε]− L[wε]
∣∣∣,

which implies that, for t � 0,

L[wε]�Lh

[
wε+ Cε−1h

∫ t

−h

dξ

(ξ + 2h)1−η
+ Ch

∫ t

−h

dξ

(ξ + 2h)3/2

]
(7.4)

and

L[wε]�Lh

[
wε− Cε−1h

∫ t

−h

dξ

(ξ + 2h)1−η
− Ch

∫ t

−h

dξ

(ξ + 2h)3/2

]
.(7.5)

The estimates (7.4) and (7.5) can be rewritten as follows:

L[wε] � Lh[Φ
+
h − Ĉε− Ĉ

√
h] = Lh[Φ

+
h ]− Ĉε− Ĉ

√
h(7.6)

and

L[wε] � Lh[Φ
−
h + Ĉε+ Ĉ

√
h] = Lh[Φ

−
h ] + Ĉε+ Ĉ

√
h,(7.7)

so that

F [wε] + Ĉε+ Ĉ
√
h

� min
{
Lh

[
Φ+
h

]
, wε − g + Ĉε+ Ĉ

√
h
}

� min
{
Lh

[
Φ+
h

]
,Φ+

h − g
}
= Fh

[
Φ+
h

]
, t > 0,(7.8)

and

F [wε]− Ĉε− Ĉ
√
h

� min
{
Lh

[
Φ−
h

]
, wε − g − Ĉε− Ĉ

√
h
}

� min
{
Lh

[
Φ−
h

]
,Φ−

h − g
}
= Fh

[
Φ−
h

]
, t > 0.(7.9)

Hence, by Lemma 4.6, for Ĉ > r + 1,

Fh

[
Φ−
h

]
� F [wε]− Ĉε− Ĉ

√
h

� F [wε] � 0 � F [wε] + Ĉε+ Ĉ
√
h � Fh[Φ

+
h ], t > 0.

Thus (7.3) is proved.
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Next, we verify the following inequalities in the strip {−h < t � 0, x ∈ R}:

Φ−
h (x, t) � g(x) � Φ+

h (x, t).

For −h < t � 0, we use Lemma 4.4 to derive, for Ĉ sufficiently large,

Φ+
h (x, t) � g(x) + Ĉε+ Ĉ

√
h+ uε(x, t+ 3h) − g(x)

� g(x) + Ĉ
√
h− [uε]

C
1/2
t (R1×[0,T ])

√
3h

� g(x), −h < t � 0.

In a similar way,

Φ−
h (x, t) � g(x), −h < t � 0.

Because uh is the solution of the problem (3.1), (3.2), we have

Fh[uh] = 0, uh(x, 0) = g(x).

Using the comparison principle for finite difference operators (Lemma 3.2), we derive

Φ+
h (x, t) � uh(x, t) � Φ−

h (x, t)

everywhere.

Lemma 7.3 (main lemma). Let uε be the solution of the problem (2.13), (2.14) and uh be
the solution of the problem (3.1), (3.2). Then

|uh − uε| � Chε−1 + Cε+ C
√
h, (x, t) ∈ R

1 × [0, T ],

where C is independent of h and ε.

Proof. Combining Lemmas 6.1 and 7.3, we obtain, for t > 0,

|uε(x, t+ 3h)− uh(x, t)|
� Cε−1h

∫ t

−h

dξ

(ξ + 2h)1−η
+ Ch

∫ t

−h

dξ

(ξ + 2h)3/2
+ Ĉε+ Ĉ

√
h

� Cε−1h+ Ĉε+ Ĉ
√
h.

Now using the C1/2 regularity (uniformly in ε and h, Lemma 5.3), we get

|uε(x, t+ 3h)− uε(x, t)| � [uε]
C

1/2
t (R1×[0,T ])

√
3h � C

√
h.

Combining the above two estimates, we conclude our lemma.

Proof of Theorem 7.1. Combining all the estimates, we get

|u− uh| � |u− uε|+ |uε − uh|
< Cε+

{
Chε−1 + Cε+ C

√
h
}
,
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where C is independent of ε and h. Upon taking ε =
√
h, we derive the conclusion of the

main theorem. That is, we have

(7.10) |u− uh| < C0h
1/2.

This completes the proof of this theorem.
The O(h1/2) rate is the optimal convergence rate. To show this, we will give a simple

example in Remark 9.1 by comparing the BTM solution with the exact solution of the Amer-
ican option pricing model. It can clearly be verified that the error rate of the approximation
process by the BTM cannot be better than O(h1/2).

8. Convergence rate of the free boundary. In this section, we shall define a free bound-
ary from the EFDS and prove the convergence rate of this free boundary to the actual free
boundary.

Definition 8.1. For any h > 0, let uh be the solution of the problem (3.1), (3.2). We define

(8.1) sh(t) = min(0, s∗h(t)),

where s∗h(t) is a solution to the equation

(8.2) uh(s
∗
h(t), t) − g(s∗h(t)) = C0h

1/2,

where C0 is defined in (7.10), and g(·) is defined in (2.6).
Remark 8.1. For every t > 0, uh(−∞, t) − g(−∞) = 0, and uh(+∞, t) − g(+∞) > 0.

Thus for sufficiently small h, we can take s∗h(t) to be the smallest number satisfying (8.2).
In practice we should use the smallest possible C0 such that (7.10) holds, and this C0 can
actually be estimated in the simulations.

Theorem 8.1 (main theorem 2). Let sh(t) be defined as above and s(t) be the free boundary
of the problem (2.3), (2.4). If

(8.3) ν := r − λ
∫ ∞

0
(ey − 1) dN(y) > 0,

then

(8.4) |sh(t)− s(t)| � Ch1/4,

where C is some positive constant.
The rest of this section is devoted to the proof of this theorem. We begin with a lemma.
Lemma 8.2. Under the assumption (8.3), we have

(8.5) (u− 1 + ex)xx � min(1, 2ν/σ2)e−(r+λ)T for s(t) < x <∞, 0 < t < T.

Proof. It is known from Lemma 2.4 (cf. [37]) that for t > 0, u, ux, and ut are continuous
across the free boundary but uxx has a jump.

Since u is monotonically decreasing in x, we have

u(x, t) = 1− ex for x � s(t),

u(x, t) < u(s(t), t) = 1− es(t) for x > s(t).
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It follows that∫
R1

u(x+ y, t)dN(y) � 1−
∫ s(t)−x

−∞
ex+ydN(y)−

∫ ∞

s(t)−x
es(t)dN(y).

In particular, for x = s(t),∫
R1

u(s(t) + y, t)dN(y) � 1− es(t)
{∫ 0

−∞
eydN(y) +

∫ ∞

0
dN(y)

}
= 1− es(t)

{∫ ∞

−∞
eydN(y) +

∫ ∞

0
(1− ey) dN(y)

}
= 1− es(t)(1 + ω) + es(t)

∫ ∞

0
(ey − 1) dN(y).

Using the equation L[u] = 0 and taking the limit as x→ s(t) + 0, we obtain

σ2

2

[
uxx(x, t)

]
x=s(t)+0

=

{
−

(
r − λω − σ2

2

)
ux(x, t)

+(r + λ)u(x, t)− λ
∫
R1

u(x+ y, t)dN(y)

}
x=s(t)+0

�
{(

r − λω − σ2

2

)
es(t)

+(r + λ)
(
1− es(t)

)
− λ

[
1− es(t)(1 + ω) + es(t)

∫ ∞

0
(ey − 1) dN(y)

]}

= −σ
2

2
es(t) + r − λes(t)

∫ ∞

0
(ey − 1) dN(y) � −σ

2

2
es(t) + ν.

In deriving the last inequality, we made use of the fact that s(t) � 0 (cf. Lemma 2.4). It
follows that the function

(8.6) ϕ(x, t) = u− 1 + ex

satisfies

(8.7) ϕxx(s(t) + 0, t) � 2ν

σ2
for t > 0.

Taking the limit in (5.8) as ε→ 0, we also have

(8.8) ϕxx(x, t) � 0 for x ∈ R
1, t > 0.
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A direct computation also shows that

L[ϕxx] = 0 for x > s(t), 0 < t < T,

ϕxx(x, 0) = ex > 1 for 0 < x <∞.

Notice that the comparison principle is established only for the case where the domain is
the whole R

1. To work in the domain {(x, t); x > s(t), 0 < t < T}, we define an operator L1

by

L1[v] = vt − σ2

2
vxx −

(
r − λω − σ2

2

)
vx + (r + λ)v − λ

∫ ∞

s(t)−x
v(x+ y)dN(y).

In our special case, we have
ϕ(x, t) ≡ 0 for x < s(t),

which implies that L[ϕxx] ≡ L1[ϕxx]. Although ϕxx has a singularity at (x, t) = (0, 0), ϕxx is
uniformly bounded from below by Corollary 5.4.

To overcome the possible discontinuity of ϕxx at (0, 0), we define the operator L0 as

L0[v] = vt − σ2

2 vxx −
(
r − λω − σ2

2

)
vx + (r + λ)v. Then, by (8.8),

L0[ϕxx −min(1, 2ν/σ2)e−(r+λ)t] � λ

∫ ∞

s(t)−x
ϕxx(x+ y)dN(y) � 0,

ϕxx(s(t) + 0, 0) −min(1, 2ν/σ2)e−(r+λ)t > 0 for t > 0,

ϕxx(0, x) −min(1, 2ν/σ2) � 0 for x > 0.

Let G(x, t) be the fundamental solution of L0, i.e.,

L0[G] = 0 for (x, t) ∈ R
1 × (0, T ), lim

t→0+
G(x, t) = δ(x),

G(x, t) > 0 for (x, t) ∈ R
1 × (0, T ),

sup
0<t<T

∫ ∞

−∞
G(x, t)dx <∞,

lim
(x,t)→(0,0)

G(x, t) = +∞.

This fundamental solution is given explicitly as

G(x, t) =
1

σ
√
2πt

exp

{
−rt−

[
x+ (r − σ2

2 )t
]2

2σ2t

}
.

Take the auxiliary function δ(c0+x
2) in a way similar to Lemma 2.3 such that L0[c0+x

2] > 0.
We claim that, for any sufficiently small η > 0,

(8.9) ϕxx −min(1, 2ν/σ2)e−(r+λ)t + ηG(x, t) + η(c0 + x2) > 0 for x > s(t), 0 < t < T.

Since ϕxx−min(1, 2ν/σ2)e−(r+λ)t is bounded from below while ηG(x, t) goes to∞ as (x, t)→
(0, 0), (8.9) is obviously valid in a small neighborhood of (0, 0). Similarly, since x2 goes to ∞
as x→ ∞, (8.9) is valid for |x| > Rη if we choose Rη � 1. Thus, by the maximum principle
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applied to the domain {(x, t);x > s(t), |x|+ t > η, |x| < Rη} (this is a bounded domain where
ϕxx is continuous), we conclude that (8.9) holds. Letting η → 0 we obtain (8.5).

Proof of Theorem 8.1. Using (7.10) and (8.2) we find that

C0h
1/2 = uh(s

∗
h(t), t)− g(s∗h(t))

< u(s∗h(t), t) + C0h
1/2 − g(s∗h(t)).

This implies that u(s∗h(t), t) − g(s∗h(t)) > 0 and hence s∗h(t) > s(t). Since we also know that
s(t) � 0, we conclude that sh(t) � s(t).

By the definition of sh(t) we have sh(t) � 0 so that

u(sh(t), t)− g(sh(t)) = ϕ(sh(t), t),

where the function ϕ is defined by (8.6). Thus

2C0h
1/2 = C0h

1/2 + uh(sh(t), t)− g(sh(t))
� u(sh(t), t) − g(sh(t)) = ϕ(sh(t), t)

= ϕ(s(t), t) + ϕx(s(t), t) (sh(t)− s(t)) + 1

2
ϕxx(ξ, t) (sh(t)− s(t))2

� 1

2
c0 (sh(t)− s(t))2 , where c0 = min

(
1,

2ν

σ2

)
e−(r+λ)T ,

which implies the conclusion of the theorem.

Remark 8.2. In the particular case of the pure diffusion Black–Scholes model (i.e., when
λ= 0), assumption (8.3) is automatically satisfied.

Remark 8.3. In Definition 8.1, there is a constant C0 which comes from (7.10) in Theorem
7.1. Since this constant comes from different parts of the proof, it is not easy to be obtained
explicitly. However, for a particular problem, as C0 is required only in the numerical com-
putation of the free boundary and represents the error rate of the numerical computation of
the solution uh, we can estimate it from the numerical computation of the solution uh. In the
numerical example in the next section, we will estimate the constant C0 and use it to calculate
the free boundary.

9. Remarks and a numerical example.

Remark 9.1. The European option admits an explicit solution. We can use the FDS on
this explicit solution to calculate the convergence rate.

Particularly, when x = 0, t = h, and λ = ω = 0, the problem (2.18), (2.19) turns to the
Black–Scholes equation problem without jumps and gives

d1 =
2r + σ2

2σ

√
h, d2 =

2r − σ2
2σ

√
h.
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Therefore

U(0, h) = e−rhN(−d2)−N(−d1)

=
1√
2π

∫ d1

d2

e−u2/2du+ (e−rh − 1)N(−d2)

=
1√
2π

∫ d1

d2

(
1− u2

2
+ o(u2)

)
du+ o(

√
h)

=
1√
2π

(d1 − d2) + o(
√
h) =

σ√
2π

√
h+ o(

√
h).

On the other hand, by the BTM, from (1.6), it gives

q =
1

2
+

2r − σ2
4σ

√
h+ o(

√
h), 1− q = 1

2
− 2r − σ2

4σ

√
h+ o(

√
h)

so that

Uh(0, h) =
1

1 + rh
[qU0

1 + (1− q)U0
−1]

=
1

1 + rh

[
q · 0 +

(
1

2
− 2r − σ2

4σ

√
h+ o(

√
h)

)(
1− e−σ

√
h
)]

= (1− (rh) + o(h))

[(
1

2
− 2r − σ2

4σ

√
h+ o(

√
h)

)(
σ
√
h+ o(

√
h)

)]
=
σ

2

√
h+ o(

√
h).

Thus,

Uh(0, h) − U(0, h) =

(
1

2
− 1√

2π

)
σ
√
h+ o(

√
h).

This means that the FDS on a European option cannot have a better convergence rate
than O(

√
h), unless σ ≡ 0. We conclude that the convergence rate of the FDS on a European

option cannot be better than O(
√
h).

Remark 9.2. For an American option price u and a European option U , there holds

u− uh = (u− U) + (U − uh).

Let us check the error at the point (0, h). First,

U(0, h) − uh(0, h) = U(0, h) −min{Uh(0, h), 0}
= U(0, h) =

σ√
2π

√
h+ o(

√
h).

An American option can be decomposed into a European option and a so-called early exercise
premium (see section 6.3 in [19]). In other words, let V (S, t) be the American put option
price; then

V (S, t) = Ũ(S, t) + e(S, t),
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where Ũ(S, t) is the European put option price corresponding to (2.18), (2.19) under the
original (S, t) variables, and e(S, t) is the early exercise premium,

e(S, t) =

∫ T

t
dη

∫ S(η)

0
(Kr − qξ)G(S, t; ξ, η)dξ,

where r, K are defined as above, q is the dividend rate of the underlying asset S, and
G(S, t; ξ, η) is the fundamental solution of the Black–Scholes equation.

Under our notation, we have

u(x, t) = U(x, t) + e(x, t),

where e(x, t) is called an early exercise premium, which, in our case, can be written as

e(x, t) =

∫ t

0
dη

∫ x(η)

−∞
rG(x, t; ξ, η)dξ,

where x(t) is the free boundary of the solution and G(x, t; ξ, η) is the fundamental solution of
the lognormal Black–Scholes equation:

G(x, t; ξ, η) =
1

σ
√

2π(t− η) exp
{
−r(t− η)−

[
x− ξ + (r − σ2

2 )(t− η)]2
2σ2(t− η)

}
.

Thus

|e(x, t)| �
∫ t

0
dη

∫ x(η)

−∞
r|G(x, t; ξ, η)|dξ

� C

∫ t

0
er(η−t)dη =

C

r
(1− e−rt) = O(t) = o(

√
t).(9.1)

The linear regress of the error R(
√
h) is

R(
√
h) = 0.03970255974177

√
h+ 0.00001112311713.

So the estimate constant C0 in Theorem 7.1 in this case is 0.03970255974177.

Therefore, at the first step t = h, we also have |e(x, h)| = o(
√
h).

That means the difference of u− uh will not be better than O(
√
h).

Remark 9.3. The limitation to the convergence rate comes from the option pricing initial
datum g(x) = [1 − ex]+, which belongs only to W 1∞. For the smooth initial datum, the
convergence rate is better. We refer the reader to [27], [28].

Remark 9.4. The estimate |u(x, t) − u(x, t)| � C
√
h is optimal when t is very close to 0

(as the example in Remark 9.1 shows). If t is fixed, some calculations show that there is a
better convergence rate. In particular, say when t = T, [26] shows that |uh(x, T )− u(x, T )| =
O
(
(h

√| log h|)4/5) for the case of the put option and O(h
√| log h|) for more regular payoffs.
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Table 1
Comparison of errors at the grid points (x, t) = (0,Δt).

h = Δt 0.01 2.5×10−3 6.25×10−4 1.563×10−4 3.906×10−5 9.766×10−6

Error 0.0039756 0.0020071 0.0010075 0.0005054 0.0002550 0.0001326

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

Figure 1. Maximum error of the solution vs. length of the numerical step.

Table 2
Comparison of the free boundary errors at fixed time t = 0.1 when “exact solution” s(0.1) = −0.1981272.

h = Δt 2.5×10−3 6.25×10−4 1.563×10−4 3.906×10−5 9.766×10−6

sh(0.1) −0.16 −0.17 −0.18 −0.1875 −0.1925

Error 0.0381272 0.0281272 0.0181272 0.0106272 0.0056272

Calculation example. In the case r = 0.1, λ = 0.001, σ = 0.4, N(x) = 0 for x < 0.1,
and N(x) = 1 for x > 0.1, ω = exp(0.1) − 1, Table 1 shows the errors of the solution by
use of the scheme discussed in this paper. Here we use the approximation solution when
h = Δt = 6.103515625 × 10−7 as the “exact solution” s(t) for comparing to the others. Since
the singular point is at (0,0), we expect the maximum error to appear at the position nearest
to (0,0). First, we compare the solution at the first step of the calculation at (0,0). The result
is shown in Figure 1.

Now use this C0 to calculate the free boundary. Table 2 shows the errors of the free
boundary, i.e., the last grid point xh when u(xh) � 1−exh +0.0397

√
h. The calculation shows
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Table 3
Comparison of the free boundary errors at the first step of the scheme.

h = Δt 2.5×10−3 6.25×10−4 1.563×10−4 3.906×10−5 9.766×10−6

s(h) −0.0425023 −0.0215648 −0.0103148 −0.0046898 −0.0021898

sh(h) −0.02 −0.01 −0.005 −0.0025 −0.00125

Error 0.0225023 0.0115648 0.0053148 0.0021898 0.0009398

Table 4
Convergence rate of the fixed point and the first step.

h = Δt 2.5×10−3 6.25×10−4 1.563×10−4 3.906×10−5 9.766×10−6

Rate at t = 0.1 - 0.2194 0.3169 0.3852 0.4586

Rate at the 1st step - 0.4802 0.5608 0.6396 0.6102

that the error of s∗h, which is defined in Definition 8.1, is lower than the theoretical estimate
O(h1/4), which implies that the O(h1/4) is suboptimal. Again, h = Δt = 6.103515625 × 10−7

is used as the benchmark.

As our estimate rate result is about “maximum error,” as the comparison of the solution
error, we also compare the free boundary at the first step of the calculation. Table 3 shows
the free boundary error compared to the “exact solution” at the first time step.

Now let us estimate the numerical convergence rate of the free boundary. Table 4 shows
the convergence rate γi, which is computed from the relation erri/erri−1 = hγii /h

γi−1

i , where
hi, i = 1, . . . , 5, are the values of h from Tables 2 and 3, and erri are the corresponding errors.
As hi = hi−1/4, we have

γi =
ln erri−1 − ln erri

ln 4
.
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exponential Lévy models, SIAM J. Numer. Anal., 43 (2005), pp. 1596–1626.

[11] J. Cox and M. Rubinstein, Option pricing: A simplified approach, J. Finan. Econ., 7 (1979), pp. 229–
263.

[12] A. Friedman, Variational Principles and Free Boundary Problems, John Wiley & Sons, New York, 1982.
[13] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice–Hall, Englewood Cliffs, NJ,

1964.
[14] Y. d’Halluin, P. A. Forsyth, and G. Labahn, Penalty method for American options with jump

diffusion processes, Numer. Math., 97 (2004), pp. 321–352.
[15] B. Hu, L. Jiang, and J. Liang, Optimal rate of convergence of the binomial tree scheme for American

options, J. Comput. Appl. Math., 230 (2009), pp. 583–599.
[16] J. Hull, Options, Futures and Other Derivatives, 7th ed., Prentice–Hall, Upper Saddle River, NJ, 2008.
[17] E. R. Jakobsen, Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-

Bellman equations, Math. Models Methods Appl. Sci., 13 (2003), pp. 613–644.
[18] E. R. Jakobsen, K. H. Karlsen, and C. La Chioma, Error estimates for approximate solutions to

Bellman equations associated with controlled jump-diffusions, Numer. Math., 110 (2008), pp. 221–255.
[19] L. Jiang, Mathematical Modeling and Methods for Option Pricing, World Scientific, River Edge, NJ,

2005.
[20] L. Jiang and M. Dai, Convergence of the explicit difference scheme and the binomial tree method for

American options, J. Comput. Math., 22 (2004), pp. 371–380.
[21] L. Jiang and M. Dai, Convergence of binomial tree methods for European/American options path-

dependent options, SIAM J. Numer. Anal., 42 (2004), pp. 1094–1109.
[22] S. G. Kou, A jump-diffusion model for option pricing, Management Sci., 48 (2002), pp. 1086–1101.
[23] N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations,

St. Petersburg Math. J., 9 (1998), pp. 639–650.
[24] N. V. Krylov, On the rate of convergence of finite-difference approximations for Bellman’s equations

with variable coefficients, Probab. Theory Related Fields, 117 (2000), pp. 1–16.
[25] O. A. Ladyzenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and Quasilinear Equations

of Parabolic Type, Nauka, Moscow, 1968.
[26] D. Lamberton, Error estimates for the binomial approximation of American put options, Ann. Appl.

Probab., 8 (1998), pp. 206–233.
[27] D. Lamberton and C. Rogers, Optimal stopping and embedding, J. Appl. Probab., 4 (2000), pp. 1143–

1148.
[28] D. Lamberton, Brownian optional stopping and random walks, Appl. Math. Optim., 45 (2002), pp. 283–

324.
[29] J. Liang, B. Hu, L. Jiang, and B. Bian, On the rate of convergence of the binomial tree scheme for

American options, Numer. Math., 107 (2007), pp. 333–352.
[30] J. Liang, On the convergence rate of the binomial tree scheme for an American option with jump-diffusion,

Numerical Math. J. Chinese Univ., 30 (2008), pp. 76–96.
[31] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, River Edge, NJ,

1996.
[32] R. Merton, Option pricing when the underlying stock returns are discontinuous, J. Finan. Econ., 3

(1976), pp. 125–144.
[33] H. Pham, Optimal stopping, free boundary and American option in a jump-diffusion model, Appl. Math.

Optim., 35 (1995), pp. 145–164.
[34] X.-S. Qian, C.-L. Xu, L.-S. Jiang, and B.-J. Bian, Convergence of the binomial tree method for

American options in a jump-diffusion model, SIAM J. Numer. Anal., 42 (2005), pp. 1899–1913.
[35] W. Wilmott, S. Howison, and J. Dewyne, The Mathematics of Financial Derivatives, Cambridge

University Press, Cambridge, UK, 1995.
[36] C. Xu, X. Qian, and L. Jiang, Numerical analysis on binomial tree methods for a jump-diffusion model,

J. Comput. Appl. Math., 156 (2003), pp. 23–45.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONVERGENCE RATE FOR BINOMIAL TREE METHOD 65

[37] C. Yang, L. Jiang, and B. Bian, Free boundary and American options in a jump-diffusion model,
European J. Appl. Math., 17 (2006), pp. 95–127.

[38] X. Zhang, Analyse Numérique des Options Américaines dans um Modéle de Diffusion avec des Sauts,
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Abstract. Extending the approach of Jouini, Meddeb, and Touzi [Finance Stoch., 8 (2004), pp. 531–552] we
define set-valued (convex) measures of risk and their acceptance sets, and we give dual representation
theorems. A scalarization concept is introduced that has a meaning in terms of internal prices of
portfolios of reference instruments. Using primal and dual descriptions, we introduce new examples
for set-valued measures of risk, e.g., set-valued upper expectations, value at risk, average value at
risk, and entropic risk measure.
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1. Introduction. The concept of set-valued coherent measures of risk has been introduced
recently by Jouini, Meddeb, and Touzi [16]. The basic question is how to evaluate the (finan-
cial) risk of a multivariate random outcome in terms of more than one reference instrument,
for example if the regulator accepts deposits in more than one currency. This is of particular
importance if transaction costs have to be paid for each transaction between assets including
the reference instruments.

This question became unexpectedly topical as the European Central Bank decreed [7]
that temporarily, until the end of 2009, “the list of assets eligible as collateral in Eurosystem
credit operations will be expanded” by “marketable debt instruments denominated in other
currencies than the euro, namely the US dollar, the British pound and the Japanese yen, and
issued in the euro area. These instruments will be subject to a uniform haircut add-on of
8%.” See also [8].

The following exposition is based on the model used in [16]; in particular, we assume the
presence of proportional transaction costs modeled via a closed convex cone which goes back
to [17]. A special feature of this model is that the risk of a d-dimensional random variable is
evaluated in terms of m reference instruments with 1 ≤ m ≤ d. Usually m� d will be true,
but the case m = d is not excluded (and also, of course, neither m = 1, d > 1, nor m = d = 1).

We shall make a few generalizations compared to [16]. First, we do not assume a “sub-
stitutability condition”; i.e., we do not assume that everything could be transferred into one
distinguished currency. Second, we consider a general subspace M of Rd as the collection
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of risk evaluating reference portfolios rather than R
m × {

0d−m
}
. This was suggested by a

referee of an earlier version [12] of this paper, and it also has a financial interpretation: The
regulator could accept only reference portfolios where two (for example) components must
be in a certain proportion, e.g., one third euro, two thirds dollar. Third, we consider risk
measures on Lp-spaces with 1 ≤ p ≤ +∞ rather than on L∞ only, and we allow for a value
which corresponds to +∞ in the scalar case. Finally, we will start by introducing certain
subsets of the power set of M as image spaces for set-valued (convex) risk measures. This
methodology goes somewhat the opposite way compared to [16] and popular references about
set-valued mappings like [1], where the starting point is a relation or correspondence between
two vector spaces, and a property like convexity of such a correspondence has consequences
for the image sets (compare Property 3.1 in [16]). Going the other way round results, e.g.,
in a condition for the closedness of the values of a set-valued risk measure defined via an
acceptance set (compare Definition 2.2 below).

The main accomplishment of the paper is a complete duality theory for set-valued convex
risk measures which is parallel to the scalar case (and includes it as a special case). This
is an extension of previous results: In [16] and [4], only the coherent case could be dealt
with. Moreover, in contrast to the mentioned references, our dual representations of set-
valued closed convex risk measures are formulated in terms of set-valued upper expectations
involving two types of dual variables which can be given a financial interpretation. One is a
set of (vector) probability measures that are absolutely continuous with respect to the given
physical measure (slightly deviating even in the sublinear case from [16], where a set of general
vector measures is used); the other is finite dimensional, reflects the possible preferences of
the investor among the reference instruments, and is closely related to linear scalarizations.
A coupling condition for the two types of dual variables (see Lemma 4.1 below) indicates that
the investor has a certain but not total freedom regarding the relationship between her risk
attitude in the individual markets, on the one hand, and her preference between the reference
instruments, on the other hand.

It will turn out that set-valued convex risk measures admit a scalar representation (along-
side a “primal” via acceptance sets and a “dual” via set-valued upper expectations) by a
family of linear scalarizations which can be seen as generalizations of scalar risk measures for
multivariate random variables, as recently defined by Burgert and Rüschendorf in [3]. The
scalarizations not only are of theoretical interest, but can be used to actually compute the
values of set-valued risk measures. We do not focus on this point here, but we shall mention
that there are strong relationships to recent developments in vector optimization theory; see
[19] and earlier work of Löhne.

Let us mention that Cascos and Molchanov in [4] give a definition of risk measures with
values in an abstract convex cone. Despite the fact that there are advantages and drawbacks
of such an abstract approach (see Remark 2.5 below), they give a list of operations [4, section
4] that can also be used to construct new set-valued risk measures within the framework of
the present paper. Moreover, they link the concepts of set-valued risk measures and depth-
trimmed (or central) regions from multivariate statistics. However, a dual representation for
general convex risk measures (and corresponding central regions) cannot be found in [4].

Finally, let us note that our report [12] also contains a duality result which could be
transferred into the results of this paper by means of Lemma 4.1 below. Therein, the method
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of proof is “purely set-valued,” whereas the proof in section 6 below makes use of the scalar
Fenchel–Moreau theorem from convex analysis. However, the mathematical essence of both
proofs is the same. See [11] for a discussion of this question.

The rest of the paper is organized as follows. Section 2 contains a mathematical model
of the situation, including definitions for set-valued (convex) measures of risk and acceptance
sets. The link between set-valued risk measures and their acceptance sets is given in terms
of bijection theorems in section 3. Section 4 contains the definition of set-valued upper ex-
pectations and the coupling condition result. In section 5 we will give scalar representations
of set-valued convex risk measures, which have meaning in financial terms and are needed for
the proof of the main dual representation result. Dual representations of convex and coherent
risk measures can be found in section 6, including “penalty function” representation formulas
and a subsection about σ

(
L∞
d , L

1
d

)
-lower semicontinuity (“Fatou property”). Every section

contains—as far as possible—an interpretation of the concepts and results in financial terms.
Examples are given throughout the paper, among them general versions of set-valued value
at risk, average value at risk, and a set-valued variant of the entropic risk measure.

2. The mathematical model and examples.

2.1. Vector-valued random variables. Everywhere in this paper, (Ω,F , P ) is a prob-
ability space. By Lp

d = Lp
d (Ω,F , P ), 1 ≤ p ≤ ∞, we denote the linear space of all P -

measurable functions X : Ω → R
d such that

∫
Ω |X (ω)|p dP < ∞ for 1 ≤ p < ∞ and

ess.supω∈Ω |X (ω)| < ∞ for p = ∞. In all cases, |·| denotes an arbitrary but fixed norm
on R

d, and the usual identification of functions differing only on sets of P -measure zero is as-
sumed; hence Lp

d is a Banach space reflexive for 1 < p <∞. In the latter case, the topological
dual of Lp

d can be identified with Lq
d with 1

p + 1
q = 1, where the bilinear form conveying the

dual pairing between Lp
d and Lq

d is given by (X,Y ) → E
[
XTY

]
. Unless otherwise stated we

will consider L∞
d provided with the σ

(
L∞
d , L

1
d

)
-topology and the same dual pairing with L1

d

as for the other Lp
d’s. We write E [X] for the (componentwise) mathematical expectation of

X ∈ Lp
d under P .

An element X ∈ Lp
d has components X1, . . . ,Xd in Lp = Lp

1. The symbol 1I denotes the
random variable in Lp which has P -almost surely the value 1.

Let M ⊆ R
d be a linear subspace with dimension m ≥ 1. Particular cases are m = 1 and

m = d. The introduction of M is motivated by the idea that an investor or regulator accepts
risk compensations or security deposits only in a certain subset of the d markets or currencies,
for example only in the first m, in which case M = R

m × {0}d−m (see [16]). We assume
M ∩ R

d
+ 
= {0}, which means that there is at least one position of reference instruments with

nonnegative components which are accepted as risk compensation or deposit.

The frictions between the markets are modeled by the solvency cone K ⊆ R
d, which is a

closed convex cone with R
d
+ ⊆ K. The cone K includes all positions of reference instruments

which can be exchanged, by paying transaction costs, into reference positions with nonnegative
entries only. If K contains a line, then there is an exchange without transaction costs possible
between at least two of the d instruments. If K = R

d
+, then there is no exchange possible.

Typically, the solvency cone can be constructed from a bid-ask matrix, as is done in [24], which
is a generalization of the geometric model for currency markets with proportional transaction
costs in [17]. Note that in [17], [16], and [24], K is a polyhedral cone by construction, but
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none of our (duality) results below depends on this property.
Example 2.1. Consider a model with d = 3 currency markets, say cash in euro, US dollar,

and Japanese yen, respectively. Let the exchange rates (including transaction costs) be given
by the following 3× 3 bid-ask matrix:

Π =

⎛⎝ 1 0.77 0.008
1.4 1 0.01
141.5 104.8 1

⎞⎠ ,

where the entry πij means that one has to pay πij units of currency i in order to get one unit
of currency j, where i, j ∈ {1, 2, 3}. The solvency cone K for this model is the convex cone
spanned by the six vectors⎛⎝0.77

−1
0

⎞⎠ ,

⎛⎝0.008
0
−1

⎞⎠ ,

⎛⎝−11.4
0

⎞⎠ ,

⎛⎝ 0
0.01
−1

⎞⎠ ,

⎛⎝ −10
141.5

⎞⎠ ,

⎛⎝ 0
−1
104.8

⎞⎠ .

The first vector, for example, has the meaning that one can clear a debt of 1 US dollar by
paying 0.77 euros. Note that R3 with the order relation generated by K is not a vector lattice
since it is not possible to find three linearly independent vectors which generate K (compare
[21, Example 1.5]).

The part of the cone K that is relevant for M is KM = K ∩M , also a closed convex
cone. By intKM we denote the interior of KM in M , i.e., the interior of KM considered as
a subset of the finite dimensional linear space M . Throughout the paper, it is assumed that
intKM 
= ∅. This is equivalent to the existence of a base of M consisting only of (m) elements
of K.

For 1 ≤ p ≤ ∞, the set

(2.1) Lp
d (K) =

{
X ∈ Lp

d : X ∈ K P -a.s.
}

is a closed convex cone in Lp
d generating a reflexive transitive relation for R

d-valued random
variables. We shall write

(
Lp
d

)
+
for Lp

d

(
R
d
+

)
.

2.2. Definition of risk measures. By FM = {D ⊆M : D = cl (D +KM )} and GM =
{D ⊆M : D = cl co (D +KM )} we denote the collections of the upper closed and upper closed
convex subsets, respectively, ofM . The families FM ,GM of subsets ofM are both closed under
multiplication with positive reals and addition ⊕ defined by D1 ⊕ D2 = cl (D1 +D2) for
D1,D2 ∈ FM or ∈ GM . The + sign denotes usual Minkowski addition with ∅+D = D+∅ = ∅
for all D ⊆ M . The multiplication is extended by t∅ = ∅ for t > 0 and 0D = KM for all
D ∈ FM ; in particular, 0∅ = KM .

A function R : Lp
d → FM is said to be closed (convex, sublinear) iff

graphR =
{
(X,x) ∈ Lp

d ×M : x ∈ R (X)
}

is closed (convex, a convex cone). If a function R : Lp
d → FM is convex, then R (X) is convex

for all X ∈ Lp
d. If R is closed convex, then R (X) ∈ GM for all X ∈ Lp

d. The effective domain
of a function R : Lp

d → FM is the set

domR =
{
X ∈ Lp

d : R (X) 
= ∅} .
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A function R : Lp
d → FM is said to be proper iff domR 
= ∅ and R (X) 
=M for all X ∈ Lp

d.
Remark 2.1. The definition of convexity of an FM -valued function R via its graph is in line

with the usual terminology for set-valued maps; see [1, section 1.3], [10, section 2.4]. Moreover,
for such functions the graph and the epigraph defined as epiR = {X×u ∈ Lp

d×M : u ∈ R (X)
+KM} do coincide; see also [10, section 2.4]. On the other hand, one could suggest defining
the epigraph of a function R : Lp

d → FM by

epiR =
{
(X,D) ∈ Lp

d × FM : R (X) ⊇ D} .
Since Lp

d×FM is not a linear space one has to introduce an algebraic structure and a convexity
concept on this set. This can be done in the framework of conlinear spaces (see [11]). However,
it turns out that convexity in such a sense is equivalent to graph convexity as used in the
present paper, and also to

∀X1,X2 ∈ Lp
d, ∀t ∈ (0, 1) : R

(
tX1 + (1− t)X2

) ⊇ tR (
X1

)⊕ (1− t)R (
X1

)
.

Moreover, by means of the graph, closedness of FM -valued functions can be introduced easily.
See also Remark 2.5 below. For more information about lower semicontinuity of set-valued
functions, compare [14].

Definition 2.1. A set-valued measure of risk is a function R : Lp
d → FM which is

(R0) normalized—i.e., KM ⊆ R (0) and R (0) ∩ −intKM = ∅;
(R1) translative in M—i.e.,

(2.2) ∀X ∈ Lp
d, ∀u ∈M : R (X + u1I) = R (X)− u;

(R2) Lp
d (K)-monotone—i.e., X2 −X1 ∈ Lp

d (K) implies R
(
X2

) ⊇ R (
X1

)
.

If R satisfies (R0), (R1), and (R2) and is convex (sublinear), then it is called a (set-valued)
convex (coherent) measure of risk.

Interpretation. The value R (X) includes all possible vectors of accepted reference instru-
ments compensating for the risk of the multivariate position X. This set is closed, and if
u ∈ M compensates for the risk of X, then, of course, each element of u+KM compensates
all the more. Condition (R0) is a generalization of the normalization condition � (0) = 0 (com-
pare [9, p. 154]). The first condition means that “doing nothing” is an acceptable position in
the sense that every deterministic position in M which can be exchanged into a position with
nonnegative entries only compensates for its risk. On the other hand, doing nothing should
not allow for consuming capital: u ∈ −intKM ∩ R (0) would mean that the investor is still
good with taking −u of her capital, exchanging it into an element of intRd

+, consuming it,
and having zero payoff in the future. A stronger condition is

(R0S) R (0) = KM ,
which is often satisfied.

(R1) is basically the translation condition formulated in [16] generalized to a linear sub-
space M instead of Rm × {0}d−m: If the reference position u is added to the random payoff,
its risk decreases by u. (R2) is monotonicity with respect to ⊇: It should be intuitively clear
that for a less risky position there cannot be less possibility to compensate for its risk.

Remark 2.2. The convexity of a risk measure avoids the strange effect of risk cancellation
by dividing a position. Indeed, if R is, for example, positively homogeneous but not convex,
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then there are positions X,X1,X2 ∈ Lp
d and elements u1 ∈ R (

X1
)
, u2 ∈ R (

X2
)
such that

X = X1 +X2 and u1 compensates for the risk of X1, u2 for the risk of X2, but the risk of X
cannot be compensated for by u1 + u2. As in the scalar case, this possibility is one drawback
of set-valued variants of the value at risk; see Example 3.3 below.

Remark 2.3. The axioms in Definition 2.1, the addition ⊕, and the order relation ⊇ in
FM fit together: A position X ∈ Lp

d with ∅ = R (X) is the worst possibility; its risk cannot
be compensated. Thus, considering ⊇ as a replacement for ≤ in R ∪ {±∞}, the element
∅ ∈ FM turns out to correspond to +∞. Moreover, if one would have u ∈ R (X) +R (Y ) and
R (X) = ∅, v ∈ R (Y ), then one would expect u− v ∈ R (X), which leads to contradictions.

Remark 2.4. In the scalar case, the value � (X) of a risk measure for a univariate position
X can be seen as the infimal amount of the (single) reference instrument (cash) compensating
for the risk of X (rather than the set of all possible amounts). It is possible to define a
counterpart for this infimal amount in the set-valued case. This would be the infimal set of
R (X) with respect to the cone KM in the sense of Tanino [25]. It is also possible to formulate
the whole (duality) theory of this paper in terms of infimal sets. We abdicate this possibility
here for the sake of technical clarity. The interested reader is referred to [19].

Remark 2.5. In [4], Cascos and Molchanov defined risk measures with values in an ordered
topological monoid (a topological semigroup with neutral element), which is a complete lattice
and equipped with a continuous multiplication with positive reals. They claim (see their
Example 2.4) that the collection G

Rd of upper closed convex subsets of Rd (denoted as GK in
[4]) form such an entity. This is true up to the fact that they do not provide a topology on GK ,
making it a topological monoid. Moreover, it seems desirable to have a multiplication with
0 ∈ R as well. We think that it is not necessary to introduce such a topology when working
with set-valued risk measures as defined above, not even for duality results as given below,
and it is also possible to generalize the above definition to an abstract level (with ordered
convex cones as image space), but this should be done in a way consistent with all possible
applications and in terms which have a financial meaning. Moreover, in [4, Definition 2.3, R1]
the translation condition is required for all elements u ∈ R

d rather than only for those of M .

We turn to properties of acceptance sets for set-valued risk measures.

Definition 2.2. We call a set A ⊆ Lp
d directionally closed in M iff X ∈ Lp

d,
{
uk
}
k∈N ⊂M ,

limk→∞ uk = 0, and X + uk1I ∈ A for all k ∈ N implies X ∈ A.
This property of being directionally closed will turn out to be the weakest property en-

suring the closedness of the values of a risk measure generated by an acceptance set. It is
weaker than algebraic closedness, used in the case m = d = 1 in [15]. For example, the set
A =

{
X ∈ R

3 : X3 > 0
}

is directionally closed in M = span
(
(1, 0, 0)T , (0, 1, 0)T

)
but not

algebraically closed.

Definition 2.3.An acceptance set is a subset A ⊆ Lp
d satisfying the following:

(A0) u ∈ KM implies u1I ∈ A, and u ∈ −intKM implies u1I 
∈ A;
(A1) A is directionally closed in M with A+ u1I ⊆ A whenever u ∈ KM ;
(A2) A+ Lp

d (K) ⊆ A.
If A satisfies (A0), (A1), (A2) and is convex (a convex cone), then it is called a convex
(coherent) acceptance set.

A stronger condition than (A0) which will correspond to (R0S) is
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(A0S) u1I ∈ A iff u ∈ KM .
Note that (A2) and the definitions of Lp

d (K) (see (2.1)) and KM already imply the second
part of (A1), i.e., A+ u1I ⊆ A whenever u ∈ KM , but we will see in the next section that this
property plays a particular role for the one-to-one correspondence between risk measures and
acceptance sets. Moreover, by (A0), 0 ∈ A. This and (A2) imply Lp

d (K) ⊆ A.
3. Primal representation of risk measures. In this section we shall establish bijection

results for set-valued risk measures and acceptance sets. Let R : Lp
d → FM be a function. By

means of

(3.1) AR =
{
X ∈ Lp

d : 0 ∈ R (X)
}
=
{
X ∈ Lp

d : KM ⊆ R (X)
}

we assign to R its zero sublevel set. Let A ⊆ Lp
d be a set. By means of

(3.2) RA (X) = {u ∈M : X + u1I ∈ A}

we assign to A a function RA mapping Lp
d into the power set of M .

Interpretation. It should be clear that a multivariate positionX is acceptable if “depositing
nothing” already compensates for its risk. Of course, if this is the case, every nonnegative
accepted reference position (an element of KM ) does the job all the more. On the other hand,
RA (X) contains all accepted reference positions, which make X acceptable when added to it.

It turns out that (3.1) and (3.2) yield one-to-one correspondences between acceptance sets
and set-valued risk measures.

Proposition 3.1. (i) Let R : Lp
d → FM be translative in M ; i.e., it satisfies (R1). Then AR

satisfies (A1) and we have R = RAR
. (ii) Let A ⊆ Lp

d be a set satisfying (A1). Then RA maps
into FM , is translative, and A = ARA

.
Proof. (i) First, we show (A1). Take X ∈ Lp

d,
{
uk
}
k∈N ⊂ M with limk→∞ uk = 0, and

X + uk1I ∈ A. Then (3.1) and (R1) imply 0 ∈ R (
X + uk1I

)
= R (X) − uk; i.e., uk ∈ R (X)

for all k ∈ N. Since R maps into FM , R (X) is closed; hence 0 ∈ R (X), implying X ∈ AR by
(3.1). For the second part of (A1) take X ∈ AR and u ∈ KM . Since KM is a convex cone we
get KM ⊆ KM − u. Since X ∈ AR we have KM ⊆ R (X); hence by (R1),

KM ⊆ KM − u ⊆ R (X)− u = R (X + u1I) ,

which gives X + u1I ∈ AR.
Direct calculations using (3.2), (3.1), and (R1) yield

RAR
(X) = {u ∈M : X + u1I ∈ AR}

= {u ∈M : 0 ∈ R (X + u1I)} = R (X) .

(ii) First, we show that RA maps into FM . For this it is enough to show that RA (X) +
KM ⊆ RA (X) and RA (X) is closed for each X ∈ Lp

d. Take u ∈ RA (X) and v ∈ KM . Then
X+u1I ∈ A. (A1) implies X+(u+ v) 1I ∈ A; hence u+ v ∈ RA (X) by (3.2). Take a sequence{
uk
}
k∈N ⊂ RA (X) with limk→∞ uk = u. Then by (3.2), X+uk1I = (X + u1I)+

(
uk − u) 1I ∈ A

for all k ∈ N. Since A is directionally closed in M , this implies X + u1I ∈ A, which gives
u ∈ RA (X).
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We turn to (R1). Take X ∈ Lp
d, u ∈M . Then by (3.2),

RA (X + u1I) = {v ∈M : X + (u+ v) 1I ∈ A}
= {u+ v ∈M : X + (u+ v) 1I ∈ A} − u = RA (X)− u.

From (3.2), (3.1) we get

ARA
=
{
X ∈ Lp

d : 0 ∈ RA (X)
}
=
{
X ∈ Lp

d : 0 ∈ {u ∈M : X + u1I ∈ A}} ,
which proves the desired equality.

Proposition 3.2. (i) Let R : Lp
d → FM be a measure of risk. Then AR is an acceptance set.

If R is convex, so is AR. If R is coherent, then AR is a coherent acceptance set. If R satisfies
(R0S), then AR satisfies (A0S).

(ii) Let A ⊆ Lp
d be an acceptance set. Then RA is a measure of risk. If A is convex, so is

RA. If A is a coherent acceptance set, then RA is a coherent measure of risk. If A satisfies
(A0S), then RA satisfies (R0S).

Proof. (i) First, we show (A0): Take u ∈ KM . Then u ∈ R (0) by (R0), and 0 ∈ R (u1I)
by (R1). The construction (3.1) implies u1I ∈ AR. Now, take u ∈ −intKM . Then by (R0),
u 
∈ R (0); hence by (R1), 0 
∈ R (u1I) and u1I 
∈ AR.

(A1) follows from Proposition 3.1.
In order to check (A2) take X1 ∈ AR and X2 ∈ Lp

d (K). Then
(
X1 +X2

)−X1 ∈ Lp
d (K),

and by (R2), 0 ∈ R (
X1

) ⊆ R (
X1 +X2

)
, and hence X1 +X2 ∈ AR as desired.

It is left to the reader to check that AR is convex if R is convex and that AR is a cone if
R is positively homogeneous.

(ii) From Proposition 3.1 we already know that RA maps into FM and that (R1) holds
true.

Next, we shall show (R0). By (A0) and (3.2) we get u ∈ RA (0) whenever u ∈ KM and
u 
∈ RA (0) whenever u ∈ −intKM .

Finally, for a proof of (R2) take X1,X2 ∈ Lp
d such that X2 −X1 ∈ Lp

d (K). Then

RA

(
X1

)
=
{
u ∈M : X1 + u1I ∈ A}

=
{
u ∈M : X2 + u1I ∈ A+

(
X2 −X1

)}
⊆ {

u ∈M : X2 + u1I ∈ A} = RA

(
X2

)
,

where the inclusion holds true since A+ Lp
d (K) ⊆ A by (A2).

Again, it is a matter of exercise to show that RA is convex if A is convex and that RA is
positively homogeneous if A is a cone.

Finally, the correspondence between (R0S) and (A0S) can easily be verified.
The proof of the above propositions makes it apparent which property of a (set-valued)

translative function corresponds to what property of its zero sublevel set. In particular, the
closedness of the values of the function corresponds to directional closedness of its zero sublevel
set.

Remark 3.1. Translativity of R is equivalent to

(3.3) graphR =
{
(X,u) ∈ Lp

d ×M : X + u1I ∈ AR

}
.
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Indeed, if R is translative in M , then (X,u) ∈ graphR iff u ∈ R (X) iff 0 ∈ R (X + u1I) by
translativity iffX+u1I ∈ AR by (3.1). On the other hand, if (3.3) is true, then w ∈ R (X + u1I)
for u,w ∈M iff (X + u1I, w) ∈ graphR iffX+(u+ w) 1I ∈ AR by (3.3) iff (X,u+ w) ∈ graphR
again (3.3) iff u+ w ∈ graphR, which is translativity in M .

Using (3.3), we may observe that R is closed (by definition, iff graphR is closed) iff AR is
closed. This is one more example for a bijection property, and closedness can be added, e.g.,
in Proposition 3.2.

Example 3.1 (set-valued worst case risk measure). The smaller the acceptance set, the higher
the degree of risk aversion. Thus, the risk measure with the highest risk aversion is the one
with the smallest acceptance set. The smallest set satisfying properties (A0)–(A2) is the cone
Lp
d (K). The corresponding coherent risk measure is

WCM,S (X) =
{
u ∈M : X + u1I ∈ Lp

d (K)
}
.

In the scalar case (d = 1, M = R, K = KM = R+) this risk measure coincides with the
negative of the essential infimum of X, which is called the worst case risk measure. Note that
there are other possibilities for generalizing the scalar counterpart. For example,

WCM,W (X) = {u ∈M : P (X + u1I ∈ −intK) = 0}
defines a less risk averse risk measure, which coincides in the scalar case with WCM,S but is
not convex in general in higher dimensions.

Example 3.2 (negative componentwise expectation). The set

A =
{
X ∈ L1

d : E [X] ∈ K}
is a coherent acceptance set satisfying (A0S). Indeed, it is obviously a convex cone, and we
have u1I ∈ A if u ∈ KM . Moreover, u ∈ M\KM implies u 
∈ K by definition of KM ; hence
u1I 
∈ A.

The corresponding closed coherent risk measure that could be considered as a set-valued
counterpart of the negative expected value is defined by

NCE (X) = RA (X) = {u ∈M : E [X + u1I] ∈ K} = (E [−X] +K) ∩M
on L1

d. We shall call it negative componentwise expectation. Observe that if M = R
d, then

E [−X] ∈ NCE (X) for all X ∈ L1
d.

Example 3.3 (set-valued value at risk). We shall define two extensions of the scalar value
at risk, which will be called weak and strong value at risk. Let 0 ≤ λ ≤ 1. The functions
X �→ V@RM,W

λ , V@RM,S
λ : Lp

d → FM defined by

V@RM,W
λ (X) = {u ∈M : P (X + u1I ∈ −intK) ≤ λ}

and
V@RM,S

λ (X) = {u ∈M : P (X + u1I 
∈ K) ≤ λ} ,
respectively, are set-valued measures of risk on L1

d. If d = 1, M = R, and K = KM = R+,

then V@RM,W
λ (X) = V@RM,S

λ (X) = V@Rλ (X) + R+, where V@Rλ (X) = inf{t ∈ R :
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P (X + t < 0) ≤ λ} denotes the usual scalar value at risk as defined, for example, in [9,
section 4.4]. Therefore, V@RM,W

λ , V@RM,S
λ cannot be convex in general, but they do satisfy

(R0), (R1), and (R2). The strong variant even satisfies (R0S) for 0 ≤ λ < 1. The respective
acceptance sets are obviously

A
V@RM,W

λ
=
{
X ∈ Lp

d : P (X ∈ −intK) ≤ λ}
and

A
V@RM,S

λ
=
{
X ∈ Lp

d : P (X 
∈ K) ≤ λ} .
Note that V@RM,W

λ (X) ⊇ V@RM,S
λ (X) for all X ∈ L1

d; i.e., using the strong variant

means being more risk averse. Moreover, V@RM,S
0 (X) = WCM,S (X) and V@RM,W

0 (X) =
WCM,W (X).

An even more general definition unifying the above two constructions and producing more
examples can be found in [13] along with continuity properties of set-valued risk measures.

Remark 3.2. In [5], two extensions of the scalar value at risk are defined. The “multivariate
lower-orthant Value-at-Risk” V aRα is given by

V aRα (X) = bd
{
u ∈ R

d : P (X ≤ u) ≥ α
}
,

where bdD is the topological boundary of D ⊆ R
d with respect to the usual separated, locally

convex topology. The transformation λ = 1− α yields

V aRα (X) = bdV@RR
d,S

λ (−X) ,

where K = KM = R
d
+. The “multivariate upper-orthant Value-at-Risk” V aRα of [5] is

V aRα (X) = bd
{
u ∈ R

d : P (X > u) ≤ 1− α
}
.

Interpreting X > u as X − u ∈ intRd
+ and setting λ = 1− α, we obtain

V aRα (X) = bdV@RR
d,W

λ (−X) .

In [20], the (set-valued) upper-orthant value at risk for bivariate componentwise nonnegative
random variables is defined, which corresponds, when extended to arbitrary ones, to V aRα of

[5], and hence to V@RR
d,W

λ for d = 2.

4. Set-valued upper expectations. This section is devoted to the introduction of certain
set-valued functions which will replace the expectations in dual representation theorems for
convex risk measures. They will involve two types of dual variable, one being vector probability
measures absolutely continuous with respect to the physical measure P , the other one reflecting
the order relations in R

d and M generated by K and KM , respectively.
We shall fix some notation. By K+ and K+

M we denote the positive dual cones of the
cones K in R

d and KM in M , respectively. Thus,

K+
M =

{
v ∈M : ∀u ∈ KM : vTu ≥ 0

} ⊆M.
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Note that K+
M =

(
K+ +M⊥)∩M withM⊥ =

{
v ∈ R

d : ∀u ∈M : vTu = 0
}
since K++M⊥ is

the dual cone of KM in R
d. The reader should be aware that both K+

M and K++M⊥ are dual
cones of KM , the first in M , the second in R

d. We will also use G (v) =
{
x ∈ R

d : 0 ≤ vTx}
as a subset of Rd not necessarily of M .

The positive dual cone of Lp
d (K) is Lq

d (K
+) with 1

p + 1
q = 1 (q = ∞ for p = 1, q = 1

for p = ∞). Let us denote byMP
1,d =MP

1,d (Ω,F) the set of all vector probability measures
with components absolutely continuous with respect to P ; i.e., Qi : F → [0, 1] is a probability
measure on (Ω,F) such that dQi

dP ∈ L1 for i = 1, . . . , d.
Take Y ∈ Lq

d and v ∈M . Define a function FM
(Y,v) : L

p
d → 2M by

(4.1) FM
(Y,v) [X] =

{
u ∈M : E

[
XTY

] ≤ vTu} .
Remark 4.1. Let Y = Y1I = (1I, . . . , 1I)T with v = e = (1, . . . , 1)T . If M = R

d, then

FM
(Y1I,e)

[X] = E [X] +
{
u ∈ R

d : eTu ≥ 0
}
.

In particular, if d = 1, Y = 1I, then FM
(1I,1) [X] = E [X] +R+. This shows that the F

M
(Y,v)’s in a

certain sense extend the concept of the mathematical expectation to a set-valued function.
Elementary properties of the functions X �→ FM

(Y,v) [X] are collected in the following propo-
sition.

Proposition 4.1. The following hold:
(i) FM

(Y,0) [X] = ∅ if E [
XTY

]
> 0; FM

(Y,0) [X] =M if E
[
XTY

] ≤ 0.

(ii) FM
(Y,v) : L

p
d → GM is proper iff v ∈ K+

M\ {0}.
(iii) If û ∈M is such that vT û = 1, then

FM
(Y,v) [X] = E

[
XTY

]
û+ FM

(Y,v) [0] = E
[
XTY

]
û+G (v) ∩M.

(iv) Let Y ∈ Lq
d, v ∈ M\ {0}. For X1,X2 ∈ Lp

d, s > 0 we have FM
(Y,v)

[
X1 +X2

]
=

FM
(Y,v)

[
X1

]
+ FM

(Y,v)

[
X2

]
and FM

(Y,v) [sX] = sFM
(Y,v) [X]; moreover, FM

(Y,v) [0] = G (v) ∩M .

Proof. (i) This part holds by definition of FM
(Y,0). (ii) “if-part”: We have to show cl co

(FM
(Y,v) [X]+KM ) = FM

(Y,v) [X] for X ∈ Lp
d. Since F

M
(Y,v) [X] is a closed convex half space (hence

FM
(Y,v) is proper) and one inclusion is trivial, it suffices to show FM

(Y,v) [X] +KM ⊆ FM
(Y,v) [X].

But this is immediate from (4.1). “only-if-part”: Assume that FM
(Y,v) maps into GM , is proper,

and v 
∈ K+
M\ {0}. If v = 0, then FM

(Y,v) is not proper, and hence this case is not possible. If

v 
= 0, there is u0 ∈ KM such that vTu0 < 0. Taking u ∈ FM
(Y,v) [X], we have u+tu0 ∈ FM

(Y,v) [X]

for all t > 0, by assumption. But this means E
[
XTY

] ≤ vT
(
u+ tu0

)
for all t > 0, which is

not possible. (iii) Follows immediately from FM
(Y,v) [X] =

{
u ∈M : 0 ≤ vT (u− E [

XTY
]
û
)}

.

(iv) For additivity, observe that if v 
= 0, X1 ∈ Lp
d, and Y ∈ Lq

d, then there is u1 ∈ M such
that E

[
Y TX1

]
+ vT

(
u1
)
= 0.

Proposition 4.2. Let Y ∈ Lq
d (K

+) and v ∈ (E [Y ] +M⊥) ∩K+
M\ {0}. Then, the function

R : Lp
d → 2M defined by R (X) = FM

(Y,v) [−X] is a coherent measure of risk with acceptance set

AR =
{
X ∈ Lp

d : 0 ≤ E
[
XTY

]}
.
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Proof. First, note that Y ∈ Lq
d (K

+) implies E [Y ] ∈ K+. Proposition 4.1(ii) shows that
R indeed maps into GM . Moreover, KM ⊆ FM

(Y,v) [0] =
{
u ∈M : 0 ≤ vTu}, and −intKM ∩

FM
(Y,v) [0] = ∅. Indeed, otherwise there is u ∈ intKM such that 0 ≤ −vTu; hence vTu = 0

since v ∈ K+
M . Since u ∈ intKM there is a circled neighborhood N of 0 ∈ M such that

u + N ⊆ KM . Since v 
= 0 there is w ∈ N such that vTw > 0. This implies vT (u+ w) > 0
and vT (u− w) < 0. The last inequality is a contradiction since u − w ∈ KM . Thus, (R0) is
satisfied.

To check (R1) take u ∈M . Then

FM
(Y,v) [−X − u1I] =

{
z ∈M : E

[
(X + u1I)T Y

]
+ vT z ≥ 0

}
=
{
z ∈M : E

[
XTY

]
+ E [Y ]T u+ vT z ≥ 0

}
=
{
z + u ∈M : E

[
XTY

]
+ (E [Y ]− v)T u+ vT (z + u) ≥ 0

}
− u

= FM
(Y,v) [−X]− u.

The last equation in this chain follows since, by assumption, E [Y ]− v ∈M⊥.
To check (R2) take X1,X2 ∈ Lp

d such that X2−X1 ∈ Lp
d (K) and u ∈ FM

(Y,v)

[−X1
]
. Then

E
[(−X2

)T
Y
]
+ E

[(
X2 −X1

)T
Y
]
≤ vTu,

and since Y ∈ Lq
d (K

+) we have E [(X2 −X1)TY ] ≥ 0. This proves u ∈ FM
(Y,v)

[−X2
]
.

The sublinearity follows from Proposition 4.1(iv).

Remark 4.2. Let Y, v be as in Proposition 4.2 such that E [Y ] = e = (1, . . . , 1)T ; i.e., Y is
the density vector of some vector probability measure Q. The risk measure X �→ FM

(Y,v) [−X]
can be seen as a set-valued generalization of the financial version of the correlation risk measure
defined in Remark 2.2 of [23], for example. The corresponding maximal correlation risk
measure is

R̂ (X) =
⋂

X̃∼X

FM
(Y,v)

[
−X̃

]
,

where the intersection runs through all X̃ with the same joint distribution as X. This risk
measure is of course law invariant in the sense that it gives the same value for all X with the
same joint distribution.

Via a change of variables we shall give another description of the functions FM
(Y,v). The

new form will make the interpretation more apparent. Given an element w ∈ R
d, we shall

denote by diag (w) the diagonal matrix in R
d×d with the components of w in its main diagonal

and zeros elsewhere.

Lemma 4.1. (i) Let Y ∈ Lq
d (K

+), v ∈ (E [Y ]+M⊥)∩K+
M\ {0}. Then there are Q ∈ MP

1,d,

w ∈ K+\M⊥ such that diag (w) dQ
dP ∈ Lq

d (K
+) and FM

(Y,v) = F̃M
(Q,w) with

F̃M
(Q,w) [X] =

{
u ∈M : wTEQ [X] ≤ wTu

}
=
(
EQ [X] +G (w)

) ∩M.
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(ii) Conversely, if Q ∈ MP
1,d, w ∈ K+\M⊥ such that diag (w) dQ

dP ∈ Lq
d (K

+), then there are

Y ∈ Lq
d (K

+), v ∈ (E [Y ] +M⊥) ∩K+
M\ {0} such that F̃M

(Q,w) = FM
(Y,v).

Proof. (i) Set w = E [Y ] ∈ K+. Since v ∈ (E [Y ] + M⊥) ∩ K+
M\ {0} we have w 
∈

M⊥. Choose Zi = 1
wi
Yi if wi > 0 and arbitrary in

(
Lq
d

)
+

such that E [Zi] = 1 if wi = 0,

i ∈ {1, . . . , d}. Define Q via dQ
dP = Z. Then Y = diag (w) dQ

dP ∈ Lq
d (K

+) and E
[
XTY

]
=

E[XT diag (w) dQ
dP ] = wTEQ [X]. Since by assumption v ∈ w+M⊥, and hence vTu = wTu for

all u ∈M , we obtain

(4.2) FM
(Y,v) [X] =

{
u ∈M : E

[
XTY

] ≤ vTu} =
{
u ∈M : wTEQ [X] ≤ wTu

}
= F̃M

(Q,w) [X] .

(ii) Define Y = diag (w) dQ
dP ∈ Lq

d (K
+). Then E [Y ] = w and wTEQ [X] =

E[XT diag (w) dQ
dP ] = E[XTY ]. We claim that w ∈ K+

M + M⊥. Indeed, on the one hand,
from K+

M = (K+ +M⊥) ∩M we get K+
M +M⊥ = (K+ +M⊥) ∩M +M⊥. On the other

hand, w = wM + wM⊥ with wM ∈M , wM⊥ ∈M⊥, and hence wM = w − wM⊥ ∈ K+ +M⊥,
which in turn implies w ∈ (K+ +M⊥) ∩M +M⊥, and the claim is proven. Hence, there is
v ∈ K+

M such that w ∈ v +M⊥. Since w 
∈ M⊥ we have v 
= 0. Finally, (4.2) also holds in
this case, which completes the proof of the lemma.

Interpretation. Of course, the above lemma is trivial in the case m = d = 1. In higher
dimensions, it provides a link between the risk attitude of the investor in the individual
markets, on the one hand, and the preference of the investor among the reference instruments,
on the other hand. This is done by the coupling conditions diag (w) dQ

dP ∈ Lq
d (K

+) (in terms
of probability measures) and v ∈ (E [Y ] +M⊥) ∩K+

M\ {0} (in terms of density functions).

The investor can model his risk attitude in market i by considering certain probability
measures Qi as alternatives to the physical measure P . He can also have a preference between
the reference instruments (i.e., the markets) themselves: For example, if he prefers to work
in market i rather than market j, then wi > wj . Moreover, this preference is quantified by
the proportion wi

wj
. For this reason, the vectors w could be considered as internal weights or

exchange rates of the investor.

Finally, the coupling condition tells him that he cannot choose his risk attitude in the
individual markets, on the one hand, and his internal exchange rates between the markets,
on the other hand, independently: They restrict each other. This should also explain why
it makes sense to work with pairs (Q,w) (or (Y, v)) of dual variables. Mathematically, the
additional variables w and v reflect the order (generated by K and KM ) in the image spaces,
and this order should enter a (duality) theory somehow.

Remark 4.3. The variable w reflects the investor’s weighting of all d reference instruments
(markets), while the v’s reflect only her weighting of the references instruments accepted for
risk compensation. However, since v − w ∈ M⊥ by construction (v is the projection of w on
M), for v,w corresponding to each other according to Lemma 4.1 above they yield the same
weighted sum vTu = wTu for all u ∈M , the candidates for risk compensation. Starting with
a pair (Y, v) as in Lemma 4.1(i), the investor’s weighting of all d markets is already contained
in Y , as E [Y ] is going to be w, and v is determined by this w = E [Y ] as its projection onto
M . Note also that w ∈ K+ and v ∈ K+

M means that for “good” reference instruments x ∈ K
and u ∈ KM the weighted sums wTx and vTu are nonnegative.
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Remark 4.4. Let Q : F → [0, 1]d be a vector probability measure and w ∈ K+\M⊥.
Proposition 4.2 and Lemma 4.1 taken together show that the function X �→ F̃M

(Q,w) [−X] =

(EQ [−X] + G (w)) ∩ M is a coherent risk measure into GM , provided that diag (w) dQ
dP ∈

Lq
d (K

+).

Remark 4.5. If w ∈ M⊥ would be admissible, then, since u ∈ F̃M
(Q,w) [−X] = (EQ [−X] +

G (w))∩M iff wT (u+EQ [X]) ≥ 0 and u ∈M , we would have F̃M
(Q,w) [−X] =M if wTEQ [X] ≥

0 and F̃M
(Q,w) [−X] = ∅ otherwise. Thus, the result would be an improper risk measure, either

being ≡ ∅ or having M (which corresponds to −∞) among its values.

Remark 4.6. Since

u ∈ FM
(Y,v) [X] ⇔ u ∈ (EQ [X] +G (w)

) ∩M
with (Y, v), (Q,w) related as in Lemma 4.1, we can see FM

(Y,v) [X] as the half space inM which

is “not below” EQ [X], where “below” is meant in direction −w, the normal of the hyperplane{
u ∈ R

d : 0 = wTu
}
. A total analogue for the real-valued expectation would be the boundary

of FM
(Y,v) [X]. However, the functions X �→ bdFM

(Y,v) [X] =
{
u ∈M : E

[
XTY

]
= vTu

}
do

not map into GM . In order to have the same image space for set-valued risk measures and
expectations it is more appropriate to use the above constructions.

Remark 4.7. A version of Lemma 4.1 can be used to transform the end point of a con-
sistent price process (see [24, Definition 1.5]) used as a dual variable for no-arbitrage results
for markets with proportional transaction costs into a pair (Q,w) ∈ MP

1,d × K+
0 \ {0} with

diag (w) dQ
dP ∈ Lq

d

(
K+

T

)
. In Schachermayer’s model, M = R

d and KT is the random closed
convex cone generated by a random bid-ask matrix at terminal time T , whereas K0 is the
(deterministic) closed convex cone modeling the bid-ask spread at initial time t = 0. The cone
K0 corresponds to K in this paper.

In order to interpret the set of initial endowments which superreplicate an R
d-valued

contingent claim as a set-valued coherent risk measure, the theory of the present paper needs
to be extended to the case where random variables in Lp

d are compared by means of the cone{
X ∈ Lp

d : X ∈ KT P -a.s.
}
generated by a measurable multifunction ω �→ KT (ω) with values

in the set of closed convex cones in R
d including R

d
+ and not being all of Rd.

5. Scalar representation. Take v ∈ K+
M , and define a function ϕv : L

p
d → R ∪ {±∞} by

(5.1) ϕv (X) = inf
u∈R(X)

vTu.

We set, as usual, ϕv (X) = +∞ if R (X) = ∅. As a function of v this is nothing other than the
negative support function of R (X) at −v ∈ R

d (in the sense of convex analysis; see, e.g., [26,
p. 28]). Since we shall consider ϕv as a function of X, not of v, we use the above notation.

Since for v ∈ K+
M

ϕv (X) = inf
u∈R(X)

vTu = inf
u∈cl co (R(X)+KM )

vTu,

we may assume in this section that R maps into GM .
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Together with ϕv we shall consider its closure (or lower semicontinuous envelope [26] or
Γ-regularization [6], but different from the closure in [22]), which is defined by

(clϕv)
(
X0

)
= lim inf

X→X0
ϕv (X) = sup

U∈U
inf
X∈U

ϕv

(
X0 +X

)
for X0 ∈ Lp

d, where U is a neighborhood base of 0 ∈ Lp
d for the appropriate topology consisting

of convex balanced sets (norm topology for p ∈ [1,∞), σ(L∞
d , L

1
d)-topology for p =∞). This is

mainly motivated by the fact that closedness of R does not imply closedness of ϕv in general.
A simple counterexample in two dimensions is R : R → GR2 with K = KM = R

2
+ defined by

R (X) = {( 1
X , 0)

T } + R
2
+ for X > 0 and R (X) = ∅ for X ≤ 0. This function is closed and

convex, but ϕv for v = (0, 1)T is convex but not closed.

Apart from closedness, important properties of R can be expressed as properties of the
family {ϕv : v ∈ K+

M\ {0}}. We shall give a selection in the following lemma.

Lemma 5.1. Let R : Lp
d → GM be a function. Then

(i) if R is convex (positively homogeneous), then ϕv is convex (positively homogeneous)
for each v ∈ K+

M ;

(ii) if R satisfies (R2), then ϕv is monotone with respect to Lp
d (K) for each v ∈ K+

M ;

(iii) domR = domϕv for each v ∈ K+
M ;

(iv) if R is convex and closed, then

(5.2) ∀X ∈ Lp
d : R (X) =

⋂
v∈K+

M\{0}

{
u ∈M : (clϕv) (X) ≤ vTu} .

Proof. (i), (ii), and (iii) are well known or easy to see.

(iv) “⊆”: Pick v ∈ K+
M\ {0} and u0 ∈ R

(
X0

)
. Since clϕv ≤ ϕv we get

(clϕv)
(
X0

) ≤ ϕv

(
X0

)
= inf

u∈R(X0)
vTu ≤ vTu0,

as desired.

“⊇”: Assume u0 ∈M\R (
X0

)
. Then there is U0 ∈ U such that

u0 
∈ cl
⋃

X∈U0

R
(
X0 +X

)
.

Since R is convex, the right-hand side is a closed convex set. A separation argument yields
v ∈ K+

M\ {0} such that

vTu0 < inf

⎧⎨⎩vTu : u ∈ cl
⋃

X∈U0

R
(
X0 +X

)⎫⎬⎭ = inf
X∈U0

ϕv

(
X0 +X

)
.

Since (clϕv) (X
0) = supU∈U infX∈U ϕv(X

0 +X) we get u0 
∈ {u ∈ M : (clϕv)
(
X0

) ≤ vTu},
and the proof is now complete.
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Interpretation. Since the elements v ∈ K+
M\ {0} can be seen as internal weights of the

investor/regulator for the reference instruments accepted for risk compensation, the value
ϕv (X) is the minimal internal price of the investor/regulator for risk compensation/security
deposit for position X. If the risk measure R is fixed (which already has to be done by a
choice of the investor/regulator), then the investor/regulator has another degree of freedom:
Among the elements of K+

M\ {0} she has to choose her internal weight/price system. The
investor’s minimal risk compensation or the regulator’s minimal deposit requirement should
be an element u ∈ R (X) such that vTu = ϕv (X). Note that this corresponds to a weakly
minimal (efficient) point of the set R (X) with respect to the order generated by KM obtained
by solving the scalarized problem min{vTu : u ∈ R (X)}.

The acceptance set of a risk measure can also be characterized using scalarizations. The
result reads as follows.

Proposition 5.1. Let R : Lp
d → GM be a closed convex risk measure with acceptance set AR.

Then (i) ϕv : L
p
d → R ∪ {±∞} is a convex function satisfying

(5.3) ∀u ∈M,∀X ∈ Lp
d : ϕv (X + u1I) = ϕv (X)− vTu,

and (ii) we have

AR =
⋂

v∈K+
M\{0}

A(R,v),

where A(R,v) =
{
X ∈ Lp

d : (clϕv) (X) ≤ 0
}
.

Proof. (i) In view of Lemma 5.1 we have to verify only (5.3), which is easily done. Part
(ii) follows from (5.2).

Example 5.1 (one-dimensional risk measures for random vectors). In [3], a convex risk mea-
sure is defined to be a convex L∞

d (K)-decreasing function � : L∞
d → R satisfying

�
(
X + sei

)
= � (X)− s

for all i = 1, . . . , d and for all s ∈ R, X ∈ L∞
d . This requirement does not seem to fit into the

framework of Definition 2.1 for M = Rd, and for M = R
1 × {0}d−1 the above translativity

condition is certainly stronger than (R1) in this case. The underlying assumption in [3] is
that there is one (and only one) “currency” that can be used to compensate for the risk of a
multivariate position X.

But another interpretation is possible: Such a risk measures � can be seen as scalarization
of a set-valued convex risk measure R : L∞

d → GM with M = R
d, KM = K, and v =

(1, . . . , 1)T : If v is an admissible scalarization (which is not always the case—for example, if
d = 2, K =

{
x ∈ R

2 : x2 ≥ −0.9x1, x2 ≥ 0
}
; see condition v ∈ (E [Y ] +M⊥) ∩ K+

M\ {0} =
{E [Y ]} ∩K+ in Lemma 4.1), then ϕv is a convex risk measure in the sense of Definition 3.1
in [3].

Example 5.2 (scalarization of the upper expectation measure). We look for scalarizations of
the coherent risk measure given in Proposition 4.2. Let Y 0 ∈ Lq

d (K
+) and v0 ∈ (E[Y 0]+M⊥)

∩K+
M\ {0}. Taking another v ∈ K+

M\ {0}, we get

ϕv (X) = inf
u∈FM

(Y 0,v0)
[−X]

vTu = inf
{
vTu : u ∈M, E

[−XTY 0
] ≤ (

v0
)T
u
}
.
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If there is u ∈ M such that (v0)Tu > 0 and vTu < 0, then, taking tu for t > 0 and letting
t→∞, we obtain ϕv (X) = −∞. Hence

ϕv (X) =

{
E
[−XTY 0

]
: G (v) ∩M = G

(
v0
) ∩M,

−∞ : otherwise.

This means that ϕv is a linear function if v and v0 generate the same half space in M . Any
other case does not make sense; there is basically one proper scalarization.

Example 5.3 (scalarization of the negative componentwise expectation).We consider (see Ex-
ample 3.2) the coherent risk measure on L1

d,

NCE (X) = {u ∈M : E [X + u1I] ∈ K} = (E [−X] +K) ∩M.

Taking v ∈ K+
M\ {0} ⊆ K+ ∩M ⊆ K+, we immediately get

ϕv (X) = inf
u∈NCE(X)

vTu = vTE [−X] .

Example 5.4 (scalarization of the worst case risk measure). The strong version of the worst
case risk measure

WCM,S (X) =
{
u ∈M : X + u1I ∈ Lp

d (K)
}
,

as defined in Example 3.1, is coherent with scalarization

ϕv (X) = inf
{
vTu : u ∈M, X + u1I ∈ Lp

d (K)
}
.

If v ∈ K+
M ⊆ K+ and since K =

⋂
v∈K+

{
x ∈ R

d : vTx ≥ 0
}
, we have

∀u ∈WCM,S (X) : vTu ≥ vT (−X) P -a.s.,

which gives

ϕv (X) =

{ −ess.inf vTX : R (X) 
= ∅,
+∞ : otherwise.

6. Dual representation.

6.1. Main result. In this section, we shall state and prove dual representation formulas
for convex risk measures in terms of set-valued expectations. The following theorem is the
main result of the paper. Recall that GM = {D ⊆M : D = cl co (D +KM )} is the collection
of upper closed convex subsets of M , and MP

1,d is the set of all vector probability measures

with components absolutely continuous with respect to P and G (w) =
{
x ∈ R

d : wTx ≥ 0
}
.

Theorem 6.1. A function R : Lp
d → GM is a proper, convex, and closed (σ(L∞

d , L
1
d)-closed

if p =∞) risk measure iff there is a function −αR :MP
1,d ×K+\M⊥ → GM satisfying

(i) −αR (Q,w) = (−αR (Q,w)⊕G (w)) ∩M for (Q,w) ∈ MP
1,d ×K+\M⊥,

(ii) KM ⊆ αR(Q,w) for all (Q,w) ∈ W,
(iii)

(⋂
(Q,w)∈W −αR(Q,w)

) ∩ −intKM = ∅,
where

W =

{
(Q,w) ∈ MP

1,d ×K+\M⊥ : diag (w)
dQ

dP
∈ Lq

d

(
K+

)}
,
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such that

(6.1) ∀X ∈ Lp
d : R (X) =

⋂
(Q,w)∈W

[−αR (Q,w) +
(
EQ [−X] +G (w)

) ∩M]
.

In particular, (6.1) is satisfied with −αR replaced by −αmin with

(6.2) −αmin (Q,w) = cl
⋃

X′∈AR

(
EQ

[
X ′]+G (w)

) ∩M.

Moreover, if −αR :MP
1,d ×K+\M⊥ → GM satisfies (6.1), then −αR (Q,w) ⊆ −αmin (Q,w)

for all (Q,w) ∈ W.
The function R is a proper, closed (σ(L∞

d , L
1
d)-closed if p =∞), coherent measure of risk

iff there is a nonempty set WR ⊆ W such that

(6.3) ∀X ∈ Lp
d : R (X) =

⋂
(Q,w)∈WR

(
EQ [−X] +G (w)

) ∩M.

In particular, (6.3) is satisfied with WR replaced by Wmax with

(6.4) Wmax =

{
(Q,w) ∈ MP

1,d ×K+\M⊥ : diag (w)
dQ

dP
∈ A+

R

}
.

Moreover, if WR satisfies (6.3), then WR ⊆ Wmax.
The proof is postponed to the end of this section. Note that dual representation the-

orems for coherent set-valued risk measures can be found in [16], [4], [18]. The results in
these references are not formulated in terms of set-valued upper expectations but in terms
of scalarizations. Dual representation theorems for convex, but not necessarily coherent, risk
measures are not available in the literature so far. It should be mentioned that duality theories
for set-valued convex functions in terms of Fenchel conjugates are a very recent achievement.
The interested reader may consult [11] for related results and references.

Remark 6.1. Jouini, Meddeb, and Touzi [16] proved a dual representation result for (strongly)
closed coherent risk measures on L∞

d . There is no principal difficulty in formulating a cor-
responding result parallel to the above theorem with (Q,w) ∈ bad × R

d; compare also [12].
At the end of this section one may find a condition characterizing the σ

(
L∞
d , L

1
d

)
-closedness,

namely the so-called Fatou property for risk measures on L∞
d .

Interpretation. In complete analogy to the scalar case, formula (6.1) can be understood
as a robust representation of the risk measure R. On the one hand, it involves a set of
vector probability measures Q that are absolutely continuous with respect to the reference
measure P , and which represent alternative scenarios compared to P . These scenarios—and
this is a new feature in the set-valued case—can be different in different markets. On the
other hand, (6.1) involves the vectors w ∈ K+\M⊥, which represent the investor’s possible
weighting of the d markets. The “penalty function” −αR (see [9, p. 161]) comprises the
information on how serious the investor (with risk measure R) takes the pairs (Q,w): The set
−αR (Q,w) influences the intersection in (6.1) more, the “fewer” elements it contains. Since
−αR (Q,w) = −αR (Q,w)⊕G (w)∩M (−αR (Q,w) is a half space inM), it contains a smaller
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portion of M if it is “away from the origin” in M , in the direction of some element u ∈ KM

with wTu = 1, for example. Finally, (6.1) can be seen as a worst case representation of R:
An element u ∈ R (X) must be in −αR (Q,w) + (EQ [−X] + G (w)) ∩M for all alternative
scenarios Q and all corresponding weights w. The intersection is a supremum with respect to
the order relation ⊇ in GM ; see Definition 2.1.

Remark 6.2. A risk measure is a subjective choice of the investor/regulator. If she wants
to construct it in terms of scenarios alternative to P , (6.1) offers the following possibility:
For each market, choose a collection of alternative probability measures Qi, i = 1, . . . , d,
absolutely continuous with respect to P . To each vector probability measure Q having the
chosen components assign a point uQ ∈ R

d. Take an internal weight system w ∈ K+\M⊥

such that the coupling condition diag (w) dQ
dP ∈ Lq

d (K
+) is satisfied, and let −αR (Q,w) be the

half space of M which is obtained by intersecting the closed half space in R
d with normal −w

and uQ as boundary point with M . Formula (6.1) will produce a closed convex risk measure.
If the vector measure Q seems to be a very likely alternative, uQ should be chosen in intK;

if it seems very unlikely, in −intK. If it seems to be totally irrelevant, −αR (Q,w) = M is
the appropriate choice. In the coherent case, only the two choices uQ = 0 ∈ M (hence
−αR (Q,w) = G (w) ∩M) and −αR (Q,w) =M are possible.

Remark 6.3. The dual representation formulas (6.3), (6.4) for closed coherent risk measures
can be transferred into the version of Jouini, Meddeb, and Touzi [16] as follows. If (Q,w) ∈
Wmax, then diag (w) dQ

dP is the density function of a vector measure Q̃ ∈ cad that is absolutely
continuous with respect to P , and the set of all such measures form a convex cone Q ⊆ cad
since (Q,w) ∈ Wmax iff (Q, tw) ∈ Wmax for all t > 0. We know, for u ∈M ,

u ∈ EQ [−X] +G (w) ⇔ wTEQ [X + u1I] ≥ 0;

hence, by (6.3) with WR replaced by Wmax, u ∈ R (X) iff

0 ≤ inf
(Q,w)∈Wmax

wTEQ [X + u1I] = inf
Q̃∈Q

d∑
i=1

EQ̃i [Xi + ui1I] ,

where EQ̃i [Z] =
∫
Ω Z dQ̃i for Z ∈ L1, which gives an analogue of the dual representation

formula of [16, Theorem 4.1] for σ
(
L∞
d , L

1
d

)
-closed coherent risk measures on L∞

d , and even for

a general M . Note that the dual variables Q̃ are not necessarily vector probability measures,
which makes the analogy to the scalar case less striking.

Remark 6.4. It is well known that the minimal penalty function α occurring in the dual
representation formula of a convex risk measure is its Legendre–Fenchel conjugate; compare
[9, Remark 4.17, p. 164], for example. One might expect that the same is true in the set-valued
case. Indeed, it will turn out that the right-hand side of (6.2) corresponds to the set-valued
Legendre–Fenchel conjugate of R, as introduced in [11].

Before we turn to the proof we shall give some examples.
Example 6.1. The first example is the worst case risk measure. Since AWCM,S = Lp

d (K),
Theorem 6.1 yields

WCM,S (X) =
⋂

(Q,w)∈W

(
EQ [−X] +G(w)

) ∩M ;
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i.e., the set of dual variables entering the intersection is the largest possible one, which corre-
sponds to the fact that WCM,S is the most risk averse risk measure.

Example 6.2. We investigate negative componentwise expectation (see Example 3.2). The
polar cone of its acceptance set can be written as (see below)

(6.5) A+
NCE =

{
Z ∈ L∞

d

(
K+

)
: ∃y ∈ R

d : Z = y1I
}
.

Therefore, the dual representation of NCE is

NCE (X) =
⋂

(Q,w)∈WNCE

[(
EQ [−X] +G (w)

) ∩M]
with

WNCE =

{
(Q,w) ∈ W : diag (w)

dQ

dP
∈ A+

NCE

}
= {P}d ×

(
K+ \M⊥

)
.

We sketch the proof for (6.5). Define a continuous linear operator T : Rd → L∞
d (L∞

d is
considered with the σ(L∞

d , L
1
d)-topology) by Ty = y1I, y ∈ R

d. The adjoint operator T ∗ maps
L1
d into R

d by T ∗X = E [X], and we have ANCE = T ∗−1 (K) =
{
X ∈ L1

d : T
∗X ∈ K}

={
X ∈ L1

d : ∀y ∈ K+ : yT (T ∗X) ≥ 0
}
. The latter set coincides with

T
(
K+

)+
=
{
X ∈ L1

d : ∀Y ∈ T
(
K+

)
: E

[
XTY

] ≥ 0
}

=
{
X ∈ L1

d : ∀y ∈ K+ : yT (T ∗X) ≥ 0
}
;

hence ANCE = T ∗−1 (K) = T (K+)
+
and

A+
NCE = T

(
K+

)++
= clT

(
K+

)
= cl

{
Y ∈ L∞

d : ∃y ∈ K+ : Y = y1I
}
.

The closure may be dropped since T (K+) is already closed with respect to the σ
(
L∞
d , L

1
d

)
-

topology. This can be proven using Lemma A.64 of [9].

Example 6.3. We give an extension of average value at risk to the set-valued case. Let
1 ≤ p ≤ ∞ and λ ∈ (0, 1]d. We use the dual way of definition which gives via Theorem 4.47
of [9] the scalar special case. Define

(6.6) Wλ =

{
(Q,w) ∈ W : ∀i = 1, . . . , d :

dQi

dP
≤ λi

}
.

Since Wλ ⊆ W,

AV@Rλ (X) =
⋂

(Q,w)∈Wλ

(
EQ [−X] +G (w)

) ∩M
defines a coherent measure of risk on Lp

d according to Theorem 6.1. A moment’s thought will
end with WNCE ⊆ Wλ, and hence

∀λ ∈ (0, 1]d, ∀X ∈ Lp
d : NCE (X) ⊇ AV@Rλ (X) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

86 ANDREAS H. HAMEL AND FRANK HEYDE

Since NCE satisfies (R0S) we obtain

KM ⊆ AV@Rλ (0) ⊆ NCE (0) = KM ,

and hence AV@Rλ satisfies (R0S), too. The acceptance set of AV@Rλ is

Aλ =
{
X ∈ Lp

d : ∀(Q,w) ∈ Wλ : EQ [X] ∈ G(w)} .
Moreover, since Wλ ⊇ Wμ, for all X ∈ Lp

d it holds that AV@Rλ (X) ⊆ AV@Rμ (X) whenever
μ− λ ∈ R

d
+. Finally, the limit λ→ 0 goes along the lines of the scalar case, as follows.

Claim. The following holds:

∀X ∈ Lp
d :

⋂
λ∈(0,1]d

AV@Rλ (X) =WCM,S (X) .

Proof of the claim. Obviously,
⋂

λ∈(0,1]d AV@Rλ (X) ⊇ NEIM,S (X). We shall show

the converse. Take u ∈ ⋂
λ∈(0,1]d AV@Rλ (X); i.e., u ∈ [(EQ [−X] + G (w)) ∩ M ] for all

(Q,w) ∈ Wλ, λ ∈ (0, 1]d. We have to show u ∈ [(EQ [−X] +G (w))] for all (Q,w) ∈ W. Fix
an arbitrary (Q,w) ∈ W. Since each component Zi of

dQ
dP is a nonnegative random variable,

there exist, for each i ∈ {1, . . . , d}, a sequence of nonnegative simple functions
{
Sk
i

}
k∈N with

Sk
i → Zi P-almost surely, E

[
Sk
i

]
> 0, diag(w)Sk ∈ Lq

d(K
+), and Sk

i ≤ Sk+1
i ≤ Zi. We have

|XiS
k
i | = |Xi|Sk

i ≤ |Xi|Zi ∈ L1 since X ∈ Lp
d, Z ∈ Lq

d. From the dominated convergence

theorem we get E[XiS
k
i ] → E [XiZi]. Of course E[Sk

i ] → E [Zi]. Defining S̄k
i :=

Sk
i

E[Sk
i ]

and w̄k
i := wiE[Sk

i ], the S̄k
i are densities of measures Q̄i

k ∈ MP
1 , and we get (Q̄k, w̄k) ∈⋃

λ∈(0,1]dWλ. Now, we have u ∈ [(EQ̄k
[−X] + G(w̄k))], i.e., w̄kT (u + EQ̄k) [X]) ≤ 0 for all

k ∈ N. Taking the limit k →∞, we get wT (u+EQ [X]) ≤ 0, i.e., u ∈ [(EQ [−X] +G (w))].

Remark 6.5. The average value at risk defined above is related to other coherent risk
measures defined in the literature. In [16], Jouini, Meddeb, and Touzi introduced a set-valued
version of the worst conditional expectation. Their definition, translated into our framework,
is

WCEJ
α = {u ∈M : E [X + u1I|B] ∈ J ∀B ∈ F with P (B) > α} ,

where J ⊇ K is a closed convex cone. The corresponding dual description is

WCEJ
α (X) =

⋂
(Q,w)∈WWCEα

(
EQ [−X] +G (w)

) ∩M
with

WWCEα =

{
(Q,w) ∈ W : ∃B ∈ F with P (B) > α : ∀i = 1, . . . , d :

dQi

dP
=

1IB
P (B)

}
.

The lower vector valued tail conditional expectation, defined in Bentahar [2], is

TCEα (X) = {u ∈M : E [X + u1I|X ∈ A] ∈ J ∀A ∈ Q with P (X ∈ A) ≥ α} ,
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where Q =
{
A ∈ B (Rd

)
: A−K = A

}
with dual description

TCEα (X) =
⋂

(Q,w)∈WTCEα

(
EQ [−X] +G (w)

) ∩M
with

WTCEα =

{
(Q,w) ∈ W : ∃A ∈ Q with P (X ∈ A) ≥ α : ∀i = 1, . . . , d :

dQi

dP
=

1I{X∈A}
P (X ∈ A)

}
.

The relation between these risk measures is AV@Rλ (X) ⊆ WCEJ
α (X) for all J ⊇ K if

λ = (α, . . . , α) and WCEK
α (X) ⊆ TCEα (X).

Example 6.4 (entropic risk measure). The entropic risk measure is an important example
of a convex but noncoherent risk measure. We shall define a set-valued extension. Take
Q ∈ MP

1,d and define the vector entropy of Q with respect to P by

H (Q|P ) =

⎛⎜⎜⎜⎝
EQ1

[
log dQ1

dP

]
...

EQd

[
log dQd

dP

]
⎞⎟⎟⎟⎠ =

⎛⎜⎝ H (Q1|P )
...

H (Qd|P )

⎞⎟⎠ .

Take β ∈ intRd
+ and define HM

β (Q,w) = [− diag (β)H (Q|P ) +G (w)] ∩M as a function on

MP
1,d ×K+\M⊥ into GM . Finally, set

Rβ (X) =
⋂

(Q,w)∈W

[
HM

β (Q,w) +
(
EQ [−X] +G (w)

) ∩M]
.

We obtain from Theorem 6.1 that Rβ is a (dually defined) closed convex risk measure. If the
investor chooses this risk measure, she has an entropic kind but possibly different risk attitude
on each market, whereas the overall risk attitude depends on the coupling condition defining
elements of W.

6.2. Legendre–Fenchel conjugates of set-valued risk measures. Since dual represen-
tation results for convex risk measures are basically an application of the Fenchel–Moreau
theorem of convex analysis, we have to introduce Legendre–Fenchel conjugates for set-valued
functions. This can be done as follows. Let R : Lp

d → FM be a function. The Legendre–Fenchel
conjugate and the biconjugate of R are defined to be

−R∗ (Y, v) = cl
⋃

X∈Lp
d

(
R (X) + FM

(Y,v) [−X]
)
, Y ∈ Lq

d, v ∈ R
d,

R∗∗ (X) =
⋂

Y ∈Lq
d,v∈K+

M\{0}

(
−R∗ (Y, v) + FM

(Y,v) [X]
)
, X ∈ Lp

d.

Note that in these definitions the FM
(Y,v)’s act as substitutes for real-valued linear functionals.
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The minus sign in −R∗ does not (in this paper) belong to an algebraic operation, but
indicates that in the scalar case (d = 1, M = R, K = KM = R+) we get the negative of the
usual Fenchel conjugate in the sense of convex analysis by taking the infimum of the values
of the corresponding set-valued conjugate. Again, the reason for keeping the minus is that we
want to have the same image space for R and its set-valued conjugate. The following simple
result shows that the definitions above make sense.

Proposition 6.1. (i) −R∗ : Lq
d×K+

M → GM . Moreover, −R∗ (Y, v) is of the form u+FM
(Y,v) [0]

for some u ∈M or an element of {M, ∅}. (ii) R∗∗ : Lp
d → GM .

Proof. (i) We have to show cl (−R∗ (Y, v) +KM ) = −R∗ (Y, v), which is a consequence of
the definitions of −R∗ and FM

(Y,v). For the second part, observe that FM
(Y,v) [−X] is a shifted

closed half space in M with normal vector v (see, for example, Proposition 4.1(iii)), and that
for X ∈ Lp

d the set R (X) + FM
[Y,v] [−X] is a union of such half spaces and hence −R∗ (Y, v) is

by definition the closure of the union of such half spaces or empty.
(ii) We have to show R∗∗ (X) = cl co (R∗∗ (X) +KM ). This follows from the definitions

of R∗∗ and FM
(Y,v) [−X].

R, −R∗, and R∗∗ can be characterized via scalarization. As one might expect, there are
relationships to the conjugates of the scalarizations ϕv .

Lemma 6.1. Let R : Lp
d → FM . Then

(i) −R∗ (Y, v) =
{
u ∈M : − (ϕv)

∗ (Y ) ≤ vTu} for each Y ∈ Lq
d, v ∈ K+

M\ {0};
(ii) R∗∗ is closed and convex, and for all X ∈ Lp

d

R∗∗ (X) =
⋂

v∈K+
M\{0}

{
u ∈M : (ϕv)

∗∗ (X) ≤ vTu} .
Proof. (i) First, we compute

inf
u∈−R∗(Y,v)

vTu = inf
X∈Lp

d

inf
u∈R(X)+FM

(Y,v)
[−X]

vTu

= inf
X∈Lp

d

(
inf

u1∈R(X)
vTu1 + inf

u2∈FM
(Y,v)

[−X]
vTu2

)
= inf

X∈Lp
d

(
ϕv (X) + E

[−XTY
])

= − (ϕv)
∗ (Y ) .

The first equation is just the definition of −R∗ (Y, v), and the support function of a set equals
the support function of its closure; the second equation holds since the support function
of the sum of two sets equals the sum of the support functions; the third equation is the
definition of ϕv and F(Y,v) [−X]; the fourth is the definition of the Fenchel conjugate of the
extended real-valued function ϕv on Lp

d (see, for example, [26, p. 75]). Immediately, we get
that u ∈ −R∗ (Y, v) implies vTu ≥ − (ϕv)

∗ (Y ), i.e., “⊆” in (i).
To show “⊇” in (i), first observe that −R∗ (Y, v) = ∅ iff R (X) = ∅ for all X ∈ Lp

d.
In this case, ϕv ≡ +∞; hence − (ϕv)

∗ ≡ +∞, which means there is no u ∈ M such that
− (ϕv)

∗ (Y ) ≤ vTu, so the right-hand side in (i) is void, too. If −R∗ (Y, v) 
= ∅, we have
−R∗ (Y, v) = M or −R∗ (Y, v) = u + FM

(Y,v) [0] for some u ∈ M from Proposition 4.1(iii). In

the first case, − (ϕv)
∗ (Y ) = −∞ (see formula above); hence the right-hand side in (i) is also
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M . In the second case, if u0 ∈M\ − R∗ (Y, v), then vTu0 < infu∈−R∗(Y,v) v
Tu = − (ϕv)

∗ (Y ).
This proves “⊇” in (i) for this case.

(ii) By definition of R∗∗ and (i) we have

R∗∗ (X) =
⋂

v∈K+
M\{0}

⋂
Y ∈Lq

d

{
u ∈M : vTu ≥ E [

XTY
]− ϕ∗

v (Y )
}

=
⋂

v∈K+
M\{0}

{
u ∈M : vTu ≥ sup

Y ∈Lq
d

(
E
[
XTY

]− ϕ∗
v (Y )

)}

=
⋂

v∈K+
M\{0}

{
u ∈M : vTu ≥ ϕ∗∗

v (X)
}
.

This completes the proof of the lemma.

Using Lemma 6.1, one immediately obtains relationships between the Legendre–Fenchel
conjugates of R and those of ϕv . The conjugate of the scalarization turns out to be the support
function at −v of the values of −R∗.

Corollary 6.1. Let R : Lp
d → FM and v ∈ K+

M\ {0}. Then, for Y ∈ Lq
d,

(ϕv)
∗ (Y ) = sup

u∈−R∗(Y,v)
−vTu.

Proof. This claim is immediate from the first part of the proof of (i) of Lemma 6.1.

What is special for the Fenchel conjugate of a risk measure? In the scalar case, the conju-
gate basically coincides with the support function of the acceptance set of the risk measure.
The same is true for set-valued risk measures, provided that the right definition for a set-valued
support function is used.

Proposition 6.2. Let R : Lp
d → GM be a convex risk measure with acceptance set AR and

v ∈ K+
M\ {0}. Then

(6.7) −R∗ (Y, v) =
{ −SAR

(Y, v) : Y ∈ −Lq
d (K

+) , v ∈ E [−Y ] +M⊥,
M : else,

where

−SAR
(Y, v) = − (IAR

)∗ (Y, v) = cl
⋃

X∈AR

FM
(Y,v) [−X] .

If R is additionally positively homogeneous, then

(6.8) −R∗ (Y, v) =
{
G (v) ∩M : Y ∈ −A+

R, v ∈ E [−Y ] +M⊥,
M : else.

Proof. Obviously,

−R∗ (Y, v) ⊇ cl
⋃

X∈AR

(
R (X) + FM

(Y,v) [−X]
)
⊇ cl

⋃
X∈AR

FM
(Y,v) [−X] ,
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and hence −R∗ (Y, v) ⊇ −SAR
(Y, v) for all Y ∈ Lq

d, v ∈ R
d. If Y 
∈ −Lq

d (K
+), then there is

X0 ∈ Lp
d (K) such that E[(X0)TY ] > 0. Observing Lp

d (K) ⊆ AR and using the definition of
FM
(Y,v)

[−tX0
]
we obtain

−SAR
(Y, v) ⊇ cl

⋃
X∈Lp

d(K)

FM
(Y,v) [−X] ⊇

⋃
t>0

FM
(Y,v)

[−tX0
]
=M.

Hence −R∗ (Y, v) ⊇ −SAR
(Y, v) =M whenever Y 
∈ −Lq

d (K
+). Now, assume E [Y ]+v 
∈M⊥

and take w ∈M . Then

FM
(Y,v) [−X − w1I] =

{
u ∈M : E

[−XTY
] ≤ vTu+ E [Y ]T w

}
=
{
u− w ∈M : E

[−XTY
] ≤ vT (u−w) + (E [Y ] + v)T w

}
+ w

=
{
u ∈M : E

[−XTY
] ≤ vTu+ (E [Y ] + v)T w

}
+ w.

Since E [Y ] + v 
∈ M⊥ for each u ∈ M we can find w ∈ M such that E
[−XTY

] ≤ vTu +

(E [Y ] + v)T w. Therefore, ⋃
w∈M

(
FM
(Y,v) [−X − w1I]− w

)
=M,

and a fortiori

−R∗ (Y, v) = cl
⋃

X∈Lp
d,w∈M

(
R (X +w1I) + FM

(Y,v) [−X − w1I]
)

= cl
⋃

X∈Lp
d,w∈M

(
R (X)− w + FM

(Y,v) [−X − w1I]
)
=M.

It remains to show that −R∗ (Y, v) ⊆ −SAR
(Y, v) for Y ∈ −Lq

d (K
+), E [Y ] + v ∈ M⊥.

Indeed, taking u ∈ R (X) (hence X + u1I ∈ AR), we obtain with Proposition 4.2

−SAR
(Y, v) ⊇ FM

(Y,v) [−X − u1I] = FM
(Y,v) [−X] + u.

Therefore, R (X) + FM
(Y,v) [−X] ⊆ −SAR

(Y, v) for all X ∈ Lp
d, and hence −R∗ (Y, v) ⊆

−SAR
(Y, v).

Now, let R be additionally positively homogeneous. If Y 
∈ −A+
R, then there is X0 ∈ AR

such that E[Y TX0] > 0, which yields
⋃

X∈AR
FM
(Y,v) [−X] ⊇ ⋃

t>0 F
M
(Y,v)[−tX0] = M , and a

fortiori −R∗ (Y, v) = M by (6.7). If Y ∈ −A+
R, then E[Y TX] ≤ 0 for all X ∈ AR; hence

FM
(Y,v) [−X] ⊆ FM

(Y,v) [0] for all X ∈ AR, and therefore, since 0 ∈ AR,

FM
(Y,v) [0] ⊆

⋃
X∈AR

FM
(Y,v) [−X] ⊆ FM

(Y,v) [0] .

This completes the proof of the proposition.
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6.3. Proof of Theorem 6.1. The proof will be given with the help of a couple of auxiliary
lemmas.

Lemma 6.2. Let R : Lp
d → GM be proper closed convex. Then, for each

(
X0, u0

) 
∈ graphR
there is v ∈ K+

M\ {0} such that ϕv : L
p
d → R ∪ {+∞} has a continuous affine minorant, and

moreover, (clϕv)
(
X0

)
> vTu0.

Proof. The point
(
X0, u0

)
can be strongly separated from the closed convex set graphR

by means of (Y, v) ∈ Lq
d ×M and r ∈ R such that

(6.9) E
[
Y TX0

]
+ vTu0 < r < inf

(X,u)∈graphR

(
E
[
Y TX

]
+ vTu

)
.

Then v ∈ K+
M , since otherwise the right-hand side of (6.9) would be −∞.

Take X ∈ domR. Then

ϕv (X) = inf
u∈R(X)

vTu = inf
u∈R(X)

(
E
[
Y TX

]
+ vTu

)− E [
Y TX

]
≥ inf

(X′,u′)∈graphR

(
E
[
Y TX ′]+ vTu′

)− E [
Y TX

]
> −E [

Y TX
]
+ r > E

[
Y T

(
X0 −X)]+ vTu0.

The function X �→ E[Y T (X0 −X)] + r is a continuous affine minorant of ϕv since ϕv (X) >
E[Y T (X0 −X)] + r is all the more true for X 
∈ domR.

If v 
= 0 (which is automatic if X0 ∈ domR), we obtain a continuous affine minorant of
clϕv which also satisfies (clϕv) (X

0) > vTu0.

If v = 0, (6.9) yields

(6.10) E
[
Y TX0

]
< r < inf

X∈domR
E
[
Y TX

]
.

Since R is proper there are X1 ∈ domR and u1 ∈M\R (
X1

)
, and the point

(
X1, u1

)
can be

separated from graphR by means of (Z,w) ∈ Lq
d ×M and s ∈ R such that

(6.11) E
[
ZTX1

]
+ wTu1 < s < inf

(X,u)∈graphR

(
E
[
ZTX

]
+ wTu

)
.

Again, w ∈ K+
M . Moreover, w 
= 0, since otherwise (choose X = X1 on the right-hand side)

(6.11) leads to a contradiction.

Define vt = tw and Yt = tZ + (1− t)Y for t ∈ (0, 1). Then vt ∈ K+
M\ {0}. Set α1 =

E
[
Y TX0

]
and α2 = E

[
ZTX0

]
+wTu0. Then α1 < r because of (6.10). Hence, there is t̄ > 0

such that α1 + t̄ (α2 − α1) < r + t̄ (s− r). This gives

(6.12) E
[
Y T
t̄ X

0
]
+ vTt̄ u

0 < t̄s+ (1− t̄) r < inf
(X,u)∈graphR

(
E
[
Y T
t̄ X

]
+ vTt̄ u

)
.

The same argument as in the case v 
= 0 produces a continuous affine minorant of ϕvt̄ and
(clϕvt̄)(X

0) > vTt̄ u
0.

Lemma 6.3. If R : Lp
d → GM is proper convex closed, then R = R∗∗.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

92 ANDREAS H. HAMEL AND FRANK HEYDE

Proof. Taking into account Lemmas 5.1(iv) and 6.1(ii), we have to show that

(6.13)
⋂

v∈K+
M\{0}

{
u ∈M : (clϕv) (X) ≤ vTu} =

⋂
v∈K+

M\{0}

{
u ∈M : (ϕv)

∗∗ (X) ≤ vTu}
holds true for all X ∈ Lp

d. We have⋂
v∈K+

M\{0}

{
u ∈M : (clϕv) (X) ≤ vTu} =

⋂
v∈K+

M
\{0},

clϕv proper

{
u ∈M : (clϕv) (X) ≤ vTu}

since “⊆” is obvious and “⊇” follows since if u0 ∈ M does not belong to the left-hand side,
then by Lemma 6.2 there is v ∈ K+

M\ {0} such that clϕv is proper and vTu0 < (clϕv) (X);
i.e., u0 does not belong to the right-hand side.

Moreover, obviously⋂
v∈K+

M\{0}

{
u ∈M : vTu ≥ (ϕv)

∗∗ (X)
}
=

⋂
v∈K+

M
\{0},

(ϕv)∗∗�≡−∞

{
u ∈M : vTu ≥ (ϕv)

∗∗ (X)
}
.

Since (ϕv)
∗∗ ≡ −∞ iff clϕv is not proper, and (ϕv)

∗∗ = clϕv if clϕv is proper, the result
follows.

The dual representation theorem for set-valued convex risk measures can now be proven.

Proof of Theorem 6.1. From Lemma 6.3 we know R = R∗∗; hence for all X ∈ Lp
d

R (X) = R∗∗ (X) =
⋂

Y ∈Lq
d, v∈K+

M\{0}

(
−R∗ (Y, v) + FM

(Y,v) [X]
)
.

Replacing Y by −Y and observing FM
(Y,v) [X] = FM

(−Y,v) [−X], we obtain from Proposition 6.2

R∗∗ (X) =
⋂

Y ∈Lq
d(K

+), v∈(E[Y ]+M⊥)∩K+
M\{0}

⎛⎝cl
⋃

X′∈AR

FM
(Y,v)

[
X ′]+ FM

(Y,v) [−X]

⎞⎠
for all X ∈ Lp

d. By Lemma 4.1 we can replace Y ∈ Lq
d (K

+) and v ∈ (E [Y ] +M⊥)∩K+
M\ {0}

by a vector probability measure Q and some w ∈ K+\M⊥ such that diag (w) dQ
dP ∈ Lq

d (K
+),

and FM
(Y,v) [X] = (EQ [X] +G (w)) ∩M holds for all X ∈ Lp

d. Substituting the corresponding

(Q,w) for (Y, v) into the above formula, we obtain the dual representation (6.1) with

−αR (Q,w) = −αmin (Q,w) = cl
⋃

X′∈AR

(
EQ

[
X ′]+G (w)

) ∩M.

The reader may check that in this case −αR (Q,w) = (−αR (Q,w)⊕G (w)) ∩M holds true.
Moreover, R satisfies (R0) iffKM ⊆ αR(Q,w) for all (Q,w) ∈ W and

(⋂
(Q,w)∈W −αR(Q,w)

)∩
−intKM = ∅.
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Conversely, if (6.1) holds true for some−αR having the latter property, then for allX ∈ Lp
d,

for all (Q,w) ∈ W,

R (X) ⊆ −αR (Q,w) +
(
EQ [−X] +G (w)

) ∩M.

Adding (EQ [X] +G (w)) ∩M on both sides, we get

R (X) +
(
EQ [X] +G (w)

) ∩M ⊆ −αR (Q,w)

for all X ∈ Lp
d, for all (Q,w) ∈ W. Replacing (Q,w) ∈ W by (−Y, v) with Y ∈ −Lq

d (K
+),

v ∈ (E [Y ] +M⊥)∩K+
M\ {0}, using the definition of −R∗ as well as (6.7), and re-substituting

(Q,w) for (Y, v) in −R∗, we obtain (6.2).

The coherent case can be dealt with using the corresponding part of Proposition 6.2.

6.4. The Fatou property for set-valued risk measures. One main question concerning
risk measures on L∞ is under what circumstances a dual representation is possible based
on a dual pairing of L∞

d and L1
d, i.e., when σ

(
L∞
d , L

1
d

)
-closedness of the graph is present.

An answer can be given that is parallel to the scalar case: A so-called Fatou property for
set-valued functions can be formulated and proven to be equivalent to σ

(
L∞
d , L

1
d

)
-closedness.

The result reads as follows.

Theorem 6.2. The following are equivalent for a convex risk measure R : L∞
d → GM :

(i) R has a dual representation (6.1);

(ii) R has the Fatou property; i.e., if
{
Xk

}
k∈N ⊆ L∞

d is a bounded sequence with Xk → X
P -almost surely, then

R (X) ⊇ lim inf
k→∞

R
(
Xk

)
=

{
u ∈M : ∀k ∈ N : ∃uk ∈ R

(
Xk

)
: lim

k→∞
uk = u

}
;

(iii) graphR is closed in the product topology on L∞
d ×M generated by σ

(
L∞
d , L

1
d

)
and the

usual separated locally convex topology on M ;

(iv) AR is σ
(
L∞
d , L

1
d

)
-closed.

Proof. (iii) implies (i): Since R is proper convex and σ
(
L∞
d , L

1
d

)
-closed, we can apply

Theorem 6.1 for L∞
d with σ

(
L∞
d , L

1
d

)
as topology, getting the desired representation.

(i) implies (ii): Denote T(Q,w) = cl
⋃

X∈AR
F̃M
(Q,w) [X] = cl

⋃
X∈AR

(EQ [X] + G (w)) ∩
M . Take a bounded sequence

{
Xk

}
k∈N ⊆ L∞

d with Xk → X P -almost surely and u ∈
lim infk→∞R

(
Xk

)
. Then there is a sequence uk ∈ R (

Xk
)
such that uk → u in M . Because

of (i) we have

∀k ∈ N, ∀ (Q,w) ∈ W : uk ∈ F̃M
(Q,w)

[
−Xk

]
+ T(Q,w).

We have to show u ∈ R (X), i.e., u ∈ F̃M
(Q,w) [−X] + T(Q,w) for all (Q,w) ∈ W. If T(Q,w) =M ,

then there is nothing to prove. If T(Q,w) 
= M , then there is û ∈ M such that T(Q,w) =
û+G (w) ∩M ; hence

∀k ∈ N, ∀ (Q,w) ∈ W : uk ∈ F̃M
(Q,w)

[
−Xk

]
+ û+G (w) ∩M ⊆ F̃M

(Q,w)

[
−Xk

]
+ û.
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This means uk − û ∈M for all k ∈ N and

∀k ∈ N, ∀ (Q,w) ∈ W : wT
(
uk − û+ EQ

[
Xk

])
≥ 0.

Since Xk is bounded and converges P -almost surely to X, we have EQ
[
Xk

] → EQ [X] for
each Q ∈ MP

1,d by Lebesgue’s dominated convergence theorem; hence taking the limit k →∞
gives the desired result.

(ii) implies (iv): According to Lemma A.64 in [9] it suffices to show that the sets

Ar
R = AR ∩

{
X ∈ L∞

d : ‖X‖L∞
d
≤ r} , r > 0,

are closed in L1
d. Take a sequence

{
Xk

}
k∈N ⊆ Ar

R with Xk → X in L1
d. Then there is a

subsequence, again denoted by
{
Xk

}
k∈N, that converges P -almost surely to X. The Fatou

property ensures that X ∈ AR. The P -almost surely convergence and boundedness of the
Xk’s ensure X ∈ Ar

R. Hence A
r
R is closed in L1

d and AR is σ
(
L∞
d , L

1
d

)
-closed.

(iv) implies (iii): Compare Remark 3.1.
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Continuous-Time Markowitz’s Model with Transaction Costs∗

Min Dai†, Zuo Quan Xu‡, and Xun Yu Zhou§

Abstract. A continuous-time Markowitz’s mean-variance portfolio selection problem is studied in a market
with one stock, one bond, and proportional transaction costs. This is a singular stochastic control
problem, inherently with a finite time horizon. Via a series of transformations, the problem is turned
into a so-called double obstacle problem, a well-studied problem in physics and PDE literature,
featuring two time-varying free boundaries. The two boundaries, which define the buy, sell, and
no-trade regions, are proved to be smooth in time. This in turn characterizes the optimal strategy,
via a Skorokhod problem, as one that tries to keep a certain adjusted bond-stock position within the
no-trade region. Several features of the optimal strategy are revealed that are remarkably different
from its no-transaction-cost counterpart. It is shown that there exists a critical length in time,
which is dependent on the stock excess return as well as the transaction fees but independent of the
investment target and the stock volatility, so that an expected terminal return may not be achievable
if the planning horizon is shorter than that critical length (while in the absence of transaction costs
any expected return can be reached in an arbitrary period of time). It is further demonstrated
that anyone following the optimal strategy should not buy the stock beyond the point when the
time to maturity is shorter than the aforementioned critical length. Moreover, the investor would
be less likely to buy the stock and more likely to sell the stock when the maturity date is getting
closer. These features, while consistent with the widely accepted investment wisdom, suggest that
the planning horizon is an integral part of the investment opportunities.

Key words. continuous-time, mean-variance, transaction costs, singular stochastic control, planning horizon,
Lagrange multiplier, double-obstacle problem, Skorokhod problem
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1. Introduction. Markowitz’s (single-period) mean-variance (MV) portfolio selection model
[27] marked the start of modern quantitative finance theory. Extensions to the dynamic—
especially continuous-time—setting in the asset allocation literature have, however, been domi-
nated by the expected utility maximization (EUM) models, which are a considerable departure
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from the MV model. While the utility approach was theoretically justified by von Neumann
and Morgenstern [33], in practice “few if any investors know their utility functions; nor do
the functions which financial engineers and financial economists find analytically convenient
necessarily represent a particular investor’s attitude towards risk and return” [28]. Meanwhile,
there are technical and conceptual difficulties in studying a dynamic MV model. In particular,
an optimal trading strategy generated initially may no longer be optimal halfway through.
This so-called time inconsistency means that dynamic programming—which is the main tool
for solving dynamic optimization problems—is not directly applicable. Furthermore, one could
argue that it would be hard for an investor to follow a time-inconsistent strategy. Kydland and
Prescott [19] instead argue that time-inconsistent solutions are economically meaningful if the
investor can commit at the initial time to follow a strategy (called a precommitted strategy).

Time-inconsistent control problems have recently attracted some interest; see Björk and
Murgoci [4] and Ekeland and Lazrak [13]. We note also that there are problems other than
dynamic MV analysis that are inherently time inconsistent. For example, a dynamic behav-
ioral portfolio selection problem is time inconsistent due to the distortions in probabilities
[16].

Basak and Chabakauri [2] specifically address the time inconsistency problem in MV
analysis by proposing the construction of a trading strategy that is locally optimal in an
MV sense and time consistent, although it is not globally optimal in the sense of Problem 2.1
(to be formulated in section 2). Basak and Chabakauri [2] further show that their strategy
solves a global optimization problem with a state-dependent CARA utility function.

In this paper, we solve the global Problem 2.1 and do so when trading is subject to
transaction costs. The solution obtained is precommitted, instead of time consistent. We solve
the problem by reformulating it in a way that makes it amenable to dynamic programming.

Richardson [30] is probably the earliest paper that studies a faithful extension of the MV
model to the continuous-time setting (albeit in the context of a single stock with a constant
risk-free rate), followed by Bajeux-Besnainou and Portait [1]. Li and Ng [20], in a discrete-time
setting, developed an embedding technique for changing the originally time-inconsistent MV
problem into a stochastic linear-quadratic (LQ) control problem. This technique was extended
by Zhou and Li [35], along with a stochastic LQ control approach, to the continuous-time case.1

Further extensions and improvements are carried out by, among many others, Lim and Zhou
[23], Lim [22], Bielecki et al. [3], and Xia [34].

All the existing works on continuous-time MV models have assumed that there is no trans-
action cost, leading to results that are analytically elegant, and sometimes truly surprising
(for example, it is shown in Li and Zhou [21] that any efficient strategy realizes its goal—no
matter how high it is—with a probability of at least 80%). However elegant they may be, cer-
tain investment behaviors derived from the results simply contradict the conventional wisdom,
which in turn hints that the models may not have been properly formulated. For instance,
the results dictate that an optimal strategy must trade all the time; moreover, there must be
risky exposures at any time (see [5]). These are certainly not consistent with the common
investment advice. Indeed, the assumption that there is no transaction cost is flawed, which
misleadingly allows an investor to continuously trade without any penalty.

1One should note that the trading strategies derived in Li and Ng [20] and Zhou and Li [35] are not time
consistent.
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Portfolio selection subject to transaction costs has been studied extensively, albeit in the
realm of utility maximization. Mathematically such a problem is a singular stochastic control
problem. Two different types of models must be distinguished: one in an infinite planning
horizon and the other in a finite horizon. See Magill and Constantinides [26], Davis and
Norman [10], and Shreve and Soner [31] for the former, and Davis, Panas and Zariphopoulou
[11], Cvitanic and Karatzas [6], and Gennotte and Jung [15] for the latter. Technically, the
latter is substantially more difficult than the former, since in the finite-horizon case there is
an additional time variable in the related Hamilton–Jacobi–Bellman (HJB) equation or varia-
tional inequality (VI). This is why the research on finite-horizon problems had predominantly
addressed qualitative and numerical solutions until Liu and Loewenstein [25] devised an an-
alytical approach based on an approximation of the finite horizon by a sequence of Erlang
distributed random horizons. Dai and Yi [8] subsequently employed a different analytical
approach—a PDE approach—to study the same problem.

This paper aims to analytically solve the MV model with transaction costs. Note that
such a problem inherently occurs in a finite time horizon, because the very nature of the
Markowitz problem is about striking a balance between the risk and return of the wealth at
a finite, terminal time. Compared with its EUM counterpart, this model has a feasibility
issue that must be addressed before an optimal solution is sought. Precisely speaking, the
MV model is to minimize the variance of the terminal wealth subject to the constraint that
an investment target—certain expected net terminal wealth—is achieved. The feasibility is
about whether such a target is achievable by at least one admissible investment strategy. For
a Black–Scholes market without transaction costs, it has been shown [23] that any target can
be reached in an arbitrary length of time (so long as the risk involved is not a concern, that is).
For a more complicated model with random investment opportunities and a no-bankruptcy
constraint, the feasibility is painstakingly investigated in Bielecki et al. [3]. In this paper we
show that the length of the planning horizon is a determinant of this issue. In fact, there
exists a critical length of time, which is dependent only on the stock excess return and the
transaction fees, so that a sufficiently high target is not achievable if the planning horizon is
shorter than that critical length. This certainly makes good sense intuitively.

To obtain an optimal strategy, technically we follow the idea of Dai and Yi [8] of eventually
turning the associated VI into a double-obstacle problem, a problem that has been well studied
in physics and PDE theory. That said, there are indeed intriguing subtleties when actually
carrying it out. In particular, this paper is the first to prove (to the best of the authors’
knowledge) that the two free boundaries that define the buy, sell, and no-trade regions are
smooth. This smoothness is critical in deriving the optimal strategy via a Skorokhod problem.2

The optimal strategy is rather simple in implementation; it is to keep a certain adjusted
bond-stock position within the no-trade region. Several features of the optimal strategy are
revealed that are remarkably different from its no-transaction-cost counterpart. Among these,
it is notable that one should no longer buy stock beyond the point when the time to maturity
is shorter than the aforementioned critical length associated with the feasibility. Moreover,

2This smoothness also plays a crucial role in studying the finite-horizon optimal investment and consumption
with transaction costs within a utility framework; see section 3 of Dai et al. [7], where an integral over one free
boundary is used.
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one is less likely to buy the stock and more likely to sell the stock when the maturity date
is getting closer. These results are consistent with the widely accepted financial advice and
suggest that the planning horizon should be regarded as a part of the investment opportunity
set when it comes to continuous-time portfolio selection.

The remainder of the paper is organized as follows. The model under consideration is
formulated in section 2, and the feasibility issue is addressed in section 3. The optimal strategy
is derived in sections 4–6 via several steps, including Lagrange relaxation, transformation of
the HJB equation to a double-obstacle problem, and the Skorokhod problem. Finally, the
paper concludes with remarks in section 7. Some technical proofs are relegated to Appendices
A and B.

2. Problem formulation. We consider a continuous-time market where there are only two
investment instruments: a bond and a stock with price dynamics given, respectively, by

dR(t) = rR(t) dt,

dS(t) = αS(t) dt+ σS(t) dB(t).

Here r > 0, α > r, and σ > 0 are constants, and the process {B(t)}t∈[0,T ] is a standard
one-dimensional Brownian motion on a filtered probability space (Ω,F , {Ft}t∈[0,T ],P) with
B(0) = 0 almost surely. We assume that the filtration {Ft}t∈[0,T ] is generated by the Brownian
motion and is right continuous, and that each Ft contains all the P-null sets of F . We denote
by L2

F the set of square integrable {Ft}t∈[0,T ]-adapted processes,

L2
F

def
==

{
X

∣∣∣∣ The process X = {X(t)}t∈[0,T ] is an {Ft}t∈[0,T ]-

adapted process such that
∫ T
0 E

[
X2(t)

]
dt <∞

}
,

and by L2
FT

the set of square integrable FT -measurable random variables,

L2
FT

def
==

{
X

∣∣ X is an FT -measurable random variable such that E
[
X2

]
<∞}

.

There is a self-financing investor with a finite investment horizon [0, T ] who invests X(t)
dollars in the bond and Y (t) dollars in the stock at time t. Any stock transaction incurs a
proportional transaction fee, with λ ∈ [0,+∞) and μ ∈ [0, 1) being the proportions paid when
buying and selling the stock, respectively. Throughout this paper, we assume that λ+ μ > 0,
which means transaction costs must be involved. The bond-stock value process, starting from
(x, y) at t = 0, evolves according to the equations

Xx,M,N (t) = x+ r

∫ t

0
Xx,M,N(s) ds− (1 + λ)M(t) + (1− μ)N(t),(2.1)

Y y,M,N (t) = y + α

∫ t

0
Y y,M,N (s) ds+ σ

∫ t

0
Y y,M,N(s) dB(s) +M(t)−N(t),(2.2)

where M(t) and N(t) denote, respectively, the cumulative stock purchase and sell up to time
t. Sometimes we simply use X, Y or XM,N , YM,N instead of Xx,M,N , Y y,M,N if there is no
ambiguity.
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The admissible strategy set A of the investor is defined as follows:

A def
==

⎧⎪⎪⎨⎪⎪⎩(M,N)

∣∣∣∣∣∣∣∣
The processes M = {M(t)}t∈[0,T ] and N = {N(t)}t∈[0,T ] are
{Ft}t∈[0,T ]-adapted, RCLL, nonnegative, and nondecreas-

ing, and the processes Xx,M,N and Y y,M,N are both in L2
F

for any (x, y) ∈ R
2

⎫⎪⎪⎬⎪⎪⎭ .

(M,N) is called an admissible strategy if (M,N) ∈ A. Correspondingly, (Xx,M,N , Y y,M,N) is
called an admissible (bond-stock) process if (x, y) ∈ R

2 and (M,N) ∈ A.
For an admissible process (Xx,M,N , Y y,M,N), we define the investor’s net wealth process by

WX,Y (t)
def
==X(t) + (1− μ)Y (t)+ − (1 + λ)Y (t)−, t ∈ [0, T ].

Namely, WX,Y (t) is the net worth of the investor’s portfolio at t after the transaction cost is
deducted. The investor’s attainable net wealth set at the maturity time T is defined as

Wx,y
0

def
==

{
WX,Y (T )

∣∣∣∣∣ W
X,Y (T ) is the net wealth at T

of an admissible process (X,Y ) with
X(0−) = x, Y (0−) = y.

}
.

In the spirit of the original Markowitz’s MV portfolio theory, an efficient strategy is a
trading strategy for which there does not exist another strategy that has higher mean and no
higher variance, and/or has less variance and no lower mean at the terminal time T . In other
words, an efficient strategy is one that is Pareto optimal. Clearly, there could be many efficient
strategies, and the terminal means and variances corresponding to all the efficient strategies
form an efficient frontier. The positioning on the efficient frontier of a specific investor is
dictated by his/her risk preference.

It is now well known that the efficient frontier can be obtained by solving the following
variance minimizing problem.

Problem 2.1.

Minimize Var(W )
subject to E[W ] = z, W ∈ Wx,y

0 .

Here z is a parameter satisfying

z > erTx+ (1− μ)erT y+ − (1 + λ)erT y−,

which means that the target expected terminal wealth is higher than that of the simple “all-
bond” strategy (i.e., initially liquidating the stock investment and putting all the money in
the bond account). The optimal solutions to the above problem with varying values of z will
trace out the efficient frontier we are looking for. For this reason, although Problem 2.1 is
indeed an auxiliary mathematical problem introduced to help solve the original MV problem,
it is sometimes (as in this paper) itself called the MV problem.

It is immediate to see that Problem 2.1 is equivalent to the following problem.
Problem 2.2.

Minimize E[W 2]
subject to E[W ] = z, W ∈ Wx,y

0 .
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3. Feasibility. In contrast to the EUM problem, the MV model, Problem 2.2, has an
inherent constraint E[W ] = z. Is there always an admissible strategy to meet this constraint
no matter how aggressive the target z is? This is the so-called feasibility issue. The issue
is important and unique to the MV problem, and will be addressed fully in this section. To
begin with, we introduce two lemmas.

Lemma 3.1. If W1 ∈ Wx,y
0 , W2 ∈ L2

FT
, and W2 �W1, then W2 ∈ Wx,y

0 .

Proof. By the definition of Wx,y
0 , there exists (M,N) ∈ A such that XM,N (0−) = x,

YM,N(0−) = y, and WXM,N ,Y M,N
(T ) =W1. We define

M (t) =

⎧⎨⎩M(t) if t < T,

M(T ) +
W1 −W2

λ+ μ
if t = T,

N(t) =

⎧⎨⎩N(t) if t < T,

N(T ) +
W1 −W2

λ+ μ
if t = T.

Then (M,N ) ∈ A and

XM,N(t) =

{
XM,N (t) if t < T,

XM,N (T )−W1 +W2 if t = T,
YM,N (t) = YM,N(t), t ∈ [0, T ].

Therefore W2 =WXM,N ,Y M,N
(T ) ∈ Wx,y

0 .
The above proof is very intuitive. If a higher terminal wealth is achievable by an admissible

strategy, then so is a lower one, by simply “wasting money,” i.e., buying and selling the
same amount of the stock at T , thanks to the presence of the transaction costs. This is not
necessarily true when there is no transaction cost.

Lemma 3.2. For any (x, y) ∈ R
2, we have the following:

(1) The set Wx,y
0 is convex.

(2) If (xi, yi) ∈ R
2, Wi ∈ Wxi,yi

0 , i = 1, 2, then W1 +W2 ∈ Wx1+x2,y1+y2
0 .

(3) If x1 � x2 and y1 � y2, then Wx1,y1
0 ⊆ Wx2,y2

0 .

(4) Wx−(1+λ)ρ,y+ρ
0 ⊆ Wx,y

0 and Wx+(1−μ)ρ,y−ρ
0 ⊆ Wx,y

0 for any ρ > 0.
(5) Wρx,ρy

0 = ρWx,y
0 for any ρ > 0.

(6) If x+ (1− μ)y+ − (1 + λ)y− � 0, then 0 ∈ Wx,y
0 .

Proof. (1) For any W1, W2 ∈ Wx,y
0 , assume that Wi = WXi,Yi(T ), where (Xi, Yi) =

(Xx,Mi,Ni , Y y,Mi,Ni), (Mi, Ni) ∈ A, i = 1, 2. For any k ∈ (0, 1), let M = kM1 + (1 − k)M2,
N = kN1 + (1− k)N2. Then (M,N) ∈ A, and

Xx,M,N = kX1 + (1− k)X2,

Y y,M,N = kY1 + (1− k)Y2.
Thus

WX,Y (T ) = X(T ) + (1− μ)Y (T )+ − (1 + λ)Y (T )− = X(T ) + (1− μ)Y (T )− (μ+ λ)Y (T )−

� kX1(T ) + (1− k)X2(T ) + (1− μ)(kY1(T ) + (1− k)Y2(T ))
− (μ + λ)(kY1(T )

− + (1− k)Y2(T )−)
= k(X1(T ) + (1− μ)Y1(T )+ − (1 + λ)Y1(T )

−)
+ (1− k)(X2(T ) + (1− μ)Y2(T )+ − (1 + λ)Y2(T )

−)
= kW1 + (1− k)W2.
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Since WX,Y (T ) ∈ Wx,y
0 , kW1 + (1 − k)W2 ∈ L2

FT
, it follows from Lemma 3.1 that kW1+

(1− k)W2 ∈ Wx,y
0 .

(2) This can be proved by the same argument as above.

(3) If x1 � x2 and y1 � y2, then for any (M,N) ∈ A, we have Xx1,M,N � Xx2,M,N ,

Y y1,M,N � Y y2,M,N . So WXx1,M,N ,Y y1,M,N
(T ) � WXx2,M,N ,Y y2,M,N

(T ) ∈ Wx2,y2
0 . Therefore by

Lemma 3.1, we have WXx1,M,N ,Y y1,M,N
(T ) ∈ Wx2,y2

0 . This shows that Wx1,y1
0 ⊆ Wx2,y2

0 .

(4) For any ρ > 0, (M,N) ∈ A, we define

M(s) =M(s) + ρ ∀s ∈ [0, T ].

Then (Xx−(1+λ)ρ,M,N , Y y+ρ,M,N) = (Xx,M,N , Y y,M,N). So

WXx−(1+λ)ρ,M,N ,Y y+ρ,M,N
=WXx,M,N ,Y y,M,N ∈ Wx,y

0 .

Hence Wx−(1+λ)ρ,y+ρ
0 ⊆ Wx,y

0 . Similarly, we can prove that Wx+(1−μ)ρ,y−ρ
0 ⊆ Wx,y

0 .

(5) Noting that WXρx,ρM,ρN ,Y ρy,ρM,ρN
= ρWXx,M,N ,Y y,M,N

for all ρ > 0, we immediately
have Wρx,ρy

0 = ρWx,y
0 .

(6) If y � 0 and x+ (1− μ)y � 0, then obviously 0 ∈ Wx+(1−μ)y,0
0 by Lemma 3.1. Noting

(4) proved above, we conclude that 0 ∈ Wx,y
0 . Similarly we can prove the case of y < 0 and

x+ (1 + λ)y � 0.

Denote

ẑ
def
==sup

{
E[W ]

∣∣ W ∈ Wx,y
0

}
.(3.1)

In view of Lemma 3.1, Problem 2.2 is feasible when

z ∈ D def
==

(
erTx+ (1− μ)erT y+ − (1 + λ)erT y−, ẑ

)
.(3.2)

It is clear that Problem 2.2 is not feasible when z > ẑ. Thus, it remains to investigate whether
Problem 2.2 admits a feasible solution when z = ẑ.

It is well known that in the absence of transaction costs (i.e., λ = μ = 0), we have ẑ = +∞
and thus Problem 2.2 is always feasible for any z > erTx+(1−μ)erTy+−(1+λ)erTy− (see [23]).
In other words, no matter how small the investor’s initial wealth is, the investor can always
arrive at an arbitrarily large expected return in a split second by taking a huge leverage on the
stock. The following theorem indicates that things become very different when the transaction
costs get involved.

Theorem 3.3. Assume that T � T ∗ def
== 1

α−r ln
(
1+λ
1−μ

)
. Then

ẑ =

{
erTx+ (1− μ)eαT y if y > 0,

erTx+ (1 + λ)erT y if y � 0.

Moreover, if y > 0 and z = ẑ, then Problem 2.1 admits a unique feasible (thus optimal)
solution and the optimal strategy is (M,N) ≡ (0, 0). If y � 0, then D = ∅.
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Proof. For any (M,N) ∈ A, due to (2.1), (2.2), and Itô’s formula, we have

X(T ) + (1− μ)Y (T ) = erTx+ (1− μ)eαT y +
∫ T

0
er(T−t) (dX(t) − rX(t) dt)

+

∫ T

0
(1− μ)eα(T−t) (dY (t)− αY (t) dt)

= erTx+ (1− μ)eαT y +
∫ T

0

(
(1− μ)eα(T−t) − (1 + λ)er(T−t)

)
dM c(t)

+

∫ T

0
(1− μ)

(
er(T−t) − eα(T−t)

)
dN c(t) +

∫ T

0
(1− μ)eα(T−t)σY (t) dB(t)

+
∑

0�t�T

(
(1− μ)eα(T−t) − (1 + λ)er(T−t)

)
(M(t)−M(t−))

+
∑

0�t�T

(1− μ)
(
er(T−t) − eα(T−t)

)
(N(t)−N(t−))

� erTx+ (1− μ)eαT y +
∫ T

0
(1− μ)eα(T−t)σY (t) dB(t),

where M c and N c are, respectively, the contiguous parts of M and N and we have noted
T � 1

α−r ln(
1+λ
1−μ). Thus

E[X(T ) + (1− μ)Y (T )] � erTx+ (1− μ)eαT y.

It follows that

E
[
WX,Y

]
= E[X(T ) + (1− μ)Y (T )+ − (1 + λ)Y (T )−] � E[X(T ) + (1− μ)Y (T )]

� erTx+ (1− μ)eαT y.

When y � 0, we have E[WX,Y ] = erTx+ (1− μ)eαT y if and only if (M,N) ≡ (0, 0). Thus, if
y � 0, then ẑ = erTx+ (1− μ)eαT y, and (0, 0) is the unique feasible strategy when z = ẑ.

Now we turn to the case of y < 0. Define τ = inf{t ∈ [0, T ) : Y (t) > 0} ∧ T . Then τ is
a stopping time (cf. [18, Theorem 2.33]). On the set {Y (τ) � 0}, by the same argument as
above, we have

WX,Y
T � er(T−τ)X(τ) + (1− μ)eα(T−τ)Y (τ) � er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ).

On the set {Y (τ) < 0}, we have τ = T ,

WX,Y
T = X(T ) + (1 + λ)Y (T ) = er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ).
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On the other hand, noting that Y (t) � 0, t ∈ [0, τ), we have

er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)

= erTx+ (1 + λ)erT y −
∫ τ

0
(λ+ μ)er(T−t) dN c(t) +

∫ τ

0
(α− r)er(T−t)Y (t) dt

+

∫ τ

0
er(T−t)(1− μ)σY (t) dB(t)−

∑
0�t�τ

(λ+ μ)er(T−t)(N(t)−N(t−))

� erTx+ (1 + λ)erT y +

∫ τ

0
er(T−t)(1− μ)σY (t) dB(t).

It follows that

E[er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)] � erTx+ (1 + λ)erT y.

Therefore,

E[WX,Y
T ] � E[er(T−τ)X(τ) + (1 + λ)er(T−τ)Y (τ)] � erTx+ (1 + λ)erT y.

This indicates that E[WX,Y
T ] = erTx + (1 + λ)erT y if and only if the investor puts all of his

wealth in the bond at time 0. Thus ẑ = erTx+ (1 + λ)erT y if y < 0.

This result demonstrates the importance of the length of the investment planning horizon,
T , by examining the situation when T is not long enough. In this “short-horizon” case, if the
investor starts with a short position in stock, then the only sensible strategy is the all-bond
one, since any other strategy will just be worse off in both mean and variance. On the other
hand, if one starts with a long stock position, then the highest expected terminal net wealth
(without considering the variance) is achieved by the “stay-put” strategy, one that does not
switch at all between bond and stock from the very beginning. Therefore, any efficient strategy
is between the two extreme strategies, those of “all-bond” and “stay-put,” according to an
individual investor’s risk preference.

More significantly, Theorem 3.3 specifies explicitly this critical length of horizon, T ∗ =
1

α−r ln(
1+λ
1−μ). It is intriguing that T ∗ depends only on the excess return α− r and the trans-

action fees λ, μ, not on the individual target z or the stock volatility σ. Later we will show
that, indeed, ẑ = +∞ when T > T ∗ in Corollary 6.3. Therefore T ∗ is a critical value in
time that distinguishes between “global feasibility” and “limited feasibility” of the underlying
MV portfolio selection problem. It signifies the opportunity that a longer time horizon would
provide for achieving a higher potential gain. In this sense, the length of the planning horizon
should really be included in the set of the investment opportunities, as opposed to the hitherto
widely accepted notion that the investment opportunity set consists of only the probabilistic
characteristics of the returns. Moreover, it follows from the expression of T ∗ that the lower
the transaction cost is and/or the higher the excess return of the stock is, the shorter is the
time required to attain the global feasibility. These observations, of course, all make perfect
sense economically.

In the remaining part of this paper, we consider only the case when D 	= ∅ and z ∈ D.
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4. Unconstrained problem and double-obstacle problem.

4.1. Lagrangian relaxation and HJB equation. By virtue of Lemma 3.2, Problem 2.2 is a
convex constrained optimization problem. We shall utilize the well-known Lagrange multiplier
method to remove the constraint.

Let us introduce the following unconstrained problem.

Problem 4.1 (unconstrained problem).

Minimize E[W 2]− 2�(E[W ]− z)
subject to W ∈ Wx,y

0

or, equivalently, the following problem.

Problem 4.2.

Minimize E[(W − �)2]
subject to W ∈ Wx,y

0 .

Define the value function of Problem 2.2 as follows:

V1(x, y; z)
def
== inf

W∈Wx,y
0

E[W ]=z

E[W 2], z ∈ D.

The following result, showing the connection between Problems 2.2 and 4.2, can be proved by
a standard convex analysis argument.

Proposition 4.1. Problems 2.2 and 4.2 have the following relations.

(1) If W ∗
z solves Problem 2.2 with parameter z ∈ D, then there exists � ∈ R such that W ∗

z

also solves Problem 4.2 with parameter �.
(2) Conversely, if W� solves Problem 4.2 with parameter � ∈ R, then it must also solve

Problem 2.2 with parameter z = E[W�].

It is easy to see that Wx,y
0 − � =Wx−�e−rT ,y

0 . As a consequence, we consider the following
problem instead of Problem 4.2.

Problem 4.3.

Minimize E[W 2]

subject to W ∈ Wx−�e−rT ,y
0 .

To solve the above problem, we use dynamic programming. In doing so we need to
parameterize the initial time. Consider the dynamics (2.1)–(2.2), where the initial time 0 is
revised to some s ∈ [0, T ), and define Wx,y

s as the counterpart of Wx,y
0 , where the initial time

is s and initial bond-stock position is (x, y). We then define the value function of Problem 4.3
as

V (t, x, y)
def
== inf

W∈Wx,y
t

E[W 2], (t, x, y) ∈ [0, T )× R
2.(4.1)

The following proposition establishes a link between Problems 4.3 and 2.2.
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Proposition 4.2. If z ∈ D, then

sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2) = V1(x, y; z) − z2.

Proof. Note that

sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2) = sup
�∈R

inf
W∈Wx−�e−rT ,y

0

E[W 2 − (�− z)2]

= sup
�∈R

inf
W∈Wx,y

0

E[(W − �)2 − (�− z)2] � sup
�∈R

inf
W∈Wx,y

0
E[W ]=z

E[(W − �)2 − (�− z)2]

= sup
�∈R

inf
W∈Wx,y

0
E[W ]=z

(E[W 2]− z2) = inf
W∈Wx,y

0
E[W ]=z

(E[W 2]− z2) = V1(x, y; z) − z2.

Therefore

sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2) � V1(x, y; z) − z2.

Since V1 is convex and z is an interior point of D, by convex analysis, there exists �∗ ∈ R

such that

V1(x, y; z)− 2�∗z � V1(x, y; z̃)− 2�∗z̃ ∀ z̃ ∈ D.

For any W ∈ Wx,y
0 , by the definition of V1, we have

E[(W − �∗)2 − (�∗ − z)2] = E[W 2]− 2�∗(E[W ]− z)− z2 � V1(x, y;E[W ])− 2�∗(E[W ]− z)− z2
� V1(x, y; z) − z2.

It follows that

sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2) = sup
�∈R

inf
W∈Wx,y

0

E[(W − �)2 − (�− z)2]

� inf
W∈Wx,y

0

E[(W − �∗)2 − (�∗ − z)2] � V1(x, y; z)− z2,

which yields the desired result.

Therefore, we need only study the value function V (t, x, y), which we set out to do now.

Lemma 4.3. The value function V defined in (4.1) has the following properties.

(1) For any t ∈ [0, T ), V (t, ·, ·) is convex and continuous in R
2.

(2) For any t ∈ [0, T ), V (t, x, y) is nonincreasing in x and y.
(3) For any ρ > 0, t ∈ [0, T ), we have V (t, x+ (1 − μ)ρ, y − ρ) � V (t, x, y), V (t, x− (1 +

λ)ρ, y + ρ) � V (t, x, y).
(4) For any ρ > 0, t ∈ [0, T ), we have V (t, ρx, ρy) = ρ2V (t, x, y).
(5) If x+ (1− μ)y+ − (1 + λ)y− � 0, then V (t, x, y) = 0.
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Proof. All the results can be easily proved in terms of the definition of V and Lemma
3.2.

Due to part (5) of the above lemma, we need only consider Problem 4.3 in the insolvency
region

S
def
==

{
(x, y) ∈ R

2
∣∣ x+ (1− μ)y+ − (1 + λ)y− < 0

}
.

It is well known that the value function V is a viscosity solution to the following HJB equation
or VI with terminal condition:

(4.2)

{
min {ϕt + L0ϕ, (1 − μ)ϕx − ϕy, ϕy − (1 + λ)ϕx} = 0 ∀ (t, x, y) ∈ [0, T )×S ,

ϕ(T, x, y) = (x+ (1− μ)y+ − (1 + λ)y−)2 ∀ (x, y) ∈ S ,

where

L0ϕ def
==

1

2
σ2y2ϕyy + αyϕy + rxϕx.

The idea of the subsequent analysis is to construct a particular solution to the HJB equa-
tion and then employ the verification theorem to obtain an optimal strategy. The construction
of the solution is built upon a series of transformations of (4.2) until we reach an equation
related to the so-called double-obstacle problem in physics, which has been well studied in the
PDE literature.

We will show in Proposition 4.4 below that the constructed solution ϕ satisfies ϕy −
(1 + λ)ϕx = 0 when y < 0. Hence, we need only focus on y > 0. A substantial technical diffi-
culty arises with the HJB equation (4.2) in that the spatial variable (x, y) is two-dimensional.
However, the homogeneity of Lemma 4.3 (4) motivates us to make the transformation

ϕ(t, x, y) = y2V

(
t,
x

y

)
for y > 0,

so as to reduce the dimension by one. Accordingly, (4.2) is transformed into{
min

{
V t + L1V , (x+ 1− μ)V x − 2V ,−(x+ 1 + λ)V x + 2V

}
= 0 ∀ (t, x) ∈ [0, T )×X ,

V (T, x) = (x+ 1− μ)2 ∀ x ∈X ,

where X
def
==(−∞,−(1− μ)) and

L1V =
1

2
σ2x2V xx −

(
α− r + σ2

)
xV x +

(
2α+ σ2

)
V .

Further, let

w(t, x)
def
==

1

2
lnV (t, x), (t, x) ∈ [0, T )×X .

It is not hard to show that w (t, x) is governed by

(4.3)

{
min

{
wt + L2w, 1

wx
− (x+ 1− μ), (x+ 1 + λ)− 1

wx

}
= 0 ∀ (t, x) ∈ [0, T )×X ,

w(t, x) = ln(−x− (1− μ)) ∀ x ∈X ,

where

L2w def
==

1

2
σ2x2(wxx + 2w2

x)− (α− r + σ2)xwx + α+
1

2
σ2.
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4.2. A related double-obstacle problem. Equation (4.3) is a VI with gradient constraints,
which is hard to study. As in Dai and Yi [8], we will relate it to a double-obstacle problem
that is tractable. We refer interested readers to Friedman [14] for obstacle problems.

Let

(4.4) v(t, x)
def
==

1

wx(t, x)
, (t, x) ∈ [0, T )×X .

Notice that

∂

∂x
L2w = − 1

v2

[
1

2
σ2x2vxx − (α− r) xvx +

(
α− r + σ2

)
v + σ2

(
2x2vx − x2v2x

v
− 2x

)]
.

This inspires us to consider the following double-obstacle problem:
(4.5){

max {min {−vt − Lv, v − (x+ 1− μ)} , v − (x+ 1 + λ)} = 0 ∀ (t, x) ∈ [0, T ) ×X ,
v(T, x) = x+ 1− μ ∀ x ∈X ,

where

Lv def
==

1

2
σ2x2vxx − (α− r)xvx + (α− r + σ2)v + σ2

(
2x2vx − x2v2x

v
− 2x

)
.(4.6)

It should be emphasized that at this stage we have yet to know if (4.5) is mathematically
equivalent to (4.3) via the transformation (4.4). However, the following propositions show
that (4.5) is solvable, and the solution to (4.3) can be constructed through the solutions of
(4.5).

Proposition 4.4. Equation (4.5) has a solution v ∈ W 1,2
p ([0, T ) × (−N,− (1− μ))) for any

N > 1− μ, p ∈ (1,∞). Moreover,

(4.7) vt � 0,

(4.8) 0 � vx � 1,

and there exist two decreasing functions x∗s(·) ∈ C∞[0, T ) and x∗b(·) ∈ C∞[0, T0) such that

(4.9) {(t, x) ∈ [0, T )×X : v(t, x) = x+ 1− μ} = {(t, x) ∈ [0, T )×X : x � x∗s(t)}
and

(4.10) {(t, x) ∈ [0, T )×X : v(t, x) = x+ 1 + λ} = {(t, x) ∈ [0, T0)×X : x � x∗b(t)} ,
where

T0 = max

{
T − 1

α− r ln
(
1 + λ

1− μ
)
, 0

}
.(4.11)

Further, we have

lim
t↑T

x∗s(t) = (1− μ)xM , lim
T↑∞

x∗s(0) = x∗s,∞, lim
t↑T0

x∗b(t) = −∞, lim
T↑∞

x∗b(0) = x∗b,∞,(4.12)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MARKOWITZ’S MODEL WITH TRANSACTION COSTS 109

where xM = −α−r+σ2

α−r and x∗s,∞ and x∗b,∞ are defined in (A.1) and (A.2).
Proposition 4.5. Define

w(t, x)
def
==A(t) + ln(−x∗s(t)− (1− μ)) +

∫ x

x∗
s(t)

1

v(t, y)
dy,(4.13)

where

A(t)
def
==

∫ T

t

rx∗2s (τ) + (α+ r)(1− μ)x∗s(τ) + (α+ 1
2σ

2)(1− μ)2
(x∗s(τ) + 1− μ)2 dτ.(4.14)

Then w ∈ C1,2 ([0, T )×X ) is a solution to (4.3). Moreover, for any (t, x, y) ∈ [0, T ) ×S ,
we define

(4.15) ϕ(t, x, y)
def
==

{
y2e

2w(t,
x
y ) if y > 0,

e2B(t)(x+ (1 + λ)y)2 if y � 0,

where w (t, x) is given in (4.13) and

B(t)
def
==

∫ T

t

rx∗2b (τ) + (α+ r)(1 + λ)x∗b(τ) + (α+ 1
2σ

2)(1 + λ)2

(x∗b(τ) + 1 + λ)2
dτ.

Then ϕ ∈ C1,2,2([0, T ) ×S \ {y = 0}) is a solution to the HJB equation (4.2).
Due to their considerable technicality, the proofs of the preceding two propositions are

placed in Appendix A. Most of the above results are similar to those obtained by Dai and
Yi [8] where they considered the expected utility portfolio selection with transaction costs.
Nonetheless, there is one breakthrough made by the present paper: both x∗s(·) and x∗b(·) are
proved to be C∞, whereas Dai and Yi [8] obtained the smoothness of only x∗s(·). In fact, Dai
and Yi [8] essentially considered a double-obstacle problem for wx. In contrast, the present
paper takes the double-obstacle problem for 1/wx into consideration. This seemingly innocent
modification in fact simplifies the proof greatly. More importantly, it allows us to provide a
unified framework to obtain the smoothness of x∗s(·) and x∗b(·). Later we will see that the
smoothness of x∗s(·) and x∗b(·) plays a critical role in the proof of the existence of an optimal
strategy.

Note that (4.8) is important in the study of the double-obstacle problem (4.5). In essence,
the result is based on parts (1) and (2) of Lemma 4.3.

In the subsequent section, we plan to show, through the verification theorem and a Sko-
rokhod problem, that ϕ(t, x, y) is nothing but the value function. At the same time, an optimal
strategy will be constructed.

5. Skorokhod problem and optimal strategy. Due to (4.9)–(4.10) and Proposition 4.5,
we define

SR = {(t, x, y) ∈ [0, T )×S | y > 0, x � x∗s(t)y} ,
BR = {(t, x, y) ∈ [0, T )×S | y > 0, x � x∗b(t)y or y � 0} ,(5.1)

NT = {(t, x, y) ∈ [0, T )×S | y > 0, x∗b(t)y < x < x∗s(t)y} ,
which stand for the sell region, buy region, and no-trade region, respectively. Here we set
x∗b(t) = −∞ when t ∈ [T0, T ] in view of the fact that limt↑T0 x

∗
b(t) = −∞; hence BR = ∅ when

t ∈ [T0, T ]. Notice that these regions do not depend on the target z.
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5.1. Skorokhod problem and verification theorem. In order to find the optimal solution
to the MV problem, we need to study the so-called Skorokhod problem.

Problem 5.1 (Skorokhod problem). Given (0,X(0), Y (0)) ∈ NT , find an admissible strategy
(M,N) such that the corresponding bond-stock value process (X,Y ) is continuous in [0, T ],
and (t,X(t), Y (t)) ∈ NT for any t ∈ [0, T ].

In other words, a solution to the Skorokhod problem is an investment strategy with which
the trading takes place only on the boundary of the no-trade region. It turns out that the
solution can be constructed via solving the following more specific problem.

Problem 5.2. Given (0,X(0), Y (0)) ∈ NT , find a process of bounded total variation k and
a continuous process (X,Y ) such that for any t ∈ [0, T ],

(t,X(t), Y (t)) ∈ NT ,
dX(t) = rX(t) dt+ γ1(X(t), Y (t)) d|k|(t),

dY (t) = αY (t) dt+ σY (t) dB(t) + γ2(X(t), Y (t)) d|k|(t),

|k|(t) =
∫ t

0
1{(s,X(s),Y (s))∈∂NT } d|k|(s),

where |k|(t) stands for the total variation of k on [0, t],

(γ1(x, y), γ2(x, y))
def
==

⎧⎨⎩
1√

(1+λ)2+1
(−(1 + λ), 1) if (t, x, y) ∈ ∂1NT ,

1√
(1−μ)2+1

(1− μ,−1) if (t, x, y) ∈ ∂2NT ,

and

∂1NT def
== {(t, x, y) ∈ [0, T )×S | y > 0, x = x∗b(t)y} ,

∂2NT def
== {(t, x, y) ∈ [0, T )×S | y > 0, x = x∗s(t)y} .

Letting a triplet (k,X, Y ) solve Problem 5.2, define

M(t)
def
== 1√

(1+λ)2+1

∫ t

0
1{(s,X(s),Y (s))∈∂1NT } d|k|(s),(5.2)

N(t)
def
== 1√

(1−μ)2+1

∫ t

0
1{(s,Y (s),Y (s))∈∂2NT } d|k|(s).(5.3)

Then (M,N) is a solution to the Skorokhod problem. Moreover, since (M,N,X, Y ) satisfies
(2.1) and (2.2), we can prove that the corresponding terminal net wealth WX,Y (T ) is the
optimal solution to Problem 4.3. To prove that we need the verification theorem.

Note that one can naturally extend the definition of the Skorokhod problem to the time
horizon [s, T ] for any s ∈ [0, T ).

Theorem 5.1 (verification theorem). Let ϕ be defined in (4.15) and V be the value function
defined in (4.1). If the Skorokhod problem admits a solution in [s, T ], where s ∈ [0, T ), then

V (t, x, y) = ϕ(t, x, y) ∀ (t, x, y) ∈ [s, T ]× R
2.
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Proof. The proof is rather standard in the singular control literature. We give only a
sketch and refer interested readers to Karatzas and Shreve [17]. Similarly to Karatzas and
Shreve [17], we can show that the function ϕ � V in NT . Moreover, if τ is a stopping time
valued in [s, T ], where s ∈ [0, T ), and (X,Y ) is a solution to Problem 5.1 in [s, τ ], then

ϕ(s,X(s), Y (s)) = E[ϕ(τ,X(τ), Y (τ))].

Particularly, if τ = T , then ϕ = V in NT ∩ [s, T ]× R
2, and

V (s,X(s), Y (s)) = E
[(
WX,Y (T )

)2]
.(5.4)

The verification theorem in NT follows. By Lemma 4.3, we know that V (t, ·, ·) is convex in
R
2. So we can define its subdifferential as

∂V (t, x, y)
def
==

{
(δx, δy)

∣∣V (t, x̄, ȳ) � V (t, x, y) + δx · (x̄− x) +δy · (ȳ − y) ∀(x̄, ȳ) ∈ R
2
}
.

Then, we are able to utilize the convex analysis as in Shreve and Soner [31] to obtain the
verification theorem in BR and SR.

5.2. Solution to Skorokhod problem. Note that, in the Skorokhod problem, Problem 5.1,
the reflection boundary depends on time t. This is very different from the standard Skorokhod
problem in the literature; see, e.g., Lions and Sznitman [24]. To remove the dependence of
the reflection boundary on time, we introduce a new state variable Z(t) and instead consider
an equivalent problem.

Problem 5.3. Given (0,X(0), Y (0)) ∈ NT , find a process of bounded total variation k and
a continuous process (Z,X, Y ) such that, for any t ∈ [0, T ],

(Z(t),X(t), Y (t)) ∈ NT ,
dX(t) = rX(t) dt+ γ1(X(t), Y (t)) d|k|(t),

dY (t) = αY (t) dt+ σY (t) dB(t) + γ2(X(t), Y (t)) d|k|(t),
dZ(t) = dt+ γ3(Z(t),X(t), Y (t)) d|k|(t),

|k|(t) =
∫ t

0
1{(Z(s),X(s),Y (s))∈∂NT } d|k|(s),

where Z(0) = 0, γ3 ≡ 0.
Clearly Z(t) ≡ t because γ3(z, x, y) ≡ 0. Therefore if (k, Z,X, Y ) solves Problem 5.3, then

(k,X, Y ) solves Problem 5.2. It is worthwhile pointing out that the reflection boundary of
Problem 5.3 becomes time independent.

Now let us consider Problem 5.3.
Theorem 5.2. There exists a unique solution to Problem 5.3 in [0, T ].
Proof. Both Lions and Sznitman [24] and Dupus and Ishii [12] have established existence

and uniqueness for the Skorokhod problem on a domain with sufficiently smooth boundary.
Since the C∞ smoothness of x∗s(·) and x∗b(·) is in place, the proof is similar to that of Lemma
9.3 of Shreve and Soner [31]. It is worthwhile pointing out that Shreve and Soner [31] were not
concerned with the smoothness of x∗s and x∗b because they took into consideration a stationary
problem which leads to time-independent policies (free boundaries).

Thanks to Theorems 5.1 and 5.2, we have the following corollary.
Corollary 5.3. V (t, x, y) = ϕ(t, x, y) for all (t, x, y) ∈ [0, T ]× R

2.
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6. Main results.
Theorem 6.1. For any initial position (x0, y0) ∈ S , define

(X(0), Y (0))
def
==

⎧⎪⎪⎨⎪⎪⎩
(
(x0+(1−μ)y0)x∗

s(0)
x∗
s(0)+1−μ , x0+(1−μ)y0

x∗
s(0)+1−μ

)
if (0, x0, y0) ∈ SR,

(x0, y0) if (0, x0, y0) ∈ NT ,(
(x0+(1+λ)y0)x∗

b (0)

x∗
b (0)+1+λ , x0+(1+λ)y0

x∗
b(0)+1+λ

)
if (0, x0, y0) ∈ BR.

Let (k, Z,X, Y ) be the solution to Problem 5.3 as stipulated in Theorem 5.2. Then (X,Y ) is
the unique solution to the Skorokhod problem, Problem 5.1, and

V (0, x0, y0) = E
[(
WX,Y (T )

)2]
.

Moreover, the optimal strategy (M,N) is defined by (5.2) and (5.3).
Proof. Noting that (0,X(0), Y (0)) ∈ NT , by (5.4),

V (0,X(0), Y (0)) = E
[(
WX,Y (T )

)2]
.

Since V = ϕ, it is not hard to check that

V (0, x0, y0) = V (0,X(0), Y (0)).

The proof is complete.
As a final task before reaching the main result, we prove the existence of the Lagrange

multiplier.
Proposition 6.2. For any (x, y, z) ∈ R

2 ×D, there exists a unique �∗ ∈ R such that

V (0, x− �∗e−rT , y)− (�∗ − z)2 = sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2).

Moreover, �∗ is determined by

e−rTVx(0, x− �∗e−rT , y) + 2�∗ = 2z.(6.1)

The proof is found in Appendix B.
Corollary 6.3. If T > 1

α−r ln(
1+λ
1−μ), then

ẑ = +∞, D = (erTx+ (1− μ)erT y+ − (1 + λ)erT y−,+∞).

Proof. Suppose ẑ < +∞. Then by the definition of ẑ, for any W ∈ Wx,y
0 , we have

E[W ] � ẑ. So for any z > ẑ, � � 0,

V (0, x− �e−rT , y)− (�− z)2 = inf
W∈Wx−�e−rT ,y

0

E[W 2 − (�− z)2] = inf
W∈Wx,y

0

E[(W − �)2 − (�− z)2]

= inf
W∈Wx,y

0

(E[W 2] + 2�(z −E[W ])− z2)

� 2�(z − ẑ)− z2.
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Consequently,

sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2) = +∞.

However, the proof of Proposition 6.2 (Appendix B) shows that the above supremum is finite
under the condition T > 1

α−r ln(
1+λ
1−μ); see (B.1). The proof is complete.

Now we arrive at the complete solution to the MV problem, Problem 2.1.
Theorem 6.4. Problem 2.1 admits an optimal solution if and only if z ∈ D̃, where

D̃ def
==

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(erTx+ (1− μ)erT y+ − (1 + λ)y−,+∞) if T > 1

α−r ln
(
1+λ
1−μ

)
,

(erTx+ (1− μ)erT y, erTx+ (1− μ)eαT y] if T � 1
α−r ln

(
1+λ
1−μ

)
, y > 0,

∅ if T � 1
α−r ln

(
1+λ
1−μ

)
, y � 0.

Moreover, if z is on the boundary of D̃, i.e., T � 1
α−r ln(

1+λ
1−μ), y > 0, and z = erTx +

(1 − μ)eαT y, then the optimal strategy is (M,N) ≡ (0, 0); otherwise, the value function and
the optimal solution are given by Theorem 6.1, in which the initial position (x0, y0) = (x −
�∗e−rT , y), where �∗ is determined by (6.1).

Proof. If z 	∈ D̃, then there is no feasible solution by Theorem 3.3; thus Problem 2.1
admits no optimal solution. If z = erTx+(1−μ)eαTy while T � 1

α−r ln(
1+λ
1−μ) and y > 0, then

Theorem 3.3 again shows that the optimal strategy is (M,N) ≡ (0, 0).
In all the other cases, it follows from Proposition 6.2 that there exists a unique Lagrange

multiplier �∗ such that

V (0, x− �∗e−rT , y)− (�∗ − z)2 = sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2).

Appealing to Proposition 4.2, we have

V (0, x − �∗e−rT , y)− (�∗ − z)2 = V1(x, y; z) − z2.

Theorem 6.1 then dictates that there exists an admissible strategy (M∗, N∗) ∈ A such that

V (0, x− �∗e−rT , y) = E

[(
WXx−�∗e−rT ,M∗,N∗

,Y y,M∗,N∗
(T )

)2
]
.

Noting that for any (M,N) ∈ A, we have

Xx−�∗e−rT ,M,N(T ) = Xx,M,N(T )− �∗,
Y y,M,N (T ) = Y y,M,N(T ),

WXx−�∗e−rT ,M,N ,Y y,M,N
(T ) =WXx,M,N ,Y y,M,N

(T )− �∗;
Thus

V (0, x− �∗e−rT , y) = E

[(
WXx,M∗,N∗

,Y y,M∗,N∗
(T )− �∗

)2
]
.
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By the definition of V , for any (M,N) ∈ A,

V (0, x − �∗e−rT , y) � E

[(
WXx−�∗e−rT ,M,N ,Y y,M,N

(T )
)2

]
= E

[(
WXx,M,N ,Y y,M,N

(T )− �∗
)2

]
.

Therefore W ∗ is optimal to Problem 4.2 with parameter �∗, where W ∗ is defined by

W ∗ =WXx,M∗,N∗
,Y y,M∗,N∗

(T ).

Owing to Proposition 4.1, W ∗ is optimal to Problem 2.2 with parameter E[W ∗]. By the
uniqueness of �∗, we have E[W ∗] = z. Thus W ∗ is the optimal solution to both Problems 2.2
and 2.1, and (M∗, N∗) is the optimal strategy.

The preceding theorem fully describes the behavior of an optimal MV investor under trans-
action costs. If the planning horizon is not long enough (the precise critical length depends
only on the stock excess return and the transaction fees), then what could be achieved at the
terminal time (in terms of the expected wealth) is rather limited. Otherwise, any terminal tar-
get is achievable by an investment strategy, while an optimal (efficient) strategy is to minimize
the corresponding risk (represented by the variance). The optimal strategy is characterized
by three regions (those of sell, buy, and no-trade) defined by (5.1). The implementation of the
strategy is very simple: a transaction takes place only when the “adjusted” bond-stock pro-
cess, (X(t)− �∗e−r(T−t), Y (t)), reaches the boundary of the no-trade zone so that the process
stays within the zone (if initially the process is outside of the no-trade zone, then a transaction
is carried out as in Theorem 6.1 to move it instantaneously into the no-trade zone).

The optimal strategy presented here is markedly different from its no-transaction counter-
part (see, e.g., [35]). With transaction costs, an investor tries not to trade unless absolutely

necessary, so as to keep the “adjusted” bond-stock ratio, x(t)−�∗e−r(T−t)

y(t) , between the two bar-

riers, x∗b(t) and x∗s(t), at any given time t. When there is no transaction cost, however, the
two barriers coincide; thus the optimal strategy is to keep the above ratio exactly at the bar-
rier.3 This, in turn, requires the optimal strategy to trade all the time. Clearly, the strategy
presented here is more consistent with the actual investors’ behaviors.

Let us examine more closely the trade zone consisting of the sell and buy regions, defined

in (5.1). By and large, when the adjusted bond-stock ratio, x(t)−�∗e−r(T−t)

y(t) , starts to be greater

than a critical barrier (namely, x∗s(t), which is time-varying), one then needs to reduce the
stock holdings. When the ratio starts to be smaller than another barrier (x∗b(t), again time-
varying), one then must accumulate the stock. It is interesting to see that y � 0 always
triggers buying; in other words, shorting the stock is never favored, and any short position
must be covered immediately. The essential reason behind this is the standing assumption
that α > r, so there is no good reason to short the stock.

3In an EUM model—the Merton problem, for example—the optimal solution is to keep the bond-stock
ratio exactly at a certain value. In the MV model the ratio must be “adjusted” in order to account for the
constraint of meeting the terminal target.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MARKOWITZ’S MODEL WITH TRANSACTION COSTS 115

Another not so obvious yet extremely intriguing behavior of the optimal strategy is that
when the time to maturity is short enough (precisely, when the remaining time is less than
T ∗ = 1

α−r ln(
1+λ
1−μ)), one should not buy stock any longer (except to cover a possible short

position). This is seen from the fact that limt↑T0 x
∗
b(t) = −∞ as stated in Proposition 4.4,

along with the definition of the buy region. Moreover, since both barriers are decreasing in
time, the buy region gets smaller and the sell region gets bigger as time passes. This suggests
that the investor would be less likely to buy the stock and more likely to sell the stock when
the maturity date is getting closer. These phenomena, again, are in line with what prevails
in practice.

We end this section with a numerical example. Consider a market with the following
parameters:

(α, r, σ, λ, μ, T ) = (0.15, 0.05, 0.2, 0.02, 0.02, 2).

In this case, T > 1
α−r ln(

1+λ
1−μ). In terms of a penalty method developed by Dai and Zhong

[9], we numerically solve (4.5) and then construct the two free boundaries by Proposition 4.4.
Consider an investor having the initial position (x, y) = (−1, 1) with an expected return

z = 1.1 at time T . Based on (6.1) we can calculate that �∗ = 4.5069; thus the adjusted initial
position is (x − �∗e−rT , y) = (−5.078, 1). The optimal strategy is the following. At time
0, applying Theorem 6.1, the investor carries out a transaction so as to move his adjusted
position to the boundary of NT . This is realized by buying 4.3395 units (in terms of the
dollar amount) of the stock, with the new adjusted position to be (−9.5043, 5.3395). After
the initial time, the investor trades only on the boundaries of the NT region just to keep his
adjusted position within the NT region.

Next consider another investor with an initial position (x, y) = (1, 0) and expected return
z = 1.2. In this case �∗ = 2.3690 and (x− �∗e−rT , y) = (−1.1436, 0). So initially the investor
buys 1.5047 worth of the stock, moving the adjusted position to (−2.6784, 1.5047), which is on
the boundary of NT . Afterwards, the trading strategy is simply to keep the adjusted position
within NT . The two boundaries are depicted in Figure 1, where the horizontal axis is time t
and the vertical axis is the ratio between x− �∗e−r(T−t) and y. A sample path corresponding
to the optimal strategy is also illustrated.

Finally we compare the MV efficiency with and without transaction costs, by plotting the
respective efficient frontiers. We use the same model parameters as above and take the initial
position (x, y) = (1, 0). Figure 2 depicts the efficient frontiers with different transaction
costs.4 It is worth pointing out that the frontiers in the presence of transaction costs are
still straight lines due to the availability of a risk-free asset. The figure clearly shows that
the MV efficiency declines as the transaction costs increase. Indeed, one could easily derive
numerically the rate of the efficiency decline with respect to the transaction costs.

Now that the frontiers are straight lines, we plot in Figure 3 the slopes of the lines (known
as the prices of risk) against different times (the expiration date T = 2 is fixed). When
transaction costs are incurred, we have shown that there is a threshold time value after which
one never buys stock, and hence the corresponding price of risk is 0. The threshold values
T − 1

α−r log((1 + λ)/(1 − μ)) = 1.6 or 1.8 for λ = μ = 0.02 or 0.01, respectively. These are
verified by Figure 3.

4The no-transaction cost frontier follows from the analytical solutions in Zhou and Li [35].
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Figure 1. A sample path corresponding to optimal strategy.
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Figure 2. Efficient frontiers with different transaction costs.

7. Concluding remarks. This paper investigates a continuous-time Markowitz’s MV port-
folio selection model with proportional transaction costs. In the terminology of stochastic con-
trol theory, this is a singular control problem. We use the Lagrangian multiplier and the PDE
theory to approach the problem. The problem has been completely solved in the following
sense. First, the feasibility of the model has been fully characterized by certain relationships
among the parameters. Second, the value function is given via a PDE, which is analytically
proven to be uniquely solvable and numerically tractable, whereas the Lagrange multiplier is
determined by an algebraic equation. Third, the optimal strategy is expressed in terms of the
free boundaries of the PDE. Economically, the results in the paper have revealed three critical
differences arising from the presence of transaction costs. First, the expected return on the
portfolio may not be achievable if the time to maturity is not long enough, while without
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Figure 3. Prices of risk in time.

transaction costs, any expected return can be achieved in an arbitrarily short time. Second,
instead of trading all the time so as to keep a constant adjusted ratio between the stock and
bond, there exist time-dependent upper and lower boundaries so that a transaction is carried
out only when the ratio is on the boundaries. Third, there is a critical time which depends
only on the stock excess return and the transaction fees, such that beyond that time it is
optimal not to buy stock at all. Finally, although shorting is allowed in our model, it is never
favored by an optimal strategy. Our results are closer to real investment practice where people
tend not to invest more in risky assets toward the end of the investment horizon.

Methodologically, this paper employs the PDE approach of Dai and Yi [8] developed for
EUM (CRRA utility). In both MV (this paper) and CRRA [25, 8] cases it is shown that
if the investor is holding the stock, then he should stop buying more shares if the time left
is too short. This is an interesting and important feature of the finite-horizon problem with
transaction costs. The intuition behind this is that the investor should not purchase any
additional shares if the remaining investment period is not long enough to offset at least
the transaction costs. However, there are significant differences between the MV and EUM
models.5 First of all, the issue of feasibility is unique to the MV model, which itself is
interesting both mathematically and economically. Second, the present paper has shown that,
whenever the investor is shorting the stock, the MV problem (with transaction costs) has
no feasible solution if the remaining time is short enough; otherwise one should immediately
buy shares. There are no corresponding results in the EUM setting.6 Last but not least, the
smoothness of the switching boundaries is proved for the first time in this paper, which is
instrumental in rigorously deriving the optimal trading strategies.

5Strictly speaking, it is not entirely “fair” to compare the two models, because the MV model studied here
allows bankruptcy, whereas the EUM model with the usual Inada condition inherently leads to a bankruptcy-
prohibited solution. It would be more meaningful to develop an MV model with transaction costs and no
bankruptcy and then to compare the solution with its EUM counterpart.

6In Liu and Loewenstein [25] and Dai and Yi [8] only the case when y > 0 is discussed, although we suspect
that the methodology in our paper could be adapted to deal with the y < 0 case in the EUM setting.
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Appendix A. Proofs of Propositions 4.4 and 4.5. Proposition 4.5 is straightforward
once Proposition 4.4 is proved. So we prove Proposition 4.4 only. Note that (4.5) could have
a singularity if v = 0. To remove the possible singularity, let us begin with the stationary
counterpart of the problem. As in Theorem 6.1 of Dai and Yi [8], we are able to show that
the semiexplicit stationary solution is available through a Riccati equation⎧⎪⎨⎪⎩

Lv∞ = 0 if x ∈ (x∗b,∞, x
∗
s,∞),

v∞(x∗b,∞) = x∗b,∞ + 1 + λ, v′∞(x∗b,∞) = 1,

v∞(x∗s,∞) = x∗s,∞ + 1− μ, v′∞(x∗s,∞) = 1

with

x∗s,∞
def
==− a

a+ k∗
(1− μ),(A.1)

x∗b,∞
def
==− a

a+ k∗
k∗−1

(1 + λ),(A.2)

where L is defined in (4.6),

a
def
==−2(α− r + σ2)

σ2
∈ (−∞,−2),

k∗ ∈ (1, 2) is the solution to

F (k) =
1 + λ

1− μ,

F (k)
def
==

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a+ k
k−1

a+ k

(
(c1 +

k−1
k a)(c2 +

1
ka)

(c2 +
k−1
k a)(c1 +

1
ka)

) 1
2(c2−c1)

if Δk < 0,

a+ k
k−1

a+ k
exp

(
1

2

(
1

1
ka+

1−a
4

− 1
k−1
k a+ 1−a

4

))
if Δk = 0,

a+ k
k−1

a+ k
exp

(
1√
2Δk

(
arctan

k(a− 1)− 4a

2k
√
2Δk

− arctan
4a− k(3a+ 1)

2k
√
2Δk

))
if Δk > 0,

c1, c2 are the two roots of 2c2 + (a− 1)c+ k−1
k2
a2 = 0, and

Δk
def
==

k − 1

k2
a2 − 1

8
(a− 1)2.

Let v(t, x) be a solution to (4.5) restricted to the region [0, T ) × (−∞, x∗s,∞)
with a

boundary condition v(t, x∗s,∞) = x∗s,∞ + 1 − μ. Apparently, v∞ is a supersolution to (4.5) in
the region; i.e., v(t, x) ≤ v∞(x) for all x < −(1− μ), t ∈ [0, T ). It is easy to show that v∞(x)
is increasing in x. We then deduce

v(t, x) ≤ v∞(x∗s,∞) = x∗s,∞ + 1− μ def
==−C0 < 0 for x < x∗s,∞.(A.3)
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In what follows, we will confine (4.5) to the restricted region [0, T ) × (−∞, x∗s,∞)
in which,

due to (A.3), the equation has no singularity. It is worthwhile pointing out that v(t, x) can
be trivially extended to the original region by letting v(t, x) = x+ 1− μ for x ≥ x∗s,∞.

In terms of a penalized approximation (see, for example, Friedman [14]), it is not hard to
show that v(t, x) ∈ W 1,2

p

(
[0, T )× (−N,x∗s,∞)

)
for any −N < x∗s,∞, p > 1. By the maximum

principle, (4.7) and (4.8) follow. Then we have

∂

∂x
[v − (x+ 1− μ)] = ∂

∂x
[v − (x+ 1 + λ)] = vx − 1 � 0,

which implies the existence of xs(·) (or xb(·)) as a single-value function. The monotonicity of
xs(·) and xb(·) is due to

∂

∂t
[v − (x+ 1− μ)] = ∂

∂t
[v − (x+ 1 + λ)] = vt � 0.

The proof of (4.12) is the same as those of Theorems 4.5 and 4.7 of Dai and Yi [8].
It remains to show the smoothness of x∗b(·) and x∗s(·). To begin with, let us make a

transformation and introduce two lemmas.
Let z = log (−x), u(t, z) = v(t, x). Then⎧⎨⎩

max {min {−ut − L1u, u− (−ez + 1− μ)} , u− (−ez + 1 + λ)} = 0,
u(T, z) = −ez + 1− μ, (t, z) ∈ [0, T ) ×Z ,
u
(
t, log

(−x∗s,∞))
= x∗s,∞ + 1− μ,

where Z = (log
(−x∗s,∞)

,+∞), and

L1u =
σ2

2
uzz −

(
α− r + σ2

2

)
uz +

(
α− r + σ2

)
u − σ2

[
u2z
u

+ 2ez
uz
u
− 2ez

]
.

Lemma A.1. For any (t, z) ∈ [0, T )×Z , we have
(1) u � −C0;
(2) uz = xvx � x = −ez, i.e., uz + ez � 0;
(3) u− uz � 0. Moreover, there is a constant C1 > 0 such that u− uz � C1.
Proof. Parts (1) and (2) are immediate from (A.3) and (4.8). Let us prove part (3).

Denote w = uz. Thus,

∂

∂z
(−ut − L1u) = −wt − L2w + 2ezσ2

(uz
u
− 1

)
,

where

L2w =
σ2

2
wzz −

(
α− r + σ2

2

)
wz +

(
α− r + σ2

)
w − σ2

(
2 (uz + ez)

u
wz − uz (uz + 2ez)

u2
w

)
.

We define

SR = {(t, z) ∈ [0, T )×Z | u = −ez + 1− μ} ,
BR = {(t, z) ∈ [0, T )×Z | u = −ez + 1 + λ} ,
NT = {(t, z) ∈ [0, T )×Z | −ez + 1− μ < u < −ez + 1 + λ} .
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Notice that we can rewrite

−ut − L1u = −ut − L2u+ 2ezσ2
(uz
u
− 1

)
.

Denote H = u− uz. Then
−Ht −L2H = 0 in NT.

Clearly H = 1−μ in SR and at t = T, and H = 1+ λ in BR. Hence, applying the maximum
principle yields H ≥ 0. Moreover, it is not hard to verify that the coefficients in L2H are
bounded. We then infer that there is a constant C1 > 0, such that H � C1.

Lemma A.2. There is a constant C2 > 0 such that ut � −C2.
Proof. Let zs(t) = log(−x∗s(t)) be the corresponding selling boundary. For z > zs(t)

ut|t=T = −L1 (−ez + 1− μ) = − (α− r) (1− μ)− (1− μ)2
−ez + 1− μ

� − (α− r) (1− μ).
Applying the maximum principle gives the desired result.

We will now prove that both zs(·) and zb(·) are C∞, where zs(t) = log(−x∗s(t)) and zb(t) =
log(−x∗b(t)). Thanks to the bootstrap technique, we need only show that they are Lipschitz-
continuous. Hence, it suffices to prove the cone property; namely, for any (t, z0) ∈ [0, T )×Z ,
there exists a constant C > 0 such that

(T − t)ut + C
∂

∂z
(u− (−ez + 1− μ))

∣∣∣∣
(t,z0)

� 0,

(T − t)ut + C
∂

∂z
(u− (−ez + 1 + λ))

∣∣∣∣
(t,z0)

� 0,

which is equivalent to

(A.4) (T − t)ut + C (uz + ez)|(t,z0) � 0.

Now let us prove (A.4). We can focus on only the NT region. Note that

∂

∂t

(
− ut − L1u

)
=

(
− ∂

∂t
− L2

)
ut.

It follows that (
− ∂

∂t
− L2

)
[(T − t) ut] = ut in NT.

On the other hand, it is not hard to check that(
− ∂

∂t
− L2

)
(uz + ez) = σ2ez

u− uz
u2

(u+ uz + 2ez)

� σ2ez
u− uz
u2

(u+ uz − 2uz)

= σ2ez
(u− uz)2

u2
� C2

1σ
2ez

u2
in NT,
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where u− uz � C1 is used in the last inequality. Thus,(
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez)]

� ut + C
C2
1σ

2ez

u2
� −C2 + C

C2
1σ

2ez

u2
in NT.

Since NT is unbounded, we can follow Soner and Shreve [32] to introduce an auxiliary function
ψ(t, z; z0) = ea(T−t) (z − z0)2 with a constant a > 0. We can choose a big enough so that(

− ∂

∂t
− L2

)
ψ (t, z; z0) � C3 (z − z0)2 − C4,

where C3 and C4 are positive constants independent of (t, z). It follows that(
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez) + ψ (t, z; z0)]

� −C2 + C
C2
1σ

2ez

u2
+ C3 (z − z0)2 − C4.

Then we can choose r > 0 such that

C3r
2 − C2 − C4 � 0

and choose C > 0 big enough such that

C
C2
1σ

2ez

u2
− C2 − C4 � 0 for |z − z0| � r.

It then follows that(
− ∂

∂t
− L2

)
[(T − t)ut + C (uz + ez) + ψ (t, z; z0)] � 0 in NT.

Applying the maximum principle and penalty approximation, we conclude that

(T − t)ut +C (uz + ez) + ψ (t, z; z0) � 0, (t, z) ∈ [0, T ) ×Z .

Letting z = z0, we get the desired result.

Appendix B. Proof of Proposition 6.2.
Proof. From

V (0, x− �e−rT , y)− (�− z)2 = inf
W∈Wx−�e−rT ,y

0

E[W 2 − (�− z)2] = inf
W∈Wx,y

0

E[(W − �)2 − (�− z)2]

= inf
W∈Wx,y

0

(E[W 2]− 2�(E[W ]− z)),

it follows that V (0, x − �e−rT , y) − (�− z)2 is concave in �. So its maximum attains at point
�∗ which satisfies

∂

∂�

(
V (0, x − �e−rT , y)− (�− z)2

)∣∣∣∣
�=�∗

= 0;
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i.e.,

e−rTVx(0, x− �∗e−rT , y) + 2�∗ = 2z.

Define

f(�)
def
== e−rTVx(0, x− �e−rT , y) + 2�.

Then by the convexity of V (0, x − �e−rT , y) − (� − z)2 in �, we have that f is increasing.
Since Vx � 0, we have f(z) � 2z. By the monotonicity of f , the existence of �∗ depends on
lim�→+∞ f(�).

• First we consider the case when T0 > 0. In this case x∗b(0) ∈ (−∞, 0). If y � 0, then

(0, x− �e−rT , y) ∈ BR ∀ � � z.

If y > 0, then

(0, x− �e−rT , y) ∈ BR ∀ � � erT (x− x∗b(0)y).
Therefore,

lim
�→+∞

f(�) = lim
�→+∞

(
e−rTVx

(
0, x− �e−rT , y

)
+ 2�

)
= lim

�→+∞

(
2e−rT e2B(0)

(
x− �e−rT + (1 + λ)y

)
+ 2�

)
= lim

�→+∞
2
(
1− e−2rT+2B(0)

)
�+ 2e−rT (x+ (1 + λ)y)

= +∞,
where we have used the fact that B(0) < rT when T0 > 0. Therefore, for any

z ∈ (erTx+ (1− μ)erT y+ − (1 + λ)erT y−,+∞)

there exists �∗ such that

e−rTVx(0, x− �∗e−rT , y) + 2�∗ = 2z,

V
(
0, x− �∗e−rT , y

)− (�∗ − z)2 = sup
�∈R

(V (0, x− �e−rT , y)− (�− z)2).(B.1)

Now we prove the uniqueness. For T0 > 0, we have

A(0) < rT, B(0) < rT.

If (0, x− �e−rT , y) ∈ SR, then
f ′(�) = −e−2rTVxx(0, x − �e−rT , y) + 2 = −2e−2rT+2A(0) + 2 > 0.

Similarly, if (0, x − �e−rT , y) ∈ BR, then
f ′(�) = −e−2rTVxx(0, x− �e−rT , y) + 2 = −2e−2rT+2B(0) + 2 > 0.

By the maximum principle, we have

f ′(�) > 0 for (0, x− �e−rT , y) ∈ NT .
This implies the uniqueness of �∗.
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• Now, we move to the case when T0 = 0. According to Theorem 3.3, we have

D =

{
(erTx+ (1− μ)erT y, erTx+ (1− μ)eαT y) if y > 0,

∅ if y � 0.

We need only consider the case of y > 0. Note that in this case,

(0, x − �e−rT , y) ∈ NT ∀ � � erT (x− x∗s(0)y).
By the homogeneity property, we have

Vx(t, ρx, ρy) = ρVx(t, x, y) ∀ (t, x, y, ρ) ∈ [0, T )× R
2 ×R+.

Thus we can make the following transformation in NT :

z = −y
x
∈

(
0, −1

x∗
s(0)

)
, v̄(t, z) = −1

x
Vx(t, x, y).

Then {
v̄t +

1
2σ

2z2v̄zz + (α− r)zv̄z + 2rv̄ = 0, (t, z) ∈ [0, T )×
(
0, −1

x∗
s(0)

)
.

v̄(T, z) = 2(−1 + (1− μ)z).
Therefore

v̄(t, 0) = −2e2r(T−t).

Let ṽ(t, z) = v̄z(t, z), which satisfies{
ṽt +

1
2σ

2z2ṽzz + (α− r + σ2)zṽz + (α+ r)ṽ = 0, (t, z) ∈ [0, T ) ×
(
0, −1

x∗
s(0)

)
,

ṽ(T, z) = 2(1 − μ).
Therefore

ṽ(t, 0) = 2(1− μ)e(α+r)(T−t).

It follows that

Vx(0, x, y) = −xv̄
(
0,− y

x

)
= −x

(
v̄(0, 0) − y

x v̄z(0, 0) +O
(
y2

x2

))
= 2xe2rT + 2y(1− μ)e(α+r)T +O

(
y2

|x|
)
.

Thus

lim
�→+∞

f(�) = lim
�→+∞

(
e−rTVx(0, x − �e−rT , y) + 2�

)
= lim

�→+∞

(
e−rT

(
2(x− �e−rT )e2rT + 2y(1− μ)e(α+r)T

)
+O

(
y2

|x−�e−rT |
)
+ 2�

)
= 2(erTx+ (1− μ)eαT y).

The monotonicity of f ensures the existence of �∗. The proof for the uniqueness is
similar as above.

The proof is complete.
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Short-Maturity Asymptotics for a Fast Mean-Reverting Heston Stochastic
Volatility Model∗
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Abstract. In this paper, we study the Heston stochastic volatility model in a regime where the maturity is
small but large compared to the mean-reversion time of the stochastic volatility factor. We derive a
large deviation principle and compute the rate function by a precise study of the moment generating
function and its asymptotic. We then obtain asymptotic prices for out-of-the-money call and put
options and their corresponding implied volatilities.

Key words. stochastic volatility, Heston model, multiscale asymptotics, large deviation principle, implied
volatility smile/skew
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1. Introduction. Large deviations theory provides a natural framework for approximating
the exponentially small probabilities associated with the behavior of a diffusion process over a
small time interval. In the context of financial mathematics, large deviations theory arises in
the computation of small-maturity, out-of-the-money (OTM) call or put option prices or the
probability of reaching a default level in a small time period. The theory of large deviations
has recently been applied to local and stochastic volatility models [3, 4, 5, 6, 14, 23] and
has given very interesting results on the behavior of implied volatilities near maturity. (An
implied volatility is the volatility parameter needed in the Black–Scholes formula in order to
match a call option price. It is common practice to quote prices in volatility through this
transformation.) In the context of stochastic volatility models, the rate function involved
in the large deviation estimates is given in terms of a distance function, which in general
cannot be calculated in closed form. For particular models, such as the SABR model [13, 15],
approximations obtained by expansion techniques have been proposed (see also [9, 12, 18]).

Multifactor stochastic volatility models have been studied during the last 10 years by
many authors (see, for instance, [8, 10, 12, 19, 20]). They are quite efficient in capturing
the main features of implied volatilities known as smiles and skews. They are usually not
simple to calibrate, in particular with respect to the stability of parameter estimation. In the
presence of separated time scales, an asymptotic theory has been proposed in [10, 11]. It has
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the advantage of capturing the main effects of stochastic volatility through a small number of
group parameters arising in the asymptotic. The fast time scale expansion is related to the
ergodic property of the corresponding fast mean-reverting stochastic volatility factor.

In this paper, we study the Heston stochastic volatility model in the regime in which the
maturity is small but large compared to the mean-reversion time of the stochastic volatility
factor. This is a realistic situation where, for instance, the maturity is one month and the
volatility mean-reversion time is of the order of a few days. We derive a large deviation
principle and compute the rate function by a precise study of the moment generating function
and its asymptotic.

1.1. The Heston model. We consider the risk-neutral Heston stochastic volatility model
for the price St and its square volatility Yt:

dSt = rStdt+ St
√
YtdW

1
t ,(1.1)

dYt = κ(θ − Yt)dt+ ν
√
YtdW

2
t ,(1.2)

whereW 1,W 2 are two standard Brownian motions with covariation d〈W 1,W 2〉t = ρdt, where
ρ is constant such that |ρ| < 1. The short rate r is constant, and throughout we assume
that 2κθ > ν2, ν, κ, θ, Y0 > 0, so that the square-root (or CIR) process (Yt) stays positive
at all times (see, for instance, [17]). In this paper, we are mainly interested in small-time
asymptotics for St when the stochastic volatility factor Yt runs on a fast scale.

1.2. Fast mean-reverting stochastic volatility scaling. By fast mean-reverting stochastic
volatility we mean that the rate of mean reversion κ is large. In order to ensure that volatility
is not “dying” or “exploding” we also impose that the volatility-of-volatility parameter ν be
large of the order of the square root of κ. In order to achieve this scaling, we introduce a small
parameter 0 < ε � 1, and we replace (κ, ν) by (κ/ε2, ν/ε) in (1.1)–(1.2) so that the model
becomes

dSt = rStdt+ St
√
YtdW

1
t ,(1.3)

dYt =
κ

ε2
(θ − Yt)dt+ ν

ε

√
YtdW

2
t .(1.4)

The small quantity ε2 represents the intrinsic time scale of the volatility process (Yt), or, in
other words, its decorrelation time (we refer the reader to [10] for more details). Observe

that the condition 2
(
κ
ε2

)
θ >

(
ν
ε

)2
is equivalent to 2κθ > ν2 and therefore independent of

ε. Derivatives and implied volatilities have been studied extensively in [10] for a range of
maturities and for general stochastic volatility processes by means of singular perturbation
techniques around the Black–Scholes model. In this regime, as ε → 0 and fixed maturity, a
call option can be approximated by its Black–Scholes price at a constant effective volatility
plus a small correction of order ε and proportional to ρ, involving the Delta and Gamma of
the leading order Black–Scholes price. In terms of the implied volatility surface, it turns out
that the skew is asymptotically affine in log-moneyness-to-maturity-ratio log(K/S)/T , which
leads to a particularly simple calibration procedure.
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1.3. Short-maturity scaling. Since here we are interested in short maturities, but long
compared with the volatility time scale ε2, we rescale time by the change of variable t �→ εt,
so that typical maturities will be of the order of ε. This regime will be of practical use when,
for instance, the maturity is a couple of weeks and the time scale for the volatility to mean
revert is of the order of a couple of days.

Performing the change of variable t �→ εt in (1.3)–(1.4) gives rise to the rescaled process
denoted by (Sε,t, Yε,t) and defined by

dSε,t = εrSε,tdt+ Sε,t
√
εYε,tdW

1
t ,(1.5)

dYε,t =
κ

ε
(θ − Yε,t)dt+ ν√

ε

√
Yε,tdW

2
t ,(1.6)

where we have used that (W 1
εt,W

2
εt) = (

√
εW 1

t ,
√
εW 2

t ) in distribution, therefore preserving
the constant correlation ρ.

We will use the discounted price S̃ε,t = e−rεtSε,t which satisfies

(1.7) dS̃ε,t = S̃ε,t
√
εYε,tdW

1
t .

It will also be useful to consider the log-price Xε,t = logSε,t which satisfies

(1.8) dXε,t = rεdt− 1

2
εYε,tdt+

√
εYε,tdW

1
t .

In both cases Yε,t satisfies (1.6), and we note that

(1.9) S̃ε,t = x exp

(
− ε
2

∫ t

0
Yε,sds+

√
ε

∫ t

0

√
Yε,sdW

1
s

)
.

1.4. Main results. In section 2 we derive the following result, which describes the asymp-
totic behavior of Xε,t as ε→ 0 for fixed t > 0.

Theorem 1.1. Assume Xε,0 = x0. For each t > 0, {Xε,t : ε > 0} satisfies the large deviation
principle with good rate function

I(q;x0, t) = Λ∗(q − x0; 0, t),

where Λ∗ is the Legendre transform of Λ

Λ∗(q;x, t) ≡ sup
p∈R
{qp − Λ(p;x, t)},

and Λ(p;x, t) : R×R×R+ �→ R ∪ {+∞} is given explicitly by

Λ(p;x, t) = xp+
κθt

ν2

(
(κ− νρp)−

√
(κ− ρνp)2 − ν2p2

)
(1.10)

for − κ

ν(1− ρ) ≤ p ≤
κ

ν(1 + ρ)
,

= +∞ otherwise.
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The function Λ(p;x, t), and the rate function Λ∗(q) given below, are plotted in Figure 1
in section 2.3 in the three cases ρ > 0, ρ = 0, and ρ < 0.

Lemma 1.2. The rate function Λ∗ is given explicitly by

Λ∗(q; 0, t) = qp(q; t)− Λ(p(q; t); 0, t),

where p(q; t) is defined by

p(q; t) =
κ

ν(1− ρ2)

(
−ρ+ qν + κθtρ√

(qν + κθtρ)2 + (1− ρ2)κ2θ2t2

)
(1.11)

∈ int(Dom(Λ)) =

(
− κ

ν(1− ρ) ,
κ

ν(1 + ρ)

)
.

Λ∗(q; 0, t) is finite for all q ∈ R; it is strictly increasing for q > 0 and strictly decreasing
for q < 0; and Λ∗(0; 0, t) = 0.

Λ∗(q; 0, t) is continuous in (q, t) ∈ R×R+.

Remarks.
1. Λ∗(q;x, t) = Λ∗(q − x; 0, t) since the only x dependence in Λ is the linear term xp.
2. Note also the scaling property Λ(p;x, t) = tΛ(p; xt , 1). In the following we choose to

keep the t-dependence.
3. In this asymptotic regime, the limiting quantities Λ and Λ∗ do not depend on the

starting level of volatility y, and they depend on the κ (mean-reversion rate) and ν
(volatility-of-volatility) parameters only through their ratio ν/κ.

4. The previous remark will also apply to asymptotic option prices and implied volatilities
described below. In this regime, therefore, the relevant features of the Heston model
are captured by just three parameters: the ergodic mean θ, the correlation ρ, and the
ratio ν/κ. They control, respectively, the implied volatility skew’s level, slope, and
convexity.

The proof of Theorem 1.1 is the object of section 2 and is concluded after Lemma 2.4. The
proof of Lemma 1.2 is given at the end of section 2.

A practical application of this result is the following rare event estimate for pricing OTM
options of small maturity, derived in section 2.2.

Corollary 1.3. Suppose that log-moneyness is positive, log(KS0
) > 0, and t > 0 fixed. Then

lim
ε→0+

ε logE[e−rεt(Sε,t −K)+|Sε,0 = S0, Yε,0 = y0] = −Λ∗
(
log

(
K

S0

)
; 0, t

)
independently of the initial square-volatility level y0. Note that the maturity of the option is
T = εt, which goes to zero in the limit. The discounting factor e−rεt plays no role in this
asymptotic result.

Moreover, the asymptotic implied volatility can be computed. Let σε(t, x) denote the
Black–Scholes implied volatility for the European call option with strike price K, OTM so
that x = log(K/S0) > 0, with short maturity T = εt for t > 0 fixed, and computed under the
dynamics given by (1.3), (1.4). In section 2.3 we prove the following result.
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Corollary 1.4.

lim
ε→0+

σ2ε (t, x) =
x2

2Λ∗(x; 0, t)t
, x = log

(
K

S0

)
> 0.

Similarly, by considering OTM put options, one obtains the same formula for x < 0. The
at-the-money (ATM) volatility is obtained by taking the limit x → 0 (a precise statement is
given in Lemma 2.6).

In fact, the results in Corollaries 1.3 and 1.4 hold for any fast mean-reverting stochastic
volatility model (other than Heston’s) which satisfies a large deviation principle, as in Theorem
1.1, provided the asymptotic rate function satisfies the following: Λ∗(q; 0, t) is finite for all
q ∈ R; it is strictly increasing for q > 0 and strictly decreasing for q < 0; and Λ∗(0; 0, t) = 0.
This last remark is easily justified by going through the proofs of these results given in sections
2.2 and 2.3.

2. Moment generating function and its asymptotic. Much of our analysis relies on an
explicit calculation of a moment generating function and evaluating its limit. First we define
the quantity

Λε(p) = Λε(p;x, y, t) = ε logE[e
p
ε
Xε,t |Xε,0 = x, Yε,0 = y]

= ε logE[S
p
ε
ε,t|Sε,0 = ex, Yε,0 = y]

= εrpt+ ε logE[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y],(2.1)

where Sε,t, Yε,t,Xε,t, and S̃ε,t are defined in section 1.3. Using (1.9) and introducing a Brownian
motion W 3 independent of W 2, the moments of S̃ε,t can be formally rewritten as follows:

E[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0 Yε,sds+

p√
ε

∫ t
0

√
Yε,sdW 1

s |Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0 Yε,sds+

pρ√
ε

∫ t
0

√
Yε,sdW 2

s +
p
√

1−ρ2√
ε

∫ t
0

√
Yε,sdW 3

s |Yε,0 = y]

= e
xp
ε E[e

− p
2

∫ t
0
Yε,sds+

pρ√
ε

∫ t
0

√
Yε,sdW 2

s +
p2(1−ρ2)

2ε

∫ t
0
Yε,sds|Yε,0 = y]

= e
xp
ε E[e

pρ√
ε

∫ t
0

√
Yε,sdW 2

s − p2ρ2

2ε

∫ t
0 Yε,sdse

p(p−ε)
2ε

∫ t
0
Yε,sds|Yε,0 = y],

where we integrated with respect to the independent Brownian motion W 3 and redistributed
the bounded variation terms. Using the Girsanov transform, one obtains that

(2.2) E[S̃
p
ε
ε,t|S̃ε,0 = ex, Yε,0 = y] = e

xp
ε EQ[e

p(p−ε)
2ε

∫ t
0
Zε,sds|Zε,0 = y],

where, under the measure Q, the process Zε,t satisfies the equation

(2.3) dZε,t =
1

ε
(κθ − (κ− νρp)Zε,t) dt+

ν√
ε

√
Zε,tdW

Q
t ,

driven by a Brownian motion WQ. The result (2.2)–(2.3) is given in Lemma 2.3 in Andersen
and Piterbarg [2] (with a proof in B.1 of their supplementary material). Note that the proof
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of (2.2) in Andersen and Piterbarg [2] allows the possibility of “+∞ = +∞.” Although the
statement of their Lemma 2.3 is limited to the case of p(p − ε) > 0, the proof is not limited
to that case, allowing p ∈ R.

2.1. Explicit evaluation of Λε. The following two inequalities play important roles:

(ρνp− κ)2 ≥ p(p− ε)ν2,(2.4)

ρνp < κ.(2.5)

When (2.4) and (2.5) are both satisfied, then by results concerning exponential functionals
of CIR processes (see, e.g., Corollary 3 of Albanese and Lawi [1] or Theorem 3.1 of Hurd and
Kuznetsov [16]) we have

EQ[e
p(p−ε)

2ε

∫ t
0 Zε,sds|Zε,0 = y] = em(t)−n(t)y ,

where

m(t) = mε(t) =
κθt

ν2
(b− b̄) + 2κθ

ν2
log

(
b̄eb̄t/2

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)
,

n(t) = nε(t) =
−p(p− ε)

ε

(
sinh( b̄t2 )

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)
,

b̄ =
1

ε

√
(κ− νρp)2 − ν2p(p− ε) ,

b =
κ− νρp

ε
,

and consequently, Λε defined in (2.1) is given explicitly by

(2.6) Λε(p;x, y, t) = εrpt+ xp+ ε (mε(t)− nε(t)y) .
Note that when the limit exists as ε → 0+, the only contribution from ε (mε(t)− nε(t)y)

comes from the first term of m(t), which leads to formula (1.10) for Λ(p;x, t).
Next, we show that if (2.4) or (2.5) is violated, then Λε = +∞. First, we sort out (2.4)–

(2.5) more explicitly. The inequality (2.4) is equivalent to

c1,ε ≤ p ≤ c2,ε ,
where

c1,ε =
(εν − 2κρ) −

√
(εν − 2κρ)2 + 4κ2(1− ρ2)
2ν(1 − ρ2) ≤ 0,

c2,ε =
(εν − 2κρ) +

√
(εν − 2κρ)2 + 4κ2(1− ρ2)
2ν(1 − ρ2) ≥ 0.

We denote the case ε = 0 as follows:

c1 = − κ

ν(1− ρ) , c2 =
κ

ν(1 + ρ)
.
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Then in the limit ε→ 0+, (2.4) becomes

(2.7) (ρνp− κ)2 ≥ p2ν2 ⇔ c1 ≤ p ≤ c2.

Lemma 2.1. For ε small enough,

(2.8) c1 < c1,ε < 0 < c2 < c2,ε.

Moreover, (2.5) always holds if (2.4) is satisfied for ε small enough. In fact,

1. if 0 < ρ < 1, then c2 < c2,ε <
κ
ρν ;

2. if −1 < ρ < 0, then κ
ρν < c1 < c1,ε;

3. if ρ = 0, then (2.5) always holds.

Proof. Equation (2.8) follows from the definition by direct verification.

Assume that ρ > 0. Then (1 + ρ)−1 < ρ−1, and therefore c2 =
κ

ν(1+ρ) <
κ
ρν , since c2 < c2,ε

and limε c2,ε = c2, c2 < c2,ε <
κ
ρν when ε is small enough.

The other case follows by a similar computation (note that if −1 < ρ < 0, then ρ−1 <
−(1− ρ)−1, implying κ

ρν < c1).

We have the following result.

Lemma 2.2. Λε(p) is lower semicontinuous and convex in p. For ε > 0 small enough, (2.6)
holds when c1,ε ≤ p ≤ c2,ε.

Proof. The lower semicontinuity and convexity of Λε(p) follow from its definition as a
logarithmic transform of moment generating function for Xε,t.

The other conclusion follows from Lemma 2.1.

Using the convexity of Λε, we conclude next that Λε(p) = +∞ whenever p �∈ [c1,ε, c2,ε]
(again, when ε > 0 is small enough). This is implied by the behavior of ∂pΛε for p ∈ (c1,ε, c2,ε).
From (2.6), we get

∂pΛε = εrt+ x+ ε∂pm− εy∂pn

= εrt+ x+ ε
2κθ

ν2

(
∂b̄

b̄
+
t

2
∂b− (∂b̄)(1 + t

2b) cosh(
b̄t
2 ) + (∂b)(1 + t

2 b̄) sinh(
b̄t
2 )

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

)

+ y

(
(2p− ε) sinh( b̄2t) + (p2 − pε)(∂b̄) t2 cosh( b̄2t)

b̄ cosh( b̄t2 ) + b sinh( b̄t2 )

− (p2 − pε)(1 +
t
2 b̄)(∂b) sinh

2( b̄2 t) + (∂b̄)(1 + t
2b) sinh(

b̄
2 t) cosh(

b̄
2 t)

(b̄ cosh( b̄t2 ) + b sinh( b̄t2 ))
2

)
.

When p → c+1,ε, or c
−
2,ε, then b̄ → 0+ and ∂pb̄ → ±∞. By Lemma 2.1, in both cases we have

limp b > 0. Therefore, by the above expression for ∂pΛε, we conclude that, for ε > 0 small
enough,

(2.9) lim
p→c+1,ε

∂pΛε(p) = −∞, lim
p→c−2,ε

∂pΛε(p) =∞.

Since Λε is convex and lower semicontinuous, the limits (2.9) imply the following result.
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Lemma 2.3. For ε > 0 small enough, Λε is given by (2.6) when c1,ε ≤ p ≤ c2,ε, and +∞
otherwise.

Proof. The proof follows from Lemma 3.1 given in the appendix.
The following result follows easily.
Lemma 2.4. The function Λ given in (1.10) is lower semicontinuous and essentially smooth

in p. Moreover, Λε(·;x, y, t) Γ-converges to Λ(·;x, t) (see Definition 3.2). In particular, for
each x ∈ R, y > 0, t > 0, we have the following:

1. For every p ∈ R, there exists {pε} with pε → p such that

lim
ε→0+

Λε(pε;x, y, t) = Λ(p;x, t).

2. For every p ∈ R and every pε → p,

lim inf
ε→0+

Λε(pε;x, y, t) ≥ Λ(p;x, t).

By Lemma 3.3, Theorem 1.1 follows.
We now give the proof of Lemma 1.2, where we derive an explicit formula for Λ∗, the

Legendre transform of Λ defined by (1.10).

Proof of Lemma 1.2. By the essential smoothness property of Λ(p) = Λ(p; 0, t) in p, the
equation

∂

∂p
(qp− Λ(p)) = 0

has a solution p ∈ int(Dom(Λ)) = (− κ
ν(1−ρ) ,

κ
ν(1+ρ)), which equivalently solves

(2.10) q = ∂pΛ =
κθt

ν

(
−ρ+ (κ− ρνp)ρ+ νp√

(κ− ρνp)2 − ν2p2

)
.

If νq = −ρκθt, it follows from (2.10) that p = − κρ
ν(1−ρ2)

and therefore that (1.11) is

satisfied.
If νq �= −ρκθt, then (2.10) is a quadratic equation in p with the sign condition

κρ+ ν(1− ρ2)p
νq + ρκθt

> 0.

One can easily verify that p given by (1.11) is the only root satisfying the sign condition.
Consequently, the expression of Λ∗(q; 0, t) follows.

It follows by direct verification that Λ∗(0; 0, t) = 0, and that Λ∗(q; 0, t) is continuous,
finitely defined for all q ∈ R.

Also by direct calculation, ∂pΛ(0; 0, t) = 0 and

∂ppΛ(p; 0, t) =
κ3θt

((κ− ρνp)2 − ν2p2)3/2 > 0.

Therefore, for p ∈ int(Dom(Λ)), ∂pΛ(p; 0, t) is negative when p < 0 and is positive when p > 0.
By a convex analysis result, q = ∂pΛ(p; 0, t), p ∈ int(Dom(Λ)) if and only if p = ∂qΛ

∗(q; 0, t).
Consequently, Λ∗(q; 0, t) is strictly increasing when q > 0 and strictly decreasing for q < 0,
and it achieves its minimum (zero) when q = 0.
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2.2. Pricing. We now prove Corollary 1.3.
Recall that Sε,t = eXε,t and Sε,0 = S0. For δ > 0 we have

E[(Sε,t −K)+] ≥ E[1{Sε,t−K>δ}(Sε,t −K)+](2.11)

≥ δP (Sε,t > K + δ).

By Theorem 1.1, it follows that

lim inf
ε→0+

ε logE[(Sε,t −K)+] ≥ lim inf
ε→0+

ε logP (Xε,t > log(K + δ))

≥ − inf
q>log(K+δ)

Λ∗(q − log S0; 0, t) = −Λ∗
(
log

(
K + δ

S0

)
; 0, t

)
.

The last equality follows from the fact that log(KS0
) > 0 and that Λ∗(q; 0, t) is nondecreasing

for q in the region q ≥ 0 (see Lemma 1.2). Taking δ → 0+, by continuity of Λ∗, we obtain the
desired lower bound.

To show the upper bound, we note that for p, q > 1 such that p−1 + q−1 = 1,

E[(Sε,t −K)+] ≤ E1/p[|(Sε,t −K)+|p]E1/q [1{Sε,t−K≥0}] .

Therefore

ε logE[(Sε,t −K)+] ≤ ε

p
logE[(Sε,t)

p] + ε

(
1− 1

p

)
log P (Sε,t ≥ K)

≤ 1

p
Λε(εp) +

(
1− 1

p

)
ε logP (Sε,t ≥ K) .

Taking limp→+∞ lim supε→0+ on both sides and noting that limε→0+ Λε(εp) = 0, we deduce
(by Theorem 1.1) the desired upper bound

lim sup
ε→0+

ε logE[(Sε,t −K)+] ≤ −Λ∗
(
log

(
K

S0

)
; 0, t

)
.

2.3. Implied volatility. We prove Corollary 1.4, which gives the asymptotic behavior of the
implied volatility σε(t, x). Throughout, we denote the log-moneyness by x = log(K/S0) > 0,
and for simplicity σε(t, x) = σε, t and x being fixed in the following analysis.

First, we show that

(2.12) lim
ε→0+

σε
√
εt = 0.

By Lemma 1.2, Λ∗(x; 0, t) > 0. Let 0 < δ < Λ∗(x; 0, t). By the definition of σε and Corol-
lary 1.3, for ε > 0 small enough

e−(Λ∗(x;0,t)−δ)/ε ≥ E[(Sε,t −K)+]

= erεtS0Φ

(
−x+ rεt+ 1

2σ
2
ε εt

σε
√
εt

)
−KΦ

(
−x+ rεt− 1

2σ
2
ε εt

σε
√
εt

)
,
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where we have used the Black–Scholes formula and denoted by Φ the N (0, 1) cumulative
distribution function. Since E[(Sε,t − K)+] ≥ 0, one deduces that the right-hand side must
converge to zero as ε→ 0+. Let l ≥ 0 be the limit of σε

√
εt along a converging subsequence;

then l must satisfy

S0Φ

(
−x
l
+
l

2

)
−KΦ

(
−x
l
− l

2

)
= 0 ,

with x = log(K/S0) > 0. One can easily check that l = 0 is the only solution, and therefore
(2.12) holds.

The following estimate on Φ using its derivative denoted by φ is classical and will be useful
(we refer the reader to [21, section 14.8], for instance).

Lemma 2.5. For x > 0,

(2.13)

(
x+

1

x

)−1

φ(x) ≤ 1− Φ(x) ≤ 1

x
φ(x).

Next, we establish the lower bound for the limit in Corollary 1.4. We will use the classical
notation

d1 =
log
(
S0
K

)
+ rεt+ σ2

ε
2 εt

σε
√
εt

.

Let δ > 0; by the definition of σε(t) and Corollary 1.3, for ε > 0 small enough, we have

e−(Λ∗(x;0,t)+δ)/ε ≤ E[(Sε,t −K)+]

≤ erεtS0Φ (d1) = erεtS0 (1− Φ (−d1))
≤ erεtS0

(
1

−d1

)
φ (−d1) ,

where the last line follows from (2.13). By (2.12) and S0 < K, we know that limε→0+ d1 = −∞.
Taking (ε log) on both sides, one sees that the leading order term on the right-hand side is
given by

−ε
(
log(S0

K )
)2

2(σε
√
εt)2

= − x2

2σ2ε t
.

Therefore any limit point of σε along a converging subsequence (εn) will satisfy

(2.14) −(Λ∗(x, ; 0, t) + δ) ≤ − x2

2 limεn→0+ σ2εnt

for all δ > 0 and consequently the desired lower bound.

Next, we justify the upper bound. To avoid confusion, we denote by P the measure under
which Sε is defined in section 1.3 and by PBS = PBS(σε) the measure under which Sε follows
the Black–Scholes model with constant volatility σε = σε(t, x):

dSε,s = Sε,s (rds+ σεdWs) ,
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where W is a Brownian motion under PBS (note that here t is fixed and the maturity of the
call option is εt). Then, using the classical notation

d2 =
log
(

S0
K+δ

)
+ rεt− σ2

ε
2 εt

σε
√
εt

,

one obtains

e−(Λ∗(x;0,t)−δ)/ε ≥ EP [(Sε,t −K)+] = EPBS [(Sε,t −K)+]

≥ δPBS(Sε,t > K + δ)

= δ (1− Φ (−d2))
≥ δ

( −d2
1 + d22

)
φ(−d2),

where the second inequality follows by (2.11). Arguing as above, in the case of the lower
bound, we know that limε→0+ d2 = −∞. Taking (ε log) on both sides, the leading order term
on the right-hand side is given by

−
(
log( S0

K+δ )
)2

2σ2ε t
,

and therefore, along any converging subsequence,

−(Λ∗(x; 0, t) − δ) ≥ −
(
log(K+δ

S0
)
)2

2 limεn→0+ σ
2
εnt

.

Sending δ → 0+ gives the desired upper bound, which concludes the proof of Corollary 1.4.

To summarize, we proved that in this regime (fast mean-reverting volatility and short
maturity) the asymptotic implied volatility of an OTM call option (x > 0) is given by

σ(t, x)2 =
x2

2Λ∗(x; 0, t)t
,

where Λ∗ is given in Lemma 1.2. The same formula for x < 0 is derived similarly by considering
OTM put options. Using the explicit formula for Λ∗(x; 0, t), one can derive the ATM limit

lim
x→0

σ(t, x)2 = θ

by checking that near zero p(q; t) = q
θt +O(q2) and Λ(p; 0, t) = θt

2 p
2+O(p3), and consequently

Λ∗(q; 0, t) = q
( q
θt

)
− θt

2

( q
θt

)2
+O(q3) =

q2

2θt
+O(q3).

In fact, we can also derive the limit as ε→ 0+ of the ATM volatility σε(t, 0).
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Lemma 2.6. The asymptotic ATM volatility is given by

lim
ε→0+

σε(t, 0)
2 = lim

x→0
σ(t, x)2 = θ .

Proof. This is not a large deviation result but rather an averaging result of the type
studied in [10]. Since it involves convergence in distribution, it is more convenient to work
with put options whose payoffs are continuous and bounded. The ATM volatility is defined
by the unique positive number σε(0, t) satisfying

E[(S0 − Sε,t)+] = S0Φ(−d2)− erεtS0Φ(−d1) ,
where here

(2.15) d1,2 =
(r ± 1

2σε(0)
2)
√
εt

σε(0)
,

and we have denoted σε(0, t) = σε(0) since t is fixed. Using (1.5) and dividing on both sides
by
√
ε S0, one gets

E

[(
−√ε

∫ t

0
r
Sε,s
S0

ds−
∫ t

0

Sε,s
S0

√
Yε,sdW

1
s

)+
]

(2.16)

=
1√
ε

(
Φ(−d2)− erεtΦ(−d1)

)
.

One easily obtains the convergence in probability to zero of the following integrals:

√
ε

∫ t

0
r
Sε,s
S0

ds and

∫ t

0

(
Sε,s
S0
− 1

)√
Yε,sdW

1
s .

The convergence of the quadratic variation of the martingale term,
∫ t
0 Yε,s ds → σ̄2t, implies

the convergence in distribution(
−√ε

∫ t

0
r
Sε,s
S0

ds−
∫ t

0

Sε,s
S0

√
Yε,sdW

1
s

)
→
∫ t

0
σ̄dW 1

s = σ̄W 1
t ,

where σ̄2 is the ergodic average of the square volatility Yε,·, that is,

σ̄2 =

∫ +∞

0
yΓ(dy) ,

where Γ is the invariant distribution of the ergodic process Y defined by (1.2). A complete
proof of this result involves introducing a solution ψ of the Poisson equation

Lψ(y) = y − σ̄2 ,
where L is the infinitesimal generator of the process Y , and using Itô’s formula to show that∫ t

0

(
Yε,s − σ̄2

)
ds =

∫ t

0
Lψ(Yε,s)ds = ε (ψ(Yε,t)− ψ(Y0))−

√
ε

∫ t

0
σψ′(Yε,s)Yε,sdW 2

s
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Figure 1. Here we have plotted Λ, Λ∗, and the implied volatility in the small-ε limit as a function of
the log-moneyness x = log(K/S0). The parameters are t = 1, ergodic mean θ = .04, convexity ν/κ = 1.74
(κ = 1.15, ν = .2), and skew ρ = −.4 (dashed blue), ρ = 0 (solid black), ρ = +.4 (dotted red).

converges to zero (we refer the reader to [10] for details).

In this case, the invariant distribution is a Gamma with mean θ, and consequently σ̄2 = θ.
Therefore, the left-hand side of (2.16) converges to E[(σ̄W 1

t )
+] = σ̄

√
t/
√
2π =

√
θt/
√
2π. By

direct inspection of the right-hand side of (2.16) and the relation (2.15) between d1,2 and
σε(0), one deduces that σε(0) must converge to θ as ε→ 0+.

In Figure 1 we show plots of the functions Λ and Λ∗ and of the implied volatility smile/skew
obtained in the limit ε→ 0+.
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3. Appendix.

3.1. A property of convex functions in R.
Lemma 3.1. Suppose Λ : R �→ R̄ is convex and for some c ∈ R

lim inf
x→c−

Λ(x) > −∞ and lim
x→c−

∂Λ(x) = +∞ ;

then Λ(y) = +∞ for all y > c. Similarly, if for some c ∈ R

lim sup
x→c+

Λ(x) > −∞ and lim
x→c+

∂Λ(x) = −∞ ,

then Λ(y) = +∞ for all y < c.
Proof. Let y > c > x, and denote δ = y − c > 0. Then

Λ(y) ≥ Λ(x) + ∂Λ(x)(y − x).

Taking x→ c− gives

Λ(y) ≥ lim inf
x→c−

Λ(x) + lim sup
x→c−

∂Λ(x)δ = +∞.

3.2. Gärtner–Ellis theorem via Γ-convergence. We generalize the Gärtner–Ellis theorem
(see, e.g., Theorem 2.3.6 in Dembo and Zeitouni [7]) for Euclidean space valued random
variables.

Definition 3.2. Let sequence Λn,Λ : Rd �→ R̄. We say that Λn Γ-converges to Λ (denoted

Λn
Γ→ Λ) if, for all p ∈ Rd,

1. ( limsup inequality) there exists a sequence of {pn} converging to p such that

Λ(p) ≥ lim sup
n→∞

Λn(pn);

2. ( liminf inequality) for every sequence {pn} converging to p, we have

Λ(p) ≤ lim inf
n→∞ Λn(pn).

Let {Xn : n = 1, 2, . . .} be a sequence of Rd-valued random variables, and denote

Λn(p) =
1

n
logE[enpXn ], p ∈ Rd.

Lemma 3.3. Suppose that the limsup property in Γ-convergence holds for Λn to a Λ :
Rd �→ R̄. Then the large deviation upper bound holds for all compact F ⊂ Rd:

(3.1) lim sup
n→∞

1

n
log P (Xn ∈ F ) ≤ − inf

x∈F
Λ∗(x).

Furthermore, if 0 ∈ interior (D(Λ)), then {Xn} is exponentially tight and (3.1) holds for all
closed F ⊂ Rd.
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In addition to the above, suppose that the liminf property in Γ-convergence holds for Λn

to a Λ : Rd �→ R̄, and assume Λ(0) = 0. Then the following upper bound holds:

(3.2) lim inf
n→∞

1

n
log P (Xn ∈ G) ≥ − inf

x∈G∩F
Λ∗(x), G open in Rd,

where F is the set of exposed points of Λ∗ with exposing hyperplane in interior (D(Λ)), where
D(Λ) = {x : Λ(x) <∞}.

If Λ is lower semicontinuous and essentially smooth (see, e.g., Definition 2.3.5 in Dembo
and Zeitouni [7]), then infx∈G∩F Λ∗(x) = infx∈G Λ∗(x) for all G open, and Λ∗ is a good rate
function.

Proof. The upper bound (3.1) for compact set F has been shown in Theorem 1.2 of
Zabell [22] for more general case. Under the condition 0 ∈ interior(D(Λ)), the exponential
tightness follows (see, e.g., the proof on pages 48–49 of [7]).

We prove the lower bound (3.2) by highlighting the new ingredients needed to modify [7].
For each y ∈ F and η ∈ interior(D(Λ)) the exposing hyperplane for y, by the limsup inequality
of Λn to Λ, there exists ηn → η such that Λn(ηn) <∞. We define a new probability measure

dμ̃n

dPX−1
n

(z) = en(ηn·z−Λn(ηn)).

Using the liminf inequality of Λn to Λ, then, as in [7],

lim
δ→0

lim inf
n→∞

1

n
log P (Xn ∈ B(y, δ)) ≥ −Λ∗(y) + lim

δ→0+
lim inf
n→∞

1

n
log μ̃n(B(y, δ)).

Now let Λ̃(·) = Λ(·+ η)− Λ(η). Then Λ̃(0) = 0 and 0 ∈ interior(D(Λ̃)). Let

Λ̃n(p) =
1

n

∫
Rd

enpxμ̃n(dx).

Then Λ̃n
Γ→ Λ̃. The rest of the proof follows verbatim that in [7], concluding that

lim inf
n→∞

1

n
log μ̃n(B(y, δ)) = 0.

Hence (3.2) follows.
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A Fourier Transform Method for Spread Option Pricing∗

T. R. Hurd† and Zhuowei Zhou†

Abstract. Spread options are a fundamental class of derivative contracts written on multiple assets and are
widely traded in a range of financial markets. There is a long history of approximation methods
for computing such products, but as yet there is no preferred approach that is accurate, efficient,
and flexible enough to apply in general asset models. The present paper introduces a new formula
for general spread option pricing based on Fourier analysis of the payoff function. Our detailed
investigation, including a flexible and general error analysis, proves the effectiveness of a fast Fourier
transform implementation of this formula for the computation of spread option prices. It is found
to be easy to implement, stable, efficient, and applicable in a wide variety of asset pricing models.

Key words. spread options, multivariate spread options, jump diffusions, fast Fourier transform, gamma func-
tion

AMS subject classifications. 33B15, 65T50, 91B28
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1. Introduction. When Sjt, j = 1, 2, t ≥ 0, are two asset price processes, the basic
spread option with maturity T and strike K ≥ 0 is the contract that pays (S1T − S2T −K)+

at time T . If we assume the existence of a risk-neutral pricing measure, the risk-neutral
expectation formula for the time 0 price of this option, assuming a constant interest rate r, is

(1.1) Spr(S0;T,K) = e−rT
ES0 [(S1T − S2T −K)+].

The literature on applications of spread options is extensive and is reviewed by Carmona
and Durrleman [2], who explore further applications of spread options beyond the case of
equities modeled by geometric Brownian motion (GBM), in particular to energy trading. For
example, the difference between the price of crude oil and a refined fuel such as natural gas is
called a “crack spread.” “Spark spreads” refer to differences between the price of electricity
and the price of fuel: options on spark spreads are widely used by power plant operators to
optimize their revenue streams. Energy pricing requires models with mean reversion and jumps
very different from GBM, and pricing spread options in such situations can be challenging.

Closed formulas for (1.1) are known only for a limited set of asset models. In the Bachelier
stock model, St = (S1t, S2t) is an arithmetic Brownian motion, and in this case (1.1) has a
Black–Scholes-type formula for any T,K. In the special case K = 0 when St is a GBM, (1.1)
is given by the Margrabe formula [14].
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In the basic case where St is a GBM and K > 0, no explicit pricing formula is known.
Instead, there is a long history of approximation methods for this problem. Numerical inte-
gration methods, typically Monte Carlo based, are often employed. When possible, however,
the fastest option pricing engines by numerical integration are usually those based on the fast
Fourier transform (FFT) methods introduced by Carr and Madan [4]. Their first interest was
in single asset option pricing for geometric Lévy process models like the variance gamma (VG)
model, but their basic framework has since been adapted to a variety of option payoffs and
a host of asset return models where the characteristic function is known. In this work, when
the payoff function is not square integrable, it is important to account for singularities in the
Fourier transform variables.

Dempster and Hong [5] introduced a numerical integration method for spread options
based on two-dimensional FFTs that was shown to be efficient when the asset price processes
are GBMs or to have stochastic volatility. Three more recent papers study the use of multi-
dimensional convolution FFT methods to price a wide range of multiasset options, including
basket and spread options. These newer methods also compute by discretized Fourier trans-
forms over truncated domains, but unlike earlier work using the FFT, they apparently do
not rely on knowing the analytic Fourier transform of the payoff function or integrability of
the payoff function. Lord et al. [11] provide error analysis that explains their observation
that errors decay as a negative power of the size N of the grid used in computing the FFT,
provided the truncation is taken large enough. Leentvaar and Oosterlee [9] propose a parallel
partitioning approach to tackle the so-called curse of dimensionality when the number of un-
derlying assets becomes large. Jackson, Jaimungal, and Surkov [6] proposed a general FFT
pricing framework for multiasset options, including variations with Bermudan early exercise
features. These three papers all find that the FFT applied to the payoff function can perform
well even if the payoff function is not square integrable and observe that errors can be made
to decay as a negative power of N .

As an alternative to numerical integration methods, another stream uses analytical meth-
ods applicable to log-normal models that involve linear approximations of the nonlinear ex-
ercise boundary. Such methods are often very fast, but their accuracy is usually not easy
to determine. Kirk [7] presented an analytical approximation that performs well in practice.
Carmona and Durrleman [3] and later Li, Deng, and Zhou [10] demonstrate a number of lower
and upper bounds for the spread option price that combine to produce accurate analytical
approximation formulas in log-normal asset models. These results extend to approximate
values for the Greeks.

The main purpose of the present paper is to give a numerical integration method for
computing spread options in two or higher dimensions using the FFT. Unlike the above
multiasset FFT methods, it is based on square integrable integral formulas for the payoff
function, and like those methods it is applicable to a variety of spread option payoffs in any
model for which the characteristic function of the joint return process is given analytically.
Since our method involves only smooth square integrable integrands, the error estimates we
present are quite straightforward and standard. In fact, we demonstrate that the asymptotic
decay of errors is exponential, rather than polynomial, in the size N of the Fourier grid. For
option payoffs that can be made square integrable, our method has the flexibility to handle a
wide range of desirable asset return models, all with a very competitive computational expense.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

144 T. R. HURD AND ZHUOWEI ZHOU

The results we describe stem from the following new formula,1 which gives a square
integrable Fourier representation of the basic spread option payoff function P (x1, x2) =
(ex1 − ex2 − 1)+.

Theorem 1.1. For any real numbers ε = (ε1, ε2) with ε2 > 0 and ε1 + ε2 < −1 and x =
(x1, x2),

2

(1.2) P (x) = (2π)−2

∫∫
R2+iε

eiux
′
P̂ (u)d2u, P̂ (u) =

Γ(i(u1 + u2)− 1)Γ(−iu2)
Γ(iu1 + 1)

.

Here Γ(z) is the complex gamma function defined for �e(z) > 0 by the integral Γ(z) =∫∞
0 e−ttz−1dt.

Using this theorem, whose proof is given in the appendix, we will find that we can follow
the logic of Carr and Madan to derive numerical algorithms for efficient computation of a
variety of spread options and their Greeks. The basic strategy to compute (1.1) is to combine
(1.2) with an explicit formula for the characteristic function of the bivariate random variable
Xt = (log S1t, log S2t). For the remainder of this paper, we make a simplifying assumption.

Assumption 1. For any t > 0, the increment Xt −X0 is independent of X0.
This implies that the characteristic function of XT factorizes

(1.3) EX0 [e
iuX′

T ] = eiuX
′
0Φ(u;T ), Φ(u;T ) := EX0 [e

iu(XT−X0)′ ],

where Φ(u;T ) is independent of X0. Although the above assumption rules out mean-reverting
processes that often arise in energy applications, it holds for typical stock models: moreover,
the method we propose can be generalized to a variety of mean-reverting processes. Using
Theorem 1.1 and (1.3), the spread option formula can be written as an explicit two-dimensional
Fourier transform in the variable X0:

Spr(X0;T ) = e−rT
EX0 [(e

X1T − eX2T − 1)+]

= e−rT
EX0

[
(2π)−2

∫∫
R2+iε

eiuX
′
T P̂ (u)d2u

]
= (2π)−2e−rT

∫∫
R2+iε

EX0 [e
iuX′

T ]P̂ (u)d2u

= (2π)−2e−rT

∫∫
R2+iε

eiuX
′
0Φ(u;T )P̂ (u)d2u.(1.4)

The Greeks are handled in exactly the same way. For example, the Delta Δ1 := ∂Spr/∂S10 is
obtained as a function of S0 by replacing Φ in (1.4) by ∂Φ/∂S10.

Double Fourier integrals like this can be approximated numerically by a two-dimensional
FFT. Such approximations involve both a truncation and discretization of the integral, and the
two properties that determine their accuracy are the decay of the integrand of (1.4) in u-space

1It came to our attention after the submission of our paper that the result of this theorem has been
simultaneously and independently stated in another working paper by Antonov and Arneguy [1].

2Here and in rest of the paper, some variables such as u, ε, x are defined to be row vectors with components
u = (u1, u2), etc. We use implied matrix multiplication so that ux′ = u1x1 + u2x2, where x

′ denotes the
(unconjugated) transpose of x.
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and the decay of the function Spr in x-space. The remaining issue of computing the gamma
function is not really difficult. Fast and accurate computation of the complex gamma function
in, for example, MATLAB, is based on the Lanczos approximation popularized by [15].3

In this paper, we demonstrate how our method performs for computing spread options
in three different two-asset stock models, namely GBM, a three factor stochastic volatility
(SV) model, and the VG model. Section 2 provides the essential definitions of the three
types of asset return models, including explicit formulas for their bivariate characteristic
functions. Section 3 discusses how the two-dimensional FFT can be implemented for our
problem. Section 4 provides error analysis that shows how the accuracy and speed will depend
on the implementation choices made. Section 5 describes briefly how the method extends to the
computation of spread option Greeks. Section 6 gives the detailed results of the performance
of the method in the three asset return models. In this section, the accuracy of each model
is compared to benchmark values computed by an independent method for a reference set
of option prices. We also demonstrate that the computation of the spread option Greeks in
such models is equally feasible. Section 7 extends all the above results to several kinds of
basket options on two or more assets. Although the formulation is simple, the resulting FFTs
become, in practice, much slower to compute in higher dimensions, due to the so-called curse
of dimensionality: in such cases, one can implement the parallel partitioning approach of [9].

2. Three kinds of stock models.

2.1. The case of GBM. In the two-asset Black–Scholes model, the vector St = (S1t, S2t)
has components

Sjt = Sj0 exp[(r − σ2j /2)t+ σjW
j
t ], j = 1, 2,

where σ1, σ2 > 0 and W 1,W 2 are risk-neutral Brownian motions with constant correlation
ρ, |ρ| < 1. The joint characteristic function of XT = (log S1T , log S2T ) as a function of u =
(u1, u2) is of the form eiuX

′
0Φ(u;T ) with

(2.1) Φ(u;T ) = exp[iu(rTe− σ2T/2)′ − uΣu′T/2],

where e = (1, 1), Σ = [σ21 , σ1σ2ρ;σ1σ2ρ, σ
2
2 ], and σ

2 = diagΣ. We remind the reader that we
use implied matrix multiplication and that u′ denotes the (unconjugated) matrix transpose.
Substituting this expression into (1.4) yields the spread option formula

(2.2) Spr(X0;T ) = (2π)−2e−rT

∫∫
R2+iε

eiuX
′
0 exp[iu(rTe− σ2T/2)′ − uΣu′T/2]P̂ (u)d2u.

As we discuss in section 3, we recommend that this be computed numerically using the FFT.

2.2. Three factor SV model. The spread option problem in a three factor stochastic
volatility model was given as an example by Dempster and Hong [5]. Their asset model is

3According to these authors, computing the gamma function becomes “not much more difficult than other
built-in functions that we take for granted, such as sin x or ex.”
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defined by SDEs for Xt = (log S1t, log S2t) and the squared volatility vt:

dX1 = [(r − δ1 − σ21/2)dt + σ1
√
vdW 1],

dX2 = [(r − δ2 − σ22/2)dt + σ2
√
vdW 2],

dv = κ(μ − v)dt+ σv
√
vdW v,

where the three Brownian motions have correlations:

E[dW 1dW 2] = ρdt,

E[dW 1dW v] = ρ1dt,

E[dW 2dW v] = ρ2dt.

As discussed in that paper, the asset return vector has the joint characteristic function
eiuX

′
0Φ(u;T, v0), where

Φ(u;T, v0) =

[(
2ζ(1− e−θT )

2θ − (θ − γ)(1 − e−θT )

)
v0

+ iu(re− δ)′T − κμ

σ2v

[
2 log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+ (θ − γ)T

]]

and

ζ := −1

2

[(
σ21u

2
1 + σ22u

2
2 + 2ρσ1σ2u1u2

)
+ i
(
σ21u1 + σ22u2

)]
,

γ := κ− i(ρ1σ1u1 + ρ2σ2u2)σν ,

θ :=
√
γ2 − 2σ2vζ.

2.3. Exponential Lévy models. Many stock price models are of the form St = eXt , where
Xt is a Lévy process for which the characteristic function is explicitly known. We illus-
trate with the example of the VG process introduced by [13] the three parameter process Yt
with Lévy characteristic triple (0, 0, ν), where the Lévy measure is ν(x) = λ[e−a+x1x>0 +
ea−x1x<0]/|x| for positive constants λ, a±. The characteristic function of Yt is

(2.3) ΦYt(u) =

[
1 + i

(
1

a−
− 1

a+

)
u+

u2

a−a+

]−λt

.

To demonstrate the effects of correlation, we take a bivariate VG model driven by three
independent VG processes Y1, Y2, Y with common parameters a± and λ1 = λ2 = (1 − α)λ,
λY = αλ. The bivariate log return process Xt = log St is a mixture:

(2.4) X1t = X10 + Y1t + Yt, X2t = X20 + Y2t + Yt.

Here α ∈ [0, 1] leads to dependence between the two return processes but leaves their marginal
laws unchanged. An easy calculation leads to the bivariate characteristic function eiuX

′
0Φ(u;T )
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with

Φ(u;T ) =

[
1 + i

(
1

a−
− 1

a+

)
(u1 + u2) +

(u1 + u2)
2

a−a+

]−αλt

(2.5)

×
[
1 + i

(
1

a−
− 1

a+

)
u1 +

u21
a−a+

]−(1−α)λt [
1 + i

(
1

a−
− 1

a+

)
u2 +

u22
a−a+

]−(1−α)λt

.

3. Numerical integration by FFT. To compute (1.4) in these models we approximate the
double integral by a double sum over the lattice

Γ = {u(k) = (u1(k1), u2(k2)) | k = (k1, k2) ∈ {0, . . . , N − 1}2}, ui(ki) = −ū+ kiη

for appropriate choices of N, η, ū := Nη/2. For the FFT it is convenient to take N to be
a power of 2 and lattice spacing η such that truncation of the u-integrals to [−ū, ū] and
discretization leads to an acceptable error. Finally, we choose initial values X0 = log S0 to lie
on the reciprocal lattice with spacing η∗ = 2π/Nη = π/ū and width 2x̄, x̄ = Nη∗/2:

Γ∗ = {x(�) = (x1(�1), x2(�2)) | � = (�1, �2) ∈ {0, . . . , N − 1}2}, xi(�i) = −x̄+ �iη
∗.

For any S0 = eX0 with X0 = x(�) ∈ Γ∗ we then have the approximation

(3.1) Spr(X0;T ) ∼ η2e−rT

(2π)2

N−1∑
k1,k2=0

ei(u(k)+iε)x(�)′Φ(u(k) + iε;T )P̂ (u(k) + iε).

Now, as usual for the discrete FFT, as long as N is even,

iu(k)x(�)′ = iπ(k1 + k2 + �1 + �2) + 2πik�′/N (mod 2πi).

This leads to the double inverse discrete Fourier transform (i.e., the MATLAB function ifft2)

Spr(X0;T ) ∼ (−1)�1+�2e−rT

(
ηN

2π

)2

e−εx(�)′

⎡⎣ 1

N2

N−1∑
k1,k2=0

e2πik�
′/NH(k)

⎤⎦
= (−1)�1+�2e−rT

(
ηN

2π

)2

e−εx(�)′ [ifft2(H)](�),(3.2)

where
H(k) = (−1)k1+k2Φ(u(k) + iε;T )P̂ (u(k) + iε).

4. Error discussion. The selection of suitable values for ε, N , and η when implementing
the above FFT approximation of (1.4) is a somewhat subtle issue whose details depend on
the asset model in question. We now give a general discussion of the pure truncation error
and pure discretization error in (3.1): a more complete analysis of the combined errors using
methods described in [8] will lead to the same broad conclusions.

The pure truncation error, defined by taking η → 0, N → ∞ while keeping ū = Nη/2
fixed, can be made smaller than δ1 	 1 if the integrand of (1.4) is small and decaying outside
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the square [−ū + iε1, ū + iε1] × [−ū + iε2, ū + iε2]. Corollary A.1, proved in the appendix,
gives a uniform O(|u|−2) upper bound on P̂ , while Φ(u) can generally be seen directly to have
some u-decay. Thus the truncation error will be less than δ1 if one picks ū large enough so
that |Φ| < O(δ1) and has decay outside the square.

The pure discretization error, defined by taking ū → ∞, N → ∞ while keeping x̄ = π/η
fixed, can be made smaller than δ2 	 1 if eεX

′
0Spr(X0), taken as a function of X0 ∈ R

2, has
rapid decay in X0. This is related to the smoothness of Φ(u) and the choice of ε. The first two
models are not very sensitive to ε, but in the VG model the following conditions are needed
to ensure that singularities in u-space are avoided:

−a+ < ε1, ε2, ε1 + ε2 < a−.

By applying the Poisson summation formula to eεX
′
0Spr(X0), one can write the discretization

error as

(4.1) Spr(x̄)(X0)− Spr(X0) =
∑

�∈Z2\{(0,0)}
e2x̄ε�

′
Spr(X0 + 2x̄�).

One can verify using brute force bounds that the terms on the right-hand side of (4.1) are all
small and decay in all lattice directions, provided x̄ is sufficiently large. Thus the discretization
error will be less than δ2 for all X0 ∈ [−cx̄, cx̄]2 with 0 < c	 1 if one picks x̄ large enough so
that |eεX′

0Spr(X0)| < O(δ2) and has decay outside the square [−x̄, x̄]2.
In summary, one expects that the combined truncation and discretization error will be

close to δ1 + δ2 if ū = Nη/2 and η = π/x̄ are each chosen as above. We shall see in section 6
that the observed errors are consistent with the above analysis that predicts an asymptotic
exponential decay with the size N of the Fourier lattice for the models we address.

5. Greeks. The FFT method can also be applied to the Greeks, enabling us to tackle
hedging and other interesting problems. It is particularly efficient for the GBM model, where
differentiation under the integral sign is always permissible. For instance, the FFT formula
for vega (the sensitivity to σ) takes the form

∂Spr(S0;T )

∂σ1
= (−1)�1+�2e−rT

(
ηN

2π

)2

e−εx(�)′
[
ifft2

(
∂H

∂σ1

)]
(�),

∂H(k)

∂σ1
=

[
−(u(k) + iε)

(
i
∂σ2

∂σ1

′
+
∂Σ

∂σ1
(u(k) + iε)′

)
T

2

]
H(k),

where ∂σ2

∂σ1
= [2σ1, 0] and

∂Σ
∂σ1

= [2σ1, ρσ2; ρσ2, 0]. Other Greeks including those of higher
orders can be computed in a similar fashion. This method needs to be used with care for the
SV and VG models, since it is possible that differentiation leads to an integrand that decays
slowly.

6. Numerical results. Our numerical experiments were coded and implemented in
MATLAB version 7.6.0 on an Intel 2.80 GHz machine running under Linux with 1 GB physical
memory. If they were coded in C++ with similar algorithms, we should expect to see faster
performance.
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Figure 1. This graph shows the objective function Err for the numerical computation of the GBM spread
option versus the benchmark. Errors are plotted against the grid size for different choices of ū. The parameter
values are those of the GBM model used by [5]: r = 0.1, T = 1.0, ρ = 0.5, δ1 = 0.05, σ1 = 0.2, δ2 = 0.05,
σ2 = 0.1.

The strength of the FFT method is demonstrated by comparison with accurate benchmark
prices computed by an independent (usually extremely slow) method. Based on a representa-
tive selection of initial log-asset value pairs log Si

10 =
iπ
10 , logS

j
20 = −π

5 +
jπ
10 , i, j ∈ 1, 2, 3, . . . , 6,

the objective function we measure is defined as

(6.1) Err =
1

36

6∑
i,j=1

|log(M ij)− log(Bij)|,

whereM ij and Bij are the corresponding FFT computed prices and benchmark prices. These
choices cover a wide range of moneyness, from deep out-of-the-money to deep in-the-money.
Since these combinations all lie on lattices Γ∗ corresponding to N = 2n and ū/10 = 2m for
integers n,m, all 36 prices M ij can be computed simultaneously with a single FFT.

Figure 1 shows how the FFT method performs in the two-dimensional GBM model for
different choices of N and ū. Since the two factors are bivariate normal, benchmark prices can
be calculated to high accuracy by one-dimensional integrations. In Figure 1 we can clearly
see the effects of both truncation errors and discretization errors. For a fixed ū, the objective
function decreases when N increases. The ū = 20 curve flattens out near 10−5 due to its
truncation error of that magnitude. In turn, we can quantify its discretization errors with
respect to N by subtracting the truncation error from the total error. The flattening of the
curves with ū = 40, 80, and 160 near 10−14 should be attributed to MATLAB round-off
errors: because of the rapid decrease of the characteristic function Φ, their truncation error
is negligible. For a fixed N , increasing ū brings two effects: reducing truncation error and
enlarging discretization error. These effects are well demonstrated in Figure 1.
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Figure 2. This graph shows the objective function Err for the numerical computation of the SV spread
option versus the benchmark computed using the FFT method itself with parameters N = 212 and ū = 80. The
parameter values are those of the SV model used by [5]: r = 0.1, T = 1.0, ρ = 0.5, δ1 = 0.05, σ1 = 1.0,
ρ1 = −0.5, δ2 = 0.05, σ2 = 0.5, ρ2 = 0.25, v0 = 0.04, κ = 1.0, μ = 0.04, σv = 0.05.

For the SV model, no analytical or numerical method we know is consistently accurate
enough to serve as an independent benchmark. Instead, we computed benchmark prices using
the FFT method itself with N = 212 and ū = 80. The resulting objective function, shown in
Figure 2, exhibits behavior similar to Figure 1 and is consistent with accuracies at the level
of roundoff. We also verified that the benchmark prices are consistent to a level of 4 × 10−4

with those resulting from an intensive Monte Carlo computation using 1,000,000 simulations,
each consisting of 2000 time steps. The computational cost to further reduce the Monte Carlo
simulation error becomes prohibitive.

Because the VG process has an explicit probability density function in terms of a Bessel
function [12], rather accurate benchmark spread option values for the VG model can be
computed by a three-dimensional integration.4 We used a Gaussian quadrature algorithm set
with a high tolerance of 10−9 to compute the integrals for these benchmarks. The resulting
objective function for various values of ū, N is shown in Figure 3. The truncation error for
ū = 20 is about 2× 10−5. The other three curves flatten out near 5× 10−8, a level we identify
as the accuracy of the benchmark. A comparable graph (not shown), using benchmark prices
computed with the FFT method with N = 212 and ū = 80, showed behavior similar to Figures
1 and 2 and is consistent with the FFT method being capable of producing accuracies at the
level of roundoff.

The strength of the FFT method is further illustrated by the computation of individual
prices and relative errors shown in Tables 1, 2, and 3. One can observe that an FFT with
N = 256 is capable of producing very high accuracy in all three models. It is interesting to note
that FFT prices in almost all cases were biased low compared to the benchmark. Exceptions

4We thank a referee for this suggestion.
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Figure 3. This graph shows the objective function Err for the numerical computation of the VG spread
option versus the benchmark values computed with a three-dimensional integration. Errors are plotted against
the grid size for five different choices of ū. The parameters are r = 0.1, T = 1.0, ρ = 0.5, a+ = 20.4499,
a− = 24.4499, α = 0.4, λ = 10.

Table 1
Benchmark prices for the two-factor GBM model of [5] and relative errors for the FFT method with

different choices of N . The parameter values are the same as Figure 1 except we fix S10 = 100, S20 = 96,
ū = 40. The interpolation is based on a matrix of prices with discretization of N = 256 and a polynomial with
a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

0.4 8.312461 −3.8 −4.5E-4 −1.9E-8 −1.7E-14 1.9E-8

0.8 8.114994 −3.8E-1 −4.6E-4 −2.0E-8 −7E-15 2.0E-8

1.2 7.920820 −7.3E-2 −4.6E-4 −2.0E-8 −2.8E-14 2.0E-8

1.6 7.729932 −7.2E-2 −4.7E-4 −2.0E-8 −4.8E-14 2.0E-8

2.0 7.542324 −7.3E-2 −4.8E-4 −2.1E-8 −4.9E-14 2.1E-8

2.4 7.357984 −7.5E-2 −4.9E-4 −2.1E-8 −7.3E-14 2.1E-8

2.8 7.176902 −7.6E-2 −5.0E-4 −2.2E-8 −6.8E-14 2.2E-8

3.2 6.999065 −7.8E-2 −5.1E-4 −2.2E-8 −9.7E-14 2.2E-8

3.6 6.824458 −8.0E-2 −5.3E-4 −2.3E-8 −8.2E-14 2.3E-8

4.0 6.653065 −8.1E-2 −5.4E-4 −2.3E-8 −9.0E-14 2.3E-8

to this observation seem only to appear at a level of the accuracy of the benchmark itself.

The FFT computes in a single iteration an N × N panel of prices spread corresponding
to initial values S10 = ex10+�1η∗ , S20 = ex20+�2η∗ , K = 1, (�1, �2) ∈ {0, . . . , N − 1}2. If the
desired selection of {S10, S20,K} fits into this panel of prices, or its scaling, a single FFT
suffices. If not, then one has to match (x10, x20) with each combination, and run several
FFTs, with a consequent increase in computation time. However, we have found that an
interpolation technique is very accurate for practical purposes. For instance, prices for multiple
strikes with the same S10 and S20 are approximated by a polynomial fit along the diagonal
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Table 2
Benchmark prices for the three factor SV model of [5] and relative errors for the FFT method with different

choices of N . The parameter values are the same as Figure 2 except we fix S10 = 100, S20 = 96, ū = 40. The
interpolation is based on a matrix of prices with discretization of N = 256 and a polynomial with a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

2.0 7.548502 −7.3E-2 −4.8E-4 −2.1E-8 1.6E-11 −2.1E-8

2.2 7.453536 −7.4E-2 −4.9E-4 −2.1E-8 1.2E-11 −2.1E-8

2.4 7.359381 −7.5E-2 −4.8E-4 −2.1E-8 8.6E-12 −2.1E-8

2.6 7.266037 −7.5E-2 −5.0E-4 −2.1E-8 4.6E-12 −2.1E-8

2.8 7.173501 −7.6E-2 −5.0E-4 −2.2E-8 6.1E-13 −2.2E-8

3.0 7.081775 −7.7E-2 −5.1E-4 −2.2E-8 −3.5E-12 −2.2E-8

3.2 6.990857 −7.8E-2 −5.2E-4 −2.2E-8 −7.7E-12 −2.2E-8

3.4 6.900745 −7.9E-2 −5.2E-4 −2.2E-8 −1.2E-11 −2.2E-8

3.6 6.811440 −8.0E-2 −5.3E-4 −2.3E-8 −1.7E-11 −2.3E-8

3.8 6.722939 −8.1E-2 −5.3E-4 −2.3E-8 −2.0E-11 −2.3E-8

4.0 6.635242 −8.1E-2 −5.4E-4 −2.3E-8 −2.4E-11 −2.3E-8

Table 3
Benchmark prices for the VG model and relative errors for the FFT method with different choices of N .

The parameter values are the same as Figure 3 except we fix S10 = 100, S20 = 96, ū = 40. The interpolation
is based on a matrix of prices with discretization of N = 256 and a polynomial with a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

2.0 9.727458 −5.9E-2 −3.9E-4 1.5E-8 3.2E-8 1.5E-8

2.2 9.630005 −5.9E-2 −3.9E-4 1.7E-8 3.4E-8 1.7E-8

2.4 9.533199 −6.0E-2 −3.9E-4 1.8E-8 3.5E-8 1.8E-8

2.6 9.437040 −6.0E-2 −4.0E-4 2.0E-8 3.7E-8 2.0E-8

2.8 9.341527 −6.0E-2 −4.0E-4 2.5E-8 4.3E-8 2.5E-8

3.0 9.246662 −6.1E-2 −4.0E-4 2.5E-8 4.3E-8 2.5E-8

3.2 9.152445 −6.1E-2 −4.1E-4 2.3E-8 4.1E-8 2.3E-8

3.4 9.058875 −6.2E-2 −4.1E-4 3.0E-8 4.8E-8 3.0E-8

3.6 8.965954 −6.2E-2 −4.1E-4 3.0E-8 4.8E-8 3.0E-8

3.8 8.873681 −6.3E-2 −4.2E-4 2.8E-8 4.6E-8 2.8E-8

4.0 8.782057 −6.4E-2 −4.2E-4 2.9E-8 4.7E-8 2.9E-8

of the price panel: Spr(S0;K1) = K1 · spread (1, 1), Spr(S0;K1e
−η∗) = K1e

−η∗ · spread (2, 2),
Spr(S0;K1e

−2η∗) = K1e
−2η∗ · spread (3, 3), . . . . The results of this technique are recorded

in Tables 2 and 3 in the column “Interpolation.” We can see this technique generates very
accurate results and moreover, saves computational resources.

Finally, we computed first order Greeks using the method described at the beginning of
section 3 and compared them with finite differences. As seen in Table 4, the two methods
come up with very consistent results. The Greeks of our at-the-money spread option exhibit
some resemblance to those of the at-the-money European put/call option. The delta of S1 is
close to the delta of the call option, which is about 0.5. And the delta of S2 is close to the
delta of the put option, which is also about 0.5. The time premium of the spread option is
positive. The option price is much more sensitive to S1 volatility than to S2 volatility. It is
an important feature that the option price is negatively correlated with the underlying corre-
lation: Intuitively speaking, if the two underlyings are strongly correlated, their comovements
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Table 4
The Greeks for the GBM model compared between the FFT method and the finite difference method. The

FFT method uses N = 210 and ū = 40. The finite difference uses a two-point central formula, in which the
displacement is ±1%. Other parameters are the same as Table 1 except that we fix the strike K = 4.0 to make
the option at-the-money.

Delta(S1) Delta(S2) Theta Vega(σ1) Vega(σ2) ∂Spr/∂ρ

FD 0.512648 −0.447127 3.023823 33.114315 −0.798959 −4.193749

FFT 0.512705 −0.447079 3.023777 33.114834 −0.798972 −4.193728

Table 5
Computing time of FFT for a panel of prices.

Discretization GBM SV VG

64 0.091647 0.083326 0.109537

128 0.099994 0.120412 0.139276

256 0.126687 0.234024 0.220364

512 0.240938 0.711395 0.621074

1024 0.609860 2.628901 2.208770

2048 2.261325 10.243228 8.695122

diminish the probability that S1T develops a wide spread over S2T . This result is consistent
with observations made by [10].

Since the FFT method naturally generates a panel of prices and interpolation can be
implemented accurately with negligible additional computational cost, it is appropriate to
measure the efficiency of the method by timing the computation of a panel of prices. Such
computing times are shown in Table 5. For the FFT method, the main computational cost
comes from the calculation of the matrixH in (3.2) and the subsequent FFT ofH. We see that
the GBM model is noticeably faster than the SV and VG models: This is due to a recursive
method used to calculate the H matrix entries of the GBM model, which is not applicable for
the SV and VG models. The number of calculations for H is of order N2, which for large N
exceeds the N logN of the FFT of H, and thus the advantage of this efficient algorithm for the
GBM model is magnified as N increases. However, our FFT method is still very fast for the
SV and VG models and is able to generate a large panel of prices within a couple of seconds.

7. High-dimensional basket options. The ideas of section 2 turn out to extend naturally
to two particular classes of basket options on M ≥ 2 assets.

Proposition 7.1. Let M ≥ 2.
1. For any real numbers ε = (ε1, . . . , εM ) with εm > 0 for 2 ≤ m ≤ M and ε1 <
−1−∑M

m=2 εm,

(7.1)

(
ex1 −

M∑
m=2

exm − 1

)+

= (2π)−M

∫
RM+iε

eiux
′
P̂M (u)dMu,

where for u = (u1, . . . , uM ) ∈ C
M

(7.2) P̂M (u) =
Γ(i(u1 +

∑M
m=2 um)− 1)

∏M
m=2 Γ(−ium)

Γ(iu1 + 1)
.
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2. For any real numbers ε = (ε1, . . . , εM ) with εm > 0 for all m ≤M ,

(7.3)

(
1−

M∑
m=1

exm

)+

= (2π)−M

∫
RM+iε

eiux
′
Q̂M (u)dMu,

where for u = (u1, . . . , uM ) ∈ C
M

(7.4) Q̂M (u) =

∏M
m=1 Γ(−ium)

Γ(−i∑M
m=1 um + 2)

.

Remark. Clearly, these two results can be applied directly to obtain an M -dimensional
FFT method to price M -asset basket options that pay off either (S1T −S2T −· · ·−SMT −1)+

or (1− S1T − S2T − · · · − SMT )
+. However, it is important to also note that by a generalized

“put-call parity” one can also price options that pay off either (1 + S2T + · · ·+ SMT − S1T )+
or (S1T + S2T + · · ·+ SMT − 1)+.

Proof. The proof of both parts of the above proposition is based on a simple lemma proved
in the appendix.

Lemma 7.2. Let z ∈ R and u = (u1, . . . , uM )′ ∈ C
M with �m(um) > 0 for all m ≤ M .

Then

(7.5)

∫
RM

ezδ

(
ez −

M∑
m=1

exm

)
e−iux′

dMx =

∏M
m=1 Γ(−ium)

Γ(−i∑M
m=1 um)

e−i(
∑M

m=1 um)z.

To prove (7.2), we need to compute, for u ∈ C
M ,

P̂M (u) =

∫
RM

(
ex1 −

M∑
m=2

exm − 1

)+

e−iũx̃dMx.

We introduce the factor 1 =
∫
R
δ(ez −∑M

m=2 e
xm)ezdz and interchange the z integral with the

x integrals. Then using Lemma 7.2 one finds

P̂M (u) =

∫
R2

(ex1 − ez − 1)+

[∫
RM−1

ezδ

(
ez −

M∑
m=2

exm

)
e−iux′

dx2 . . . dxM

]
dx1dz

=

∏M
m=2 Γ(−ium)

Γ(−i∑M
m=2 um)

∫
R2

e−iu1x1e−i(
∑M

m=2 um)z(ex1 − ez − 1)+dx1dz.

We can then apply Theorem 1.1 and obtain the result.

The proof of (7.4) is similar to the proof of (7.2), where the two-dimensional problem can
be deduced first and extended to higher dimensions with the application of Lemma 7.2.

8. Conclusion. This paper presents a new approach to the valuation of spread options,
an important class of financial contracts. The method is based on a newly discovered explicit
formula for the Fourier transform of the spread option payoff in terms of the gamma function.
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In the final section we extended this formula to spread options in all dimensions and a certain
class of basket options.

This mathematical result leads to simple and transparent algorithms for pricing spread
options and other basket options in all dimensions. We have shown that the powerful tool
of the FFT provides an accurate and efficient implementation of the pricing formula in low
dimensions. For implementation of higher-dimensional problems, the curse of dimensionality
sets in, and such cases should proceed using parallel partitioning methods as introduced in [9].
The difficulties and pitfalls of the FFT, of which there are admittedly several, are by now well
understood, and thus the reliability and stability properties of our method are clear. We
present a detailed discussion of errors and show which criteria determine the optimal choice
of implementation parameters.

Many important processes in finance, particularly affine models and Lévy jump models,
have well-known explicit characteristic functions and can be included in the method with little
difficulty. Thus the method can easily be applied to important problems arising in energy and
commodity markets.

Finally, the Greeks can be systematically evaluated for such models, with similar perfor-
mance and little extra work.

While our method provides a basic analytic framework for spread options, much as has
been done for one-dimensional options, it is certainly possible to add refinements that will
improve convergence rates. Such techniques might include, for example, analytic computation
of residues combined with contour deformation.

Appendix. Proofs of Theorem 1.1 and Lemma 7.2.
Proof of Theorem 1.1. Suppose ε2 > 0, ε1+ε2 < −1. One can then verify either directly or

from the argument that follows that eε·xP (x), ε = (ε1, ε2), is in L
2(R2). Therefore, application

of the Fourier inversion theorem to eε·xP (x), ε = (ε1, ε2), implies that

(A.1) P (x) = (2π)−2

∫∫
R2+iε

eiu·xg(u)d2u,

where

g(u) =

∫∫
R2

e−iu·xP (x)d2x.

By restricting to the domain {x : x1 > 0, ex2 < ex1 − 1} we have

g(u) =

∫ ∞

0
e−iu1x1

[∫ log(ex1−1)

−∞
e−iu2x2 [(ex1 − 1)− ex2 ]dx2

]
dx1

=

∫ ∞

0
e−iu1x1(ex1 − 1)1−iu2

[
1

−iu2 −
1

1− iu2

]
dx1.

The change of variables z = e−x1 then leads to

g(u) =
1

(1− iu2)(−iu2)
∫ 1

0
ziu1

(
1− z
z

)1−iu2 dz

z
.
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The beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

is defined for any complex a, b with �e(a),�e(b) > 0 by

B(a, b) =

∫ 1

0
za−1(1− z)b−1dz.

From this and the property Γ(z) = (z − 1)Γ(z − 1) we have the formulas

(A.2) g(u) =
Γ(i(u1 + u2)− 1)Γ(−iu2 + 2)

(1− iu2)(−iu2)Γ(iu1 + 1)
=

Γ(i(u1 + u2)− 1)Γ(−iu2)
Γ(iu1 + 1)

.

The above derivation also leads to the following bound on P̂ .
Corollary A.1. Fix ε2 = ε, ε1 = −1− 2ε for some ε > 0. Then

(A.3) |P̂ (u1, u2)| ≤ Γ(ε)Γ(2 + ε)

Γ(2 + 2ε)
· 1

Q(|u|2/5)1/2 ,

where Q(z) = (z + ε2)(z + (1 + ε)2).
Proof. First note that for z1, z2 ∈ C, |B(z1, z2)| ≤ B(�e(z1),�e(z2)). Then (A.2) and a

symmetric formula with u2 ↔ −1− u1 − u2 lead to the upper bound

|P̂ (u1 − i(ε+ 1), u2 + iε)| ≤ B(ε, 2 + ε)min

(
1

Q(|u2|) ,
1

Q(|u1 + u2|)
)
.

But since Q is monotonic and |u| ≤ √5max (|u2|, |u1 + u2|) for all u ∈ R
2, the required result

follows.
Proof of Lemma 7.2. We make the change of variables p = ez and qm = exm and prove by

induction that

(A.4)

∫
RM

pδ

(
p−

M∑
m=1

qm

)
M∏

m=1

q−ium−1
m dMq =

∏M
m=1 Γ(−ium)

Γ(−i∑M
m=1 um)

p−i(
∑M

m=1 um).

The above equation trivially holds when M = 1. If it holds for M = N , then for M = N + 1
one finds

LHS =

∫
RN+1

pδ

(
p− qN+1 −

N∑
m=1

qm

)
q
−iuN+1−1
N+1

N∏
m=1

q−ium−1
m dN+1q

=

∏N
m=1 Γ(−ium)

Γ(−i∑N
m=1 um)

∫ p

0

p

p− qN+1
(p − qN+1)

−i(
∑N

m=1 um)q
−iuN+1−1
N+1 dqN+1.(A.5)

The proof is complete when one notices that the qN+1 integral is simply p−i(
∑N+1

m=1 um) multi-
plied by a beta function with parameters −i(∑N

m=1 um) and −iuN+1.
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Hedging of Claims with Physical Delivery under Convex Transaction Costs∗

Teemu Pennanen† and Irina Penner‡

Abstract. We study superhedging of contingent claims with physical delivery in a discrete-time market model
with convex transaction costs. Our model extends Kabanov’s currency market model by allowing for
nonlinear illiquidity effects. We show that an appropriate generalization of Schachermayer’s robust
no-arbitrage condition implies that the set of claims hedgeable with zero cost is closed in probability.
Combined with classical techniques of convex analysis, the closedness yields a dual characterization
of premium processes that are sufficient to superhedge a given claim process. We also extend the
fundamental theorem of asset pricing for general conical models.

Key words. superhedging, physical delivery, illiquidity, transaction costs, convex duality
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1. Introduction. This paper studies superhedging of contingent claims with physical de-
livery in markets with temporary illiquidity effects. Our market model is a generalization
of the currency market model of Kabanov [12]. In Kabanov’s model, price dynamics and
transaction costs are modeled implicitly by solvency cones, i.e., sets of portfolios which can be
transformed into the zero portfolio by self-financing transactions at a given time and state. An
essential difference between Kabanov’s model and more traditional models of mathematical
finance (including, e.g., the transaction cost models of Jouini and Kallal [11], Cvitanić and
Karatzas [6], and Kaval and Molchanov [18]) is that Kabanov’s model focuses on contingent
claims with physical delivery, i.e., claims whose payouts are given in terms of portfolios of
assets instead of a single reference asset like cash. Accordingly, notions of arbitrage as well
as the corresponding dual variables are defined in terms of vector-valued processes; see, e.g.,
[15, 31].

Astic and Touzi [2] extended Kabanov’s model by allowing general convex solvency regions
in the case of finite probability spaces. Nonconical solvency regions allow for the modeling
of temporary illiquidity effects where marginal trading costs may depend on the magnitude
of a trade as, e.g., in Çetin, Jarrow, and Protter [3], Çetin and Rogers [4], Çetin, Soner, and
Touzi [5], Rogers and Singh [27], or Pennanen [19, 20]. These models cover nonlinear illiquidity
effects, but they assume that agents have no market power in the sense that their trades do
not affect the costs of subsequent trades; see [27] for further motivation of this assumption.
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Temporal illiquidity effects act essentially as nonlinear transaction costs. Moreover, most
modern stock exchanges are organized so that the costs are convex with respect to transacted
amounts; see [19].

This paper studies general convex solvency regions in general probability spaces in finite
discrete time. Using some classical techniques of convex analysis we extend the approaches de-
veloped in [15] and [31] for the models with proportional transaction costs. We give a sufficient
condition for the closedness of the set of contingent claims with physical delivery that can be
hedged with zero investment under convex transaction costs. Classical separation arguments
then yield dual characterizations of superhedging conditions much as in Pennanen [21] in the
case of claims with cash delivery. In the conical case, our sufficient condition coincides with
the robust no-arbitrage condition and the dual variables become consistent price systems in
the sense of Schachermayer [31]. We also give a version of the “fundamental theorem of asset
pricing” for general conical models. Even in the conical case our results improve the existing
ones since we do not assume polyhedrality of the solvency cones.

The rest of this paper is organized as follows. Section 2 describes the market model,
and in section 3 the robust no scalable arbitrage property is introduced. The relevance of
this property becomes clear in Theorem 3.3, which provides a basis for the main results in
sections 4 and 5. Section 4 combines Theorem 3.3 with some classical techniques of convex
analysis to derive dual characterizations of superhedging conditions. Section 5 generalizes the
fundamental theorem of asset pricing to the general conical case. The proof of Theorem 3.3
is contained in section 6.

2. The market model. We consider a financial market in which d securities can be traded
over finite discrete time t = 0, . . . , T . The information evolves according to a filtration (Ft)

T
t=0

on a probability space (Ω,F , P ).
For each t and ω we denote by Ct(ω) ⊂ R

d the set of portfolios that are freely available in
the market. We assume that for each t the set-valued mapping Ct : Ω ⇒ R

d is Ft-measurable
in the sense that

C−1
t (U) := {ω ∈ Ω | Ct(ω) ∩ U �= ∅} ∈ Ft

for every open set U ⊂ R
d.

Definition 2.1. A market model is an (Ft)
T
t=0-adapted sequence C = (Ct)

T
t=0 of closed-

valued mappings Ct : Ω ⇒ R
d with R

d− ⊂ Ct(ω) for every t and ω. A market model C is
convex, conical, polyhedral, etc., if Ct(ω) has the corresponding property for every t and ω.

Traditionally, portfolios in financial market models have been defined in terms of a ref-
erence asset such as cash or some other numéraire; see Example 2.3. This is natural when
studying financial contracts with cash payments only. Treating all assets symmetrically as in
Definition 2.1 was initiated by Kabanov [12].

Example 2.2 (currency markets with proportional transaction costs). If (st)
T
t=0 is an adapted

price process with values in R
d
+ and (Λt)

T
t=0 an adapted R

d×d
+ -valued process of transaction

cost coefficients, the solvency regions (in physical units) were defined in Kabanov [12] as

K̂t :=

{
x ∈ R

d | ∃a ∈ R
d×d
+ : sitx

i +
d∑

j=1

(aji − (1 + λijt )a
ij) ≥ 0, 1 ≤ i ≤ d

}
.
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A portfolio x belongs to the solvency region K̂t if and only if, after some possible transfers
(aji)1≤i,j≤d, it has only nonnegative components. Thus the solvency region describes the set
of all portfolios with “positive” values.

One can also define solvency regions directly in terms of bid-ask spreads as in Schacher-
mayer [31]. If (Πt)

T
t=0 is an adapted sequence of bid-ask matrices, then

K̂t =

{
x ∈ R

d | ∃a ∈ R
d×d
+ : xi +

d∑
j=1

(aji − πijt aij) ≥ 0, 1 ≤ i ≤ d
}
.

For each ω and t, the set K̂t(ω) is a polyhedral cone and

Ct(ω) := −K̂t(ω)

defines a conical market model in the sense of Definition 2.1.
Example 2.3 (illiquid markets with cash). A convex cost process is a sequence S = (St)

T
t=0

of extended real-valued functions on R
d ×Ω such that for all t the function St is B(Rd)⊗Ft-

measurable and for each ω the function St(·, ω) is lower semicontinuous and convex and
vanishes at 0; see [20, 21]. The quantity St(x, ω) denotes the cost (in cash) of buying a
portfolio x at time t and scenario ω. If S is a convex cost process, then

Ct(ω) = {x ∈ R
d | St(x, ω) ≤ 0}, t = 0, . . . , T,

defines a convex market model provided St(·, ω) are componentwise nondecreasing for every
t and ω. The main difference between the model studied in [20, 21] and the one studied here
is that those papers studied contingent claims with cash delivery in markets with portfolio
constraints possibly on all traded assets, including cash. The present paper studies contingent
claims with physical delivery but allows for free transfer of all positions through time.

Models with convex cost processes include, in particular, classical frictionless markets
with a cash account (where St((x

0, x1), ω) = x0 + st(ω) · x1 for an adapted R
d-valued price

process s) as well as models with bid-ask spreads or proportional transaction costs as, e.g., in
Jouini and Kallal [11]. Convex cost processes also allow for modeling of illiquidity effects as,
e.g., in Çetin and Rogers [4], where d = 2 and St((x

0, x1), ω) = x0 + st(ω)ϕ(x
1) for a strictly

positive adapted process (st)
T
t=0 and an increasing convex function ϕ : R → (−∞,∞] that

describes the costs of illiquidity.
A convex cost process can be identified with the liquidation function Pt in Astic and Touzi

[2] through St(x, ω) = −Pt(−x, ω). Convex cost processes are also related to the supply curve
introduced in Çetin, Jarrow, and Protter [3]. A supply curve st(x, ω) gives a price per unit
when buying x units of the risky asset so that the total cost is St(x, ω) = st(x, ω)x. Instead of
convexity of S, [3] assumed that the supply curve is smooth in x; see also Example 2.2 in [2].

Example 2.4 (currency markets with illiquidity costs). In order to model nonproportional il-
liquidity effects in a currency market model as in Example 2.2, one can replace a bid-ask
matrix (Πt)

T
t=0 by a matrix of convex cost processes Sij = (Sij

t )Tt=0 (1 ≤ i, j ≤ d) on R+. Here
Sij(x, ω) denotes the number of units of asset i for which one can buy x units of asset j. If

(Sij
t )

T
t=0, i, j = 1, . . . , d, are convex cost processes on R+ in the sense of Example 2.3, then

Ct(ω) =

{
x ∈ R

d | ∃a ∈ R
d×d
+ : xi ≤

d∑
j=1

(aji − Sij
t (aij , ω)), 1 ≤ i ≤ d

}
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for t = 0, . . . , T defines a convex market model. Markets with proportional transaction costs
correspond to Sij(x, ω) = πij(ω)x.

3. No-arbitrage criteria. An R
d-valued adapted process x = (xt)

T
t=0 is a self-financing

portfolio process in a market model C = (Ct)
T
t=0 if

Δxt := xt − xt−1 ∈ Ct P -a.s.

for every t = 0, . . . , T ; i.e., the increments Δxt are freely available in the market. Here and in
what follows, we always define x−1 = 0 and denote by L0(Ct,Ft) the set of all Ft-measurable
selectors of a set-valued mapping Ct : Ω ⇒ R

d, i.e., the set of all Ft-measurable random
vectors x such that x ∈ Ct almost surely. In particular, L0(Rd,Ft) denotes the set of all
Ft-measurable random vectors x : Ω→ R

d.
We say that a market model C has the no-arbitrage property if

(3.1) AT (C) ∩ L0(Rd
+,F) = {0},

where AT (C) denotes the set in L0 formed by final values xT of all self-financing portfolio
processes x = (xt)

T
t=0. Since xT =

∑T
t=0(xt − xt−1), we have the expression

AT (C) = L0(C0,F0) + · · ·+ L0(CT ,FT ).

Condition (3.1) was introduced in Kabanov and Stricker [16] for conical models under the
name “weak no-arbitrage property” in a formally different way. But it is equivalent to (3.1)
if Ct contains R

d− for all t as noted in Lemma 3.5 of Kabanov [13].
In classical market models the no-arbitrage condition implies the closedness of the set of

contingent claims with cash delivery that can be superhedged at zero cost, a result which
is of vital importance in deriving dual characterizations of superhedging and the absence of
arbitrage. However, as shown in Schachermayer [31], in a market with proportional transaction
costs as in Example 2.2, the no-arbitrage property (3.1) does not, in general, imply the
closedness of the set AT (C). Schachermayer [31] also showed, in the case of the conical model
of Example 2.2, that AT (C) is closed in probability if C satisfies the robust no-arbitrage
condition, which can be defined in the general conical case as follows.

Given a market model C let C0
t (ω) be the largest linear subspace contained in Ct(ω).

Using the terminology of Kabanov, Rásonyi, and Stricker [15] we say that C is dominated by
another market model C̃ if

Ct ⊂ C̃t and Ct \ C0
t ⊂ ri C̃t ∀t = 0, . . . , T,

where ri C̃t denotes the relative interior of a convex set C̃t; see [24, Chapter 6] for the definition.
Since in our setting R

d− ⊆ Ct ⊆ C̃t, the relative interior of C̃t coincides with the interior.

Definition 3.1. A conical market model has the robust no-arbitrage property if it is domi-
nated by another conical market model that has the no-arbitrage property.

When moving to general convex market models it is not immediately clear how the con-
dition of robust no-arbitrage should be extended in order to have the closedness of AT (C).
Indeed, in general convex models even the traditional notion of arbitrage has two natural
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extensions, one being the possibility of making something out of nothing and the other one
being the possibility of making arbitrarily much out of nothing; see [20]. These correspond
to the notions of the tangent cone and the recession cone from convex analysis. It turns out
to be the latter one which is more relevant for closedness of AT (C). This was noted in [21,
Theorem 18] for the case of claims with cash delivery under convex constraints and is, in fact,
already suggested by classical closedness criteria in convex analysis; see [24, Chapter 9].

Given a convex market model C, let

C∞
t (ω) = {x ∈ R

d | Ct(ω) + αx ⊂ Ct(ω) ∀α > 0}.

This is a closed convex cone known as the recession cone of Ct(ω); see [24, Chapter 8]. The
recession cone describes the asymptotic behavior of a convex set infinitely far from the origin.
Since Ct(ω) is a closed convex set containing R

d− we have, by [24, Theorem 8.1, Theorem 8.2,
Corollary 8.3.2, Theorem 8.3], that C∞ is a closed convex cone containing R

d− and

C∞
t (ω) =

⋂
α>0

αCt(ω)

and

(3.2) C∞
t (ω) = {x ∈ R

d | ∃xn ∈ Ct(ω), α
n ↘ 0, with αnxn → x}.

By [26, Exercise 14.21], the set-valued mappings ω �→ C∞
t (ω) are Ft-measurable, so they

define a convex conical market model in the sense of Definition 2.1.
Definition 3.2. A convex market model has the robust no scalable arbitrage property if C∞

has the robust no-arbitrage property.
The term “scalable arbitrage” refers to arbitrage opportunities that may be scaled by

arbitrarily large positive numbers to yield arbitrarily “large” arbitrage opportunities; see [20].
Such scalable arbitrage opportunities can be related to the market model C∞ much as in [20,
Proposition 17].

We are now ready to state our main result, the proof of which can be found in the last
section.

Theorem 3.3. If C is a convex market model with the robust no scalable arbitrage property,
then AT (C) is closed in probability.

Remark 3.4. If C is conical, we have C∞
t (ω) = Ct(ω) and Theorem 3.3 coincides with [15,

Lemma 2], which extends [31, Theorem 2.1] to general conical models.
Remark 3.5. For general convex models, C∞

t (ω) ⊆ Ct(ω) and the condition in Theorem 3.3
may be satisfied even if C fails the no-arbitrage condition. Consider, for example, a deter-
ministic model where Ω is a singleton and Ct(ω) = R

d− + B for every t. Here B denotes the
unit ball of Rd. We get

AT (C) = L0(C0,F0) + · · ·+ L0(CT ,FT ) = R
d
− + (T + 1)B,

so C does not have the no-arbitrage property. On the other hand, C∞
t (ω) = R

d− is dominated

by C̃t(ω) = {x ∈ R
d | ∑d

i=1 x
i ≤ 0}, which does have the no-arbitrage property. Indeed,

AT (C̃) = {x ∈ R
d |∑d

i=1 x
i ≤ 0}, so AT (C̃) ∩ L0(Rd

+,F) = {0}.
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The following illustrates the robust no scalable arbitrage condition in a model with a cash
account.

Example 3.6 (the model of Çetin and Rogers [4]). As observed in Example 2.3, the model
of Çetin and Rogers [4] corresponds to the two-dimensional model

(3.3) Ct(ω) = {(x0, x1) ∈ R
2 | x0 + st(ω)ϕ(x

1) ≤ 0}, t = 0, . . . , T,

for a strictly positive adapted marginal price process (st)
T
t=0 and an increasing convex function

ϕ : R→ (−∞,∞] with ϕ(0) = 0. In this case, the recession cones become

C∞
t (ω) =

{
(x0, x1)

∣∣ αx0 + st(ω)ϕ(αx
1) ≤ 0 ∀α > 0

}
=
{
(x0, x1)

∣∣ x0 + st(ω)ϕ
∞(x1) ≤ 0

}
,

where ϕ∞(x) = supα>0 α
−1ϕ(αx) is the recession function of ϕ; see [24, Corollary 8.5.2]. By

[24, Theorem 13.3], we have the expression

ϕ∞(x) = sup
y∈I

xy,

where I is the range of the gradient mapping x �→ ϕ′(x); see [24, page 227].

If we assume, as in [4], that infx ϕ
′(x) = 0, supx ϕ

′(x) =∞, we have

ϕ∞(x) =

{
0 if x ≤ 0,

+∞ if x > 0,

and thus C∞
t (ω) = R

2− almost surely for all t. In this case the robust no scalable arbitrage
condition holds with an arbitrary strictly positive marginal price process (st)

T
t=0 whether it

satisfies the classical no-arbitrage condition or not. In [4] the above growth properties of ϕ
were used to prove the existence of optimal strategies in utility maximization problems, and it
was noted that the usual no-arbitrage condition on the price process (st)

T
t=0 played no role in

the proof. The nonexistence of arbitrage opportunities (not just the scalable ones) is related
to a stronger no-arbitrage condition as formulated, e.g., in [2] or [20].

More precise characterizations of the robust no scalable arbitrage condition for models
with a cash account will be given at the end of section 5.

4. Superhedging. A contingent claim with physical delivery is a security that, at some
future time, gives its owner a random portfolio of securities (instead of a single security like
in the case of cash delivery). A contingent claim process with physical delivery c = (ct)

T
t=0 is

a security that, at each time t = 0, . . . , T , gives its owner an Ft-measurable random portfolio
ct ∈ R

d. The linear space of Rd-valued adapted processes will be denoted by A, i.e.,

A = L0(Rd,F0)× · · · × L0(Rd,FT ).

We call the elements of A portfolio processes and denote by A+ the set of all nonnegative
portfolio processes:

A+ = L0(Rd
+,F0)× · · · × L0(Rd

+,FT ).
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Given a market model C, we will say that a process p ∈ A is a superhedging premium
process for a claim process c ∈ A if there is a portfolio process x ∈ A such that xT = 0 and

xt − xt−1 + ct − pt ∈ Ct

almost surely for every t = 0, . . . , T . The requirement that xT = 0 means that everything is
liquidated at the terminal date. One could relax this condition to xT ≥ 0, but since Rd− ⊂ CT

it would amount to the same thing.
We use claim and premium processes (rather than claims and premiums (prices) with

payouts only at the end and the beginning) in the present paper mainly for mathematical
convenience. However, when moving to market models with portfolio constraints it is essential
to distinguish between payments at different points in time, and then claim processes become
the natural object of study; see [20, 21]. Claim and premium processes are common in various
insurance applications where payments are made, e.g., annually.

The superhedging condition can be written as

c− p ∈ A(C),

where
A(C) = {c ∈ A | ∃x ∈ A : xt − xt−1 + ct ∈ Ct, xT = 0}

is the set of all claim processes with physical delivery that can be superhedged without any
investment. It is easily checked that A(C) is a convex subset (a convex cone) of A if C is a
convex (conical) market model.

Lemma 4.1. Let C be a convex market model.
1. The sets A(C) and AT (C) are related through

AT (C) = {cT | (0, . . . , 0, cT ) ∈ A(C)},

A(C) =

{
(c0, . . . , cT ) |

T∑
t=0

ct ∈ AT (C)

}
.

2. The set A(C) is closed in probability if and only if AT (C) is closed in probability.
3. C has the no-arbitrage property if and only if A(C) ∩ A+ = {0}.
Proof. It suffices to prove the first part since the other two follow from it. The first

equation is immediate. As to the second, we have c ∈ A(C) if and only if there is an x ∈ A
such that xT = 0 and xt−xt−1+ct ∈ Ct. Defining x̃−1 = 0 and x̃t = x̃t−1+xt−xt−1+ct, we get
that x̃ ∈ A is self-financing and x̃T =

∑T
t=0 ct. This just means that

∑T
t=0 ct ∈ AT (C).

Example 4.2. The classical case of a single premium payment at the beginning and a single
claim payment at maturity corresponds to p = (p0, 0, . . . , 0) and c = (0, . . . , 0, cT ). In this
case, Lemma 4.1 says that p is a superhedging premium for c if and only if

(4.1) cT − p0 ∈ AT (C).

Dual characterizations of the set of all initial endowments satisfying condition (4.1) have
been given in the conical case as in Example 2.2 in [16, 7, 14, 22, 31]. In conical models
the superhedging endowments are characterized in terms of the same dual elements that
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characterize the no-arbitrage condition. When moving to nonconical models, a larger class of
dual variables is needed in order to capture the structure of the sets; see [21] for the case of
claims with cash delivery.

By Lemma 4.1, the set A(C) is closed if and only if AT (C) is closed. Combining Theo-
rem 3.3 with classical techniques of convex analysis, we can derive dual characterizations of
superhedging premium processes in terms of martingales much as in [21] in the case of claims
with cash delivery. Consider the Banach space

A1 := L1(Ω,F0, P ;R
d)× · · · × L1(Ω,FT , P ;R

d)

and its dual

A∞ := L∞(Ω,F0, P ;R
d)× · · · × L∞(Ω,FT , P ;R

d).

Note that both A1 and A∞ are linear subspaces of A. One can then use the classical bipolar
theorem to characterize the superhedging condition in terms of the support function σA1(C) :

A∞ → R of the set A1(C) := A(C) ∩ A1 of integrable claim processes. The support function
is given by

σA1(C)(y) = sup
c∈A1(C)

E
T∑
t=0

ct · yt, y ∈ A∞.

The lemma below expresses σA1(C) in terms of the support functions of the random sets Ct(ω):

σCt(ω)(z) = sup
x∈Ct(ω)

x · z, z ∈ R
d.

By [26, Example 14.51] the function σCt : Ω × R
d → R is an Ft-measurable convex nor-

mal integrand (see [26, Definition 14.27]). This implies, in particular, that σCt(ω)(yt) is an
Ft-measurable function whenever yt is Ft-measurable. The following corresponds to [20,
Lemma 28].

Lemma 4.3. Let C be a convex market model, and let y ∈ A∞. Then

σA1(C)(y) =

{
E
∑T

t=0 σCt(yt) if y is a nonnegative martingale,

+∞ otherwise.

Proof. In the following, we define the expectation of an arbitrary random variable ϕ by
setting it equal to −∞ if the negative part of ϕ is not integrable (the remaining cases being
defined unambiguously as real numbers or as +∞). This allows us, in particular, to apply the
results of [26, section 14.F] on extended real-valued integral functionals.

On one hand,

σA1(C)(y) = sup

{
E

T∑
t=0

ct · yt | x ∈ A, c ∈ A1 : xt − xt−1 + ct ∈ Ct

}

≤ sup

{
E

T∑
t=0

ct · yt | x, c ∈ A : xt − xt−1 + ct ∈ Ct

}
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= sup

{
E

T∑
t=0

(wt − xt + xt−1) · yt | x,w ∈ A : wt ∈ Ct

}

≤ sup

{
E

T∑
t=0

[σCt(yt) + (xt−1 − xt) · yt] | x ∈ A
}

= E

T∑
t=0

σCt(yt) + sup
x∈A

E

T∑
t=0

(xt−1 − xt) · yt

= E
T∑
t=0

σCt(yt) + sup
x∈A

E
T−1∑
t=0

xt · (yt+1 − yt),

where the last term vanishes if y is a martingale and equals +∞ otherwise. On the other
hand,

σA1(C)(y) = sup

{
E

T∑
t=0

ct · yt | x ∈ A, c ∈ A1 : xt − xt−1 + ct ∈ Ct

}

≥ sup

{
E

T∑
t=0

ct · yt | x, c ∈ A1 : xt − xt−1 + ct ∈ Ct

}

= sup

{
E

T∑
t=0

(wt − xt + xt−1) · yt | x,w ∈ A1 : wt ∈ Ct

}

= sup

{
E

T∑
t=0

wt · yt | w ∈ A1 : wt ∈ Ct

}
+ sup

x∈A1

E

T∑
t=0

(xt−1 − xt) · yt

=
T∑
t=0

sup{Ewt · yt | wt ∈ L1(Ω,Ft, P ;R
d) : wt ∈ Ct}

+ sup
x∈A1

E

T−1∑
t=0

xt · (yt+1 − yt).

Here again the last term vanishes if y is a martingale and equals +∞ otherwise. Applying
[26, Theorem 14.60] to the function

f(w,ω) =

{
−w · yt(ω) if w ∈ Ct(ω),

+∞ otherwise

(which is a normal integrand by [26, Example 14.32]), we get

sup{Ewt · yt | wt ∈ L1(Ω,Ft, P ;R
d) : wt ∈ Ct} = EσCt(yt).

Thus,

σA1(C)(y) =

{
E
∑T

t=0 σCt(yt) if y is a martingale,

+∞ otherwise.
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Moreover, since R
d− ⊆ Ct for all t, we have σCt(yt) =∞ on the set {yt /∈ R

d
+}. This completes

the proof.
Theorem 4.4. Assume that the convex market model C has the robust no scalable arbitrage

property, and let c, p ∈ A be such that c− p ∈ A1. Then the following are equivalent:
(i) p is a superhedging premium process for c.
(ii) E

∑T
t=0 (ct − pt) · yt ≤ 1 for every bounded nonnegative martingale y = (yt)

T
t=0 such

that E
∑T

t=0 σCt(yt) ≤ 1.

(iii) E
∑T

t=0 (ct − pt) · yt ≤ E
∑T

t=0 σCt(yt) for every bounded nonnegative martingale y =
(yt)

T
t=0.

Proof. By definition, p is a superhedging premium for c if and only if c− p ∈ A(C). Since
c− p ∈ A1, this can be written as c− p ∈ A1(C), where A1(C) = A(C)∩A1 is a closed subset
of A1, by Theorem 3.3 and Lemma 4.1. Since A1(C) is also a convex set containing the origin,
the bipolar theorem (see, e.g., [1, Theorem 5.91]) implies that c− p ∈ A1(C) if and only if

E
T∑
t=0

(ct − pt) · yt ≤ 1 ∀y ∈ A1(C)◦,

where
A1(C)◦ = {y ∈ A∞ | σA1(C)(y) ≤ 1}.

Thus the equivalence of (i) and (ii) and the proof of (i)⇒ (iii) follow from Lemma 4.3. And
obviously (iii) implies (ii).

As noted in Remark 3.5, arbitrage opportunities may very well exist under the conditions
of Theorem 3.3. They do not interfere with the hedging description in Theorem 4.4.

If C is conical, we have

(4.2) σCt(ω)(y) =

{
0 if y ∈ C∗

t (ω),

+∞ otherwise,

where the closed convex cone

C∗
t (ω) := {y ∈ R

d | x · y ≤ 0 ∀x ∈ Ct(ω)}
is known as the polar of Ct(ω); see [24]. We then have E

∑T
t=0 σCt(yt) < ∞ for a y ∈ A∞ if

and only if yt ∈ C∗
t almost surely for all t. Thus, in the conical case, superhedging premiums

can be characterized in terms of the following dual elements introduced in Kabanov [12].
Definition 4.5. An adapted R

d-valued nonzero process y = (yt)
T
t=0 is called a consistent

(resp., strictly consistent) price system for a conical model C if y is a martingale such that
yt ∈ C∗

t (resp., y has strictly positive components and yt ∈ riC∗
t ) almost surely for all t =

0, . . . , T .
Note that the condition yt ∈ riC∗

t in general does not imply the strict positivity of yt.
Applying Theorem 4.4 in the conical case and making use of (4.1) and (4.2), we obtain

the following.
Corollary 4.6. Assume that C is a conical market model with the robust no-arbitrage prop-

erty. Assume further that F0 is a trivial σ-algebra. Let cT ∈ L1(Ω,FT , P ;R
d) and p0 ∈ R

d.
Then the following are equivalent:
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(i) p = (p0, 0, . . . , 0) is a superhedging premium for c = (0, . . . , 0, cT ).
(ii) E(cT · yT ) ≤ p0 · y0 for every bounded consistent price system y = (yt)

T
t=0.

We illustrate Theorem 4.4 and Corollary 4.6 with the following example.
Example 4.7 (the model of Çetin and Rogers [4]). Consider again the model of Çetin and

Rogers [4] described in Example 3.6. Given z ∈ R
2, we have

σCt(ω)(z) = sup
x∈R2

{x0z0 + x1z1 | x0 + st(ω)ϕ(x
1) ≤ 0}

=

{
supx1∈R{−z0st(ω)ϕ(x1) + x1z1} if z0 ≥ 0,

+∞ otherwise

=

⎧⎪⎨⎪⎩
z0st(ω)ϕ

∗( z1

z0st(ω)
) if z0 > 0,

0 if z0 = z1 = 0,

+∞ otherwise,

(4.3)

where ϕ∗(z) = supx{xz − ϕ(x)} is the convex conjugate of ϕ.
In the frictionless case where ϕ(x) = x, we have ϕ∗(z) = 0 if z = 1 and ϕ∗(z) = +∞

otherwise so that

σCt(ω)(z) =

{
0 if z0 ≥ 0 and z1 = st(ω)z0,

+∞ otherwise.

It is easily checked that since s is strictly positive, the robust no scalable arbitrage condition
is equivalent to the classical no-arbitrage condition on s. The consistent price systems are the
nonnegative martingales y = (y0, y1) such that y1 = sy0. A nonzero consistent price system
defines a density of an absolutely continuous martingale measure for the price process s via
dT := y0T/y

0
0 . Vice versa, every density process d = (dt)

T
t=0 of an absolutely continuous

martingale measure for s defines a consistent price system y by

yt := (dt, dtst), t = 0, . . . , T.

The hedging condition (ii) of Corollary 4.6 can then be written as

(4.4) EP ∗
[
c0T + c1T sT

] ≤ p00 + p10s0 ∀P ∗ ∈ P̃ ,

where P̃ is the set of absolutely continuous martingale measures. In particular, if c1T = 0,
p10 = 0, and if s satisfies the no-arbitrage condition, we have that p00 units of cash at time 0
are sufficient to superhedge c0T units of cash at time T if and only if

sup
P ∗∈P̃

EP ∗[c0T ] ≤ p00,

in accordance with classical results for claims with cash delivery; see, e.g., [9, Remark 1.35].
Now assume that there are nontrivial illiquidity costs in the sense that ϕ(x) ≥ x for every

x ∈ R and ϕ(x) > x for some x ∈ R. Assume also that the model satisfies the robust no
scalable arbitrage condition. This happens, e.g., when

ϕ(x) =
eαx − 1

α



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PHYSICAL DELIVERY UNDER CONVEX TRANSACTION COSTS 169

as in Çetin and Rogers [4, section 6]. Increasing the illiquidity costs shrinks the set of claims
that can be superhedged with a given premium so that (4.4) is no longer a sufficient condition
for superhedging. In other words, the superhedging premium under nontrivial illiquidity costs
will in general be higher than in the corresponding frictionless model.

To illustrate this, consider the claim c = (0, . . . , 0, cT ) with cT := (bsT ,−b) for b ∈ R.
Condition (4.4) is clearly satisfied with p0 = 0, so cT can be hedged without any costs in
the frictionless model provided it has the no-arbitrage property. The existence of an x ∈
R such that ϕ(x) > x, on the other hand, implies that the recession function ϕ∞(x) =
supα≥0 α

−1ϕ(αx) dominates the identity nontrivially. By [24, Theorem 13.3], this means that
there is an a > 0, a �= 1, such that ϕ∗(a) < ∞. Consider the martingale v defined by
vt := (dt/a, dtst), where (dt) is the density process of an absolutely continuous martingale
measure for the price process s. Using (4.3), we get

EσCt(vt) =
ϕ∗(a)
a

E[dtst] =
ϕ∗(a)
a

E[d0s0].

Thus, for some b ∈ R,

E[vT cT ] = b

(
1

a
− 1

)
E[dT sT ] >

T∑
t=0

EσCt(vt),

so that, by Theorem 4.4, the zero premium is not sufficient to hedge cT under the illiquidity
costs given by ϕ.

Characterizations similar to Corollary 4.6 were given in [16, 7, 14, 22, 31] under less
restrictive integrability conditions on cT . In our case the integrability condition in Theorem 4.4
can be relaxed in the following way. If the process c − p is not P -integrable, we can always
find a probability measure P̃ ≈ P with bounded density such that ct − pt ∈ L1(Ω,Ft, P̃ ,R

d)
for all t, e.g.,

dP̃

dP
:=

a

1 +
∑T

t=0 |ct − pt|
,

where a is a normalizing constant. Then Theorem 4.4 holds with P̃ instead of P , and we
obtain the following corollary.

Corollary 4.8. Assume that C is a conical market model with the robust no-arbitrage prop-
erty, and let c, p ∈ A. Further, let P̃ ≈ P be a probability measure with bounded density
process z = (zt)

T
t=0 such that ct − pt ∈ L1(Ω,Ft, P̃ ,R

d) for all t. Then the following are
equivalent:

(i) p is a superhedging premium process for c.
(ii) E

∑T
t=0 (ct− pt) · yt ≤ 1 for every bounded nonnegative P -martingale (yt)

T
t=0 such that

E
∑T

t=0 σCt(yt) ≤ 1 and such that yt/zt := (y1t /zt, . . . , y
d
t /zt) is almost surely bounded

for all t.
Proof. Theorem 4.4 applied with P̃ instead of P yields the equivalence of the following:
(i) p is a superhedging premium process for c.
(ii) E

∑T
t=0 (ct − pt) · ztỹt ≤ 1 for every nonnegative bounded P̃ -martingale ỹ = (ỹt)

T
t=0

such that E
∑T

t=0 ztσCt(ỹt) ≤ 1.
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Note further that zσCt(y) = σCt(zy) for all y ∈ R
d, z ∈ R

+ and that ỹ is a bounded P̃ -
martingale if and only if zỹ is a bounded P -martingale. Thus (ii) holds for all nonnegative
bounded P -martingales y such that 1

zy is almost surely bounded.

5. Fundamental theorem of asset pricing. The fundamental theorem of asset pricing
describes the absence of arbitrage by the existence of certain pricing functionals. In the
classical frictionless model with a cash account these pricing functionals can be identified
with densities of equivalent martingale measures. Under proportional transaction costs the
robust no-arbitrage condition is equivalent to the existence of strictly consistent price systems.
This result was proved in [16, 14, 22, 31, 15] for conical polyhedral market models, i.e., where
each Ct(ω) is a cone spanned by a finite number of vectors. Nonpolyhedral conical models
are considered in [23] and in [30] under the assumption of efficient friction; i.e., the cones
Ct(ω) are assumed to be pointed. In [25, section 3.2] Rokhlin shows, without assuming the
polyhedrality of the cones or efficient friction, that the existence of a strictly consistent price
system is equivalent to the following condition:

(5.1) If
T∑
t=0

xt = 0, where xt ∈ L0(Ct,Ft), then xt ∈ L0(C0
t ,Ft), t = 0, . . . , T.

However, to show that condition (5.1) is equivalent to the robust no-arbitrage condition one
needs [15, Lemma 5, Corollary 1], where the polyhedrality of the cones is used; see [29,
Theorem 2].

In this section we derive a version of the fundamental theorem of asset pricing for general
conical models. This is achieved through the following lemma, which allows the application of
strict separation arguments much as in [31]. It is similar to Proposition A.5 in [31] but does
not rely on the polyhedrality of C.

Lemma 5.1. If K is a conical market model that has the robust no-arbitrage property, then
it is dominated by another conical market model K̂ which still has the robust no-arbitrage
property.

Proof. If K has the robust no-arbitrage property, there is an arbitrage-free model K̃ such
that Kt \K0

t ⊂ int K̃t, or equivalently, K̃∗
t \ {0} ⊂ riK∗

t . Let e ∈ R
d be the vector with all

components equal to one. Since −e ∈ intKt(ω), we have

K∗
t (ω) =

⋃
α≥0

αGt(ω) and K̃∗
t (ω) =

⋃
α≥0

αG̃t(ω),

where Gt(ω) = {v ∈ R
d | v ∈ K∗

t (ω), e · v = 1} and G̃t(ω) = {v ∈ R
d | v ∈ K̃∗

t (ω), e · v = 1}.
Since K̃∗

t \ {0} ⊂ riK∗
t we have

(5.2) G̃t(ω) ⊂ riGt(ω).

Let Ĝt(ω) :=
1
2Gt(ω) +

1
2G̃t(ω), and let K̂t(ω) be the polar of the cone

K̂∗
t (ω) =

⋃
α≥0

αĜt(ω).
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It suffices to show that K̂ is a market model that dominates K and is dominated by K̃. By
construction, K̂t(ω) is closed and convex and, by Proposition 14.11 and Exercise 14.12 of [26],
K̂t is Ft-measurable, so K̂ is indeed a market model. The dominance relations are equivalent
to the conditions Ĝt(ω) ⊂ riGt(ω) and G̃t(ω) ⊂ ri Ĝt(ω). By (5.2) and [24, Theorem 6.1],

Ĝt(ω) ⊂ 1

2
Gt(ω) +

1

2
riGt(ω) = riGt(ω).

To verify the second condition, we first note that (5.2) implies

G̃t(ω) =
1

2
G̃t(ω) +

1

2
G̃t(ω)

⊂ 1

2
riGt(ω) +

1

2
G̃t(ω),

where the last set is relatively open. We then get

G̃t(ω) ⊂ ri

[
1

2
riGt(ω) +

1

2
G̃t(ω)

]
=

1

2
riGt(ω) +

1

2
ri G̃t(ω)

= ri Ĝt(ω),

where the equalities hold by [24, Corollary 6.6.2].

Equipped with Theorem 3.3 and Lemma 5.1 it is easy to extend the proof of [31, Theo-
rem 1.7] to get the following.

Theorem 5.2. A conical market model K has the robust no-arbitrage property if and only
if there exists a strictly consistent price system y for K. Moreover, the price system y can be
chosen bounded.

Proof. Lemma 5.1 implies the existence of another conical market model K̂ such that
K̂∗

t \ {0} ⊂ ri(Kt)
∗. By Theorem 3.3 and Lemma 4.1, the set A(K̂) is closed with respect to

convergence in measure. Thus A1(K̂) = A(K̂) ∩ A1 is a convex cone in A1 which is closed in
the norm topology. Moreover, the no-arbitrage property implies A1(K̂) ∩ A1

+ = {0}, where
A1

+ denotes the R
d
+-valued processes in A1.

Since the Banach space A1 is weakly compactly generated as a finite product of L1-spaces,
the Kreps–Yan theorem holds true on A1; see [28, Theorem 1 and the discussion after it]. Thus
there exists a y ∈ A∞ such that

(5.3) E

T∑
t=0

yt · ct ≤ 0 ∀c ∈ A1(K̂)

and

(5.4) E
T∑
t=0

yt · ct > 0 ∀c ∈ A1
+ \ {0}.
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Condition (5.3) can be written as σA1(K̂)(y) ≤ 0, which, by Lemma 4.3, means that y is

a nonnegative martingale with σK̂t(ω)
(yt(ω)) ≤ 0 almost surely for every t. Since K̂t(ω) is

a cone, we have yt(ω) ∈ K̂t(ω)
∗. Condition (5.4) means that y is componentwise strictly

positive, so yt ∈ K̂∗
t \ {0} ⊂ riK∗

t and y is a strictly consistent price system for K.
To prove the converse let y be a strictly consistent price system for K, and define a conical

model
K̃t :=

{
x ∈ R

d
∣∣ yt · x ≤ 0

}
, t = 0, . . . , T.

Since y ∈ riK the model K̃ dominates K. It suffices to show that K̃ satisfies the no-arbitrage
condition. To this end let c ∈ A(K̃) ∩ A+, and let x ∈ A be a self-financing strategy that
hedges c. Then we have

yt · (xt − xt−1 + ct) ≤ 0 ∀t = 0, . . . , T

and hence

0 ≤
T∑
t=0

yt · ct ≤ −
T∑
t=0

yt · (xt − xt−1) =

T∑
t=0

xt−1 · (yt − yt−1).

Since y is a martingale and x is adapted, the process

Ms :=

s∑
t=0

xt−1 · (yt − yt−1), s = 0, . . . , T,

is a local martingale by Theorem 1 in Jacod and Shiryaev [10]. Moreover, M is a martingale
by [10, Theorem 2] since MT ≥ 0 almost surely. Since M0 = 0 we obtain

E

[
T∑
t=0

yt · ct
]
= 0

and hence
∑T

t=0 yt · ct = 0 almost surely. Since y has strictly positive components and c ∈ A+

this implies ct = 0 P -almost surely for all t. Thus the no-arbitrage condition holds for K̃.
Using Theorem 5.2 we can restate Corollary 4.6 in terms of strictly consistent price sys-

tems.
Corollary 5.3. Assume that C is a conical market model with the robust no-arbitrage prop-

erty. Assume further that F0 is a trivial σ-algebra. Let cT ∈ L1(Ω,FT , P,R
d) and p0 ∈ R

d.
Then the following are equivalent:

(i) p = (p0, 0, . . . , 0) is a superhedging premium for c = (0, . . . , 0, cT ).
(ii) E(cT · yT ) ≤ p0 · y0 for every bounded strictly consistent price system y = (yt)

T
t=0.

Proof. By Corollary 4.6, it suffices to show that (ii) implies (i). Theorem 5.2 says that
there exists a strictly consistent price system y∗ for C. Then for ε ∈ (0, 1] and for any
consistent price system y the process yε := εy∗ + (1 − ε)y defines a strictly consistent price
system and for ε small enough E(cT · yεT ) > p0 · yε0 if E(cT · yT ) > p0 · y0.

Example 5.4. Consider the frictionless model C with a cash account defined by

Ct(ω) :=
{
(x0, x1) ∈ R

d+1
∣∣ x0 + x1 · st(ω) ≤ 0

}
, t = 0, . . . , T,
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where (st)
T
t=0 is a nonnegative d-dimensional adapted price process. If s is strictly positive,

the robust no scalable arbitrage property coincides with the classical no-arbitrage property.
Theorem 5.2 then implies the existence of a strictly consistent price system y for C. Much
as in Example 4.7, we can identify every strictly consistent price system with a density of
an equivalent martingale measure for the price process s, and we can write the superhedging
condition (ii) of Corollary 5.3 as

EP ∗
[
c0T + c1T · sT

] ≤ p00 + p10 · s0 ∀P ∗ ∈ P,
where P is the set of equivalent martingale measures. In particular, if c1T = 0 and p1 = 0, the
condition can be written as

sup
P ∗∈P

EP ∗[c0T ] ≤ p00,
in accordance with the classical result for claims with cash delivery.

For general convex models, Theorem 5.2 can be stated in the following form.
Theorem 5.5. A convex market model C has the robust no scalable arbitrage property if

and only if there exists a strictly positive martingale y such that yt ∈ ri domσCt almost surely
for all t.

Proof. Applying Theorem 5.2 to C∞, we get that C∞ has the robust no-arbitrage property
if and only if there exists a strictly consistent price system for C∞. The claim follows by noting
that ri(C∞

t )∗ = ri domσCt by [24, Theorem 6.3], the bipolar theorem, and [24, Corollary
14.2.1].

Corollary 5.6. Let S be a convex cost process on R
d−1×Ω in the sense of Example 2.3, such

that St(·, ω) is nondecreasing on R
d−1 for all t and ω, and let S∗ denote the convex conjugate

of S. The model

Ct(ω) = {(x0, x1) ∈ R
d | x0 + St(x

1, ω) ≤ 0}, t = 0, . . . , T,

satisfies the robust no scalable arbitrage condition if and only if there exists a strictly positive
adapted process s with st ∈ ri domS∗

t almost surely for all t such that one of the following
equivalent conditions holds:

(i) the frictionless model

C̃t(ω) := {(x0, x1) ∈ R
d | x0 + st(ω) · x1 ≤ 0}, t = 0, . . . , T,

is arbitrage-free;
(ii) there exists a probability measure P ∗ equivalent to P such that s is a martingale un-

der P ∗.
Proof. We get

σCt(ω)(z) = sup
x0,x1

{z0x0 + z1 · x1 | x0 + St(x
1, ω) ≤ 0}

=

{
supx1{z1 · x1 − z0St(x1, ω)} if z0 ≥ 0,

+∞ otherwise

=

⎧⎪⎨⎪⎩
z0S∗

t (z
1/z0, ω) if z0 > 0,

0 if z0 = 0 and z1 = 0,

+∞ otherwise,
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and thus ri domσCt(ω) = {(z0, z1) | z0 > 0, z1/z0 ∈ ri domS∗
t (ω)}. By Theorem 5.5, the

model C has the robust no scalable arbitrage property if and only if there exists a strictly
positive martingale (y0, y1) such that y1t /y

0
t ∈ ri domS∗

t almost surely for all t. The latter
condition means that there is a strictly positive adapted process s with st ∈ ri domS∗

t such
that y1 = y0s. In particular, s is a martingale under the equivalent martingale measure
defined by dP ∗/dP := y0T/y

0
0 . Equivalence of (i) and (ii) follows from Theorem 5.2 as in

Example 5.4.
Remark 5.7. By Theorem 3.3 and Lemma 4.1, the no-arbitrage criterion in the above

corollary guarantees that the set A(C) ⊂ A is closed in probability. This implies, in particular,
the closedness of the set

A0(C) := {c0 ∈ M | (c0, 0) ∈ A(C)}
= {c0 ∈ M | ∃x ∈ A : Δx0t + c0t + St(Δx

1
t ) ≤ 0 ∀t, xT = 0},

whereM denotes the space of adapted real-valued processes. The set A0(C) consists of the
claim processes with cash delivery that can be superhedged with zero cost. An alternative
condition for the closedness of A0(C) was given in [21, section 6]. The condition from [21] does
not require the cost process S to be nondecreasing, and it applies under portfolio constraints
of the form (x0t , x

1
t ) ∈ {0} × Dt(ω), where Dt is an Ft-measurable set-valued mapping with

values in closed convex subsets of Rd−1.
The equivalence of conditions (i) and (ii) in Corollary 5.6 is reminiscent of [20, Theorem 5.4]

and, in the case of proportional transaction costs, also of Jouini and Kallal [11, Theorem 3.2.i].
If S∞ is finite-valued, then, by [20, Theorem 5.4], the condition

clA0(C∞) ∩M+ = {0},
where cl denotes the closure with respect to convergence in measure and M+ denotes the
nonnegative elements ofM, implies the existence of an adapted process s and a measure P ∗

equivalent to P such that s is a martingale under P ∗ and st ∈ cl domS∗
t almost surely for

all t.

6. Proof of Theorem 3.3. The proof of Theorem 3.3 requires some preparation. First
we will use projection techniques similar to those in [31] to extract self-financing portfolio
processes ending with 0 in the model C∞. For a convex market model C we consider the set

N (C) :=
{
x ∈ A ∣∣ Δxt ∈ Ct P -a.s. ∀t = 0, . . . , T, xT = 0

}
.

The next lemma is a version of Lemma 5 in [15]; see also Lemma 2.6 in [31].
Lemma 6.1. If C is a convex market model that has the robust no scalable arbitrage prop-

erty, then N (C∞) = N (C0).
Proof. We have N (C∞) ⊃ N (C0) simply because C∞

t ⊃ C0
t almost surely for every t, so

it suffices to prove the reverse. Let x ∈ N (C∞), and assume that Δxt ∈ C∞
t \ C0

t on some
set with positive probability for some t = 0, . . . , T . This contradicts the robust no scalable
arbitrage property. Indeed, if C̃ is a market model such that C∞

t \ C0
t ⊂ int C̃t, we have

Δxt ∈ int C̃t on a nontrivial set, and then for any e ∈ R
d
+ \ {0}

εt(ω) = sup{ε ∈ R | Δxt(ω) + εe ∈ C̃t(ω)}
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defines an Ft-measurable R
d
+-valued random variable (see, e.g., [26, Theorem 14.37]) which

does not vanish almost surely. By Lemma 4.1, this would mean that C̃ violates the no-arbitrage
condition.

For each t ∈ {0, . . . , T} we denote by Nt the set of all Ft-measurable random vectors that
may be extended to a portfolio in N (C0), i.e.,

Nt :=
{
xt ∈ L0(Rd,Ft)

∣∣ ∃xt+1, . . . , xT s.t. (0, . . . , 0, xt, . . . , xT ) ∈ N (C0)
}
.

Lemma 6.2. Let C be a convex market model. Then for each t ∈ {0, . . . , T} there is an
Ft-measurable map Nt : Ω ⇒ R

d whose values are linear subspaces of R
d and Nt = L0(Nt,Ft).

Proof. We consider first the larger set

Mt =
{
xt ∈ L0(Rd,Ft)

∣∣ ∃xt+1, . . . , xT s.t. Δxs ∈ L0(C0
s ,Fs)

∀s = t+ 1, . . . , T and xT = 0
}

and show that there is an Ft-measurable map Mt : Ω ⇒ R
d whose values are linear subspaces

of Rd and Mt = L0(Mt,Ft). Then the Ft-measurable map Nt : Ω ⇒ R
d with Nt(ω) :=

Mt(ω) ∩ C0
t (ω) has the desired properties.

In order to obtain the maps Mt we argue by induction on T . For T = 0 we have MT =
MT = {0}. Now assume that the claim holds for any T -step model, and consider the (T +1)-
step model (Ct)

T
t=0. By the induction hypothesis there exist Fs-measurable maps Ms whose

values are linear subspaces of Rd such that Ms = L0(Ms,Fs) for each s ∈ {1, . . . , T}. Note
that x0 ∈ M0 if and only if x0 ∈ M1 + C0

1 almost surely. Indeed, x0 ∈ M0 if and only
if there exists an x1 ∈ M1 such that x1 − x0 ∈ C0

1 almost surely. The mapping L(ω) :=
M1(ω) + C0

1 (ω) is F1-measurable (see [26, Proposition 14.11(c)]), and its values are linear
subspaces of Rd and, in particular, closed. By the theorem on page 135 of [32], there exists
the largest closed F0-measurable set-valued map M0 such that M0 ⊆ L almost surely and
L0(M0,F0) = L0(L,F0) =M0. Clearly M0(ω) is a linear subspace of Rd for each ω.

For each ω we denote by N⊥
t (ω) the orthogonal complement of Nt(ω) in R

d. Then N⊥
t :

Ω ⇒ R
d is an Ft-measurable (see [26, Exercise 14.12(e)]) map whose values are linear subspaces

of Rd.
Lemma 6.3. Let C be a convex market model, and let c ∈ A(C). Then there exists a process

x⊥ ∈ A such that x⊥t ∈ N⊥
t , Δx⊥t + ct ∈ Ct for all t = 0, . . . , T and x⊥T = 0.

Proof. We will prove the existence of the process x⊥ by induction on T . For T = 0 we
have x⊥T := xT = 0. Assume that the claim holds for any T -step model, and consider the
(T + 1)-step model (Ct)

T
t=0. Let c ∈ A(C), and let x ∈ A be such that Δxt + ct ∈ Ct for all

t = 0, . . . , T and xT = 0. We denote by x00 the F0-measurable projection of x0 on N0 and by
(x01, . . . , x

0
T−1, 0) an extension of x00 to a self-financing portfolio process in the model C0 (the

existence of such an extension is given by Lemma 6.2). Then

yt := xt − x0t , t = 0, . . . , T − 1, yT := 0

defines an adapted process y with y0 = x0 − x00 ∈ N⊥
0 almost surely. Moreover, y hedges c.

Indeed, since Δx0t ∈ C0
t we have

Δyt + ct = Δxt + ct −Δx0t ∈ Ct −C0
t = Ct P -a.s.
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for all t = 0, . . . , T .
The process (y1, . . . , yT−1, 0) hedges the claim (c1 − y0, c2, . . . , cT ) in the T -step model

(Ct)
T
t=1. Thus by the induction hypothesis there is a process y⊥ = (y⊥1 , . . . , y⊥T−1, 0) such

that y⊥t ∈ N⊥
t almost surely and y⊥ hedges (c1 − y0, c2, . . . , cT ). Then the process x⊥ :=

(y0, y
⊥
1 , . . . , y

⊥
T−1, 0) has the required properties.

The following lemma was used first in Kabanov and Stricker [17]; it is also documented,
e.g., in [31, 15, 9, 8]. We refer to these works for the proof.

Lemma 6.4. Let (xn)∞n=1 be a sequence of random vectors in L0(Rd,F) such that lim infn |xn|
< ∞ P -almost surely. Then there exists an F-measurable increasing N-valued random se-
quence (τn)∞n=1 such that (xτ

n
)∞n=1 converges almost surely to some x ∈ L0(Rd,F).

Proof of Theorem 3.3. By Lemma 4.1, the closedness of AT (C) is equivalent to the closed-
ness of A(C). By Lemma 6.3, we may assume that xt ∈ N⊥

t for all t = 0, . . . , T − 1 in the
definition of A(C).

In order to prove the closedness of A(C) we will prove the following more precise statement:
Let (cn)∞n=1 be a sequence of claim processes in A(C) such that cnt → ct for all t in measure,
and let (xn)∞n=1 be any sequence in A such that Δxnt + c

n
t ∈ Ct, x

n
t ∈ N⊥

t for all t and xnT = 0.
Then there exists an F-measurable random subsequence (τn)∞n=1 of N and an x ∈ A such
that xτ

n

t → xt almost surely and Δxt + ct ∈ Ct, xt ∈ N⊥
t for all t and xT = 0. In particular,

c ∈ A(C).
The proof will follow by induction on T . For T = 0 the statement is obvious since the set

L0(C0,F0) is closed in L0(Rd,F0) and any hedging strategy is identically 0. Now assume that
the statement holds for any T -step model, and consider a (T + 1)-step model C = (Ct)

T
t=0.

Let cn ∈ A(C), n = 0, 1, . . . , be such that cnt → ct ∈ A for all t in measure. By passing to
a subsequence if necessary, we may assume that cnt → ct for all t almost surely. Let xn ∈ A,
n = 0, 1, . . . , be such that Δxnt + cnt ∈ Ct, x

n
t ∈ N⊥

t for all t and xnT = 0.
Case 1: the sequence (xn0 )

∞
n=1 is almost surely bounded. In this case, we can apply

Lemma 6.4 to find an F0-measurable random sequence (σn)∞n=1 such that xσ
n

0 converges to
some x0 ∈ L0(Rd,F0) almost surely. Then x0 ∈ L0(N⊥

0 ,F0) since each N⊥
0 (ω) is a closed

subspace of Rd. Moreover, the sequence of claim processes

c̃n := (cσ
n

1 − xσ
n

0 , cσ
n

2 , . . . , cσ
n

T ), n ∈ N,

belongs to A
(
(Ct)

T
t=1

)
with the hedging sequence x̃n := (xσ

n

1 , . . . , xσ
n

T−1, 0). Since c̃n →
(c1 − x0, c2, . . . , cT ) almost surely, we apply the induction hypothesis to the T -step model
(Ct)

T
t=1 and obtain an F-measurable random subsequence (τn)∞n=0 of (σn)∞n=0 and an (Ft)

T
t=1-

adapted process x̃ = (x1, . . . , xT ) such that x̃τ
n

t → x̃t for all t almost surely, x̃ hedges c̃,
and xt ∈ N⊥

t for t = 1, . . . , T . This proves the claim, since xτ
n

t → xt almost surely for all
t = 0, . . . , T and the process x := (x0, . . . , xT ) has the desired properties. Indeed, x is adapted,
xt ∈ N⊥

t for all t, xT = 0, and we have

Δxt + ct ∈ Ct P -a.s. ∀t = 0, . . . , T

since Ct(ω) is a closed subset of Rd for each ω.
Case 2: the sequence (xn0 )

∞
n=1 is not almost surely bounded. We will show that this leads

to a contradiction with the robust no scalable arbitrage property. Indeed, assume that the set

A := {ω ∈ Ω | lim inf |xn0 (ω)| =∞}
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has positive probability, and consider the sequences

x̂n := αnxn and ĉn := αncn, n ∈ N,

where αn = χA

max{|xn
0 |,1} . The processes (x̂n)∞n=1 and (ĉn)∞n=1 are adapted, x̂nt ∈ L0(N⊥

t ,Ft)

for all t, x̂nT = 0, ĉnt → 0 almost surely for each t, and the sequence (x̂n0 )
∞
n=0 is almost surely

bounded. Moreover, we have

(6.1) x̂nt − x̂nt−1 + ĉnt ∈ αnCt P -a.s.,

where αnCt ⊂ Ct since Ct is convex, 0 ∈ Ct, and |αn| ≤ 1. Thus we have the same situation as
in Case 1, and using the same reasoning we obtain an F-measurable random sequence (τn)∞n=0

and an adapted process x such that x̂τ
n → x almost surely, xt ∈ N⊥

t for all t, and xT = 0.
Moreover, since αn → 0 almost surely, (6.1) and (3.2) imply

Δxt ∈ C∞
t P -a.s. ∀t = 0, . . . , T.

Thus x ∈ N (C0) by Lemma 6.1, and then x0 ∈ N0 almost surely by Lemma 6.2. Since also
x0 ∈ N⊥

0 , we have x0 = 0 almost surely. But we also have |x̂n0 | → 1 and hence |x0| = 1 on
the nontrivial set A, which is a contradiction. Thus, Case 2 cannot occur under the robust no
scalable arbitrage condition.
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Weak Kyle–Back Equilibrium Models for Max and ArgMax∗

A. Kohatsu-Higa† and S. Ortiz-Latorre‡

Abstract. The goal of this article is to introduce a new approach to model equilibrium in financial markets
with an insider. We prove the existence and uniqueness in law of equilibrium for these markets.
Our setting is weaker than that of Back, and it can be interpreted as a first theoretical step towards
developing statistical test procedures. Additionally, it allows various forms of insider information
to be considered under the same framework and compared. As major examples, we consider the
cases of the maximum of the demand and the time at which this maximum is taken, which have not
previously been treated in the literature of equilibrium in financial markets with inside information.
Simulations indicate that the expected wealth for the maximum is greater than the expected wealth
for its argument.

Key words. large insider trading, equilibrium theory, semimartingale decomposition
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1. Introduction. In recent years, the study of mathematical models for financial markets
with asymmetry of information has been gaining increasing attention from mathematical
finance researchers. In a seminal paper and from the market microstructure point of view,
Kyle [16] introduced a model in which an insider, who knows the value of the stock at some
future time, optimizes his/her wealth while the market maker makes prices rational, that is, a
rational expectations equilibrium model. The main features of Kyle’s model are that it gives
finite utilities and that it is a model of price formation. That is, the insider controls the price
process through his/her demand of stock shares. Kyle’s model has been extended by Back [2],
Lasserre [17], Cho [5], and Campi and Çetin [4], among others.

We consider a continuous time market composed of one risk-free asset and one risky asset.
We assume, without loss of generality, that the risk-free rate is zero. Trading in the risky
asset is continuous in time and quantity. Furthermore, the market is order-driven; that is,
prices are determined by the demand on the risky asset.

There is to be a public release of information at time t = 1. This information reveals the
value of the risky asset, which we denote by ξ. As the market is order-driven, this entails that
ξ will be the price at which the asset will be traded just after the release of information and,
therefore, the final profit obtained through trading on this asset will depend on ξ.

There are three representative agents in the market: the market maker, the insider, and
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the noise trader. The role of the market maker is to organize the market. That is, according
to the asset’s aggregate demand, the market maker sets the price of the asset and clears the
market. The insider is assumed to know at the beginning of the trading period some strong
information, say λ = L(Y ), not necessarily equal to ξ, which depends exclusively on the total
demand Y . This agent uses this information in order to maximize his/her expected profit.
The noise trader represents all the other participants in the market. The noise trader’s orders
are a consequence of liquidity or hedging issues and are assumed to be independent of λ but
not necessarily of ξ. Thanks to the demand of the noise trader, denoted by Z, the market
maker cannot observe the demand of the insider.

Our formulation is weak in the sense that the vector (ξ, λ, Z) is not given beforehand, in
contrast with the previous literature on this subject. The initial data in our formulation is
(μ,L), where μ is the law of ξ and the other ingredients of an equilibrium are part of the
problem. The mathematical motivation for using a weak setup is due to the fact that in a
strong formulation the relationship between λ, ξ, and Z cannot be simply stated in general.
This relationship is not unique if one wants only to give as initial data the law of the final
price. Furthermore, in general, ξ is not independent of λ or Z. However, it is assumed that
ξ is made public at the end of the trading period. Hence, ξ is incorporated in the functional
to be optimized in the equilibrium.

From the economic modeling point of view, the situation can be explained as follows.
Suppose a financial controller exists, say a member of an exchange commission, which would
like to test after the time interval has been totally observed (say [0, 1]) the large trader/insider
behavior in a sector of the market. By a sector we mean a collection of homogeneous companies
sharing a similar activity for which one can assign a law for ξ, its value at t = 1. The
financial controller observes the data for different companies in the sector, and after some
renormalization we can regard the data as different realizations or sample points in his/her
universe.

With the data, a law μ for ξ can be inferred and a functional L of the total demand is fixed
for testing. The first step for the controller is to know if it is possible that there exists insider
trading in the stocks of this sector using the information L(Y ) and being in equilibrium. Our
paper addresses this question. The next step would be to design a statistical test according to
the probabilistic properties of the equilibrium, but we do not pursue this goal in this paper.

Now, we briefly discuss the concept of weak equilibrium used in this paper.

The difference between the classical notion of equilibrium used in Back [2, section 1] and
the one proposed here is that in Back the information is exogenously given while here is also
part of the definition of weak equilibrium.

In particular, condition (vii) in Definition 2.7 states that if we fix the noise trader process
and the information, the strategy used by the insider maximizes his/her expected final wealth
within a suitable admissible space. This condition can be also interpreted as a local equilibrium
condition because the noise trader process and the information are fixed.

This interpretation is linked to the notion of partial (or local) equilibrium. If the insider
finds himself/herself at such a partial equilibrium point, there is no particular reason to move
from such a point.

From the point of view of a financial controller, the procedure is carried out after all the
data is available. That is, the final price has already been announced and the controller wants
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to test the existence of some insiders in the market. Once the type of information is selected,
one can statistically check whether the strategy used by the insider(s) is locally optimal.

It is important to point out that this optimal strategy has the same functional form as the
compensator of the Brownian motion W with respect to its natural filtration enlarged with
the random variable L(W ).

Besides the weak equilibrium feature, there are various delicate mathematical points where
our results and techniques differ from previously mentioned research. Briefly summarizing,
we mention the following:

(1) Due to the generality of the functional L, we use variational calculus (or dynamic
principle) and do not obtain an HJB equation formulation. In particular, optimal
strategies do not depend only on the insider’s additional information and the value
process, the admissible strategies do not form a linear space, and the expected profit
depends on ξ, which is not measurable with respect to the insider’s filtration. These
features introduce some difficulties in obtaining the optimality results.

(2) One of the conditions of admissibility requires that the optimal strategy has to be
adapted to the filtration generated by the noise trader process and the insider infor-
mation. This result, which was easy to obtain in previous articles (in fact, this was
just a property of Brownian bridges), becomes extremely difficult in the generality
presented here. In fact, we consider as examples the case where L (Y ) = maxt Yt
corresponds to the maximum of the demand and to the argument of this maximum
L (Y ) = argmaxt Yt. This leads to the study of the existence and uniqueness of the
solutions of stochastic differential equations (SDEs) with path dependent coefficients
which degenerate at random times.

Finally, we compare the expected wealth obtained by the large insider/trader in the two
main examples considered. The simulations indicate that knowing τ , the time at which the
maximum of the total demand is achieved, gives less expected wealth than knowing M , the
maximum of the total demand.

As a final remark, we want to state that one of the main goals of this article is to raise/
contribute to the discussion on the issue of the equilibrium concept for the large insider/
trader for general information as explained in this article. We do not pretend that this is the
unique way to solve the problem. We hope that other researchers will also present alternative
proposals and comments on this model.

The paper is organized as follows. In section 2 we give some basic definitions and introduce
our weak formulation of equilibrium. Section 3 contains the discussion of the optimization
problem for the insider, and an optimality equation is deduced. In section 4 we relate the
properties of the solutions of the optimality equation with the rationality of prices. Section 5
is devoted to stating the main results on the existence and uniqueness in law of a weak
equilibrium. In section 6 we deal with two basic examples, previously treated in the literature:
Back’s example and an example on binary information. Section 7 aims to introduce two new
examples in the literature of equilibrium for asymmetric markets. The first is in the case that
the additional information held by the insider is the maximum of the total demand, and the
second is in the case of the time at which this maximum is attained. We state and prove the
existence and uniqueness in law of a weak equilibrium in both cases. Finally, we numerically
compare the expected wealth obtained by the insider in these two examples. Section 8 is
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dedicated to conclusions. Finally, section 9 contains an appendix devoted to proving some
technical results.

Throughout this article C will denote a constant that may change from line to line. L(X )
denotes the law of the random element X .

2. Weak formulation of equilibrium. In this section we introduce the concept of weak
equilibrium. First we define the class of pricing rules and admissible strategies.

Definition 2.1. We say that a function F : [0, 1] × R → R satisfies an exponential growth
condition if there exist positive constants A,B such that |F (t, y)| ≤ AeB|y| for all (t, y) ∈
[0, 1] × R.

Definition 2.2. A pricing rule is a function H ∈ C1,3 ((0, 1)×R) such that Hy (t, y) > 0 for
all t ∈ [0, 1] and H,Ht,Hy,Hyy satisfy an exponential growth condition. We denote by H the
set of functions H satisfying these properties.

In the previous definition we require the pricing rules to satisfy some regularity and growth
conditions for technical reasons. From a modeling point of view, the important assumption is
the requirement that Hy (t, y) > 0 for all t ∈ [0, 1]. This implies that the insider can invert the
price process to obtain the total demand and, hence, the noise trader demand; see Remark
2.8(c).

Definition 2.3. Given a process Z and a random variable M , we define Θsup(M,Z) as the
class of F

I = F
Z ∨ σ(M)-adapted càglàd processes in [0, 1) which satisfy∫ 1

0
|θs| ds ∈ L1(Ω),(2.1)

sup
0≤t≤1

∣∣∣∣∫ t

0
H

(
s,

∫ s

0
θudu+ Zs

)
θsds

∣∣∣∣ ∈ L1 (Ω) ,(2.2)

sup
0≤t≤1

∣∣∣∣∫ t

0
Hy

(
s,

∫ s

0
θudu+ Zs

)
θsds

∣∣∣∣ ∈ L1+ε (Ω) for some ε > 0,(2.3)

and

(2.4) exp

(
C sup

0≤t≤1

∣∣∣∣∫ t

0
θsds

∣∣∣∣) ∈ L1(Ω) ∀C > 0

for all H ∈ H.
Remark 2.4. We could replace the technical conditions (2.1), (2.2), (2.3), and (2.4) in the

definition of Θsup(M,Z) by the stronger ones

(2.5)

∫ 1

0
|θs|1+ε ds ∈ L1(Ω) for some ε > 0

and

(2.6) exp

(
C sup

0≤t≤1

∣∣∣∣∫ t

0
θsds

∣∣∣∣) ∈ L1(Ω) ∀C > 0.
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The advantage is that conditions (2.5) and (2.6) define a linear space. On the other hand,
condition (2.5) is difficult to verify in specific examples.

Definition 2.5. Given a process Z and a random variable M , independent of Z, we say
that a process X is an (M,Z)-strategy process if there exists θ ∈ Θsup (M,Z) such that

Xt =
∫ t
0 θsds, t ∈ [0, 1].

Definition 2.6. Given a final price ξ ∈ L2 (Ω), a stochastic process Z, a random variableM ,
independent of Z, a price semimartingale process P ≡ (Pt)t∈[0,1] with respect to F

Z ∨ σ (M),
and an (M,Z)-strategy process X = (Xt)t∈[0,1], we denote by V = V (X,P, ξ) the agent final
wealth defined by

V (X,P, ξ) = V0 +

∫ 1

0
XsdPs + (ξ − P1)X1

whenever the above stochastic integral is well defined. Here V0 is a constant.
Definition 2.7 (weak equilibrium). Let L : C[0, 1] → R

k be a measurable functional on the
canonical Wiener space and μ be a probability measure on R with

∫
R
x2μ (dx) < ∞. We say

that there exists an (L, μ)-weak equilibrium if there exists some probability space (Ω,F , P )
where there exist three processes Y ∗, θ∗, and Z∗, a random variable ξ∗, a random vector λ∗,
and a function H∗ ∈ H such that the following hold:

(i) Y ∗
t = X∗

t + Z∗
t , where X

∗
t =

∫ t
0 θ

∗
sds for t ∈ [0, 1].

(ii) λ∗ = L(Y ∗) is independent of the process Z∗.
(iii) Z∗ is a Brownian motion.
(iv) ξ∗ has the law μ.
(v) θ∗ ∈ Θsup(λ

∗, Z∗).
(vi) Prices are rational. That is, P ∗

t � H∗(t, Y ∗
t ) = E[ξ∗|FY ∗

t ] for t ∈ [0, 1].
(vii) For all θ ∈ Θsup (λ

∗, Z∗), one has

E[V (X,P, ξ∗)] ≤ E[V (X∗, P ∗, ξ∗)],

where X· =
∫ ·
0 θsds, Y

θ = X + Z∗, and P· = H∗(·, Y θ· ).
Now we give a series of remarks related to this definition.
Remark 2.8. (a) It is clear that Z∗ is an F

Z∗ ∨ σ(λ∗)-Brownian motion, as Z∗ is adapted
to this filtration and is independent of λ∗.

(b) The price of the asset will be equal to ξ∗, just after the release of information at time
t = 1. This price has to have the prespecified law μ. Furthermore, the relationship between
ξ∗ and λ∗ is specified through the rationality of prices (property (vi) above), and in general
ξ∗ is not independent of Z∗.

(c) The natural definition of the insider filtration is F
∗ = F

Z∗ ∨ σ(λ∗). This is due to
the monotonicity of the pricing rule and the fact that the insider observes the prices; one has
that at time t the insider can infer Z∗

t . Note that in general F
Y ∗

is not necessarily included
in F

Z∗
.

(d) The set of (λ∗, Z∗)-strategies is usually nonempty. Furthermore, in the optimization
problem (vii) above, one may think that it is more natural to restrict the opportunity set of
strategies to the ones satisfying L(Y θ) = λ∗. This means that the insider would realize the
giving of strong information on the total demand. In the next section, we will see that the
optimum, with or without this restriction, is the same, given condition (ii) in Definition 2.7.
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(e) From now on we will always assume that μ is a probability measure on R satisfying∫
R
x2μ (dx) <∞ without any further mention.
Note that in the above (partial) equilibrium setup the insider optimizes his/her expected

profit given the information λ∗ and Z∗. In this aspect, the above equilibrium is a partial
one. In other words, if the agent uses the strategy θ∗, there is no (local) reason to change
strategy. It can also be considered as a stable point where the insider can actually realize all
the conditions for a stable market. The above setup and the subsequent proofs to follow are
not constructive.

3. Optimization problem for the insider. In this section we give necessary conditions for
a process to solve the optimization problem stated in property (vii) of Defintion 2.7. Given
a Wiener process Z and a fixed random variable M , which is independent of Z, we define
F
I = F

Z ∨ σ (M). As pointed out in the introduction, we use the classical approach of
variational calculus.

From now on, we denote by a superindex θ on Yt the dependence of the total demand
on the strategy of the insider. Then, Y θ

t =
∫ t
0 θsds + Zt. Before studying the optimization

problem we state the following property for the portfolio process θ.
Lemma 3.1. If θ ∈ Θsup(M,Z), then the price process P θ

t = H(t, Y θ
t ) is an F

I-semimartin-
gale and its decomposition is given by

P θ
t = P θ

0 +

∫ t

0

{
Ht(s, Y

θ
s ) +

1

2
Hyy(s, Y

θ
s ) +Hy(s, Y

θ
s )θs

}
ds+

∫ t

0
Hy(s, Y

θ
s )dZs.

The proof is a straightforward application of Itô’s formula, as H ∈ C1,2((0, 1) × R) and
Y θ is a semimartingale in the filtration F

I = F
Z ∨ σ(M). The next lemma is obtained using

the integration by parts formula.
Lemma 3.2. Let θ be any F

I-adapted process such that
∫ 1
0 |θs| ds <∞ a.s. Then, we have

that

V � V (X,P θ, ξ) = V0 +

∫ 1

0
(ξ −H(t, Y θ

t ))θtdt.

Without loss of generality we assume from now on that V0 = 0. The optimization problem
we consider in this section is maxθ∈Θsup(M,Z) J (θ), where

(3.1) J (θ) � E

[∫ 1

0
(ξ −H(t, Y θ

t ))θtdt

]
, θ ∈ Θsup (M,Z) .

We also denote by θ∗ � argmaxθ∈Θsup(M,Z) J (θ) when this process exists. The difficulties
in solving this problem are due to the nonlinearity of the functional J and the fact that
Θsup (M,Z) is not a linear space.

Remark 3.3. Note that, for θ ∈ Θsup (M,Z), we have that

|J (θ)| ≤ E

[
|ξ|
∣∣∣∣∫ 1

0
θtdt

∣∣∣∣]+ E

[∣∣∣∣∫ 1

0
H(t, Y θ

t )θtdt

∣∣∣∣] <∞,
due to ξ ∈ L2 (Ω) and the fact that θ satisfies conditions (2.4) and (2.2). Furthermore, if
θ is F

I-adapted and satisfies the integrability conditions that define Θsup (M,Z), but it is not
necessarily càglàd, then we also have that |J (θ)| <∞.
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The first step in our strategy to solve the problem is to study the properties of J (θ) in
the following linear subset of Θsup (M,Z):

Θb (M,Z) = {θ ∈ Θsup(M,Z) : there exists K > 0 such that ∀ω, |θs (ω)| ≤ K}.
Lemma 3.4. If v, θ ∈ Θb(M,Z), then

DvJ (θ) � d

dε
J (θ + εv) |ε=0

= E

[∫ 1

0
vt(ξ −H(t, Y θ

t ))dt

]
− E

[∫ 1

0

(∫ t

0
vsds

)
Hy(t, Y

θ
t )θtdt

]
.(3.2)

Furthermore, the operator D·J (θ) : v → DvJ (θ) is linear.
Proof. First note that for any θ, v ∈ Θb(M,Z) and ε > 0 one has that θ+ εv ∈ Θb(M,Z),

and differentiating under the integral sign (see Lemma 9.3) and applying Fubini’s theorem
one obtains

d

dε
J (θ + εv) |ε=0 = E

[∫ 1

0
vt

{
(ξ −H(t, Y θ

t ))−
∫ 1

t
Hy(s, Y

θ
s )θsds

}
dt

]
= E

[∫ 1

0
vt(ξ −H(t, Y θ

t ))dt

]
− E

[∫ 1

0

(∫ t

0
vsds

)
Hy(t, Y

θ
t )θtdt

]
.

Remark 3.5. If θ ∈ Θsup (M,Z) is such that

(3.3) E

[
(ξ −H(t, Y θ

t ))−
∫ 1

t
Hy(s, Y

θ
s )θsds |FI

t

]
= 0,

then for any v ∈ Θb(M,Z) we have

E

[∫ 1

0
vt(ξ −H(t, Y θ

t ))dt

]
− E

[∫ 1

0

(∫ t

0
vsds

)
Hy(t, Y

θ
t )θtdt

]
= 0.

From now on, we refer to (3.3) as the optimality equation.
The next step is to prove the concavity of J (θ) in Θb(M,Z). This is done in the following

proposition, which makes use of a general result on convex analysis; see Proposition 9.2.
Proposition 3.6. If H ∈ H satisfies

(3.4) Hty (t, y) +
1

2
Hyyy (t, y) ≤ 0,

then J (θ) is concave in Θb(M,Z).
Proof. We will show that for every θ, η ∈ Θb(M,Z) we have Dη−θJ (θ) ≥ J (η) − J (θ),

which thanks to Proposition 9.2 is equivalent to J (θ) being concave. Given θ, η ∈ Θb(M,Z),
α ∈ [0, 1], define δ � η − θ and Ψα � θ + αδ. For α ∈ [0, 1], define ϕ (α) � Dη−θJ (Ψα) =
d
dαJ (Ψα). We will show that ϕ′ (α) = d2

dα2J (Ψα) ≤ 0. First, by Lemma 9.3 we have that

ϕ′ (α) = −E
[∫ 1

0

(∫ t

0
δsds

)2

Hyy(t, Y
α
t )Ψα

t dt

]
− E

[
2

(∫ t

0
δsds

)
Hy(t, Y

α
t )δtdt

]
.
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Then we apply integration by parts in the second expectation to obtain that

E

[∫ 1

0
2

(∫ t

0
δsds

)
Hy(t, Y

Ψα

t )δtdt

]
= E

[(∫ 1

0
δsds

)2

Hy(1, Y
Ψα

1 )

]

− E

[∫ 1

0

(∫ t

0
δsds

)2{
Hty(t, Y

Ψα

t ) +
1

2
Hyyy(t, Y

Ψα

t ) +Hyy(t, Y
Ψα

t )Ψα
t

}
dt

]
.

Hence,

ϕ′ (α) = −E
[(∫ 1

0
δsds

)2

Hy(1, Y
Ψα

1 )

]

+ E

[∫ 1

0

(∫ t

0
δsds

)2{
Hty(t, Y

Ψα

t ) +
1

2
Hyyy(t, Y

Ψα

t )

}
dt

]
.

Using the fact that Hy > 0 and (3.4) we conclude that ϕ′ (α) ≤ 0, and therefore ϕ is a
decreasing function. On the other hand, an application of the mean value theorem gives that
J (η) − J (θ) = Dη−θJ(Ψ

α∗
) = ϕ (α∗) for some α∗ ∈ [0, 1]. Therefore J (η) − J (θ) ≤ ϕ (0) =

Dη−θJ (θ).
The following theorem gives a sufficient condition to find the optimal process in Θsup (M,Z).
Theorem 3.7. Let H ∈ H satisfy (3.4). If θ∗ ∈ Θsup (M,Z) is such that

E

[
(ξ −H(t, Y θ∗

t ))−
∫ 1

t
Hy(s, Y

θ∗
s )θ∗sds |FI

t

]
= 0,

then J (θ) ≤ J (θ∗), θ ∈ Θsup (M,Z).
Proof. According to Propositions 9.5 and 9.6, there exists a sequence {θ∗,n}n∈N ⊆ Θb(M,Z)

such that limn→∞ J (θ∗,n) = J (θ∗) and

lim
n→∞Dθ−θ∗,nJ (θ∗,n) = 0 ∀θ ∈ Θb(M,Z).

Using Proposition 3.6, we obtain that J is concave in Θb(M,Z), and therefore we have that
J (θ) ≤ J (θ∗,n) + Dθ−θ∗,nJ (θ∗,n), θ ∈ Θb(M,Z). Therefore, taking limits one gets that
J (θ) ≤ J (θ∗), θ ∈ Θb(M,Z). Using Proposition 9.5 again, we have that for all θ ∈ Θsup (M,Z)
there exists a sequence {θn}n∈N ⊆ Θb(M,Z) such that limn→∞ J (θn) = J (θ) ≤ J (θ∗).

4. Properties of the solutions to the optimality equation. The following proposition is
important for finding a strategy θ∗ satisfying the optimality equation and yielding a rational
price. It tell us that given an insider’s strategy satisfying the optimality equation, the price
process associated with this strategy is rational if and only if the market maker sees the
associated total demand as a Brownian motion. In other words, the associated price process
is rational if and only if the market maker sees the total demand as if only the noise trader
were buying or selling stocks. Moreover, this suggests the connection between the optimal
insider’s demand and the compensator of a Brownian motion with respect to an enlarged
filtration; see Remark 5.2.
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Proposition 4.1. Assume there exists a process θ∗ ∈ Θsup (M,Z) satisfying the optimality

equation (3.3). Then H(·, Y θ∗· ) is an F
Y θ∗

-martingale if and only if Y θ∗ is an F
Y θ∗

-Brownian
motion.

Proof. Assume that θ∗ and Y θ∗
t =

∫ t
0 θ

∗
sds+Zt satisfy the optimality equation. Note that

this equation is equivalent to

(4.1) H(t, Y θ∗
t )−

∫ t

0
Hy(s, Y

θ∗
s )θ∗sds = E[ξ|FI

t ]−Mt,

where Mt = E[
∫ 1
0 Hy(s, Y

θ∗
s )θ∗sds|FI

t ]. Making t = 0 in (4.1), we obtain H (0, 0) + M0 =
E[ξ|FI

0 ]. Applying Itô’s formula to H(t, Y θ∗
t ) in (4.1), we get∫ t

0

{
Ht(s, Y

θ∗
s ) +

1

2
Hyy(s, Y

θ∗
s )

}
ds

= −
∫ t

0
Hy(s, Y

θ∗
s )dZs + E[ξ|FI

t ]− E[ξ|FI
0 ]− (Mt −M0)(4.2)

for all t ∈ [0, 1]. The right-hand side of (4.2) is a continuous F
I -local martingale with initial

value 0, and the left-hand side is a finite variation process with continuous paths. Therefore,
both processes must be identically zero. Therefore, we have that

(4.3) Ht(t, Y
θ∗
t ) +

1

2
Hyy(t, Y

θ∗
t ) = 0, t ∈ [0, 1].

Combining the above equation with Itô’s formula, we have

(4.4) H(t, Y θ∗
t ) = H (0, 0) +

∫ t

0
Hy(s, Y

θ∗
s )dY θ∗

s .

If Y θ∗ is an FY θ∗
-Brownian motion, then the stochastic integral

∫ t
0 Hy(s, Y

θ∗
s )dY θ∗

s is a mar-

tingale due to Lemma 9.1. Therefore H(t, Y θ∗
t ) is an F

Y θ∗
-martingale. Conversely, note that

as Hy > 0, we can write Y θ∗
t =

∫ t
0

dH(s,Y θ∗
s )

Hy(s,Y θ∗
s )

. Hence, if we assume that H(t, Y θ∗
t ) is an F

Y θ∗
-

martingale, then Y θ∗ is an F
Y θ∗

-local martingale. As Y θ∗ has the same quadratic variation
as Z, we obtain that Y θ∗ is actually a Brownian motion with respect to its own filtration.

Corollary 4.2. If there exists a process θ∗ ∈ Θsup(M,Z) satisfying (3.3) and H(·, Y θ∗· ) is

an F
Y θ∗

-martingale, then H and ξ must satisfy

(4.5) Ht (t, y) +
1

2
Hyy (t, y) = 0

and

(4.6) H(1, Y θ∗
1 ) = E[ξ|FI

1 ].

Proof. Equation (4.3) and the fact that Y θ∗ is a Brownian motion in its own filtration
lead to (4.5). Making t = 1 in the optimality equation (3.3), one obtains (4.6).
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5. Existence and uniqueness in law of weak equilibrium. We start this section with a
result giving sufficient conditions to obtain an (L, μ)-weak equilibrium. The first condition
in Theorem 5.1 essentially says that the law μ of the asset value ξ must be a smooth trans-
formation of a standard normal random variable. Actually, in the examples of the following
sections we do not specify the law μ but the pricing rule H, which gives this smooth trans-
formation. We will consider the pricing rules studied previously in the literature, which are
H (t, y) = y and H (t, y) = ey+(1−t)/2; see [2]. Notice that the exponential pricing rule has
much more economical interpretation, as it implies that prices are lognormally distributed.
The second condition says that there exists a Brownian motion W such that W is a semi-
martingale with respect to enlarged filtration F

W ∨ σ (L (W )). According to Proposition 4.1,
if the insider wants to obtain a rational price process, then the total demand Y must be a
Brownian motion with respect to its natural filtration. Therefore, it is natural to impose
that the additional information of the insider, given by L (Y ), be such that the total demand
remains a Brownian motion with respect to the enlarged filtration F

Y ∨ σ (L (Y )) and then
use the compensator as the insider’s strategy. The technical condition in order to carry out
this argument is F

Y ∨ σ (L (Y )) = F
I plus some integrability conditions, which is the third

condition in the theorem.
From an economical point of view, it seems reasonable to expect that the insider cannot

possess “too much additional information” for an equilibrium to hold. In Theorem 5.1, this is
reflected in the semimartingale property of W . In fact, if L (W ) gives too much information
to the insider, then W will not be a semimartingale with respect to the enlarged filtration
and, therefore, prices will not be rational. Although there exists a general criterion to ensure
that a given functional satisfies this semimartingale condition, known as Jacod’s criterion
(see, for instance, Theorem 10 in Chapter VI of [19]), this criterion does not apply to our
main examples L (W ) = max0≤t≤1Wt or L (W ) = argmax0≤t≤1Wt. In other models of
insider trading, where the rationality of prices is not taken into account, this condition is not
sufficient to provide realistic models with finite expected wealth for the insider optimization
problem; see [12]. Usually the information held by the insider has to be perturbed by some
noise; see [12] and [6].

Theorem 5.1 (existence). Given a measurable functional L : C[0, 1]→ R
k and μ a probabil-

ity measure on R satisfying
∫
R
x2μ (dx) <∞, we assume the following:

(1) There exists H ∈ H such that it satisfies (4.5) and

μ (A) =
1√
2π

∫
H(1,·)−1(A)

e−x2/2dx ∀A ∈ B (R) .

(2) There exists a probability space (Ω,F , P ) supporting a Brownian motion W which
is a semimartingale in the filtration F

W ∨ σ (λ), λ � L (W ), with semimartingale
decomposition Wt =

∫ t
0 α (s, λ) ds+W λ

t , where W
λ is an F

W ∨σ (λ)-Brownian motion.
(3) α ∈ Θsup(λ,W

λ).
Then

(Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) = (W,α(·, λ),W λ,H,H (1,W1) , λ)

is an (L, μ)-weak equilibrium.
Proof. Verification of properties (i), (iii), (iv), and (v) in the definition of weak equilib-

rium (Definition 2.7) is straightforward. Property (ii) follows from the fact that W λ
t is an
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F
W ∨ σ (λ)-Brownian motion and, hence, is independent of FW

0 ∨ σ (λ) = σ (λ). From hy-
pothesis (1), together with (4.4), we have that H (·,W·) is an F

W -martingale. As H (t,Wt) =
E[H (1,W1) |FW

t ], property (vi) follows. To check property (vii), we apply Itô’s formula to
H(·,W·) in the left-hand side of the optimality equation (3.3) with θ = α. Due to hypothe-
sis (1) we obtain that it is equal to

E

[∫ 1

t
Hy (s,Ws) dW

λ
s |FWλ

t ∨ σ (λ)
]
.

On the other hand, hypothesis (3) implies that α (·, λ) is FWλ ∨ σ (λ)-adapted, which entails

that W is FWλ ∨ σ (λ)-adapted, and one can conclude that FW ∨ σ (λ) = F
Wλ ∨ σ (λ). Hence,

due to Lemma 9.1, the above conditional expectation equals zero, and the conclusion follows
from Theorem 3.7.

Remark 5.2. Of the three hypotheses in the previous theorem, hypothesis (3) is difficult to
verify in general. Besides the integrability conditions in the definition of Θsup(λ,W

λ), α (·, λ)
must be F

Wλ ∨ σ (λ)-adapted. This property will follow if F
W ∨ σ (λ) = F

Wλ ∨ σ (λ). This
problem seems to be difficult to solve in general.

We deal with this problem in each of the examples to follow in the next sections. The
general strategy is to show existence and uniqueness for SDEs of the form

Xt =

∫ t

0
α(s,G,X[0,s])ds + Vt,

where V is a Brownian motion, α is a (degenerate) functional, and G is a random variable
independent of V . Therefore, X would be F

V ∨ σ (G)-adapted.
The following theorem gives a uniqueness result for the (L, μ)-weak equilibrium found

in the previous theorem. Condition (6) in the following theorem deserves a comment. This
assumption roughly says that two weak equilibriums have the same law whenever they are
obtained through a semimartingale decomposition of a Brownian motion with respect to an
enlarged filtration. In other words, if in condition (2) of Theorem 5.1 we use two different
Brownian motions possibly defined in two different probability spaces, the two different weak
equilibriums obtained have the same law. From the economic point of view, this assumption
states that if the market maker knew the insider’s additional information, then he/she would
have exactly the same information flow as the insider.

Theorem 5.3 (uniqueness in law). Assume the same hypotheses of Theorem 5.1, and de-
note by (Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) the (L, μ)-weak equilibrium. Suppose that there exists another
probability space supporting processes (Y, θ, Z) such that

(1) Yt =
∫ t
0 θsds+ Zt;

(2) λ � L (Y ) is independent of Z;
(3) Z is a Brownian motion in its own filtration;
(4) θ ∈ Θsup (λ,Z);
(5) H∗ (t, Yt) = E[H∗ (1, Y1) |FY

t ] for t ∈ [0, 1].
(6) F

Z ∨ σ (λ) = F
Y ∨ σ (λ).

Then, we have that L(Y ∗,X∗, Z∗, ξ∗, λ∗) = L(Y,X,Z, ξ, λ), where ξ � H∗ (1, Y1), and there-
fore E[V (X,P, ξ)] = E

∗[V (X∗, P ∗, ξ∗)].
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Proof. Applying Itô’s formula in the filtration F
I = F

Z ∨ σ (λ), we have that

ξ −H∗ (t, Yt)−
∫ 1

t
H∗

y (s, Ys) θsds =

∫ 1

t
H∗

y (s, Ys) dZs,

where in the last equality we have used that H∗ satisfies (4.5). After taking conditional
expectation, this yields

E

[
ξ −H∗ (t, Yt)−

∫ 1

t
H∗

y (s, Ys) θsds | FI
t

]
= 0.

Then, by Theorem 3.7 we have that J (η) ≤ J (θ) for all η ∈ Θsup (L (Y ) , Z). By hypothesis (5)
and Proposition 4.1 one gets that Y is a Brownian motion in its own filtration. Therefore,
L (Y, λ, ξ) = L (Y ∗, λ∗, ξ∗). As the process θ∗ is adapted to F

Y ∗ ∨ σ (λ∗), it can be written as
θ∗t = Λ(t, Y ∗

[0,t], L(Y
∗
[0,1])), P × λ-a.s. Then, defining θ̂t � Λ(t, Y[0,t], L(Y[0,1])) and using that

L (Y ∗) = L (Y ), we have that

E

[
Yt − Ys −

∫ t

s
θ̂udu|FY

s ∨ σ (λ)
]
= 0.

Thus, Yt =
∫ t
0 θ̂sds + Mt =

∫ t
0 θsds + Zt, where M is an F

Y ∨ σ (λ)-martingale. Given
assumption (6), the uniqueness of the semimartingale decomposition of Y with respect to
F
Y ∨ σ (λ) proves that θ̂ = θ, P × λ-a.s.

The following result is helpful when proving that α ∈ Θsup (λ,Z).
Proposition 5.4. Let Y be a Brownian motion, and let λ = L (Y ). Assume that Y has a

semimartingale decomposition with respect to F
Y ∨ σ (λ) given by Yt =

∫ t
0 αsds + Zt, where

Z is an F
Y ∨ σ (λ)-Brownian motion. Then, exp(C sup0≤t≤1 |

∫ t
0 αsds|) ∈ Lp (Ω), p ≥ 1, for

all C > 0, and sup0≤t≤1 |
∫ t
0 F (s, Ys)αsds| ∈ Lp (Ω), p ≥ 1, where F is any function satisfying

an exponential growth condition.
Proof. To prove the first statement, notice that∣∣∣∣exp(C sup

0≤t≤1

∣∣∣∣∫ t

0
αsds

∣∣∣∣)∣∣∣∣p ≤ exp

(
pC sup

0≤t≤1
|Yt|
)
exp

(
pC sup

0≤t≤1
|Zt|
)
.

By the Cauchy–Schwarz inequality, taking into account that Y and Z are Brownian motions,
we obtain that

E

[∣∣∣∣exp(C sup
0≤t≤1

∣∣∣∣∫ t

0
αsds

∣∣∣∣)∣∣∣∣p] ≤ (E [exp(2pC sup
0≤t≤1

|Yt|
)])2

<∞.

To prove the second statement, note that∣∣∣∣∫ t

0
F (s, Ys)αsds

∣∣∣∣p ≤ C (p)

(∣∣∣∣∫ t

0
F (s, Ys) dYs

∣∣∣∣p + ∣∣∣∣∫ t

0
F (s, Ys) dZs

∣∣∣∣p) .
Define M1

t �
∫ t
0 F (s, Ys) dYs and M2

t �
∫ t
0 F (s, Ys) dZs. Here, M1 is an F

Y -local martin-
gale. By the BDG inequality (see Theorem 73 on page 222 of [19]), taking into account that
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F satisfies an exponential growth condition and that Y is a Brownian motion, we obtain that

E

[
sup

0≤t≤1

∣∣M1
t

∣∣p] ≤ CpE

[(∫ 1

0
F (s, Ys)

2 ds

)p/2
]

≤ CpE

[(∫ 1

0
A2 exp(2B |Ys|)ds

)p/2
]

≤ CpA
p
E

[
exp

(
pB sup

0≤t≤1
|Yt|
)]

<∞.

Thus M1 is an F
Y -martingale and sup0≤t≤1 |M1

t | ∈ Lp (Ω), p ≥ 1. We can repeat the same
argument for M2, taking into account that M2 is an F

Y ∨ σ (λ)-local martingale.

6. Back’s example and an example of binary information. In this section we comment on
two known examples where the general result in Theorem 5.1 applies. Throughout this section
we will consider a Brownian motion W defined on a complete probability space (Ω,F , P ).
From now on, we denote by φ (x, t) the density of a centered Gaussian random variable with
variance t and by Φ (x, t) its distribution function, and Φ (x, t) = 1− Φ (x, t).

In all the examples to follow in the next sections, we assume that μ is a probability measure
on R with

∫
R
x2μ (dx) <∞ and that there exists H ∈ H satisfying (4.5) and

μ (A) =

∫
H(1,·)−1(A)

φ (x, 1) dx ∀A ∈ B (R) .

Theorem 6.1. Let W be a Brownian motion. Then W is a semimartingale with respect to
the filtration F

W ∨ σ (W1) with decomposition

(6.1) Wt =

∫ t

0
α (u,W1) du+WW1

t ∀t ∈ [0, 1] ,

where WW1 is an F
W ∨ σ (W1)-Brownian motion,

(6.2) α (t,W1) =
W1 −Wt

1− t ,

for all t ∈ [0, 1).
The previous result is well known, and its proof can be found, for instance, in [11,

Théorème 1]. In [11, Corollaire 1.1], the connection between the Brownian bridge {Wt −
tW1}0≤t<1 and the Brownian motion {WW1

t }0≤t<1 is also discussed, showing that these two
processes have the same natural filtration and that W1 is independent of {WW1

t }0≤t<1. This
idea is later used in order to consider (6.1) as a linear equation, where the unknown function is
W· (ω) and WW1

t (ω) and W1 (ω) are given. The following result is slightly more general than
Corollaire 1.1 in [11], in the sense that if we assume that we are given a Brownian motion B
and a random variable G, independent of B and not necessarily Gaussian, we can construct a
process X with terminal value G. In the particular case that L(G) = N (0, 1), the process X
is a Brownian bridge with X1 = G.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

192 A. KOHATSU-HIGA AND S. ORTIZ-LATORRE

Theorem 6.2. Let B be a Brownian motion and G be a random variable independent of B,
both defined in the same probability space (Ω,F , P ). Then there exists a unique strong solution
X adapted to the filtration F

B ∨ σ (G) of the following SDE:

(6.3) Xt =

∫ t

0

G−Xs

1− s ds+Bt, t ∈ [0, 1] .

Furthermore, if we assume that the law of G is N (0, 1), then Xt is a Brownian motion with
respect to its own filtration.

Proof. As G is independent of B, one has that B is an F
B∨σ (G)-Brownian motion. Using

(1− t)−1 as an integrating factor, we obtain

d

(
Xt

1− t
)

=
G

(1− t)−2 dt+
dBt

1− t .

Therefore, one has that Xt = tG+(1− t) ∫ t
0

dBs
1−s , 0 ≤ t < 1. In Lemma 6.9 on page 358 of [13],

it is proved that the process

Bt = (1− t)
∫ t

0

dBs

1− s , 0 ≤ t < 1,

B1 = 0

is a continuous, centered Gaussian process with covariance function s∧ t− st. Hence we have
proved the existence and uniqueness for the solutions of (6.3). If we assume that G ∼ N (0, 1),
we have that tG is a continuous, centered Gaussian process with covariance function st. As
the sum of two independent Gaussian processes is still a Gaussian process and Bt and G are
independent, we obtain that X is a continuous, centered Gaussian process with covariance
function s ∧ t and thus a standard Brownian motion.

The following property is important to determine the finiteness of optimal utilities. For
p > 0, E[

∫ 1
0 |α (t,G)|p dt] <∞ if and only if p < 2, where α (t, x) = x−Xt

1−t for all t ∈ [0, 1].
Let’s state the weak equilibrium result for this case.
Theorem 6.3. Let L (Y ) = Y1. Then

(Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) = (X,α (·, G) , B,H,H (1, G) , L (X))

is an (L, μ)-weak equilibrium.
In this particular case the above weak equilibrium is in fact a strong-type equilibrium.

For this, see Theorem 1 in [2] or Proposition 2 in [5].
Theorem 6.4. Assume that we are given a Brownian motion Z and strong information ξ.

Assume that H∗ ∈ H satisfies (4.5) and ξ ∼ H∗ (1, N (0, 1)). Set θ∗t � α(t, (H∗)−1 (1, ξ)).
Then (H∗, θ∗) is an equilibrium. That is, the following hold:

• H∗(t, Y ∗) is a rational price, that is, H∗(t, Y ∗) = E[ξ|FY ∗
t ].

• For all θ ∈ Θsup (ξ, Z), one has

E[V (X,P, ξ)] ≤ E[V (X∗, P ∗, ξ)],

where X
(∗)
· =

∫ ·
0 θ

(∗)
s ds, Y (∗) = X(∗) + Z, and P

(∗)
· = H∗(·, Y (∗)

· ).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEAK KYLE–BACK EQUILIBRIUM MODELS 193

Now we consider the case in which the insider knows that the total demand at time 1
is greater than or equal to a fixed constant a. The next two results are quoted from [12,
Example 4.6].

Theorem 6.5. Let W be a Brownian motion. Then W is a semimartingale with respect to
the filtration F

W ∨ σ(1[a,∞) (W1)) with decomposition

Wt =

∫ t

0
α(u,1[a,∞) (W1))du+W a

t ∀t ∈ [0, 1] ,

where W a is an F
W ∨ σ (1[a,∞) (W1)

)
-Brownian motion,

α(t,1[a,∞) (W1)) =
φ (Wt − a, 1− t)
Φ (Wt − a, 1− t)1[a,∞) (W1) +

φ (Wt − a, 1− t)
Φ (a−Wt, 1− t)1[a,∞)c (W1) ,

for all t ∈ [0, 1].

Lemma 6.6. We have that E
[∫ 1

0

∣∣α (t,1[a,∞) (W1)
)∣∣2dt] <∞.

Theorem 6.7. Let B be a Brownian motion and G be a Bernoulli random variable indepen-
dent of B, both defined on the same probability space (Ω,F , P ). Then there exists a unique
strong solution X adapted to the filtration F

B ∨ σ (G) of the following SDE:

(6.4) Xt =

∫ t

0

(
φ (Xt − a, 1− t)
Φ (Xt − a, 1− t)1{1} (G) +

φ (Xt − a, 1 − t)
Φ (a−Xt, 1− t)1{0} (G)

)
ds+Bt

for 0 ≤ t < 1.
Proof. First we will prove that Ψ1

a (x, t) � φ (x − a, 1 − t) /Φ (x − a, 1 − t) is Lipschitz
in the x variable for t ∈ [0, 1) fixed. Note that we can take a = 0, without loss of generality.
Furthermore, Ψ1

0 (x, t) = Ψ1
0(x/
√
1− t, 0)/√1− t.

We have that

∂xΨ
1
0 (x, t) =

− x
1−tφ (x, 1− t) Φ (x, 1− t)− (φ (x, 1− t))2

(Φ (x, 1− t))2

= − x

1− tΨ
1
0 (x, t)− (Ψ1

0 (x, t))
2

= − 1

1− t

{
x√
1− tΨ

1
0

(
x√
1− t , 0

)
+

(
Ψ1

0

(
x√
1− t , 0

))2
}
.

Fix t∗ < 1; then

sup
t∈[0,t∗], x∈R

|∂xΨ1
0 (x, t)| ≤

1

1− t∗ supy∈R

∣∣yΨ1
0(y, 0) +

(
Ψ1

0(y, 0)
)2∣∣.

Applying l’Hôpital’s rule, it can be shown that

lim
y→−∞ yΨ1

0(y, 0) + (Ψ1
0(y, 0))

2 = 1, lim
y→∞ yΨ1

0(y, 0) + (Ψ1
0(y, 0))

2 = 0,

which entails that supt∈[0,t∗], x∈R |∂xΨ1
0 (x, t)| < ∞. Therefore, Ψ1

a (x, t) is Lipschitz in the

x variable uniformly in t ∈ [0, t∗], t∗ < 1. To study the growth of Ψ1
a (x, t) we take a =

0. Then, Ψ1
0 (x, t) ≤ 1√

1−t∗ supy∈RΨ1
0(y, 0) for t ∈ [0, t∗], t∗ < 1. It can be shown that
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limy→−∞Ψ1
0(y, 0)/y = −1 and limy→∞Ψ1

0(y, 0) = 0, which implies that supy∈RΨ1
0(y, 0) <∞.

Hence, Ψ1
a (x, t) satisfies a linear growth condition for t ∈ [0, t∗], t∗ < 1. Using the classical

results on SDEs, we have that there exists a unique strong solution to the following equation:

Y 1
t =

∫ t

0
Ψ1

a(Y
1
s , s)ds +Bt, 0 ≤ t < 1.

We can use a similar reasoning for Ψ2
a (x, t) � φ (x−a, 1− t) /Φ (a−x, 1− t) and get the same

conclusions. Finally, the FB ∨σ (G)-adapted process Xt � Y 1
t 1{1} (G)+Y 2

t 1{0} (G) solves our
problem.

Theorem 6.8. Let L (Y ) = 1[a,∞) (Y1). Then

(Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) = (W,α(·,1[a,∞) (W1)),W
a,H,H (1,W1) , L (W ))

is an (L, μ)-weak equilibrium.
Proof. We apply Theorem 5.1. The first hypothesis of the theorem is assumed. The second

hypothesis follows from Theorem 6.5. Finally the fact that α ∈ Θsup(1[a,∞) (W1) ,W
a) follows

from Lemma 6.6, Proposition 5.4, and Theorem 6.7 (see Remark 5.2).

7. The maximum and its argument. In this section we deal with two examples that
are more complicated but by far more interesting. In particular, the second example is new
in the literature of insider trading with initial strong information. Throughout this section
we will consider a Brownian motion W defined on a complete probability space (Ω,F , P ).
We consider the maximum process in the interval [s, t], Ms,t, 0 ≤ s < t ≤ 1, defined by
Ms,t � maxs≤u≤tWu. To simplify notation we useMt �M0,t, τt � argmax0≤s≤tWs,M �M1,
τ � τ1, and γs,t � Ms,t −Ws. The density and distribution functions of γs,t are given by
p2 (x, t − s) � 2φ (x, t − s)1(0,∞) (x) and Π2 (x, t − s) �

∫ x
0 p2 (z, t − s) dz. Similarly, the

density of the random vector (γs,t,Wt −Ws) is given by

p1(x, y, t− s) � 2 (2x− y)√
2π(t− s)3 exp

{
− (2x− y)2
2(t− s)

}
1(0,∞)×(−∞,x) (x, y) .

Let us recall a theorem by Lévy that links the maximum process Mt with the Brownian local
time Lx

t (W ).
Theorem 7.1. The pairs of processes {(Mt −Wt,Mt); 0 ≤ t < ∞} and {(|Wt| , 2L0

t (W ));
0 ≤ t <∞} have the same laws under P .

For more details, see [13, Chapter 3, Theorem 6.17]. Furthermore, it is easy to show that,
for a fixed t, Mt −Wt ∼ γ0,t. Finally, we set

ϕ (x, t) � p2 (x, t)

Π2 (x, t)
=

e−
x2

2t∫ x
0 e

− y2

2t dy
1(0,∞) (x) .

7.1. L (Y ) = maxt∈[0,1] Yt. In this subsection we consider the case in which the insider
knows the maximum of the total demand. A more general version of the following result is
proved in Jeulin [10] (see Proposition 3.24, page 49). See also Mansuy and Yor [18] for an
updated reference on enlargement of filtrations theory.
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Theorem 7.2. Let W be a Brownian motion. Then W is a semimartingale with respect to
the filtration F

W ∨ σ (M) with decomposition

Wt =

∫ t

0
α (u,M) du+WM

t ∀t ∈ [0, 1] ,

where WM is an F
W ∨ σ (M)-Brownian motion,

α (t,M) =
M −Wt

1− t 1{Mt<M} − ϕ (M −Wt, 1− t)1{Mt=M}.

Note that 1{Mt<M} = 1[0,τ) (t).

Lemma 7.3. We have that E[
∫ 1
0 |α (t,M)| dt] <∞ and E[

∫ 1
0 |α (t,M)|2 dt] =∞.

Proof. To deduce that E[
∫ 1
0 |α (t,M)| dt] < ∞, notice that E[

∫ 1
0 α (t,M) dt] = E[W1] −

E[WM
1 ] = 0, which implies

E

[∫ 1

0
1{Mt<M}

M −Wt

1− t dt

]
= E

[∫ 1

0
1{Mt=M}ϕ (M −Wt, 1 − t) dt

]
.

As the integrands in the above expectations are positive, the problem is reduced to show that
E[
∫ 1
0 1{Mt<M}M−Wt

1−t dt] <∞. Let us compute this expectation:

E

[∫ 1

0
1{M>Mt}

M −Wt

1− t dt

]
= E

[∫ 1

0
1{Mt,1>Mt}

Mt,1 −Wt

1− t dt

]
= E

[∫ 1

0
1{γt,1>Mt−Wt}

γt,1
1− tdt

]
.

Conditioning with respect to FW
t and using Lemma 9.7, this expectation is equal to∫ 1

0

∫ ∞

0

∫ ∞

y

x

1− tp2 (x, 1 − t) p2 (y, t) dxdydt =
√

2

π
<∞.

To show the divergence of the second moment, notice that

E

[∫ 1

0
α (t,M)2 dt

]
= E

[∫ 1

0
1{M>Mt}

(
M −Wt

1− t
)2

dt

]
+ E

[∫ 1

0
1{M=Mt} (ϕ (M −Wt, 1− t))2 dt

]
.

Therefore, it suffices to show the divergence of one of the above expectations. The second
expectation above is equal to

E

[∫ 1

0
1{Mt>Mt,1} (ϕ (Mt −Wt, 1− t))2 dt

]
= E

[∫ 1

0

∫ Mt−Wt

0
(ϕ (Mt −Wt, 1− t))2 p2 (x, 1− t) dxdt

]
=

∫ 1

0

∫ ∞

0

∫ y

0
(ϕ (y, 1− t))2 p2 (x, 1 − t) p2 (y, t) dxdydt

=

∫ 1

0

∫ ∞

0

(p2 (y, 1− t))2
Π2 (y, 1− t) p2 (y, t) dydt.
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But this integral is infinite, because

lim
y→0+

y
(p2 (y, 1− t))2
Π2 (y, 1− t) p2 (y, t) = p2 (0, 1− t) p2 (0, t) = 2

π
√
t (1− t) �= 0,

and this implies that
∫∞
0

(p2(y,1−t))2

Π2(y,1−t) p2 (y, t) dy = ∞ for all t ∈ [ε, 1 − ε], which is a set of

positive Lebesgue measure provided ε < 1/2.

In order to verify that α (·,M) is FWM ∨σ (M)-adapted we prove that W is FWM ∨σ (M)-
adapted, which follows from the following result.

Theorem 7.4. Let B be a Brownian motion and G be a positive random variable indepen-
dent of B, both defined in the same probability space (Ω,F , P ). Then there exists a unique
strong solution X adapted to the filtration F

B ∨ σ (G) of the following SDE:

(7.1) Xt =

∫ t

0

(
G−Xs

1− s 1{MX
s <G} − ϕ (G−Xs, 1− s)1{MX

s =G}

)
ds+Bt,

where MX
t � max0≤s≤tXs.

Proof. Our approach to the solution of (7.1) is to write Xt = X1
t 1[0,ρ) (t) + X2

t 1[ρ,1) (t),

where ρ � inf
{
t : X1

t = G
}
, and X1

t and X2
t are the solutions to the following SDEs:

E1 : X1
t =

∫ t

0

G−X1
s

1− s ds+Bt, 0 ≤ t < ρ;

and

E2 : X2
t = G−

∫ t

ρ
ϕ(G−X2

s , 1− s)ds+Bt −Bρ, ρ ≤ t < 1;

we denote them by E1 and E2, respectively. The next step is to show the existence and
uniqueness of the solutions to E1 and E2. Note that ρ ≤ 1 is an F

B∨σ (G)-stopping time.
• Existence and uniqueness for the solution of E1: This follows as in the case of the

Brownian bridge (see Lemma 6.9 on page 358 of [13]).
• Existence and uniqueness for the solution of E2: Note that the drift has a singularity

at t = ρ. That is, limx→0+ ϕ (x, t) = ∞, t > 0. Instead of proving the existence and
uniqueness for E2, we will prove them for the following equivalent SDE:

E ′2 : Rt =

∫ t

0
ϕ (Rs, 1− ρ− s) ds+Nt, 0 ≤ t < 1− ρ.

The SDE E ′2 is obtained from E2 through the change of variables Rt = G − X2
t+ρ

and Nt = −(Bt+ρ − Bρ). The existence is proved in Proposition 7.5. To prove the
uniqueness, we may consider Δt � R1

t −R2
t the difference of two positive solutions R1

and R2 of E ′2. Then, applying Itô’s formula to Δ2
t∧(1−ρ), we obtain that P -a.s.

Δ2
t∧(1−ρ)

= 2

∫ t∧(1−ρ)

0
(R1

s −R2
s)(ϕ(R

1
s , 1− ρ− s)− ϕ(R2

s , 1− ρ− s))ds ≤ 0,

as ϕ (x, t) ≥ ϕ (y, t) if x ≤ y for all t ∈ (0, 1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEAK KYLE–BACK EQUILIBRIUM MODELS 197

Proposition 7.5. There exists a positive, continuous, strong solution with respect to F
N ∨

σ (ρ) to

(7.2) Rt =

∫ t

0
ϕ (Rs, 1− ρ− s) ds +Nt, 0 ≤ t < 1− ρ,

where N is a Wiener process and ρ ∈ (0, 1) is a random variable independent of F
N .

Proof. First note that

(7.3) xϕ (x, t) ≤ 1 ∀t > 0, x ∈ R.

We define ϕn (x, t) � exp{− 1
n(

1
x + 1

t )}ϕ (x, t), which satisfies (7.3) with ϕn instead of ϕ. This
sequence of functions is monotone increasing in n and bounded and converges to ϕ (x, t) for
each x ∈ R, t > 0 such that x−1 + t−1 > 0. Furthermore,

∂xϕ
n (x, t) = exp

{
− 1

n

(
1

x
+

1

t

)}(
1

n
x−2ϕ (x, t) + ∂xϕ (x, t)

)
=

(
1

nx2
− x

t
− ϕ (x, t)

)
ϕn (x, t) .

Using inequality (7.3), one obtains that supx∈[0,∞), t∈[0,1] |∂xϕn (x, t)| <∞, which implies that
ϕn (x, t) is a Lipschitz function. Therefore, for a fixed n ∈ N, we have the existence and
uniqueness of the solutions for the following SDE:

Rn
t =

∫ t

0
ϕn (Rn

s , 1− ρ− s) ds+Nt, 0 ≤ t < 1− ρ.

By a comparison theorem, we have that P (Rn+1
t ≥ Rn

t ; 0 ≤ t < 1− ρ) = 1, which shows that
Rt � limn→∞Rn

t , 0 ≤ t < 1 − ρ, exists a.s. in (−∞,∞] and is a measurable process, as it is
a limit of measurable processes. Now, we show that for t ∈ [0, 1 − ρ), Rt < ∞, P -a.s. and
R satisfies equation E ′2. In order to prove the first property, we show the uniform integrability
in n ∈ N of Rn

t , 0 ≤ t < 1− ρ. Applying Itô’s formula, we obtain

(Rn
t )

2 = t+ 2

∫ t

0
Rn

sϕ
n (Rn

s , 1− ρ− s) ds+ 2

∫ t

0
Rn

s dNs, 0 ≤ t < 1− ρ.

Next, we bound the expectation of the second term above. We obtain

E

[∫ t∧(1−ρ)

0
Rn

sϕ
n (Rn

s , 1− ρ− s) ds
]
≤ E

[∫ t∧(1−ρ)

0
|Rn

s |ϕ (Rn
s , 1− ρ− s) ds

]

= E

[∫ t∧(1−ρ)

0
1{Rn

s>0}Rn
sϕ (Rn

s , 1− ρ− s) ds
]
≤ E

[∫ t∧(1−ρ)

0
1{Rn

s>0}ds

]
≤ t.

For the third term, one has E[
∫ t∧(1−ρ)
0 Rn

udNu] = 0. Thus, supn∈N E
[
[(Rn

t∧(1−ρ))
2]
] ≤ 3t. This

implies the uniform integrability of Rn
t∧(1−ρ), and therefore Rt∧(1−ρ) ∈ L1 (Ω). Next, we show

that Rt satisfies E ′2. First note that

Rt∧(1−ρ) = lim
n→∞Rn

t∧(1−ρ) = lim
n→∞

∫ t∧(1−ρ)

0
ϕn (Rn

s , 1− ρ− s) ds +Nt∧(1−ρ).
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To conclude the proof we show that

lim
n→∞

∫ t∧(1−ρ)

0
ϕn (Rn

s , 1− ρ− s) ds =
∫ t∧(1−ρ)

0
ϕ (Rs, 1− ρ− s) ds,

0 ≤ t < 1, with probability 1. This will also give the continuity for the paths of R. Fix ε > 0,
and define

ρε0 � inf {t ∈ (0, 1 − ρ) : Nt = ε} ,
ρεl � inf{t ∈ (ρεl−1, 1 − ρ) : Nt −Nρεl−1

= −R1
ρεl−1

/2}, l ≥ 1.

By construction, the sequence {ρεl }l∈N is nondecreasing, and therefore we can define σε �
liml→∞ ρεl . For fixed ω ∈ Ω, we apply the dominated convergence theorem in each interval
[ρεl−1, ρ

ε
l ], l ≥ 1. One has that

R1
t = R1

ρεl−1
+

∫ t

ρεl−1

ϕ1(R1
s , 1− ρ− s)ds+Nt −Nρεl−1

>
R1

ρεl−1

2
≥ ε

2l

for t ∈ [ρεl−1, ρ
ε
l ] and l ≥ 1, due to the positivity of the integral. Then, using inequality (7.3),

we have for s ∈ [ρεl−1, ρ
ε
l ] that

ϕn (Rn
s , 1− ρ− s) ≤ ϕ (Rn

s , 1 − ρ− s) ≤ ϕ(R1
s , 1− ρ− s) ≤

1

R1
s

≤ 2l

ε
.

Hence, by the dominated convergence theorem

lim
n→∞

∫ ρεl

ρεl−1

ϕn (Rn
s , 1− ρ− s) ds =

∫ ρεl

ρεl−1

ϕ (Rs, 1− ρ− s) ds.

This implies that

Rt = Rρε0
+

∫ t

ρε0

ϕ (Rs, 1− ρ− s) ds+Nt −Nρε0
, ρε0 ≤ t < σε.

We now prove that σε = 1 − ρ. If ω ∈ Ω is such that there exists l for which ρεl = 1 − ρ,
we have finished. By contradiction, assume that the sequence {ρεl }l∈N is strictly increasing.
First, by the definition of {ρεl }l∈N and the fact that the sequence is strictly increasing, one has
that Nρεl

− Nρεl−1
= −R1

ρεl−1
/2. Taking limits we obtain that R1

σε = 0, due to the continuity

of Brownian paths. Then R1
t +

∫ σε

t ϕ1(R1
s, 1 − ρ − s)ds = Nt −Nσε , but this contradicts the

law of the iterated logarithm when t tends to σε, because the left-hand side is positive a.s. for
t ∈ [ρε0, σ

ε). Hence we can conclude that the set of ω ∈ Ω for which there does not exist a finite l
such that ρεl = 1−ρ is a null set. Now, notice that ρε0 ↓ 0 when ε ↓ 0. Hence, Nρε0

−→ε↓0 0 and

by monotone convergence limε↓0
∫ t
ρε0
ϕ (Rs, 1− ρ− s) ds =

∫ t
0 ϕ (Rs, 1− ρ− s) ds, 0 ≤ t < 1− ρ.

Therefore, Rt = limε↓0Rρε0
+
∫ t
0 ϕ (Rs, 1−ρ−s) ds+Nt, 0 ≤ t < 1−ρ. As R0 = limn→∞Rn

0 = 0,
making t = 0 in the above equation we obtain limε↓0Rρε0

= 0. Furthermore, as |Rt| < ∞,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEAK KYLE–BACK EQUILIBRIUM MODELS 199

P -a.s. we obtain that
∫ t
0 ϕ (Rs, 1− ρ− s) ds <∞, P -a.s. for t < σ. Hence we have shown that

R satisfies (7.2). Note that, in particular, we have also proved that Rt > 0.
Theorem 7.6. Let L (Y ) = max0≤t≤1 Yt. Then

(Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) = (W,α (·,M) ,WM ,H,H (1,W1) , L (W ))

satisfies all the requirements to be an (L, μ)-weak equilibrium except the càglàd property in
condition (v) of Definition 2.7.

Proof. Properties (i) through (iv) in the definition of weak equilibrium (Definition 2.7) fol-
low directly. Property (v) with the exception of the càglàd property follows from Lemma 7.3,
Proposition 5.4, and Theorem 7.4 (see Remark 5.2). From the assumptions on H and μ and
(4.4), we have that H (·,W·) is an F

W -martingale. As H (t,Wt) = E[H (1,W1) |FW
t ], prop-

erty (vi) follows. Let us check property (vii). To simplify the notation we set αt � α (t,M),
0 ≤ t ≤ 1. Note that αt ≥ 0 if t ≤ τ and αt ≤ 0 if t > τ . From this property, the following
inequality easily follows:

(7.4)

∫ 1

0
|αt| dt ≤

∫ τ

0
αtdt−

∫ 1

τ
αtdt ≤ 3 sup

0≤t≤1

∣∣∣∣∫ t

0
αsds

∣∣∣∣ ,
which combined with Proposition 5.4 gives that

(7.5)

∫ 1

0
|αt| dt ∈ Lp (Ω) , p ≥ 1.

For ε ∈ (0, 1), define τ ε,+ = (τ + ε) ∧ 1. Then the process αε = {αε
t � αt1(τ,τε,+]c (t) ,

t ∈ [0, 1]} converges P × λ-a.e. to α as ε ↓ 0 and satisfies |αε| ≤ |α|. Now we will prove that
αε ∈ Θsup(M,WM ) for all ε ∈ (0, 1). First, the càglàd property of αε follows from the fact
that this approximation avoids the essential discontinuity of αt in t = τ . The integrability
property (2.1) is trivial. Property (2.4) follows from (7.4). The proofs of properties (2.2) and
(2.3) are similar. We will prove property (2.2). We have that sup0≤t≤1 |

∫ t
0 H(s, Y αε

s )αε
sds| ≤

sup0≤t≤1 |H(t, Y αε

t )| ∫ 1
0 |αt| dt, which belongs to L1 (Ω) by the Cauchy–Schwarz inequality,

property (7.5), and Lemma 9.1. According to Proposition 9.5, limn→∞ J (αε,n) = J (αε)
for all ε ∈ (0, 1), where αε,n is defined according to Definition 9.4 with θ = αε. As the
functional J is concave in Θb(M,WM ), we obtain that J (η) ≤ J (αε,n) +Dη−αε,nJ (αε,n) for
η ∈ Θb(M,WM ).

• limε↓0 J (αε) = J (α): This is analogous to the proof of Proposition 9.5. Note that

using property (7.4), we have that(∫ 1

0
αt − αε

tdt

)2

≤ C sup
0≤t≤1

(∫ 1

0
αt

)2

and ∣∣∣∣∫ 1

0
H (t, Y α

t )αt −H(t, Y αε

t )αε
tdt

∣∣∣∣
≤
∣∣∣∣∫ 1

0
H (t, Y α

t ) (αt − αε
t ) dt

∣∣∣∣+ ∣∣∣∣∫ 1

0
(H (t, Y α

t )−H(t, Y αε

t ))αε
tdt

∣∣∣∣
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≤ C sup
0≤t≤1

|H (t, Y α
t )|

∫ 1

0
|αt| dt

+ C sup
0≤t≤1

∫ 1

0
|Hy(t, Y

αε+r(α−αε)
t )|dr

(∫ 1

0
|αt| dt

)2

.

This gives sufficient integrability properties to apply the dominated convergence the-
orem. Note that as in the proof of Lemma 9.1,

(7.6) sup
0≤t≤1

|Hy(t, Y
αε+r(α−αε)
t )| ≤ C exp

{
9B sup

0≤t≤1

∣∣∣∣∫ t

0
αsds

∣∣∣∣} exp

{
B sup

0≤t≤1
|Zt|
}
.

• limε↓0 limn→∞Dη−αε,nJ (αε,n) = 0: Repeating the proof of Proposition 9.6, we obtain

|Dη−αε,nJ (αε,n)| ≤ Bε,n
1 +Bε,n

2 , where

Bε,n
1 �

∣∣∣∣E [∫ 1

0
(ηt − αε,n

t ) (H (t, Y α
t )−H(t, Y αε,n

t ))dt

]∣∣∣∣
and

Bε,n
2 �

∣∣∣∣E [∫ 1

0

(∫ t

0
(ηs − αε,n

s ) ds

)
(Hy (t, Y

α
t )αt −Hy(t, Y

αε,n

t )αε,n
t )dt

]∣∣∣∣ .
Let us show that limε↓0 limn→∞Bε,n

1 = 0. This follows by dominated convergence,
once we have shown that

sup
ε,n

∫ 1

0
(ηt − αε,n

t ) (H (t, Y α
t )−H(t, Y αε,n

t ))dt ∈ L1 (Ω) ,

because limn→∞ αε,n = αε, P × λ-a.s. and limε↓0 αε = α, P ×λ-a.s. Using inequalities
(7.4) and (7.6) we obtain∣∣∣∣∫ 1

0
(ηt − αε,n

t ) (H (t, Y α
t )−H(t, Y αε,n

t ))dt

∣∣∣∣
≤
∫ 1

0
|ηt − αε,n

t |
∫ 1

0
Hy(t, Y

αε,n+r(α−αε,n)
t )dr|Y α

t − Y αε,n

t |dt

≤
{
C +

∫ 1

0
|αt| dt

}
sup

0≤t≤1

∫ 1

0
Hy(t, Y

αε,n+r(α−αε,n)
t )dr

∫ 1

0
|αt − αε,n

t | dt,

which is in L1 (Ω), because as in Lemma 9.1, sup0≤t≤1 |
∫ t
0 αsds| and sup0≤t≤1 |Zt| have

exponential moments. The proof of limε↓0 limn→∞Bε,n
2 = 0 can be obtained similarly.

Therefore, we have proved that J (η) ≤ J (α) for all η ∈ Θb(M,WM ). The final result
follows from the application of Proposition 9.5, using an argument as in the end of the
proof of Theorem 3.7.
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7.2. L (Y ) = argmaxt∈[0,1] Yt. In this section we consider the case in which the insider
knows the time at which the total demand achieves its maximum. The first part of this sub-
section is devoted to obtaining the compensator ofW with respect to the filtration F

W∨σ (τ),
which we will denote by F

τ = {Fτ
t , 0 ≤ t ≤ 1}. This will be done dividing the problem into

two parts: before the random time τ and after it. But first, we give the conditional law of τ
given FW

t .

Proposition 7.7. The conditional law of τ , given FW
t , is

P
(
τ > u|FW

t

)
=

⎧⎨⎩
1− 1{Mu≥γu,t+Wu}p2 (Mu −Wt, 1− t) if u < t,∫ 1

u
r (Mt −Wt, v − t, 1− v) dv if u ≥ t,

where r (x, s, t) is given by r (x, s, t) � 2√
2πt
φ (x, s)1(0,∞) (x) = 1√

2πt
p2 (x, s). Moreover,

P
(
τ > u|FW

t

)
is continuous in u, P -a.s.

Proof. If u < t, then

P
(
τ > u|FW

t

)
= P

(
Mu < Mu,1|FW

t

)
= P

(
Mu < Mu,t ∨Mt,1|FW

t

)
= P

(
Mu < Mu,t,Mu,t > Mt,1|FW

t

)
+ P

(
Mu < Mt,1,Mu,t ≤Mt,1|FW

t

)
= 1{Mu<Mu,t}P

(
Mu,t > γt,1 +Wt|FW

t

)
+ P

(
γt,1 > (Mu ∨Mu,t)−Wt|FW

t

)
= 1{Mu<Mu,t}

∫ Mu,t−Wt

0
p2 (z, 1− t) dz +

∫ ∞

(Mu∨Mu,t)−Wt

p2 (z, 1− t) dz

= 1{Mu<Mu,t}
∫ Mu,t−Wt

0
p2 (z, 1− t) dz + 1−

∫ (Mu∨Mu,t)−Wt

0
p2 (z, 1− t) dz

= 1− 1{Mu≥γu,t+Wu}
∫ Mu−Wt

0
p2 (z, 1− t) dz.

If u > t, the calculations are more involved; the idea is to break the maximum processes into
pieces that are independent of FW

t and pieces that are FW
t -measurable:

P
(
τ > u|FW

t

)
= P

(
Mu < Mu,1|FW

t

)
= P

(
Mt ∨Mt,u < Mu,1|FW

t

)
= P

(
Mt < Mu,1,Mt ≥Mt,u|FW

t

)
+ P

(
Mt,u < Mu,1,Mt < Mt,u|FW

t

)
= P

(
Mt −Wt < γu,1 +Wu −Wt,Mt −Wt ≥ γt,u|FW

t

)
+ P

(
αt,u < γu,1 +Wu −Wt,Mt −Wt < γt,u|FW

t

)
.

Hence,

P
(
Mt −Wt < γu,1 +Wu −Wt,Mt −Wt ≥ γt,u|FW

t

)
=

∫ Mt−Wt

0

∫ x

−∞

∫ ∞

Mt−Wt−y
p1 (x, y, u− t) p2 (z, 1 − u) dzdydx
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=

∫ Mt−Wt

0

∫ x

−∞
2p1 (x, y, u− t)Φ (Mt −Wt − y, 1− u) dydx

=

∫ Mt−Wt

−∞

∫ Mt−Wt

0∨y
2p1 (x, y, u− t)Φ (Mt −Wt − y, 1− u) dxdy

=

∫ Mt−Wt

−∞
2(φ(|y| , u− t)− φ (2 (Mt −Wt)− y, u− t))Φ (Mt −Wt − y, 1− u) dy

=

∫ ∞

0
2(φ (|Mt −Wt − z| , u− t)− φ (Mt −Wt + z, u− t))Φ (z, 1− u) dz.

On the other hand,

P
(
γt,u < γu,1 +Wu −Wt,Mt −Wt < γt,u|FW

t

)
=

∫ ∞

Mt−Wt

∫ x

−∞

∫ ∞

x−y
p1 (x, y, u− t) p2 (z, 1− u) dzdydx

=

∫ ∞

Mt−Wt

∫ x

−∞
2p1 (x, y, u− t)Φ (x− y, 1− u) dydx

=

∫ ∞

Mt−Wt

∫ ∞

0
2p1 (x, x− z, u− t)Φ (z, 1 − u) dzdx

=

∫ ∞

0
4φ (Mt −Wt + z, u− t)Φ (z, 1− u) dz.

Summing up and taking into account that φ(|z| , u− t) = φ (z, u− t), we obtain

P
(
τ > u|FW

t

)
=

∫ ∞

0
2 {φ (Mt −Wt − z, u− t) + φ (Mt −Wt + z, u− t)}Φ (z, 1− u) dz.

Differentiating under the integral sign, we obtain that there exists a density function r such
that P

(
τ > u|FW

t

)
=
∫ 1
u r (Mt −Wt, v − t, 1− v) dv. Furthermore, this density is smooth in

all its variables due to the regularity of φ and Φ. For the explicit computation of this density
we refer the reader to [14]. To conclude the proof we need only show that P

(
τ > u|FW

t

)
, as

a function of u, is continuous in u = t. We have that

lim
u→t

P
(
τ > u|FW

t

)
= lim

u→t
P
(
Mu < Mu,1|FW

t

)
= P

(
Mt ≤Mt,1|FW

t

)
,

where we have used the dominated convergence theorem for conditional expectations and the
continuity in t of the paths of Mt and Mt,1, P -a.s.

Proposition 7.8. If 0 ≤ s ≤ t ≤ 1, we have that

E

[
1{τ>t}

(
Wt −

∫ t

0

Mu −Wu

τ − u du

)
|Fτ

s

]
= 1{τ>t}

(
Ws −

∫ s

0

Mu −Wu

τ − u du

)
.
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Proof. Let A ∈ FW
s , and let f be a bounded Borel measurable function; then taking into

account that τ has a conditional density given FW
t , in the set {τ > t} we have that

E
[
1Af (τ)1{τ>t} (Wt −Ws)] = E[1AE

[
f (τ)1{τ>t}|FW

t

]
(Wt −Ws)

]
= E

[
1A

∫ 1

t
f (u) r (Mt −Wt, u− t, 1− u) du (Wt −Ws)

]
.

Applying Theorem 7.1 and Tanaka’s formula, we obtain that the last expectation is equal to

E

[
1A

∫ 1

t
f (u) r (|Wt| , u− t, 1− u) du

(
2

∫ t

s
dL0

v (W )−
∫ t

s
d |Wv|

)]
= E

[
1A

∫ 1

t
f (u) r (|Wt| , u− t, 1− u) du

(
−
∫ t

s
sgn (Wv) dWv

)]
.

Notice that r (|Wt| , u− t, 1− u) = 2√
2π(1−u)

φ (Wt, u− t). Using Itô’s formula, we can write

r (|Wt| , u− t, 1− u) = 2√
2π (1− u)φ (0, u) +

∫ t

0

2√
2π (1− u)∂xφ (Wv, u− v) dWv .

Then, the former expectation is equal to

E

[
1A

∫ 1

t
f (u)

∫ t

s
− sgn (Wv)

2√
2π (1− u)∂xφ (Wv, u− v) dvdu

]

= E

[
1A

∫ 1

t
f (u)

∫ t

s

|Wv|
u− v r (|Wv| , u− v, 1− u) dvdu

]
= E

[
1A

∫ 1

t
f (u)

∫ t

s

Mv −Wv

u− v r (Mv −Wv, u− v, 1− u) dvdu
]

= E

[
1A

∫ t

s
E

[
1{τ>t}f (τ)

Mv −Wv

τ − v |Fv

]
dv

]
= E

[
1Af (τ) 1{τ>t}

∫ t

s

Mv −Wv

τ − v dv

]
.

As the σ-algebra Fτ
s is generated by elements of the form 1Af (τ), where A ∈ FW

s and f is a
bounded Borel function, we obtain the result using elementary properties of the conditional
expectation. Note also that (Mt−Wt,Mt) and (|Wt| , 2Lt (0)) are not the same processes. We
can interchange them because we are dealing with expectations, and therefore they depend
only on the law of the processes, which are equal by Theorem 7.1.

Now, we are going to prove an analogous result for the case after the time τ . In the proof
we will use the decomposition of W with respect to F

W∨σ (M) (see Theorem 7.2).
Proposition 7.9. If 0 ≤ s ≤ t ≤ 1, we have that

E

[
1{τ≤s}

(
Wt +

∫ t

0
ϕ (M −Wu, 1− u) du

)
|Fτ

s

]
= 1{τ≤s}

(
Ws +

∫ s

0
ϕ (M −Wu, 1− u) du

)
.
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Proof. Let A ∈ FW
s and f (τ) = 1{τ≤r}, where 0 ≤ r ≤ 1. We have that

E
[
1Af (τ)1{τ≤s} (Wt −Ws)

]
= E

[
1A1{τ≤r}1{τ≤s} (Wt −Ws)

]
= E

[
1A1{τ≤r∧s}1{τ≤s} (Wt −Ws)

]
= E

[
1A1{Ms∧r=M}1{τ≤s} (Wt −Ws)

]
= −E

[
1Af (τ) 1{τ≤s}

∫ t

s
ϕ (M −Wu, 1− u) du

]
.

Notice that 1{τ≤r∧s} = 1{Ms∧r=M} is FW
s ∨ σ (M)-measurable and that ϕ(M −Wu, 1 − u)

is Fτ
u -measurable because M = Mτ . The elements of the form 1Af (τ), where A ∈ FW

s and
f (τ) = 1{τ≤r}, 0 ≤ r ≤ 1, generate the σ-algebra Fτ

s . Therefore as in the proof of the previous
proposition we obtain the result using elementary properties of conditional expectations.

The next lemma gives us an integrability result for the drift term in the Fτ -decomposition
of W .

Lemma 7.10. We have that E[
∫ 1
0 |α (t, τ)| dt] <∞ and E[

∫ 1
0 |α (t, τ)|2 dt] =∞.

Proof. As in Lemma 7.3, we have that

E

[∫ 1

0
1[0,τ)

Mt −Wt

τ − t dt

]
= E

[∫ 1

0
1[τ,1] (t)ϕ (M −Wt, 1− t) dt

]
,

where the integrands are positive. The second part of the statement follows as in Lemma
7.3.

The main result of this section is the following theorem, which gives the semimartingale
decomposition of W in the filtration F

τ .
Theorem 7.11. W is an F

τ -semimartingale with the following decomposition:

(7.7) Wt =

∫ t

0
α (u, τ) du+W τ

t ,

where α (u, τ) = Mu−Wu
τ−u 1[0,τ) (u) − ϕ (M −Wu, 1 − u)1[τ,1] (u) and W τ is an F

τ -Brownian
motion.

Proof. If we define W τ
t � Wt −

∫ t
0 α (u, τ) du, we have a process in L1 (Ω), because

E[|∫ t
0 α (u, τ) du|] ≤ E[

∫ t
0 |α (u, τ)| du] <∞ by Lemma 7.10. Furthermore, the quadratic varia-

tion of W τ is t, because W is an FW
t -Brownian motion and

∫ ·
0 α (u, τ) du is a process of finite

variation. Hence, by Levy’s characterization of the Brownian motion, we need only prove that
W τ is an F

τ -local martingale. To show this, using Propositions 7.8 and 7.9, we obtain the
conclusion as in the proof of Theorem 2 in [15].

Theorem 7.12. The Brownian motion W in the decomposition (7.7) is F
W τ∨σ (τ)-adapted.

Proof. First we will show that the following SDE has a unique strong solution:

E1 : Xt =

∫ t

0

MX
s −Xs

ρ− s ds+Bt, 0 ≤ t < ρ,

where B is a Brownian motion with respect its own filtration and ρ is a random variable

independent of B and taking values in [0, 1]. We will prove first that Ψ
(
t,X[0,t]

)
=

MX
t −Xt

τ−t is
functional Lipschitz. We have that∣∣Ψ (t,X[0,t]

)−Ψ
(
t, Y[0,t]

)∣∣ ≤ 1

τ − t
{|Xt − Yt|+ |MX

t −MY
t |
}
.
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Obviously, |Xt − Yt| ≤ M
|X−Y |
t . On the other hand MX

t ≤ MX−Y
t +MY

t , which gives that

MX
t −MY

t ≤ M
|X−Y |
t . We also have that MY

t ≤ MY−X
t +MX

t , which yields MY
t −MX

t ≤
−MX−Y

t ≤ −M |X−Y |
t . Hence,

∣∣Ψ (t,X[0,t]

) − Ψ
(
t, Y[0,t]

)∣∣ ≤ 2
τ−tM

|X−Y |
t . By Theorem 7 in

Chapter V of Protter [19], we obtain the existence and uniqueness of the solutions for E1.
Now, if we take Bt = W τ

t and ρ = τ , we obtain that X must coincide with Wt for t < τ .
This means that Wt is FW τ

t ∨ σ (τ)-adapted. Furthermore, as limt→τ Wt = Wτ , one also has
that Wτ is FW τ

t ∨ σ (τ)-adapted.
The next step is to show the existence and uniqueness for the solutions of

E2 : Xt = G−
∫ t

ρ
ϕ (G−Xs, 1− s) ds+Bt −Bρ, ρ ≤ t < 1,

where B is a Brownian motion with respect its own filtration, ρ is a random variable indepen-
dent of B and taking values in [0, 1], and G is an FB

ρ -adapted random variable. The existence
is proved in Proposition 7.5 and the uniqueness in Theorem 7.4. If we take Bt = W τ

t , ρ = τ ,
and G = M , we obtain that X must coincide with Wt for t ≥ τ . This means that Wt is
FW τ

t ∨ σ (τ)-adapted.
Theorem 7.13. Let L (Y ) = argmax0≤t≤1 Yt. Then

(Y ∗, θ∗, Z∗,H∗, ξ∗, λ∗) = (W,α (·, τ) ,W τ ,H,H (1,W1) , L (W ))

satisfies all the requirements to be an (L, μ)-weak equilibrium except the càglàd property in
condition (v) of Definition 2.7.

Proof. The proof of this result is exactly the same as the one for Theorem 7.6, except
for the càglàd approximations used. In this case, for ε ∈ (0, 1), define τ ε,+ = (τ + ε) ∧ 1
and τ ε,− = (τ − ε) ∧ 0. Then the process αε = {αε

t � αt1(τε,−,τε,+]c (t) , t ∈ [0, 1]} converges
P × λ-a.e. to α as ε ↓ 0 and satisfies |αε| ≤ |α|.

7.3. Comparing the expected wealth of M and τ . In this subsection we show using
numerical calculations that the information about the time at which the total demand achieves
its maximum gives less expected profit than the information about the maximum, that is,
J (α (·.τ)) ≤ J (α (·.M)).

We can write

J (α (·,M)) = E

[∫ 1

0

(
E
[
ξ|FW

1

]−H (t,Wt)
)
α (t,M) dt

]
= E

[∫ 1

0
(H (1,W1)−H (t,Wt))α (t,M) dt

]
.

Note that

E

[∫ 1

0
H (t,Wt)α (t,M) dt

]
= E

[∫ 1

0
H (t,Wt) dWt

]
− E

[∫ 1

0
H (t,Wt) dW

M
t

]
= 0,

because the integrability properties of H yield that
∫ t
0 H (s,Ws) dWs and

∫ t
0 H (s,Ws) dW

M
s

are an F
W -martingale and an F

W ∨ σ (M)-martingale, respectively. As the same arguments
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work for α (·, τ), we obtain that for λ ∈ {M, τ}

J (α (·, λ)) = E

[
H (1,W1)

∫ 1

0
α (t, λ) dt

]
.

Note also that, after τ , the compensators of M and τ coincide. Hence, the problem is reduced
to verify whether

A(M) � E

[
H (1,W1)

∫ τ

0

M −Wt

1− t dt

]
≥ E

[
H (1,W1)

∫ τ

0

Mt −Wt

τ − t dt

]
� A(τ).

7.3.1. Computation of A(M) and A(τ). An exact computation of A(M) and A(τ)
is difficult. This is due to the fact that we need to compute integrals with respect to the
joint density of (W1, τ) conditioned to FW

t , which is unknown. Although we have computed
this density explicitly, it turns out that it is useless because of its complicated expression.
Therefore, we perform a Monte Carlo simulation.

First, we have considered a uniform partition πm = {ti = i/m}i=0,...,m of the interval [0, 1].
We sample the paths of a Brownian motion in this partition and approximate the integral
inside the expectation by its upper Riemann sum in πm. We have used H (1,W1) as a con-
trol variate to reduce the variance of our estimators. Recall that the variance of H (1,W1)
can be computed analytically and the covariances Cov(H (1,W1) ,H (1,W1)

∫ τ
0

M−Wt
1−t dt) and

Cov(H (1,W1) ,H (1,W1)
∫ τ
0

Mt−Wt
τ−t dt) have been estimated doing a pilot simulation with

number of simulations n = 1000. The main simulations, including the control variate, have
length n = 105. We have repeated the simulations for different partitions. We quote here the
results with m = 10000 and compute a 99% confidence interval [L,U ] for each simulation.
The results are shown in Table 1. Here β denotes the value of the control variate. The pricing
rules that we use in our experiments are H(t, y) = y and H(t, Y ) = ey+(1−t)/2, which are
solutions to the heat equation (4.5). We denote them by the letters L and E, respectively.
These examples of the pricing rule are the examples considered in Back [2] and yield that the
price process follows a Brownian motion and a geometric Brownian motion, respectively. In
the first case, note that price or demand information is the same.

Table 1
Monte Carlo estimation of A(M) and A(τ ).

̂A L U σ̂n β H

̂A(M) 0.684 0.675 0.693 1.074 1.062 L

̂A(τ ) 0.189 0.186 0.192 0.376 0.616 L

̂A(M) 2.656 2.625 2.687 3.775 1.955 E

̂A(τ ) 1.386 1.379 1.393 0.829 0.718 E

From these simulations one is inclined to postulate that J (α (·.τ)) ≤ J (α (·.M)).

Remark 7.14. It is worth pointing out that these examples can also be considered in the
Karatzas–Pikovsky setting; see [12]. In this setting, one studies the portfolio optimization
problem of an agent with additional information with respect to the small investor. This model
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assumes that the price dynamics is given exogenously and that the insider cannot influence the
price process (for more information on this type of formulation, see, e.g., [12], [1], [9], [8], [7],
[3], and [6], among others). In fact, in this framework the finiteness of logarithmic utilities
for the insider is determined by the quantity E

[∫ 1
0 |α(s)|2ds

]
. By Lemmas 7.10 and 7.3, we

have that in both cases the logarithmic utility for the insider is infinite. However, as the
compensator is the same after τ , we decided to compute the previous expectation until τ . The
result is

E

[∫ τ

0
|α(s,M)|2ds

]
< E

[∫ τ

0
|α(s, τ)|2ds

]
=∞,

which is the reverse conclusion of the one shown in Table 1. Nevertheless, there are two ma-
jor differences between our approach and the Karatzas–Pikovsky one. First, in the Karatzas–
Pikovsky approach the insider is risk averse, while in our approach he/she is risk neutral.
Moreover, in the Karatzas–Pikovsky approach the insider has no influence in the price dy-
namics, while in our model the price process is driven by the insider’s demand. Therefore, it
would be interesting to extend our model to risk averse insiders to try to examine this issue
further.

8. Conclusions. In this paper we construct a model which allows the existence of a ratio-
nal expectations equilibrium, in a sense weaker than that of the Kyle–Back setting, with an
insider possessing information different from the value of the asset at the end of the trading
interval. We provide sufficient conditions for the existence and uniqueness in law of a weak
equilibrium. Our model allows us to compare the expected wealth obtained by insiders with
different kinds of information. We study in some detail the examples of the maximum and
the time at which the maximum of the demand is achieved, finding that the first provides
more expected final wealth than the second. In order to deal with these examples we prove
a new initial enlargement formula for the argument of the maximum of a Brownian motion.
Moreover, we prove the existence and uniqueness of a strong solution for an SDE with a drift
degenerating at a random time.

9. Appendix.

Lemma 9.1. Let F be a function satisfying an exponential growth condition and θ be a
process satisfying (2.4); then sup0≤t≤1 |F (t, Y θ

t )| belongs to Lp (Ω), for any p ≥ 0, where

Y θ
t =

∫ t
0 θsds+ Zt and Z is a Brownian motion.

Proof. Thanks to the exponential growth condition on F , one has that

sup
0≤t≤1

|F (t, Y θ
t )|p ≤ A sup

0≤t≤1
exp

{
pB

∣∣∣∣∫ t

0
θsds+ Zt

∣∣∣∣}
≤ A exp

{
pB sup

0≤t≤1

∣∣∣∣∫ t

0
θsds

∣∣∣∣} exp

{
pB sup

0≤t≤1
|Zt|
}
.

The result follows from (2.4) and the fact that the law of sup0≤t≤1 |Zt| has finite exponential
moments.

Proposition 9.2. Let Θ be a convex real linear space and J be a functional defined on Θ.
Assume that for any θ ∈ Θ there exists the Gâteaux derivative of J . That is, for all v ∈ Θ
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the following limit exists:

DvJ (θ) � lim
ε→0

J (θ + εv)− J (θ)

ε
,

and the application v �→ DvJ (θ) is linear for every θ ∈ Θ. Then, the following statements are
equivalent:

(1) J is concave;
(2) J

(
θ2
) ≤ J (θ1)+Dθ2−θ1J

(
θ1
)
for all θ1, θ2 ∈ Θ.

Proof. If J is concave, then J
(
αθ2+(1−α) θ1) ≥ αJ (θ2)+(1−α)J(θ1) for all θ1, θ2 ∈ Θ,

α ∈ [0, 1]. This implies

J
(
θ1 + α

(
θ2 − θ1))− J (θ1)
α

≥ J (θ2)− J (θ1) ∀θ1, θ2 ∈ Θ, α ∈ [0, 1].

Taking the limit when α tends to zero, by the assumption on the existence of the Gâteaux
derivative, we obtain Dθ2−θ1J

(
θ1
) ≥ J

(
θ2
) − J (θ1) for all θ1, θ2 ∈ Θ. Conversely, assume

that statement (2) is satisfied. Set θ = αθ2 + (1− α)θ1; then we have that

J
(
θ1
) ≤ J (θ) +Dθ1−θJ (θ) , J

(
θ2
) ≤ J (θ) +Dθ2−θJ (θ) .

Multiplying the first inequality by α and the second one by (1 − α) and adding them one
obtains

αJ
(
θ1
)
+ (1− α) J (θ2) ≤ J (θ) +Dα(θ1−θ)+(1−α)(θ2−θ)J (θ) .

As α(θ1 − θ) + (1− α) (θ1 − θ) = 0, the result follows.
Lemma 9.3. Assume that H ∈ H and θ, v ∈ Θb(M,Z). Then, for all ε ∈ (−1, 1), we have

that for i = 1, 2

di

dεi

(
E

[∫ 1

0
(ξ −H(t, Y θ+εv

t )) (θt + εvt) dt

])
= E

[∫ 1

0

di

dεi

(
(ξ −H(t, Y θ+εv

t )) (θt + εvt)
)
dt

]
.

Proof. We do the proof for i = 2. First, we estimate∣∣∣∣ d2dε2 {(ξ −H(t, Y θ+εv
t )) (θt + εvt)

}∣∣∣∣
≤
∣∣∣∣∣Hyy(t, Y

θ+εv
t )

(∫ t

0
vsds

)2

(θt + εvt)

∣∣∣∣∣+
∣∣∣∣2Hy(t, Y

θ+εv
t )

(∫ t

0
vsds

)
vt

∣∣∣∣
≤ C

{
|Hyy(t, Y

θ+εv
t )|+ |Hy(t, Y

θ+εv
t )|

}
,

where C is a constant which is independent of ε. These quantities are bounded in Lp(Ω) as
Lemma 9.1 shows. Hence, the result follows by the dominated convergence theorem.

Definition 9.4. Let θ ∈ Θsup (M,Z). Define θnt � θt1{sups≤t|θs|≤n} for all n ∈ N. Clearly,

the sequence {θn}n∈N ⊆ Θb(M,Z). We also have that {θn}n∈N converges P×λ-a.s. to θ. Fur-
thermore, {θn}n∈N converges to θ in L1 (P ×λ) by dominated convergence, because |θn| ≤ |θ|.
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Proposition 9.5. Assume that θ ∈ Θsup (M,Z). Then, limn→∞ J (θn) = J (θ), where J is
the functional defined in (3.1).

Proof. We can define the sequence of FI -stopping times τn = inf{t ≤ 1 : sups≤t |θs| > n}.
In the set {τn > t}, one has that for all s ≤ t, |θs| ≤ n and θns = θs. On the other hand, in the
set {τn ≤ t}, one has that sups≤t |θs| > n and θnt = 0. Moreover, τn ↑ 1, P -a.s. when n tends
to infinity. We have that

|J (θ)− J (θn)| ≤
∣∣∣∣E [ξ ∫ 1

0
(θt − θnt ) dt

]∣∣∣∣+ ∣∣∣∣E [∫ 1

0

(
H(t, Y θ

t )θt −H(t, Y θn
t )θnt

)
dt

]∣∣∣∣
� An

1 +An
2 .

Applying the Cauchy–Schwarz inequality, we obtain

An
1 ≤ E

[
|ξ|
∣∣∣∣∫ 1

0
(θt − θnt ) dt

∣∣∣∣] ≤ E[|ξ|2]1/2E
[(∫ 1

0
(θt − θnt ) dt

)2
]1/2

.

The first expectation is finite, because ξ has moments of second order. For the second expec-
tation, notice that if we fix ω ∈ Ω, by dominated convergence we have that limn→∞

(∫ 1
0 (θt −

θnt ) dt
)2

= 0, P -a.s., because θ ∈ L1 (Ω× [0, 1]). Furthermore,(∫ 1

0
(θt − θnt ) dt

)2

=

(∫ 1

τn
θtdt

)2

≤ C sup
0≤t≤1

(∫ t

0
θsds

)2

,

which is in L1 (Ω), by hypothesis (2.4). Therefore, also by dominated convergence one has

that limn→∞ E
[(∫ 1

0 (θt − θnt ) dt
)2]

= 0. For the term An
2 , we have that∫ 1

0

(
H(t, Y θ

t )θt −H(t, Y θn

t )θnt

)
dt =

∫ 1

τn
H(t, Y θ

t )θtdt, P -a.s.

Notice that
∫ 1
0

∣∣H(t, Y θ
t )θt

∣∣ dt ≤ sup0≤t≤1

∣∣H(t, Y θ
t )
∣∣ ∫ 1

0 |θt| dt <∞, P -a.s., because θ ∈ L1 (Ω×
[0, 1]). Hence, limn→∞

∫ 1
τn H(t, Y θ

t )θtdt = 0, P -a.s. by dominated convergence. Furthermore,∣∣∫ 1
τn H(t, Y θ

t )θtdt
∣∣ ≤ C sup0≤t≤1

∣∣∫ t
0 H(s, Y θ

s )θsds
∣∣, which is in L1 (Ω), by hypothesis (2.2).

Thus, by the dominated convergence theorem we obtain that limn→∞An
2 = 0.

Proposition 9.6. Assume that θ ∈ Θsup (M,Z) satisfies the optimality equation (3.3). Then,
limn→∞Dη−θnJ (θn) = 0, for all η ∈ Θb(M,Z), where Dη−θnJ (θn) is given by (3.2).

Proof. As θ ∈ Θsup (M,Z) satisfies (3.3), Remark 3.5 yields

E

[∫ 1

0
(ηt − θnt )

{
(ξ −H(t, Y θ

t ))−
∫ 1

t
Hy(s, Y

θ
s )θsds

}
dt

]
= 0.

Therefore,

|Dη−θnJ(θ
n)| ≤

∣∣∣∣E [∫ 1

0
(ηt − θnt ) (H(t, Y θ

t )−H(t, Y θn

t ))dt

]∣∣∣∣
+

∣∣∣∣E [∫ 1

0

(∫ t

0
(ηs − θns ) ds

)
(Hy(t, Y

θ
t )θt −Hy(t, Y

θn

t )θnt )dt

]∣∣∣∣
� Bn

1 +Bn
2 .
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For the term Bn
1 , one has that

E

[∫ 1

0
(ηt − θnt ) (H(t, Y θ

t )−H(t, Y θn
t ))dt

]
= E

[∫ 1

0
1{t>τn}ηt(H(t, Y θ

t )−H(t, Y θ
τn + Zt − Zτn))dt

]
.

When n tends to infinity the integrand in the last equation tends to 0, P ⊗ λ-a.s. So we need
only justify the application of the dominated convergence theorem. We have, P ⊗ λ-a.s., that∣∣∣ηt(H(t, Y θ

t )−H(t, Y θ
τn + Zt − Zτn))

∣∣∣
≤ C

{
sup

0≤t≤1

∣∣∣H(t, Y θ
t )
∣∣∣+ ∣∣∣H(t, Y θ

τn + Zt − Zτn)
∣∣∣} .

By Lemma 9.1, sup0≤t≤1 |H(t, Y θ
t )| is an integrable random variable. These quantities are

bounded in Lp(Ω) as the proof of Lemma 9.1 shows. Hence by dominated convergence
limn→∞Bn

1 = 0. For the term Bn
2 , one has

E

[∫ 1

0

(∫ t

0
(ηs − θns ) ds

)
(Hy(t, Y

θ
t )θt −Hy(t, Y

θn
t )θnt )dt

]
= E

[∫ 1

τn

(∫ t

0
(ηs − θns ) ds

)
Hy(t, Y

θ
t )θtdt

]
= E

[∫ 1

τn

(∫ t

τn
ηsds

)
Hy(t, Y

θ
t )θtdt

]
+ E

[∫ 1

τn

(∫ τn

0
(ηs − θs) ds

)
Hy(t, Y

θ
t )θtdt

]
� Bn

2,1 +Bn
2,2.

The term Bn
2,1 converges to zero due to the dominated convergence theorem as∣∣∣∣∫ 1

τn

(∫ t

τn
ηsds

)
Hy(t, Y

θ
t )θtdt

∣∣∣∣ = ∣∣∣∣∫ 1

τn
ηs

(∫ 1

s
Hy(t, Y

θ
t )θtdt

)
ds

∣∣∣∣
≤ C sup

0≤t≤1

∣∣∣∣∫ t

0
Hy(s, Y

θ
s )θsds

∣∣∣∣ ∫ 1

τn
|ηs| ds ≤ C sup

0≤t≤1

∣∣∣∣∫ t

0
Hy(s, Y

θ
s )θsds

∣∣∣∣ ∈ L1 (Ω) ,

thanks to condition (2.2) and the fact that
∫ 1
τn |ηs| ds converges to zero as n tends to infinity.

The term Bn
2,2 converges to zero due to the dominated convergence theorem as∣∣∣∣∫ 1

τn

(∫ τn

0
(ηs − θs) ds

)
Hy(t, Y

θ
t )θtdt

∣∣∣∣ ≤ C sup
0≤t≤1

∣∣∣∣∫ t

0
(ηs − θs) ds

∣∣∣∣
× sup

0≤t≤1

∣∣∣∣∫ t

0
Hy(s, Y

θ
s )θsds

∣∣∣∣ ∈ L1 (Ω) ,

as a result of conditions (2.3) and (2.4), the fact that η ∈ Θb (M,Z), and the fact that
|∫ t

τn Hy(s, Y
θ
s )θsds| converges to zero as n tends to infinity.
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Lemma 9.7. Let a, b ∈ R, and let s, t > 0; then∫ ∞

0
φ (x+ a, s)φ (x+ b, t) dx = φ (b− a, s+ t)

(
1− Φ

(
at+ bs

s+ t
,
st

s+ t

))
.

Proof. In order to prove this statement, rewrite the product of the two density functions
φ (x+a, s)φ (x+b, t) as a single density function by completing squares in the exponent.
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Common Forward Rate Volatility∗
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Abstract. Statistical analyses of forward interest rate behavior provide evidence that these rates share a com-
mon volatility. We develop a risk-neutral term structure model based on this assumption. The main
feature of this model is that each discounted bond price is both an explicit local martingale and a dif-
fusion. The Markov property of discounted bonds is convenient for pricing interest rate derivatives.
We give price formulas for caps and swaptions and compare caplet prices to the market-standard
Black formula. The two formulas have nearly identical numerical values.
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1. Introduction. Empirical studies of forward interest rates were carried out in the early
nineties by Litterman and Scheinkman [7], Wilson [16], and others. A summary account of
several statistical analyses and their similar conclusions can be found in Rebonato [12]. These
studies found that a major factor in explaining the movement of forward rate curves is a shared
level of volatility. That is, a promising choice to model the evolution of forward interest rates,
f(t, T ), with T denoting the maturity parameter, has the form

(1.1) df(t, T ) = α(t, T )dt + σf(t, T )dW.

The parameter σ is the common forward rate volatility, and W is a single Brownian motion.
The difficulties of setting up such models are noted in Heath, Jarrow, and Morton [5] and

in Miltersen, Sandmann, and Sondermann [8]. We avoid these difficulties by introducing a
hypothetical forward risk-neutral measure as the context for defining asset prices. One can
easily develop a theory which identifies the structure of the market drift α(t, T ) in terms of
a market price of risk in order to characterize arbitrage-free models. The crucial steps avoid
the use of a money market account. A forward risk-neutral approach allows one to relate drift
and no-arbitrage in a fashion parallel to the well-known general result in [5]. However, we
will not do that in this paper. Instead, we focus on developing and using forward risk-neutral
models to price and hedge basic interest rate derivatives.

Each forward risk-neutral model has a benign, Markovian structure. Each discounted
T -maturity bond process is explicitly expressed in terms of basic Brownian functionals, but,
more importantly, each discounted bond, Z(t, T ), is a diffusion process whose SDE is

(1.2) dZ = σZ logZdW.
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That is, all bond prices satisfy the same SDE and differ only because of their calibration
prices. Consequently, the pricing of interest rate caps and swaptions is exceptionally easy
since values of the same diffusion process, with differing initial conditions, enter into the cap
and swaption calculations.

Previous work by Ritchken and Sanakarasubramanian [11] and Rogers [14] has developed
Markov models where short rate processes are functions of Markov processes. Here it is the
asset prices themselves which are Markov.

We return to the issue of statistical evidence for this type of model by examining some
recent bond trading data. One implication of (1.1) is that a bond’s stochastic volatility is
proportional to the logarithm of the bond price. That is, the volatility of a T -maturity bond
has the form σ logB(t, T ), where B(t, T ) denotes the price of the bond.

If bond trading is consistent with this volatility choice, then one should be able to identify
the shared volatility parameter by observing a common variance parameter for several time
series of the type

ΔB

B logB
,

where different maturity prices are observed over a specific time period. In Appendix I, we
graph trading results for U.S. Treasury bond prices during July and August of 2000. Figure 2
displays individual bond volatility estimates based on four-week trailing variances for the bond
returns ΔB/B. In contrast, Figure 3 displays trailing variances for the modified time series
incorporating the log factor. The coalescing sigma plots in Figure 3 offer striking evidence in
favor of this type of model.

The paper is organized as follows. Section 2 contains explicit formulas for forward interest
rates, bond prices, and their SDEs within forward risk-neutral models. Section 3 has a general
pricing formula. Section 4 has the cap price formula and compares caplet prices to market-
standard prices based on the Black formula. The two formulas give numerically identical
results. Section 5 contains the swaption price formula.

2. Forward rates and bond prices. Two well-known choices for α(t, T ) in (1.1) produce
risk-neutral modeling equations. The first choice, as Health, Jarrow, and Morton discovered
in [5], allows discounting with a money market account. The second choice, later used by
Musiela and Rutkowski [9], allows discounting with a bond price, whose maturity is denoted
by T ∗. We refer to this choice as forward risk-neutral dynamics.

Generic forms for the two choices are

α = β

∫ T

t
β(t, u)du or α = −β

∫ T ∗

T
β(t, u)du.

Here, β(t, T ) denotes the Brownian coefficient in an SDE for the forward rate f(t, T ). In our
case, β = σf .

It is known (see [5] and [8]) that the risk-neutral choice, involving money market discount-
ing, leads to arbitrage. Therefore, we use the second choice, with a bond as numéraire, in our
crucial modeling equation:

(2.1) df(t, T ) = −σ2f(t, T )
∫ T ∗

T
f(t, u)dudt + σf(t, T )dW.
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One obvious feature of (2.1) is that any positive solution is likely to be finite due to a
negative drift for the case of earlier maturities (T ≤ T ∗). In fact, (2.1) has explicit positive
solutions. We formulate our model in terms of these solutions.

Definition 2.1. The forward rate process f(t, T ), defined for a common volatility parameter
σ and a range of maturities 0 ≤ T ≤ T ∗ with t ≤ T , is given by

f(t, T ) =
f(0, T )Mt

(1 + σ2

2 F (T )
∫ t
0 Msds)2

.

In this equation Mt = exp(σWt − σ2

2 t); the initial (given) forward rate curve, f(0, T ), and its

integral, F (T ) :=
∫ T ∗
T f(0, u)du, define the calibration parameters in the forward rate formula.

We assume for now that the initial forward rate curve is nonnegative, so that F (T ) ≥ 0.
This assumption may be relaxed to allow some negative rates as long as the function F (T ) =
log(B(0, T )/B(0, T ∗)) is nonnegative.

Proposition 2.2. Each maturity integral of rates in Definition 2.1 is given by

(2.2)

∫ T ∗

T
f(t, u)du =

F (T )Mt

1 + σ2

2 F (T )
∫ t
0 Msds

.

Moreover, each T -maturity bond price has the explicit form

B(t, T ) = exp

(
F (T )Mt

1 + σ2

2 F (T )
∫ t
0 Msds

− F (t)Mt

1 + σ2

2 F (t)
∫ t
0 Msds

)
.

In particular,

B(t, T ∗) = exp

(
− F (t)Mt

1 + σ2

2 F (t)
∫ t
0 Msds

)
.

Proof. Equation (2.2) can verified by differentiating with respect to T . The two bond
equations follow from the identity

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
.

Theorem 2.3. Each T -maturity bond price process is a semimartingale, and each discounted
price

B(t, T )

B(t, T ∗)
is a positive local martingale if T ≤ T ∗. Moreover, each discounted bond price satisfies the
SDE

(2.3) dZ = σZ logZdW.

Proof. Let Yt = log(B(t, T )/B(t, T ∗)). From (2.2) one sees that

(2.4) Yt =
F (T )Mt

1 + σ2

2 F (T )
∫ t
0 Msds

.
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It is easily checked that Y satisfies

(2.5) dY = −σ
2

2
Y 2dt+ σY dW.

It follows that the process Z = exp(Y ) is a local martingale and satisfies (2.3). If T ≤ T ∗, so
that F (T ) ≥ 0, then Yt remains positive and so Z is positive and is larger than one.

3. European derivative prices. Each discounted bond price in Theorem 2.3 is strictly a
supermartingale (see Goodman and Kim [4]). That is, a bond’s risk-neutral price is larger
than its expected discounted future value under the forward risk-neutral measure. One may
say that these prices form a market bubble as described in Cox and Hobson [2] and Heston,
Loewenstein, and Willard [6]. Some care must be taken to define admissible trading strategies
and fair prices of derivatives based on appropriate hedges.

We select a probability space (Ω,F ,Ft, P ) which supports a Brownian motion Wt, where
t ≤ T ∗ and F = FT ∗ . Proposition 2.2 determines bond price processes, and we follow the
pricing framework in [2], where Theorem 3.3 states that the price at time t of a European
option with payoff H(s) ≥ 0 at time T , based on an asset price ST , is given by

(3.1) E{H(ST ) | Ft}.

This general formula is valid if the process (3.1) can be expressed as a stochastic integral
with respect to the discounted asset St. We consider interest rate derivatives which have a
discounted payoff of the form

(3.2) Z =
B(T, T0)

B(T, T ∗)
H

(
B(T, T1)

B(T, T0)
, . . . ,

B(T, Tk)

B(T, T0)

)
,

where T ∗ ≥ Ti > T, i = 0, 1, . . . , k; H(z1, . . . , zk) is measurable and nonnegative.
The main result of this section identifies the process (3.1) for this type of payoff. Since

both interest rate cap and swaption payoffs can be expressed as combinations of (3.2), we use
this result to derive specific cap and swaption price formulas in sections 4 and 5.

Theorem 3.1. Let ET∗ denote expectation with respect to a T ∗-forward measure where bond
price processes are defined as in Proposition 2.2. If a payoff amount Z has the form (3.2),
then

(3.3) E{Z | Ft} = G

(
B(t, T ∗)
B(t, T0)

,
B(t, T1)

B(t, T0)
, . . . ,

B(t, Tk)

B(t, T0)

)
.

The function G(z0, z1, . . . , zk) is given by

(3.4) G = z−1
0 ET0

{
H

(
B(τ, T1)

B(τ, T0)
, . . . ,

B(τ, Tk)

B(τ, T0)

)
;
B(τ, T ∗)
B(τ, T0)

> 0

}
.

In this equation, each zi, i ≥ 1, is the initial discounted bond price B(0, Ti)/B(0, T0) in a
T0-forward model, z0 = B(0, T ∗)/B(0, T0), and τ = T − t.

Proof. We use the Markov property of each process t→ B(t, Ti)/B(t, T ∗) to verify (3.3).
Each argument, B(T, Ti)/B(T, T0), in Z is the ratio of two Markov processes, and so Z is a
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function of a (degenerate) Markov vector that is evaluated at time T . A basic conditioning
identity reduces the answer to an unconditional expectation involving the vector Markov
process at time τ = T − t. The function G is computed in Appendix II.

Bond prices appear in (3.4) in cases where bond maturities exceed the numéraire maturity
T0. We use the bond price formula in Proposition 2.2 to define a price process in each case
where Ti > T0. An initial discounted bond price zi is smaller than one. That is, the log
ratio is negative and determines a negative initial value F (Ti) = logB(0, Ti)/B(0, T0). The
discounted asset value Zi(t) is a bounded martingale which may collapse to zero. The formula
(3.4) restricts the expectation to the event B(τ, T ∗)/B(τ, T0) > 0 so that all possible asset
collapses are avoided within the expectation.

Example. Suppose we take H ≡ 1 in (3.2) and t = 0. Theorem 3.1 reduces in this case to

(3.5) E

{
B(T, T0)

B(T, T ∗)

}
=
B(0, T0)

B(0, T ∗)
P T0

{
B(T, T ∗)
B(T, T0)

> 0

}
,

a formula for the expected future discounted value of the T0 bond. We wish to estimate this
quantity for various bonds, yielding, say, 4%, that might be involved in a 10-year interest rate
swap, assuming a common volatility of σ = 0.2.

Let y = logB(0, T0)/B(0, T ∗), a positive quantity. For the choice of the longest bond
(T ∗ = 10) and the midmaturity bond (T0 = 5) in the swap, y = 0.2. Equation (3.4) requires
the use of a longer-term discounted bond B(t, T ∗)/B(t, T0) = exp(Y ), where

Y =
−yMt

1 + σ2

2 (−y) ∫ t
0 Msds

.

Y is negative for small values of t, as it should be, since a discounted long bond price is less
than one. However, Y explodes to −∞ at the random time when the denominator hits zero.
That is, the discounted long bond price collapses at this moment. Therefore,

(3.6) P T0

{
B(T, T ∗)
B(T, T0)

> 0

}
= P

{
σ2y

2

∫ T

0
Msds < 1

}
.

This identity shows that the discounted T0-bond price process is not a martingale since
the probability (3.6) is a decreasing function of T . However, the probability is essentially
equal to one.

The random quantity
∫ T
0 Msds is a time integral of geometric Brownian motion. These

random quantities first surfaced in financial models as payoff amounts in Asian options and
have been studied by Geman and Yor [3], Rogers and Shi [15], and many others. Although
much information concerning the probability distributions of time integrals has been found
(see Yor [17], for example), the known results do not seem to be useful for deriving the
risk-neutral density of discounted bonds in this work.

On the other hand, market data suggests that the effective time in such integrals is ex-
tremely short and this allows a simple estimate of their size. The time scaling σ2s→ t reduces
the integral

σ2
∫ T

0
Msds
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to one with the same probability distribution,
∫ σ2T
0 M

(1)
s ds, where M (1) denotes the exponen-

tial martingale with σ = 1.
With T = T0 = 5, and T ∗ = 10, the effective time is τ = 5σ2 = 0.2, and we use the

estimate ∫ τ

0
exp(Ws − s/2)ds <

∫ τ

0
exp(max

s≤τ
Ws)ds.

Since maxs≤τ Ws has the same distribution as
√
τ |Z|, where Z denotes a standard normal

random variable, we may replace the time integral by the stochastically larger random variable

(3.7) τ exp(
√
τ |Z|)

to obtain the following lower bound on the probability in (3.6):

P{0.2 exp(
√
0.2|Z|) < 10)} ≈ P{|Z| < 8.75} ≈ 1− 10−16.

Even if a 30-year bond were used as the numéraire in this 10-year swap example, each
probability in (3.6) for the 10-year bond would exceed 0.9962.

4. Interest rate caps. A cap is a collection of call options on libor rates over several
consecutive libor periods. Each single call option is a caplet, and a caplet’s price before the
libor period reset date agrees with the price of a European put option on a specific bond (see
[10]). We first derive a price formula for bond puts and then state the corresponding interest
rate caplet formula.

If T denotes the exercise date for a put on a T ′-maturity bond (T ′ > T ), we write the
payoff function in the scaled form

(1− κB(T, T ′))+.

The payoff has been scaled up by the reciprocal, κ > 1, of the put exercise price. This
form of a payoff is more convenient for relating put and caplet prices. We denote the put price
by

P (t, T, T ′, κ).

Our answer is expressed in terms of two probability functions of x > 0, y > 0, d ≥ x, and
s > 0:

(4.1)

K+(s, x, y, d) =Pr

{
M

(1)
s

x−1 − 1
2

∫ s
0 M

(1)
u du

≥ y and

∫ s

0
M (1)

u du <
2

d

}
,

K−(s, x, y, d) =Pr

{
M

(1)
s

x−1 + 1
2

∫ s
0 M

(1)
u du

≥ y and

∫ s

0
M (1)

u du <
2

d

}
,

where M
(1)
s = exp(Ws − s

2).
Proposition 4.1. A put on a T ′-maturity bond, with exercise date T and exercise price 1/κ,

having the scaled payoff (1− κB(T, T ′))+, has a price given by

(4.2) P = B(t, T )K+(σ2τ, x, y, d1)− κB(t, T ′)K−(σ2τ, x, y, d2).
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In this formula, τ = T − t, x = log(B(t, T )/B(t, T ′)), y = log κ, d1 = log(B(t, T )/B(t, T ∗)),
and d2 = log(B(t, T ′)/B(t, T ∗)).

Proof. See Appendix II.

Corollary 4.2. The put price in (4.2) is given approximately by

(4.3)

P (t, T, T ′, κ) .= B(t, T )Φ(b1)− κB(t, T ′)Φ(b2),
where

bi :=
log(x/y)

σ
√
τ
− σ
√
τ

2
(1∓ x).

Φ denotes the standard normal distribution function.

Proof. The functions K± involve the probability

Pr

{∫ s

0
M (1)

u du <
2

d

}
.

If d = 0.4, the value of a 10-year discount at the annual rate of 4%, and if a volatility of σ = .2
is assumed, then an expiration time of two years in the put formula gives an approximate
z-score of +14 for the probability in question. (See (3.7) for a simple estimate of the time
integral.) This probability is essentially equal to one. Consider the approximations

(4.4) Ỹ = x exp
(
±sx

2

)
M (1)

s

to the processes

Y =
M

(1)
s

x−1 ∓ 1
2

∫ s
0 M

(1)
u du

.

Notice that dỸ = ±1
2 Ỹ0Ỹ ds+ Ỹ dW so that the distributions in (4.4) are approximately equal

for small times to the processes Y ± (see (2.5)). Then

K± ≈ Pr
{
x exp

(
±sx

2

)
M (1)

s ≥ y
}

= Φ(bi),

where

bi =
log(x/y)√

s
−
√
s

2
(1∓ x).

4.1. Caplet price. A caplet payoff at time T +Δ with a cap K (see [13]) is a call on the
libor rate

L = (1/B(T, T +Δ)− 1)Δ−1.

The payoff at the end of the libor period is

(L−K)+Δ.
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Since the payoff is known at the reset time, T , the value (at this time) of the caplet is the
product of the bond B(T, T+Δ) and the payoff. This gives us the well-known relation between
caplet prices and put prices (see [9]):

B(T, T +Δ)(L−K)+Δ = (1− (1 +KΔ)B(T, T +Δ))+.

The right-hand expression is a payoff for a put, whose parameter κ, appearing in Proposition
4.1, equals 1 +KΔ. Two caplet price formulas are consequences of the result in Proposition
4.1.

Corollary 4.3. A caplet on the libor rate over the time period [T, T +Δ] with cap K has
the price

(4.5)
C(t, T, T +Δ,K) = B(t, T )K+(σ2τ, x, y, d1)

− (1 + ΔK)B(t, T +Δ)K−(σ2τ, x, y, d2).

Here, τ = T − t, x = log(B(t, T )/B(t, T +Δ)), y = log(1 + ΔK), d1 = log(B(t, T )/B(t, T ∗)),
and d2 = log(B(t, T +Δ)/B(t, T ∗)). An approximate caplet price is given by

(4.6)

C
.
= B(t, T )Φ(b1)− (1 + ΔK)B(t, T +Δ)Φ(b2),

bi :=
1

σ
√
τ
log

(
log(B(t, T )/B(t, T ′))

log(1 + ΔK)

)
− σ
√
τ

2
(1∓ x).

4.2. Comparison with the market-standard formula. The approximate caplet price for-
mula is numerically very close to the Black formula. Our caplet price is

B(t, T )Φ(b1)−B(t, T +Δ)Φ(b2)−ΔKB(t, T +Δ)Φ(b2),

whereas the market-standard formula (equation (2.9) of [13]) is

(B(t, T )−B(t, T +Δ))Φ(h1)−ΔKB(t, T +Δ)Φ(h2).

In practice, the ratio of the two bonds is near one and also log(1 + ΔK)
.
= ΔK. One sees that

the first term of bi in (4.6) is very nearly

log(f/K)

σ
√
τ

.

In this expression, f denotes forward libor, and the expression is the leading term of hi.
Both quantities b1 and b2 are numerically very close to h2.

Despite differences between the two formulas, they agree numerically. Figure 1 displays
numerical values for (4.6) compared with values for the standard caplet formula. The swap
principal amount is $1, 000.

5. Swaptions. A swaption is an option whose payoff is the difference between the floating
leg and the fixed leg of an interest rate swap [13]. The payoff of a European swaption is

(5.1)

(
1−B(T, Tn)−K

n∑
i=1

B(T, Ti)

)+

.
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Figure 1.

In this equation, K represents a given fixed coupon amount for periodic payments in a swap
that is offered to the holder at the expiration time, T , and T < Ti < Ti+1.

We denote the swaption price at time t ≤ T by S(t,K). The price formula contains n+1
probability functions S0, S1, . . . ,Sn, and the formula has the form

(5.2) S(t,K) = B(t, T )S0 −B(t, Tn)Sn −K
n∑

i=1

B(t, Ti)Si.

Each term Si is a transition probability for the (n+ 1)-dimensional diffusion process

(5.3) D(t) =

{
exp

(
xiMt

1 + xi
2

∫ t
0 Msds

)}
i=0,...,n

,

where Mt = exp(Wt − t/2) and all components are dependent. We include cases where some
initial conditions xi are negative.

Each Si is a fixed function of variables s, x, and K, where the vector x is the initial value
of the exponents in (5.3). We let

(5.4) S0(s,x,K) = Pr

{
K

n∑
i=1

Di(s) +Dn(s) ≤ 1, D0(s) > 0

}
.

Each component of x is negative. The function Sn is given by
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(5.5) Sn(s,x,K) = Pr

⎧⎨⎩1 +K +K
n−1∑
j=1

Dj(s) ≤ Dn(s), D0(s) > 0

⎫⎬⎭ .

All components xi, i ≥ 1, are positive. Each of the other functions Si, 0 < i < n, is given by
(5.6):

(5.6) Si = Pr

⎧⎨⎩K
n∑

j �=i

Dj(s) +K + (K + 1)Dn(s) ≤ Di(s),D0(s) > 0

⎫⎬⎭ .

Each component xj , 1 ≤ j ≤ i, is positive, but both x0 and xj are negative for j > i.

Proposition 5.1. The swaption price for the payoff in (5.1) is

(5.7)

S(t,K) = B(t, T )S0(σ2τ,x,K)−B(t, Tn)Sn(σ2τ,x′,K)

−K
n∑

i=1

B(t, Ti)Si(σ2τ,x(i),K).

In this formula τ = T − t and the components of x, x′, and x(i) are the following asset ratios:

xi = log
B(t, Ti)

B(t, T )
, x′i = log

B(t, Ti)

B(t, Tn)
, i < n, and x′n = log

B(t, T )

B(t, Tn)
.

For each j 
= i

x
(i)
j = log

B(t, Tj)

B(t, Ti)
, x

(i)
i = log

B(t, T )

B(t, Ti)
. Also x0 = log

B(t, T ∗)
B(t, T )

,

x′0 = log
B(t, T ∗)
B(t, Tn)

, and x
(i)
0 = log

B(t, T ∗)
B(t, Ti)

.

Proof. See Appendix II.

Remark 5.2. Each term in the swaption formula is the product of an asset price and a
transition probability for the vector-valued diffusion process D(t) to occupy a particular half-
space in R

n at time t = σ2τ . The diffusion is highly degenerate since the components are
different values of the same process. Numerical techniques can be applied to obtain these
transition probabilities.

Each xi is the logarithm of a discounted bond price, so that the swaption formula directly
determines a hedge with positions in the bond assets involved in the swap.

6. Conclusion. This paper introduces a Markov model for bond prices with various bond
prices serving as the numéraire. A Markovian framework, where discounted assets are ex-
pressed as Markov processes, is better suited for pricing interest rate derivatives than ear-
lier models developed in [1], [11], and [14]. Previous work expresses short rate processes as
functions of Markov processes. While these risk-neutral models are convenient for pricing
calculations, often the asset prices do not explicitly appear in derivative price formulas.
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In contrast, this paper studies forward rate processes which have a characteristic trait
matching market data analysis; forward rates have a common volatility. In addition, asset
prices determine the basic libor derivative prices within these models. We have presented
caplet and swaption formulas as explicit functions of the underlying bond prices.

This suggests questions for future work. First, hedging positions could be calculated for
caps and swaptions and tested against market derivative price data to determine the viability
of hedging strategies for commercial use. Second, PDE solutions to many pricing questions
can be developed. Each discounted asset satisfies a simple SDE, (2.3), and functions of these
prices form local martingales when the appropriate PDE is satisfied.

In addition, these models may be generalized to include stochastic choices for the common
rate volatility. If σ(t, ω) is a Markov process, the pair (asset price, σ(t, ω)) retains its Markov
character, and it seems possible to generate other tractable pricing models.

7. Appendix I. Figure 2 uses Federal Reserve constant maturity data for zero coupon
bonds. The graph was prepared from daily quotes of various bond prices. The 20-day trailing
standard deviations of relative bond returns were computed and plotted in Figure 2. The
plots show high volatility for long maturities compared to low volatility of short maturities.

Figure 2. 30 trading days, from July to mid-August 2000.

Figure 3 displays the volatility common to several maturities. The plot was obtained from
the same data that produced Figure 2. In this case the relative bond returns were adjusted
by dividing by the logarithm of the bond price, and then 20-day trailing standard deviations
were computed and plotted for this adjusted data. Figure 3 shows that the plots coalesce.
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Figure 3. 30 trading days, with adjusted relative returns.

8. Appendix II.

8.1. Proof of Theorem 3.1. As mentioned in section 3, the Markov property of each
discounted bond reduces the conditional expectation computation

E{Z | Ft}

to the unconditional expected value

(8.1) ET ∗
{
B(τ, T0)

B(τ, T ∗)
H

(
B(τ, T1)

B(τ, T0)
, . . . ,

B(τ, Tk)

B(τ, T0)

)}
.

Prescribed initial values for the discounted bond prices within the expectation produce a
deterministic function of k + 1 variables. These are set equal to discounted asset prices at
time t to produce the Ft-measurable function.

To evaluate this expectation and, in effect, to change probabilities in order to eliminate
the first factor in the integrand, we use some computations appearing in the proof of Theorem
2.3.

Let Yt = logB(t, T0)/B((t, T ∗), and notice from (2.5) that

Yt − Y0 =
∫ t

0
σYsdWs − 1

2

∫ t

0
σ2Y 2

s ds.

One sees that

exp(Yt − Y0) = B(t, T0)

B(t, T ∗)
B(0, T ∗)
B(0, T0)
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is a stochastic exponential; a stopped version of it will allow a change of measure. For each n
let ηn be the first time that Yt reaches level n.

The stopped process Λt = exp(Yt∧ηn − Y0) is a bounded stochastic exponential and is
therefore a martingale. We apply the Girsanov theorem. If Q denotes the probability measure

dQ = ΛT0dP
T ∗

on the σ-algebra FT0 , the process

W̃t =Wt − σ
∫ t∧ηn

0
Ysds

is a Brownian motion. Although each process W̃t depends on n, we use these Brownian
motions only to obtain an integral identity where n appears explicitly. Therefore, in some
basic calculations, we will suppress the n-dependence and merely use the notation W̃t.

First, consider the new dynamics for Yt up to the time ηn:

dY = −σ2 1
2
Y 2dt+ σY {dW̃t + σYtdt}

= σ2
1

2
Y 2dt+ σY dW̃t.

Its explicit solution is

(8.2) Y =
Y0M̃t

1− σ2Y0 12
∫ t
0 M̃sds

.

Recall that ηn is the first time for this process to hit level n. We next find explicit formulas
for each ratio B(t, Ti)/B(t, T0) in terms of W̃t. Let Y

i
t denote the logarithm of this bond ratio.

Then Y i = L− Y , where L = logB(t, Ti)/B(t, T ∗).

dY i = dL− dY = −1

2
σ2{L2 + Y 2}dt+ σ{LdWt − Y dW̃t}

= −1

2
σ2{L2 + Y 2}dt+ σ{L(dW̃t + σY dt)− Y dW̃t}

= −1

2
σ2{L2 + Y 2 − 2LY }dt+ σ{LdW̃t − Y dW̃t}

so that

dY i = −1

2
σ2(Y i)2dt+ σY idW̃t.

This is exactly the dynamics for the log of the discounted Ti-maturity bond process with
respect to a T0-forward risk-neutral measure. In those cases where Ti > T0, the initial value
Y i
0 is negative, and the explicit solution, which is given by the formula (2.2), is negative and

there is a possibility of an explosion of Y i to −∞. Nevertheless, the discounted bond price
exp(Y i) is a bounded martingale which collapses to zero at this random time.
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Finally, −Yt, explicitly given in (8.2), also has the correct dynamics with respect to an
extended use of a T0-forward risk-neutral measure. Equation (8.2) states that

(8.3) −Y =
−Y0M̃t

1 + σ2(−Y0)12
∫ t
0 M̃sds

,

matching the formula (2.2) for logB(t, T ∗)/B(t, T0). Even though we have explicit formulas
for all bond ratios in terms of the (n-dependent) Brownian motion W̃ , we prefer to express
an identity for an approximate value of the expected value (8.1) as

ET ∗
{
B(τ, T0)

B(τ, T ∗)
H

(
B(τ, T1)

B(τ, T0)
, . . . ,

B(τ, Tk)

B(τ, T0)

)
; ηn > T0

}

=
B(0, T0)

B(0, T ∗)
ET0

{
H

(
B(τ, T1)

B(τ, T0)
, . . . ,

B(τ, Tk)

B(τ, T0)

)
;
B(τ, T ∗)
B(τ, T0)

> exp(−n)
}
.

We are able to use a generic Brownian motion here since the SDEs have identified all joint
distributions up to the time ηn, which itself is expressible in terms of one bond ratio within a
T0-forward model. Now, we take a limit as n→∞ to establish the desired result.

In the first expected value ηn →∞ almost surely, whereas the distributions in the second
integral confine the expectation to the event where the discounted long bond remains positive.
All the other bond ratios are positive as well; this fact follows from the explicit formula in
(2.2) which shows that their logarithms decrease with increasing maturity.

8.2. Derivation of put prices. The payoff for a scaled bond put on a T ′-maturity bond,
expiring at time T < T ′, is

(1− κB(T, T ′))+,

where κ > 1 is the reciprocal of the exercise price. Let I denote the indicator function

I{1≥κB(T,T ′)}.

We derive discounted price processes for two derivatives whose payoffs are I and B(T, T ′)I,
paid at time T . The discounted payoff function I has the form

B(T, T )

B(T, T ∗)
H

(
B(T, T ′)
B(T, T )

)
,

where
H = I{1≥κB(T,T ′)/B(T,T )}.

We apply Theorem 3.1 and identify the deterministic function G(z0, z1) whose formula is given
in (3.4):

G = z−1
0 ET

{
H

(
B(τ, T ′)
B(τ, T )

)
;
B(τ, T ∗)
B(τ, T )

> 0

}

= exp(d)Pr

{
− log κ ≥ −xMτ

1 + 1
2σ

2(−x) ∫ τ
0 Msds

and
1

2
σ2d

∫ τ

0
Msds < 1

}
,
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where x = logB(0, T )/B(0, T ′) > 0 and d = logB(0, T )/B(0, T ∗) > 0.

The final form of the payoff function is stated in terms of the process M
(1)
s because the

time scaling s→ σ2t produces the distributions for the general case.

The second discounted payoff function is (B(T, T ′)/B(T, T ∗))I, which has the form

B(T, T ′)
B(T, T ∗)

H

(
B(T, T )

B(T, T ′)

)
,

where

H = I{B(T,T )/B(T,T ′)≥κ}.

The deterministic function G(z0, z1) in Theorem 3.1 is

G = z−1
0 ET ′

{
H

(
B(τ, T )

B(τ, T ′)

)
;

B(τ, T ∗)
B(τ, T ′) > 0

}

= exp(d)Pr

{
xMτ

1 + 1
2σ

2x
∫ τ
0 Msds

≥ log κ and
1

2
σ2d

∫ τ

0
Msds < 1

}
,

where x = logB(0, T )/B(0, T ′) > 0 and d = logB(0, T ′)/B(0, T ∗) > 0.

We show that the supermartingale E{ZT | Ft} is a stochastic integral with respect to
discounted asset prices and so satisfies the hypotheses of Theorem 3.3 in [2]. The Markov
property allows us to express the discounted put price as

(8.4) ET ∗{(B(τ, T )/B(τ, T ∗)− κB(τ, T ′)/B(τ, T ∗))+},

where initial prices z0 and z′0 are set equal to the time-t asset prices. It is sufficient to show
that (8.4) is a smooth function of z0 and z

′
0. Now B(τ, T )/B(τ, T ∗) = exp(Yt), where Yt, given

by (2.4), is a function of F = log z0. We first consider the dependence of (8.4) on log z0:

∂

∂F

(
B(τ, T )

B(τ, T ∗)
− κB(τ, T ′)

B(τ, T ∗)

)+

= exp(Yt)
∂Y

∂F
I{B(τ,T )/B(τ,T ′)≥κ} almost surely.

Since x → (x + A)+ is a Lipschitz function, the expected value of the derivative is the limit
of the put price difference quotient if the random variable

exp(Yt)
∂Y

∂F
= exp(Yt)

Mt

(1 + σ2

2 F
∫ t
0 Msds)2

has finite expectation. The function F → Yt is pointwise increasing for fixed t, and, by
inspection, the function F 2∂Yt/∂F is also pointwise increasing. Therefore, if

E

{
exp(Yt)

∂Y

∂F
F 2

}
=∞
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for some F0, then the expectation would be infinite for all larger F values, say, to F1. But,
then E{exp(Yt)∂Y/∂F} ≡ ∞ over this range. By integrating over F we would see that
E{exp(Yt)} =∞ at F1, which contradicts the fact that exp(Yt) is a supermartingale.

A similar argument shows that the second derivative of exp(Yt) has a finite expected value,
and so (8.4) has two continuous derivatives. The same type of argument applies to (8.4) as a
function of the discounted T ′-bond.

8.3. Derivation of swaption prices. The payoff of a European swaption (see (5.1)) is(
1−B(T, Tn)−K

n∑
i=1

B(T, Ti)

)+

.

This may be expressed as a sum of derivative payoffs:

I −B(T, Tn)I −K
n∑

i=1

B(T, Ti)I,

where I is the indicator function of the event

(8.5) B(T, Tn) +K
n∑

i=1

B(T, Ti) ≤ 1.

We derive a price process for each payoff amount in the sum using Theorem 3.1. The first
payoff term, I, is expressed in discounted form by introducing the factor B(T, T )/B(T, T ∗).
The indicator event can be expressed as

B(T, Tn)

B(T, T )
+K

n∑
i=1

B(T, Ti)

B(T, T )
≤ 1.

Therefore, the discounted payoff equals

B(T, T )

B(T, T ∗)
H

(
B(T, T1)

B(T, T )
, . . . ,

B(T, Tn)

B(T, T )

)
and the function G(z0, z1, . . . , zn) in Theorem 3.1 is

z−1
0 P T

{
B(τ, Tn)

B(τ, T )
+K

n∑
i=1

B(τ, Ti)

B(τ, T )
≤ 1 and

B(τ, T ∗)
B(τ, T )

> 0

}
.

Equation (2.2) gives explicit formulas for each ratio, and the probability is

exp(−x0)P
{
exp

(
xnMτ

1 + σ2

2 xn
∫ τ
0 Msds

)
+K

n∑
i=1

exp

(
xiMτ

1 + σ2

2 xi
∫ τ
0 Msds

)
≤ 1

and
−σ2x0

2

∫ τ

0
Msds < 1

}
,
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where xi = logB(0, Ti)/B(0, T ), i ≥ 1, and x0 = logB(0, T ∗)/B(0, T ).
Each remaining payoff term in the swaption is a scaled payoff of the amount

B(T, Ti)I.

The discounted payoff has the factor B(T, Ti)/B(T, T ∗), and it is convenient to write the event
in the indicator function as

B(T, Tn)

B(T, Ti)
+K

n∑
j=1

B(T, Tj)

B(T, Ti)
≤ B(T, T )

B(T, Ti)
.

The function H in Theorem 3.1 is the indicator of this event, and the function G is then

z−1
0 P Ti

{
B(T, Tn)

B(T, Ti)
+K

n∑
j=1

B(T, Tj)

B(T, Ti)
≤ B(T, T )

B(T, Ti)

and
B(τ, T ∗)
B(τ, Ti)

> 0

}
.

Equation (2.2) gives the explicit formulas for this probability:

exp(−xi0)Pr
{
exp

(
xinMτ

1 + σ2

2 x
i
n

∫ τ
0 Msds

)
+K

n∑
j=1

exp

(
xijMτ

1 + σ2

2 x
i
j

∫ τ
0 Msds

)

≤ exp

(
xi0Mτ

1 + σ2

2 x
i
0

∫ τ
0 Msds

)
and

−σ2xi0
2

∫ τ

0
Msds < 1

}
.

Here, xi0 = log B(0,T ∗)
B(0,Ti)

and xij = log
B(0,Tj )
B(0,Ti)

.

The swaption price can be expressed as a stochastic integral with respect to the (dis-
counted) bonds involved in the swap. To see this one expresses the price as in (8.4), using
the entire swaption payoff function, in discounted form, in place of the put payoff. Following
the steps in the argument for the put price, one differentiates a single term in the payoff with
respect to its initial value, using the Lipschitz property of x → (x + A)+ to compute the
derivative of the integrand as the product of exp(Yt)∂Yt/∂F and an indicator function. This
product has a finite expected value, and its expectation, which depends continuously on F , is
a formula for the derivative of the swaption price with respect to the initial condition F .
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Abstract. We study singular perturbations of a class of stochastic control problems under assumptions moti-
vated by models of financial markets with stochastic volatilities evolving on a fast time scale. We
prove the convergence of the value function to the solution of a limit (effective) Cauchy problem for
a parabolic equation of HJB type. We use methods of the theory of viscosity solutions and of the
homogenization of fully nonlinear PDEs. We test the result on some financial examples, such as
Merton portfolio optimization problem.
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1. Introduction. In this paper we consider stochastic control systems with a small pa-
rameter ε > 0 in the form

(1)

⎧⎨⎩ dXt = φ̃(Xt, Yt, ut)dt+
√
2σ̃(Xt, Yt, ut)dWt,

dYt =
1
εb(Yt)dt+

√
2
ε τ(Yt)dWt,

where Xt ∈ R
n, Yt ∈ R

m, ut is the control taking values in a given compact set U , Wt is
a multidimensional Brownian motion, and the components of drift and diffusion of the slow
variables Xt have the form

φ̃i := xiφi(x, y, u), σ̃ij := xiσji (x, y, u),

with φi, σji bounded and Lipschitz continuous uniformly in u, so that Xi
t ≥ 0 for t > to if

Xi
to ≥ 0. On the fast process Yt we will assume that the matrix ττT is positive definite and a

condition implying the ergodicity (see (3)). We also take payoff functionals of the form

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y], 0 ≤ t ≤ T, λ ≥ 0,
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with g continuous and growing at most quadratically at infinity, and call V ε(t, x, y) the value
function of this optimal control problem, i.e.,

V ε(t, x, y) := sup
u·

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y, (X·, Y·) satisfy (1) with u·].

We are interested in the limit V as ε → 0 of V ε, in particular in understanding the PDE
satisfied by V and interpreting it as the HJB equation for an effective limit control problem.
This is a singular perturbation problem for the system (1) and for the HJB equation associated
with it. We treat it by methods of the theory of viscosity solutions to such equations.

Our motivations are the models of pricing and trading derivative securities in financial
markets with stochastic volatility. The book by Fleming and Soner [20] is a general presenta-
tion of viscosity solution methods in stochastic control, and in Chapter 10 it gives an excellent
introduction to the applications of this theory to the mathematical models of financial mar-
kets. In such markets with stochastic volatility the asset prices are affected by correlated
economic factors, modeled as diffusion processes. This is motivated by empirical studies of
stock price returns in which the estimated volatility exhibits random behavior. So, typically,
volatility is assumed to be a function of an Itô process Yt driven by another Brownian motion,
which is often negatively correlated with the one driving the stock prices (this is the empir-
ically observed leverage effect; i.e., asset prices tend to go down as volatility goes up). This
approach seems to have success in taking into account the so-called smile effect, due to the
discrepancy between the predicted and market traded option prices, and in reproducing much
more realistic returns distributions (i.e., with fatter and asymmetric tails).

An important extension of the stochastic volatility approach was introduced recently by
Fouque, Papanicolaou, and Sircar in the book [23] (see, in particular, Chapter 3). The idea
is trying to describe the bursty behavior of volatility: in empirical observations volatility
often tends to fluctuate to a high level for a while, then to a low level for another small time
period, then again at high level, and so on, for several times during the life of a derivative
contract. These phenomena are also related to another feature of stochastic volatility, which
is mean reversion. A mathematical framework which takes into account both bursting and
mean reverting behavior of the volatility is that of multiple time scale systems and singular
perturbations. In this setting volatility is modeled as a process which evolves on a faster time
scale than the asset prices and which is ergodic, in the sense that it has a unique invariant
distribution (the long-run distribution) and asymptotically decorellates (in the sense that it
becomes independent of the initial distribution). We refer the reader to the book [23] and
to the references therein for a detailed presentation of these models and for their empirical
justification.

Several extensions and applications to a variety of financial problems appeared afterward;
see [31, 24, 25, 22, 43, 30, 41, 29, 37] and the references therein.

According to the previous discussion, stochastic control systems of the form (1) are appro-
priate for studying financial problems in this setting. Indeed, here the slow variables represent
prices of assets or the wealth of the investor, whereas Yt is an ergodic process representing
the volatility and evolving on a faster time scale for ε small. The main example for Yt is the
Ornstein–Uhlenbeck process. The asymptotic analysis of such systems as ε → 0 then yields
a simple pricing and hedging theory which provides a correction to classical Black–Scholes
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formulas, taking into account the effect of uncertain and changing volatility.
Most of the papers we cited on fast mean reverting stochastic volatility use formal asymp-

totic expansions of the value function in powers of ε and compute the first terms of the
expansions by solving suitable auxiliary elliptic and parabolic PDEs. These methods are
closely related to homogenization theory and can be found in earlier papers of Papanicolaou
and coauthors and, e.g., in the book [9]. They are particularly fit to problems without control,
such as the pricing of many options, so that the price function is smooth and satisfies a linear
PDE. In these cases the accuracy of the expansion can often be proved.

There is a wide literature on singular perturbations of diffusion processes, with and without
controls. For results based on probabilistic methods we refer the reader to the books [33, 32],
the recent papers [38, 39, 40, 12], and the references therein. An approach based on PDE-
viscosity methods for the HJB equations was developed by Alvarez and one of the authors
in [1, 2, 3]; see also [4] for problems with an arbitrary number of scales. It allows one to
identify the appropriate limit PDE governed by the effective Hamiltonian and gives general
convergence theorems of the value function of the singularly perturbed system to the solution
of the effective PDE, under assumptions that include deterministic control (i.e., σ ≡ 0 and/or
τ ≡ 0) as well as differential games, deterministic and stochastic. However, this theory
originating in periodic homogenization problems [35, 18] was developed so far for fast variables
restricted to a compact set, mostly the m-dimensional torus. As we already observed, though,
an a priori assumption of boundedness does not appear natural to model volatility in financial
markets, according to the empirical data and in the discussion presented in [23] and the
references therein.

The goal of this paper is extending the methods based on viscosity solutions of [1, 2, 3]
to singular perturbation problems of the form (1), including several models of mathematical
finance. The main new difficulty is that the fast variables Yt are unbounded.

We first check that the value function V ε is the unique (viscosity) solution to a Cauchy
problem for the HJB equation under very general assumptions on the data. In particular, the
diffusion matrix of the slow variables σσT may degenerate and V ε may be merely continuous.
The possible degeneration of the diffusion matrix σσT can also have interesting financial
applications, e.g., to path-dependent options and to interest rate models in the Heath–Jarrow–
Morton framework (see section 6.5 for more comments on this).

Next we assume that the fast subsystem

(2) dYt = b(Yt)dt+
√
2τ(Yt)dWt

has a Lyapunov-like function w satisfying

(3) −Lw(y) ≥ k > 0 for |y| > R0, lim
|y|→+∞

w(y) = +∞,

where L is the infinitesimal generator of the process (2). We prove a Liouville property for
sub- and supersolution of Lv = 0, the existence of a unique invariant measure μ for (2)
(by exploiting the theory of Hasminskii [28]), and some crucial properties of the effective
Hamiltonian and terminal cost

H(x,DxV,D
2
xxV ) :=

∫
Rm

H(x, y,DxV,D
2
xxV, 0) dμ(y), g(x) :=

∫
Rm

g(x, y) dμ(y),
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where H is the Bellman Hamiltonian associated with the slow variables of (1) and its last
entry is for the mixed derivatives Dxy. The condition (3) is easier to check and looks weaker
than other known sufficient conditions for ergodicity [28, 36]. It appears also in a remark
of [34], where the proof of the existence of μ is different from ours. Lions and Musiela [34] also
state that (3) is indeed equivalent to the ergodicity of (2) and to the classical Lyapunov-type
condition of Hasminskii [28].

Our main result is the convergence of V ε(t, x, y) to V (t, x) as ε→ 0 uniformly on compact
subsets of [0, T )× R

n
+ × R

m, where V is the unique (viscosity) solution to

(4) −Vt +H
(
x,DxV,D

2
xxV
)
+ λV (x) = 0 in (0, T ) ×R

n
+,

with final data V (T, x) = g(x) in Rn
+. Note that there is a boundary layer at the terminal

time T if the utility g depends on y.
We test this convergence theorem on two examples of financial models chosen from [23].

The first is the problem of pricing n assets with an m-dimensional vector of volatilities. The
second is the Merton portfolio optimization problem with one riskless bond and n risky assets.
The control system driving wealth and volatility is

(5)

⎧⎨⎩ dWt =Wt

(
r +
∑n

i=1 (α
i − r)uit

)
dt+

√
2Wt

∑n
i=1 u

i
tfi(Yt) · dW t,

dYt =
1
ε b(Yt)dt+

√
2
εν(Yt)dZt,

with Wto = w > 0, where W t, Zt are possibly correlated Brownian motions, and the value
function is

V ε(t, w, y) := sup
u·

E[g(WT , YT ) | Wt = w, Yt = y].

Our convergence result for this problem appears to be new, to the best of our knowledge,
although the formula for the limit is derived in [23] (by a different method and for n = 1,
g independent of y; another term of an asymptotic expansion in powers of ε is also computed
in [23]). We also show that we can handle a periodic day effect, i.e., fi = fi(

t
ε , Yt) periodic

in the first entry, as in section 10.2 of [23], and the presence of a component of the volatility
evolving on a very slow time scale (dependent or not on ε), as in [25, 37]. A similar result for
the infinite horizon Merton problem of optimal consumption [19, 20] is under investigation.

Finally we observe that our methods work if an additional unknown disturbance ũt affects
the dynamics of Xt and we maximize the payoff under the worst possible behavior of ũt.
This situation is modeled as a 0-sum differential game: its value function is characterized by
a Hamilton–Jacobi–Isaacs PDE that can be analyzed in the framework of viscosity solutions
[21, 3]. In [1, 2, 3] the disturbance ũt and/or the controls ut may also affect the fast variables Yt
(constrained to a compact set). Then there is no invariant measure and the definition of the
effective Hamiltonian and terminal cost is less explicit, but the convergence theorem still holds.

Our conclusion is that the theory of viscosity solutions is the appropriate mathematical
framework for fully nonlinear Bellman–Isaacs equations that provides general methods for
treating singular perturbation problems (relaxed semilimits, perturbed test function method,
comparison principles, etc.). These can be useful additional tools for the rigorous analysis of
multiscale financial problems with stochastic volatility, in particular when some variables are
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controlled, the value function is not smooth, or the complexity of the model prevents more
explicit calculations.

The paper is organized as follows. Section 2 presents the standing assumptions and the
HJB equation. Section 3 studies the initial value problem satisfied by V ε. Section 4 is devoted
to the ergodicity of a diffusion process in the whole spaces and the properties of the effective
Hamiltonian and terminal cost. In section 5 we prove our main result, Theorem 5.1, on the
convergence of V ε to the solution of the effective Cauchy problem. In section 6 we apply our
results to a multidimensional option pricing model and to the Merton portfolio optimization
problem and then illustrate some extensions. Section 7 is the conclusion.

2. The two-scale stochastic control problem.

2.1. The control system. We consider stochastic control problems that can be written
in the form

(6)

⎧⎨⎩ dXi
t = Xi

tφ
i(Xt, Yt, ut)dt+

√
2Xi

tσi(Xt, Yt, ut) · dWt, i = 1, . . . , n,

dY k
t = 1

εb
k(Yt)dt+

√
2
ετk(Yt) · dWt, k = 1, . . . ,m,

with Xi
to = xi ≥ 0, Y k

to = yk, where ε > 0, U is a given compact set, φ = (φ1, . . . , φn) :
R
n×R

m×U → R
n, σi : Rn×R

m×U → R
r are bounded continuous functions, Lipschitz con-

tinuous in (x, y) uniformly with respect to u ∈ U , b = (b1, . . . , bm) : Rm → R
m, τk : Rm → R

r

are locally Lipschitz continuous functions with linear growth, i.e.,

(7) for some Kc > 0 |b(y)|, ‖τk(y)‖ ≤ Kc(1 + |y|) ∀ y ∈ R
m, k = 1, . . . ,m,

andWt is an r-dimensional standard Brownian motion. These assumptions will hold through-
out the paper.

We will use the symbols Mk,j and S
k to denote, respectively, the set of k× j matrices and

the set of k × k symmetric matrices, and we set

R
n
+ := {x ∈ R

n : xi > 0 ∀ i = 1, . . . , n}.

To shorten the notation we call φ̃ : Rn × R
m × U → R

n the drift of the slow variables Xt,
σ̃ ∈M

n,r the matrix whose ith row is xiσi, and τ ∈M
m,r the matrix whose kth row is τk, i.e.,

φ̃i := xiφi, σ̃ij := xiσji , τkj := τ jk , j = 1, . . . , r.

Then the system (6) can be rewritten with vector notations in the form

(8)

⎧⎨⎩ dXt = φ̃(Xt, Yt, ut)dt+
√
2σ̃(Xt, Yt, ut)dWt, Xto = x ∈ R

n
+,

dYt =
1
ε b(Yt)dt+

√
2
ετ(Yt)dWt, Yto = y.

The set of admissible control functions is

U := {u· progressively measurable processes taking values in U}.
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In the following we will assume the uniform nondegeneracy of the diffusion driving the
fast variables Yt, i.e.,

(9) ∃ e(y) > 0 such that ξτ(y)τT (y) · ξ = |ξτ(y)|2 ≥ e(y)|ξ|2 for every y, ξ ∈ R
m.

We will not make any nondegeneracy assumption on the matrix σ and remark that, in any
case, σ̃ degenerates near the boundary of Rn

+.

2.2. The optimal control problem. We consider a payoff functional depending only on
the position of the system at a fixed terminal time T > 0 (Mayer problem). The utility
function g : R

n
+ × R

m → R is continuous and satisfies

(10) ∃Kg > 0 such that sup
y∈Rd

|g(x, y)| ≤ Kg(1 + |x|2) ∀x ∈ R
n
+,

and the discount factor is
λ ≥ 0.

Therefore the value function of the optimal control problem is

(11) V ε(t, x, y) := sup
u·∈U

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y], 0 ≤ t ≤ T,

where E denotes the expectation. This choice of the payoff is sufficiently general for the
application to finance models presented in this paper, but we could easily include in the
payoff an integral term keeping track of some running costs or earnings.

2.3. The HJB equation. For a fixed control u ∈ U the generator of the diffusion process
is

trace
(
σ̃σ̃TD2

xx

)
+

2√
ε
trace

(
σ̃τT (D2

xy)
T
)
+ φ̃ ·Dx +

1

ε
trace

(
ττTD2

yy

)
+

1

ε
b ·Dy,

where the last two terms give the generator of the fast process Yt.
The HJB equation associated via dynamic programming with the value function of this

control problem is

(12) −Vt +H

(
x, y,DxV,D

2
xxV,

D2
xyV√
ε

)
− 1

ε
L(y,DyV,D

2
yyV ) + λV = 0

in (0, T )× R
n
+ × R

m, where

(13) H(x, y, p,X,Z) := min
u∈U

{
− trace

(
σ̃σ̃TX

) − φ̃ · p− 2 trace
(
σ̃τTZT

)}
,

with σ̃ and φ̃ computed at (x, y, u), τ = τ(y), and

(14) L(y, q, Y ) := b(y) · q + trace(τ(y)τT (y)Y ).

This is a fully nonlinear degenerate parabolic equation (strictly parabolic in the y variables
by the assumption (9)).
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The HJB equation is complemented with the obvious terminal condition

V (T, x, y) = g(x, y).

However, there is no natural boundary condition on the space boundary of the domain, i.e.,

(0, T )× ∂Rn
+ × R

m = {(t, x, y) : 0 < t < T, xi = 0 for some i}.

We will prove in the next section that the initial boundary value problem is well posed without
prescribing any boundary condition because the PDE “holds up to boundary”; namely, the
value function is a viscosity solution in the set (0, T )×R

n
+×R

m, and there is at most one such
solution. The irrelevance of the space boundary (0, T ) × ∂Rn

+ × R
m is essentially due to the

fact that R
n
+ × R

m is an invariant set for the system (6) for all admissible control functions
(almost surely); that is, the state variables cannot exit this closed domain.

2.4. The main assumption. Consider the diffusion process in R
m obtained putting ε = 1

in (1),

(15) dYt = b(Yt)dt+
√
2τ(Yt)dWt,

called the fast subsystem, and observe that its infinitesimal generator is Lw := L(y,Dyw,D
2
yyw),

with L defined by (14). We assume the following condition:
There exist w ∈ C(Rd) and constants k,R0 > 0 such that

(16) −Lw ≥ k for |y| > R0 in viscosity sense, and w(y)→ +∞ as |y| → +∞.

It is reminiscent of other similar conditions about ergodicity of diffusion processes in the
whole space; see, for example, [28, 9, 34, 12, 36].

Remark 2.1. Condition (16) can be interpreted as a weak Lyapunov condition for the
process (15) relative to the set {|y| ≤ R0}. Indeed, a Lyapunov function for the system (15)
relative to a compact invariant set K is a continuous, positive definite function L such that
L(x) = 0 if and only if x ∈ K, the sublevel sets {y | L(y) ≤ k} are compact, and−LL(x) = l(x)
in R

m, where l is a continuous function with l = 0 on K and l > 0 outside. For more details
see [28].

Example 2.1. The motivating model problem studied in [23] is the Ornstein–Uhlenbeck
process with equation

dYt = (m− Yt)dt+
√
2τdWt,

where the vector m and matrix τ are constant. In this case it is immediate to check condition
(16) by choosing w(y) = |y|2 and R0 sufficiently large.

Example 2.2. More generally, condition (16) is satisfied if

lim sup
|y|→+∞

[
b(y) · y + trace(ττT (y))

]
< 0.

Indeed, also in this case it is sufficient to choose w(y) = |y|2. Pardoux and Veretennikov
[38, 39, 40] assume ττT bounded and lim|y|→+∞ b(y) · y = −∞, and they call it the recurrence
condition.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VISCOSITY METHODS FOR MULTISCALE FINANCIAL MODELS 237

3. The Cauchy problem for the HJB equation. We characterize the value function V ε

as the unique continuous viscosity solution with quadratic growth to the parabolic problem
with terminal data in the form

(17)

⎧⎨⎩ −Vt + F
(
x, y, V,DxV,

DyV
ε ,D2

xxV,
D2

yyV

ε ,
D2

xyV√
ε

)
= 0 in (0, T )× R

n
+ × R

m,

V (T, x, y) = g(x, y) in R
n
+ ×R

m,

where the Hamiltonian F : Rn × R
m × R×R

n × R
m × S

n × S
m ×M

n,m → R is defined as

(18) F (x, y, s, p, q,X, Y, Z) := H(x, y, p,X,Z) − L(y, q, Y ) + λs.

This is a variant of a standard result (see [20] and the references therein) where we must take
care of the lack of boundary condition on ∂Rn

+ and the unboundedness of the solution.

Proposition 3.1. For any ε > 0, the function V ε defined in (11) is the unique continuous
viscosity solution to the Cauchy problem (17) with at most quadratic growth in x and y.
Moreover the functions V ε are locally equibounded.

Proof. The proof is divided into several steps.

Step 1 (bounds on V ε). Observe that, using the definition of V ε and (10),

|V ε(t, x, y)| ≤ KgE(1 + |XT (t, x, y)|2).

So, using standard estimates on the second moment of the solution to (49) (see, for instance,
[27, Thms. 1 and 4, Chap. 2] or [20, App. D]) and the boundedness of φ̃ and σ̃ with respect
to y, we get that there exist C, c > 0 such that

(19) |V ε(t, x, y)| ≤ CecT (1 + |x|2) = KV (1 + |x|2), t ∈ [0, T ], x ∈ R
n
+, y ∈ R

m.

This estimate in particular implies that the sequence V ε is locally equibounded.

Step 2 (the semicontinuous envelopes are sub- and supersolutions). We define the lower and
upper semicontinuous envelopes of V ε as

V ε
∗ (t, x, y) = lim inf

(t′,x′,y′)→(t,x,y)
V ε(t′, x′, y′),

(V ε)∗(t, x, y) = lim sup
(t′,x′,y′)→(t,x,y)

V ε(t′, x′, y′),

where (t′, x′, y′) ∈ ([0, T ] × Rn
+ × R

m
)
. By definition, V ε∗ (t, x, y) ≤ V ε(t, x, y) ≤ (V ε)∗(t, x, y)

and, moreover, both V ε∗ and (V ε)∗ satisfy the growth condition (19). A standard argument in
viscosity solution theory, based on the dynamic programming principle (see, e.g., [20, Chap. V,
sect. 2]), gives that V ε∗ and (V ε)∗ are, respectively, a viscosity supersolution and a viscosity
subsolution to (17) at every point (t, x, y) ∈ (0, T ) × R

n
+ × R

m.

Step 3 (behavior of V ε∗ and (V ε)∗ at time T ). We show that the value function Vε attains
continuously the final data (locally uniformly with respect to (x, y)). This means that
limt→T V

ε(t, x, y) = g(x, y) locally uniformly in (x, y) ∈ R
n
+ × R

m. This result is well known
and follows from (10), (19), and the continuity in the mean square of Xt, Yt. Indeed for every
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K > 0 and δ > 0 there exists a constant C(K, δ) depending also on the Lipschitz constants of
the coefficients of the equation (see [27, Thms. 1 and 4, Chap. 2] or [20, App. D]), such that

P (|XT − x| ≥ δ | Xt = x, Yt = y) , P (|YT − y| ≥ δ | Xt = x, Yt = y) ≤ C(K, δ)(T − t)

for all x ∈ R
n
+, y ∈ R

m such that |x|, |y| ≤ K. Define A := {|XT − x| ≥ δ} ∪ {|YT − y| ≥ δ}
so that

P(A | Xt = x, Yt = y) ≤ 2C(K, δ)(T − t).
Then for every η > 0 there exists an admissible control u such that

|V ε(t, x, y)− V ε(T, x, y)| ≤ E (|g(Xu
T , YT )− g(x, y)| | Xt = x, Yt = y) + η

≤ E
(
χΩ\A |g(Xu

T , YT )− g(x, y)| | Xt = x, Yt = y
)
+ η(20)

+ 21/2C(K, δ)1/2(T − t)1/2 (E (|g(Xu
T , YT )− g(x, y)|2 | Xt = x, Yt = y

))1/2
.(21)

Term (21) can be computed using (10) and the estimates on the mean square of XT and YT
in terms of the initial data:

(21) ≤ [2C(K, δ)(T − t)(2Kg)]
1/2
[
(1 + |x|2) + (E (1 + |XT |2 | Xt = x, Yt = y

))1/2]
≤ 2C(K, δ)1/2(T − t)1/2K1/2

g C(1 + |x|2) ≤ H(K, δ, g)(T − t)1/2 → 0

uniformly as T → t. Term (20) can be estimated as follows:

(20) ≤ E (ωg,K(|Xu
T − x|, |YT − y|) | Xt = x, Yt = y) + η → η

uniformly as T → t, where δ < K and ωg,K is the continuity modulus of g restricted to
{(x, y) | |x| ≤ 2K, |y| ≤ 2K}. We conclude by the arbitrariness of η.

Finally, using the definitions, it is easy to show that V ε∗ (T, x, y) = (V ε)∗(T, x, y) = g(x, y)
for every (x, y) ∈ R

n
+ × R

m.

Step 4 (behavior of V ε∗ and (V ε)∗ at the boundary of Rn
+). We check that all the points of

the boundary of Rn
+ are irrelevant, according to Fichera-type classification of boundary points

for elliptic problems. This means the following. Suppose that φ is smooth and (V ε)∗ − φ has
a local maximum (resp., V ε∗ −φ has a local minimum) relative to (0, T )×Rn

+×R
m at (t, x, y)

with the ith coordinate xi = 0 for some i ∈ {1, . . . , n} and 0 < t < T . Then

(22) −φt + F

(
x, y, V,Dxφ,

Dyφ

ε
,D2

xxφ,
D2

yyφ

ε
,
D2

xyφ√
ε

)
≤ 0 (resp., ≥ 0) at (t, x, y).

We give the proof of this claim only for the subsolution inequality and for the case that
only two components, say x1 and x2, are null. All the other cases can be proved in the same
way with obvious changes.

Therefore we fix (t, x, y) with 0 < t < T , x ∈ R
n with x1 = x2 = 0 and xi > 0,

for i = 1, 2, y ∈ R
m, and a smooth function ψ such that the maximum of (V ε)∗ − ψ in

B = B((t, x, y), r) ∩ ([0, T ] × Rn
+ × R

m) is attained at (t, x, y). Without loss of generality we
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can assume that the maximum is strict, xi > r for every i = 3, . . . , n, and 0 < t−r < t+r < T .
For δ > 0 we define

ψδ(t, x, y) := ψ(t, x, y) +
δ

x1
+

δ

x2

and (tδ, xδ, yδ) a maximum point of (V ε)∗ − ψδ in B. Note that xδ ∈ R
n
+ and 0 < tδ < T . By

taking a subsequence we can assume that

(tδ, xδ, yδ)→ (t̃, x̃, ỹ) ∈ B and ((V ε)∗ − ψδ)(tδ, xδ, yδ)→ s as δ → 0.

Observe that, since (V ε)∗ − ψδ ≤ (V ε)∗ − ψ by definition, we get

s ≤ ((V ε)∗ − ψ)(t̃, x̃, ỹ) ≤ ((V ε)∗ − ψ)(t, x, y).
Moreover, for δ < r2, we get

((V ε)∗ − ψδ)(tδ, xδ, yδ) ≥ ((V ε)∗ − ψδ)(t,
√
δ,
√
δ, x3, . . . , xn, y).

By letting δ → 0 we obtain s ≥ ((V ε)∗ − ψ)(t, x, y). Therefore,

(t̃, x̃, ỹ) = (t, x, y), s = ((V ε)∗ − ψ)(t, x, y) and
δ

x1δ
,
δ

x2δ
→ 0 as δ → 0.

Now we use the fact that (V ε)∗ is a subsolution to (17), that (V ε)∗ − ψδ has a maximum at
(tδ, xδ, yδ), and that xδ ∈ R

n
+ and 0 < tδ < T , so the PDE holds at such a point. We get

(23) −ψt+H

(
xδ, yδ,Dxψ− δpδ ,D2

xxψ+2δXδ ,
D2

xyψ√
ε

)
− 1

ε
L(yδ,Dyψ,D

2
yyψ) +λ(V ε)∗ ≤ 0,

where all the derivatives of ψ and (V ε)∗ are computed at (tδ, xδ, yδ),

pδ :=

(
1

(x1δ)
2
,

1

(x2δ)
2
, 0, . . . , 0

)
,

and Xδ is the diagonal matrix with

(Xδ)ii =
1

(xiδ)
3

for i = 1, 2; (Xδ)ii = 0 for i = 3, . . . , n.

By the definition of H, φ̃, and σ̃, the second term on the left-hand side of (23) is

min
u∈U

{
−φ̃Dxψ +

δ

x1δ
φ1 +

δ

x2δ
φ2 − trace

(
σ̃σ̃TD2

xxψ
)

(24)

− 2δ

x1δ
|σ1|2 − 2δ

x2δ
|σ2|2 − 2√

ε
trace

(
τ σ̃TD2

x,yψ
)}

,

where φ̃, φi, σ̃, σi are computed at (xδ , yδ, u), the derivatives of ψ at (tδ, xδ, yδ), and τ at yδ.
Since δ/xiδ → 0 as δ → 0 for i = 1, 2, the quantity in (24) tends to

H

(
x, y,Dxψ,D

2
xxψ,

D2
xyψ√
ε

)
,
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where all the derivatives are computed at (t, x, y). Therefore the limit of (23) as δ → 0 gives
(22) at (t, x, y), as desired.

Step 5 (comparison principle and conclusion). We now use a recent comparison result be-
tween sub- and supersolutions to parabolic problems satisfying the quadratic growth condition

|V (t, x, y)| ≤ C(1 + |x|2 + |y|2)

proved in [15, Thm. 2.1]. We already observed that the estimate (19) holds also for V ε∗ and
(V ε)∗, so they both satisfy the appropriate growth condition. Moreover we proved in Step 3
that (V ε)∗(T, x, y) = V ε∗ (T, x, y) = g(x, y). The comparison result is stated in [15] for para-
bolic problems in the whole spaces [0, T ]×R

k. Nevertheless, because of the fact that our sub-
and supersolutions (V ε)∗ and V ε∗ satisfy the equation also on the boundary of Rn

+ as proved in
Step 4, their argument applies without relevant changes to our case. Therefore (V ε)∗(t, x, y) ≤
V ε∗ (t, x, y) for every (t, x, y) ∈ ([0, T ] × Rn

+ × R
m). Using the definition of upper and lower

envelopes and the comparison result in Step 5, we get (V ε)∗(t, x, y) = V ε∗ (t, x, y) = V ε(t, x, y)
for every (t, x, y) ∈ ([0, T ] × Rn

+ × R
m). Then V ε is the unique continuous viscosity solution

to (17) satisfying a quadratic growth condition.

4. Ergodicity of the fast variables and the effective Hamiltonian and initial data. In
this section we consider an ergodic problem in R

m whose solution will be useful for defining the
limit problem as ε→ 0 of the singularly perturbed HJB equation with terminal condition (17).
We consider the diffusion process in R

m

(25) dYt = b(Yt)dt+
√
2τ(Yt)dWt

and the infinitesimal generator L of the process Yt. Our standing assumptions are those of
section 2. It is well known that such conditions imply the existence of a unique global solution
for (25) (see [27, Chap. 2, sect. 6, Thms. 3 and 4]).

The first result of this section is a Liouville property that replaces the standard strong
maximum principle of the periodic case and is the key ingredient for extending some results
of [3] to the nonperiodic setting.

Lemma 4.1. Consider the problem

(26) −L(y,DV (y),D2V (y)) = 0, y ∈ R
m,

under the assumption (16). Then the following hold:
(i) every bounded viscosity subsolution to (26) is constant;
(ii) every bounded viscosity supersolution to (26) is constant.
Remark 4.1. This result holds also under a weaker condition than (16), namely,

∃w ∈ C(Rm) and R0 > 0

such that −Lw ≥ 0 for |y| > R0 and |w(y)| → +∞ as |y| → +∞.(27)

Proof. This proof uses an argument borrowed from [34]. We start by proving (i). Let V
be a bounded subsolution to (26). We can assume, without loss of generality, that V ≥ 0.
Define, for every η > 0, Vη(y) = V (y)− ηw(y), where w is as in (16).
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We fix R > R0, and we claim that Vη is a viscosity subsolution to (26) in |y| > R for every
η > 0. Indeed consider y ∈ R

m, |y| > R, and a smooth function ψ such that Vη(y) = ψ(y)
and Vη − ψ has a strict maximum at y.

Assume by contradiction that −L(y,Dψ(y),D2ψ(y)) > 0. By the regularity of ψ and of L,
there exists 0 < k < R−R0 such that −L(y,Dψ(y),D2ψ(y) > 0 for every y with |y − y| ≤ k.
Now we prove that ηw+ψ is a supersolution to (26) in B(y, k). Take ỹ ∈ B(y, k) and ξ smooth
such that ηw+ψ− ξ has a minimum at ỹ. Using the fact that w is a supersolution to (26) in
|y| > R0 and the linearity of the differential operator L, we obtain

0 ≤ −L
(
ỹ,

1

η
D(ξ − ψ)(ỹ), 1

η
D2(ξ − ψ)(ỹ)

)
= −1

η
L (ỹ,Dξ(ỹ),D2ξ(ỹ)

)
+

1

η
L (ỹ,Dψ(ỹ),D2ψ(ỹ)

)
< −L (ỹ,Dξ(ỹ),D2ξ(ỹ)

)
,

where in the last inequality we used that ψ is a supersolution in B(y, k). Recall that by our
assumption V − (ηw + ψ) has a strict maximum at y and V (y) = (ηw + ψ)(y). Then there
exists α > 0 such that V (y)−(ηw+ψ)(y) < −α on ∂B(y, k). A standard comparison principle
gives that V (y) ≤ ηw(y) + ψ(y) − α on B(y, k), a contradiction with our assumptions. This
proves the claim: Vη is a viscosity subsolution to (26) in |y| > R for every η > 0.

Now, observing that Vη(y) → −∞ as |y| → +∞, for every η we fix Mη > R such that
Vη(y) ≤ sup|z|=R Vη(z) for every y such that |y| ≥Mη. By the maximum principle applied in
{y, R ≤ |y| ≤Mη},
(28) Vη(y) ≤ sup

|z|=R
Vη(z) ∀ |y| ≥ R, ∀ η > 0.

Next we let η → 0 in (28) and obtain V (y) ≤ sup|z|=R V (z) for every y such that |y| > R.
Therefore V attains its global maximum at some interior point, so it is a constant by the
strong maximum principle (see [7] for its extension to viscosity subsolutions).

The proof of (ii) for bounded supersolutions U is analogous, with minor changes. It is
sufficient to define Uη(y) as U(y)+ ηw(y) and to prove that Uη → +∞ as |y| → +∞ and that
it is a viscosity supersolution to (26) in |y| > R. So, the same argument holds exchanging the
role of super- and subsolutions and using the strong minimum principle [7].

The second result is about the existence of an invariant measure.
Proposition 4.2. Under the standing assumptions, there exists a unique invariant probabil-

ity measure μ on R
m for the process Yt.

Proof. Hasminskii in [28, Chap. IV] proves that there exists an invariant probability mea-
sure for Yt (see Theorem IV.4.1 in [28]) if, besides the standing assumptions of section 2, the
following condition is satisfied: there exists a bounded set K with smooth boundary such that

(29) EτK(y) is locally bounded for y ∈ R
m \K,

where τK(y) is the first time at which the path of the process (25) issuing from y reaches the
set K. We claim that condition (16) implies (29), with K = B(0, R), with R > R0. We fix w
as in (16) and R > R0 such that w(y) ≥ 0 for |y| > R. A standard superoptimality principle
for viscosity supersolutions to equation −Lw ≥ k (see, e.g., [20, sect. V.2]) implies that

w(y) ≥ kEτK(y) +Ew(YτK (y)) ≥ kEτK(y) for every y ∈ R
m \K.
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This gives our claim immediately, because w is locally bounded.
The uniqueness of the invariant measure is a standard result under the current assump-

tions, because the diffusion is nondegenerate; see, e.g., [28, Cor. IV.5.2] or [16].
The previous two results—the Liouville property in Lemma 4.1 and the existence and

uniqueness of the invariant measure in Proposition 4.2—are the main tools used to define
the candidate limit Cauchy problem of the singularly perturbed problem (17) as ε → 0.
The underlying idea is that Proposition 4.2 provides the ergodicity of the process Yt. This
property allows us to construct the effective Hamiltonian and the effective terminal data. In
the following we will perform such constructions in Theorem 4.3 and Proposition 4.4 using
mainly PDE methods; nevertheless it must be noted that the same results could also be
obtained using direct probabilistic arguments (see Remark 4.2).

We start by showing the existence of an effective Hamiltonian giving the limit PDE. In
principle, for each (x, p,X) one expects the effective Hamiltonian H(x, p,X) to be the unique
constant c ∈ R such that the cell problem

(30) −L(y,Dχ,D2χ) +H(x, y, p,X, 0) = c in R
m

has a viscosity solution χ, called corrector (see [35, 18, 1]). Actually, for our approach, it is
sufficient to consider, as in [2], a δ-cell problem

(31) δwδ − L(y,Dwδ,D
2wδ) +H(x, y, p,X, 0) = 0 in R

m,

whose solution wδ is called approximate corrector. The next result states that δwδ converges
to −H and it is smooth.

Theorem 4.3. For any fixed (x, p,X) and δ > 0 there exists a solution wδ = wδ;x,p,X(y) in

C2(Rm) of (31) such that

(32) − lim
δ→0

δwδ = H(x, p,X) :=

∫
Rm

H(x, y, p,X, 0)dμ(y) locally uniformly in R
m,

where μ is the invariant probability measure on R
m for the process Yt.

Proof. We borrow some ideas from ergodic control theory in periodic environments; see [5].
The PDE (31) is linear with locally Lipschitz coefficients and forcing term

f(y) := H(x, y, p,X, 0)

bounded and Lipschitz by the assumptions of section 2. The existence and uniqueness of a
viscosity solution satisfying

(33) |wδ(y)| ≤ C(1 + |y|2)

for some C follow from the Perron–Ishii method and the comparison principle in [15] (here we
are using the growth assumption (7) on the coefficients). Moreover wδ ∈ C2(Rm) by standard
elliptic regularity theory.

By comparison with constant sub- and supersolutions we get the uniform bound

|δwδ(y)| ≤ sup |f | =: Cf .
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Then the functions vδ := δwδ are uniformly bounded and satisfy

|L(y,Dvδ,D2vδ)| ≤ 2δCf .

By the Krylov–Safonov estimates for elliptic equations, in any compact set the family
{vδ} with δ ≤ 1 is equi-Hölder continuous for some exponent and constants depending only
on Cf and the coefficients of L. Therefore by the Ascoli–Arzelà theorem there is a sequence
δn → 0 such that vδn → v locally uniformly and

L(y,Dv,D2v) = 0 in R
m

in the viscosity sense. By Lemma 4.1 v is constant.

To complete the proof we show that on any subsequence the limit of vδ := δwδ is the same
and it is given by the formula (32). We claim that

(34) wδ(y) = E

∫ +∞

0
f(Yt)e

−δt dt,

where Yt is the process defined by the fast subsystem (25) with initial condition Y0 = y.
In fact, the right-hand side is a viscosity solution of (31) by Itô’s rule and other standard
arguments [20]. Moreover it is bounded by Cf/δ, and so the growth assumption (33) is
satisfied. Therefore it is the viscosity solution of (31) by the comparison principle in [15],
which proves the claim. Next we recall that by definition of invariant measure

E

∫
Rm

f(Yt) dμ(y) =

∫
Rm

f(y) dμ(y) ∀ t > 0.

As a consequence, by integrating both sides of (34) with respect to μ and exchanging the
order of integration we get∫

Rm

wδ(y) dμ(y) =

∫ +∞

0

∫
Rm

f(y) dμ(y)e−δt dt =

∫
Rm f(y) dμ(y)

δ
.

Therefore the constant limit v of δwδ must be
∫
Rm f(y) dμ(y).

We end this section by defining the effective terminal value for the limit as ε → 0 of
the singular perturbation problem (17). We fix x and consider the following Cauchy initial
problem:

(35)

{
wt − L(y,Dw,D2w) = 0 in (0,+∞) × R

m,
w(0, y) = g(x, y),

where g satisfies assumption (10).
Proposition 4.4. Under our standing assumptions, for every x there exists a unique bounded

classical solution w(·, ·;x) to (35) and

(36) lim
t→+∞w(t, y;x) =

∫
Rm

g(x, y) dμ(y) =: g(x) locally uniformly in y.
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Proof. The PDE in (35) is parabolic with coefficients which are locally Lipschitz and grow
at most linearly, whereas the initial data are bounded and continuous, by the assumptions
of section 2. Classical results on these equations give the existence of a bounded classical
solution to the Cauchy problem (35) (see, e.g., Theorem 1.2.1 in [36] and the references
therein), whereas uniqueness among viscosity solutions is given by Theorem 2.1 in [15]. This
solution can be represented as w(t, y;x) = Eg(x, Yt), where Yt is the process starting at y
and satisfying (25). Moreover the function w(t, y;x) is uniformly continuous in every domain
[t0,+∞)×K, where K ⊆ R

m is a compact set; see [26, Thm. 3.5] or [28, Lem. 4.6.2].

To complete the proof it is enough to show that w(y) = lim sups→+∞w(s, y;x) and w(y) =
lim infs→+∞w(s, y;x) are constants, i.e., w(y) = w and w(y) = w for every y, and that they
both coincide with g(x), i.e., w = w = g(x).

The proof that w(y) and w(y) are constants is the same as in the periodic case, Theorem
4.2 in [3], once we replace the strong maximum (and minimum) principle with the Liouville
property, Lemma 4.1.

To conclude we show that w = g(x) = w. We detail the argument only for w, since it is
completely analogous for w. We fix a subsequence such that w = limn w(tn, 0;x) and define
wn(t, y) = w(t + tn, y;x). Since wn is equibounded and equicontinuous, by taking a subse-
quence we can assume that wn(t, y) → w̃(t, y) locally uniformly. Note that by construction
w̃(t, y) ≥ w for every (t, y) and w̃(0, 0) = w. By stability results of viscosity solutions, w̃ is a
viscosity solution to wt −L(y,Dw,D2w) = 0 in (−∞,+∞)×R

m. Then, by the strong mini-
mum principle, we get that w̃(0, y) = w for every y. This means that w(tn, y;x) converges to w
locally uniformly in y, in particular w(tn, y;x)→ w μ-almost surely, where μ is the invariant
probability measure for Yt (see Proposition 4.2). Moreover |w(tn, y)| ≤ ‖w‖∞ ∈ L1(Rm, μ)
and then, by the Lebesgue theorem and the definition of invariant measure,

w =

∫
Rm

w dμ(y) = lim
n

∫
Rm

Eg(x, Ytn) dμ(y) =

∫
Rm

g(x, y) dμ(y).

Remark 4.2. The results in Theorem 4.3 and Proposition 4.4 could also be proved using
direct probabilistic methods and semigroup theory.

We consider the infinitesimal generator L of the Markov semigroup in Cb(Rm) associated
with the diffusion process Yt. In this abstract setting, the cell problem (30) can be seen as the
Poisson equation Lχ = c−c(y), where c(y) := H(x, y, p,X), and the δ-cell problem (31) is the
resolvent equation (δ − L)wδ = −c(y). Finally the initial layer problem (35) is the abstract
Cauchy problem wt −Lw = 0, w(0, y) = g(x, y) (for more details see the monograph [36]). In
particular, thanks to the existence of a unique invariant probability measure μ (see Proposition
4.2), the solution of the Poisson equation Lχ = c− c(y) is given by the representation formula

w(y) =

∫ ∞

0

∫
Rn

f(z) (P (t, y, dz) − μ(dz)) dt,

where P (t, y, ·) are the transition probabilities associated with Yt, provided the convergence
of P (t, y, ·) to μ is fast enough. Using the same approach and appropriate representation for-
mulas, the convergence results (32) and (36) can be obtained as consequences of a sufficiently
strong convergence result of the transition probabilities to the invariant measure.
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Related results on the (exponential) convergence of the transition probabilities to the
unique invariant measure were obtained in [17, Thm. 5.2] under a stronger condition than
(16), namely, the existence of a positive function w and positive constants b, c such that
lim|y|→+∞w(y) = +∞ and −Lw ≥ cw − b in R

m.

5. The convergence theorem. We state now the main result of the paper, namely, the
convergence theorem for the singular perturbation problem. We will prove that the value
function V ε(t, x, y), solution to (17), converges locally uniformly, as ε → 0, to a function
V (t, x) which can be characterized as the unique solution of the limit problem

(37)

{
−Vt +H

(
x,DxV,D

2
xxV
)
+ λV (x) = 0 in (0, T ) × R

n
+,

V (T, x) = g(x) in Rn
+.

The Hamiltonian H and the terminal data g have been defined, respectively, in (32) and
in (36) as the averages of H (see (13)) and g with respect to the unique invariant measure μ
for the process Yt, defined in (15).

Theorem 5.1. The solution V ε to (17) converges uniformly on compact subsets of [0, T )×
Rn
+ × R

m to the unique continuous viscosity solution to the limit problem (37) satisfying a
quadratic growth condition in x, i.e.,

(38) ∃K > 0 s.t. ∀ (t, x) ∈ [0, T ]× Rn
+ |V (t, x)| ≤ K(1 + |x|2).

Moreover, if g is independent of y, then the convergence is uniform on compact subsets of
[0, T ]× Rn

+ × R
m and g = g.

Proof. The proof is divided into several steps.
Step 1 (relaxed semilimits). Recall that by (19) the functions V ε are locally equibounded

in [0, T ]×Rn
+×R

m, uniformly in ε. We define the half-relaxed semilimits in [0, T ]×Rn
+×R

m

(see [6, Chap. V]):

V (t, x, y) = lim inf
ε→0

t′→t, x′→x, y′→y

V ε(t′, x′, y′), V (t, x, y) = lim sup
ε→0

t′→t, x′→x, y′→y

V ε(t′, x′, y′)

for t < T , x ∈ Rn
+ and y ∈ R

d, and

V (T, x, y) = lim inf
t′→T−, x′→x, y′→y

V (t′, x′, y′), V (T, x, y) = lim sup
t′→T−, x′→x, y′→y

V (t′, x′, y′).

It is immediate to get by definitions that the estimates (19) hold also for V and V . This
means that

(39) |V (t, x, y)|, |V (t, x, y)| ≤ KV (1 + |x|2) ∀ t ∈ [0, T ], x ∈ Rn
+, y ∈ R

m.

Step 2 (V , V do not depend on y). We check that V (t, x, y), V (t, x, y) do not depend on y
for every t ∈ [0, T ) and x ∈ Rn

+. We claim that V (t, x, y) (resp., V (t, x, y)) is, for every
t ∈ (0, T ) and x ∈ R

n
+, a viscosity subsolution (resp., supersolution) to

(40) −L(y,DyV,D
2
yyV ) = 0 in R

d,
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where L is the differential operator defined in (14). If the claim is true, we can use Lemma
4.1, since V , V are bounded in y according to estimates (39), to conclude that the functions
y → V (t, x, y), y → V (t, x, y) are constants for every (t, x) ∈ (0, T ) × R

n
+. Finally, using the

definition it is immediate to see that this implies that also V (T, x, y) and V (T, x, y) do not
depend on y. We prove the claim only for V , since the other case is completely analogous.

First of all we show that the function V (t, x, y) is a viscosity subsolution to (40). To
do this, we fix a point (t, x, y) and a smooth function ψ such that V − ψ has a maximum
at (t, x, y). Using the definition of weak relaxed semilimits it is possible to prove (see [6,
Lem. V.1.6]) that there exist εn → 0 and B � (tn, xn, yn)→ (t, x, y) maxima for V εn −ψ in B
such that V εn(tn, xn, yn) → V (t, x, y). Therefore, recalling that V ε is a subsolution to (17),
we get

−ψt +H

(
xn, yn,Dxψ,D

2
xxψ,

1√
εn
D2

xyψ

)
− 1

εn
L(yn,Dyψ,D

2
yyψ) + λV εn ≤ 0,

where V εn and all the derivatives of ψ are computed in (tn, xn, yn). This implies

(41) −L(yn,Dyψ,D
2
yyψ) ≤ εn

[
ψt −H

(
xn, yn,Dxψ,D

2
xxψ,

1√
εn
D2

xyψ

)
− λV εn

]
.

We observe that the term in square brackets is uniformly bounded with respect to n in B, and
using the regularity properties of ψ and of the coefficients in the equation we get the desired
conclusion as εn → 0.

We show now that if V (t, x, y) is a subsolution to (40), then for every fixed (t, x) the
function y �→ V (t, x, y) is a subsolution to (40), which was our claim. To do this, we fix y and
a smooth function φ such that V (t, x, ·)−φ has a strict local maximum at y in B(y, δ) and such

that φ(y) ≥ 1 for all y ∈ B(y, δ). We define, for η > 0, φη(t, x, y) = φ(y)
(
1 + |x−x|2+|t−t|2

η

)
,

and we consider (tη, xη , yη) a maximum point of V −φη in B((t, x, y), δ). Repeating the same
argument as in [6, Lem. II.5.17], it is possible to prove, eventually passing to subsequences,

that, as η → 0, (tη, xη, yη) → (t, x, y) and Kη :=
(
1 +

|xη−x|2+|tη−t|2
η

) → K > 0. Moreover,

using the fact that V is a subsolution to (40), we get −L(yη,KηDφ(yη),KηD
2φ(yη) ≥ 0, which

gives, using the linearity of L and passing to the limit as η → 0, −L(y,Dφ(y),D2φ(y)) ≥ 0.
Step 3 (V and V are sub- and supersolutions of the limit PDE). First we claim that V and

V are sub- and supersolutions to the PDE in (37) in (0, T ) × R
n
+. We prove the claim only

for V since the other case is completely analogous. The proof adapts the perturbed test
function method introduced in [18] for the periodic setting. We fix (t, x) ∈ ((0, T )×R

n
+), and

we show that V is a viscosity subsolution at (t, x) of the limit problem. This means that if
ψ is a smooth function such that ψ(t, x) = V (t, x) and V − ψ has a maximum at (t, x), then

(42) −ψt(t, x) +H(x,Dxψ(t, x),D
2
xxψ(t, x)) + λV (t, x) ≤ 0.

Without loss of generality we assume that the maximum is strict in B((t, x), r)∩ ([0, T ]×Rn
+)

and that xi > r for every i and 0 < t− r < t+ r < T . We fix y ∈ R
m, η > 0 and consider a

solution χ = wδ ∈ C2 of the δ-cell problem (31) at (x,Dxψ(t, x),D
2
xxψ(t, x)) (see Theorem 4.3)

such that

(43) |δχ(y) +H(x,Dxψ(t, x),D
2
xxψ(t, x))| ≤ η ∀ y ∈ B(y, r).
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We define the perturbed test function as

ψε(t, x, y) := ψ(t, x) + εχ(y).

Observe that

lim sup
ε→0, t′→t, x′→x, y′→y

V ε(t′, x′, y′)− ψε(t′, x′, y′) = V (t, x)− ψ(t, x).

By a standard argument in viscosity solution theory (see [6, Lem. V.1.6]) we get that there
exist sequences εn → 0 and (tn, xn, yn) ∈ B := B((t, x, y), r) ∩ ([0, T ] × R

n
+ × R

m) such that
the following hold:
(tn, xn, yn)→ (t, x, y) for some y ∈ B(y, r);
V εn(tn, xn, yn)− ψεn(tn, xn, yn)→ V (t, x)− ψ(t, x);
(tn, xn, yn) is a strict maximum of V εn − ψεn in B.
Then, using the fact that V ε is a subsolution to (17), we get

(44) −ψt +H
(
xn, yn,Dxψ,D

2
xxψ, 0

)
+ λV εn(tn, xn, yn)− L(yn,Dyχ,D

2
yyχ) ≤ 0,

where the derivatives of ψ and χ are computed, respectively, in (tn, xn) and in yn. Using the
fact that χ solves the δ-cell problem (31), we obtain

−ψt(tn, xn) +H(xn, yn,Dxψ(tn, xn),D
2
xxψ(tn, xn), 0) − δχ(yn)

−H(x, yn,Dxψ(t, x),D
2
xxψ(t, x), 0) + λV εn(tn, xn, yn) ≤ 0.

By taking the limit as n → +∞ the second and third terms of the left-hand side of this
inequality cancel out. Next we use (43) to replace −δχ with H − η and get that the left-hand
side of (42) is ≤ η. Finally, by letting η → 0 we obtain (42).

Now we claim that V and V are, respectively, a super- and a subsolution to (37) also
at the boundary of Rn

+. In this case it is sufficient to repeat exactly the same argument of
Step 4 in the proof of Proposition 3.1 to get the conclusion, recalling that the Hamiltonian H
is defined as

H(x, p,X) =

∫
Rm

min
u∈U

{
− trace

(
σ̃σ̃T (x, y, u)X

) − φ̃(x, y, u) · p} dμ(y).
Step 4 (behavior of V and V at time T ). The arguments in this step are based on analo-

gous results given in [2, Thm. 3] in the periodic setting, with minor corrections due to the
unboundedness of our domain. We repeat briefly the proof for the convenience of the reader.
We prove only the statement for subsolution, since the proof for the supersolution is completely
analogous.

We fix x ∈ Rn
+ and consider the unique bounded solution wr to the Cauchy problem

(45)

{
wt − L(y,Dw,D2w) = 0 in (0,+∞)× R

m,
w(0, y) = sup{|x−x|≤r, x≥0} g(x, y).

Using stability properties of viscosity solutions it is not hard to see that wr converges, as
r→ 0, to wx, solution to (35), uniformly on compact sets.
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We fix k > 0. Using the definition of g given in (36) and the uniform convergence
of wr to wx, it is easy to see that for every η > 0 there exist t0 > 0 and r0 such that
|wr(t0, y) − g(x)| ≤ η for every r < r0 and |y| ≤ k. Moreover, since L(y, 0, 0) = 0, using a
comparison principle, we get that

(46) |wr(t, y)− g(x)| ≤ η for every r < r0, t ≥ t0, |y| ≤ k.

We now fix r < r0 and a constant M such that V ε(t, x, y) ≤ M for every ε > 0 and x ∈
B := B(x, r)∩Rn

+. Observe that this is possible by estimates (19). Moreover we fix a smooth
nonnegative function ψ such that ψ(x) = 0 and ψ(x) + infy g(x, y) ≥ M for every x ∈ ∂B
(using condition (10)). Let C be a positive constant such that

|H(y, x,Dψ(x),D2ψ(x))| ≤ C for x ∈ B and y ∈ R
m,

where H is defined in (13). We define the function

ψε(t, x, y) = wr

(
T − t
ε

, y

)
+ ψ(x) + C(T − t),

and we claim that it is a supersolution to the parabolic problem

(47)

⎧⎪⎪⎨⎪⎪⎩
−Vt + F

(
x, y, V,DxV,

DyV
ε ,D2

xxV,
D2

yyV

ε ,
D2

xyV√
ε

)
= 0 in (T − r, T )×B × R

m,

V (t, x, y) =M in (T − r, T )× ∂B × R
m,

V (T, x, y) = g(x, y) in B × R
m,

where F is defined in (18). Indeed if wr is smooth,

−ψε
t + F

(
x, y,Dxψ

ε,
Dyψ

ε

ε
,D2

xxψ
ε,
D2

yyV ψ
ε

ε
,
D2

xyψ
ε

√
ε

)

=
1

ε
(wr)t + C +H(y, x,Dψ(x),D2ψ(x))− 1

ε
L(y,Dwr,D

2wr)

≥ 1

ε

(
(wr)t − L(y,Dwr,D

2wr)
) ≥ 0.

This computation is made in the case where wr is smooth but can be easily generalized to
wr continuous using test functions (see [2, Thm. 3]). Moreover

ψε(T, x, y) = sup
|x−x|≤r

g(x, y) + ψ(x) ≥ g(x, y).

Finally, recalling that by the comparison principle, wr(t, y) ≥ infy sup|x−x|≤r g(x, y), we get

ψε(t, x, y) ≥ inf
y

sup
|x−x|≤r

g(x, y) +M − inf
y
g(x, y) + C(T − t) ≥M

for every x ∈ B. For our choice of M , we get that V ε is a subsolution to (47). Moreover
note that both V ε and ψε are bounded in [0, T ]× B × R

m, because of the estimate (19), the
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boundedness of wr, and the regularity of ψ. So, a standard comparison principle for viscosity
solutions gives

(48) V ε(t, x, y) ≤ ψε(t, x, y) = wr

(
T − t
ε

, y

)
+ ψ(x) + C(T − t)

for every ε > 0, (t, x, y) ∈ ([0, T ]×B×R
m). We compute the upper limit of both sides of (48)

as (ε, t′, x′, y′)→ (0, t, x, y) for t ∈ (t0, T ), x ∈ B, |y| < k and get, recalling (46),

V (t, x) ≤ g(x) + η + ψ0(x) + C(T − t).
This permits us to conclude, taking the upper limit for (t, x)→ (T, x) and recalling that η is
arbitrary.

Step 5 (uniform convergence). Observe that by definition V ≤ V and that both V and V
satisfy the same quadratic growth condition (39). Moreover the Hamiltonian H defined in (32)
and the terminal data g in (36) inherit all the regularity properties of H in (13), and g in (10),
as is easily seen by their definitions. Therefore we can again use the comparison result between
sub- and supersolutions to parabolic problems satisfying a quadratic growth condition, given
in [15, Thm. 2.1], to deduce V ≥ V . Therefore V = V =: V . In particular V is continuous, and
by the definition of half-relaxed semilimits, this implies that V ε converges locally uniformly
to V (see [6, Lem. V.1.9]).

Remark 5.1. The result in Theorem 5.1 still holds if the fast variables Yt have an extra
term such as Λ(y)/

√
ε in the drift, with Λ : Rm → R

m bounded and Lipschitz continuous.
This means that fast variables in the singularly perturbed system (6) satisfy

dY k
t =

1

ε
bk(Yt)dt+

1√
ε
Λk(Yt)dt+

√
2

ε
τk(Yt) · dWt, Y k

to = yk, k = 1, . . . ,m,

and the singularly perturbed HJB equation is

−V ε
t +H

(
x, y,DxV

ε,D2
xxV

ε,
D2

xyV
ε

√
ε

)
− 1

ε
L(y,DyV

ε,D2
yyV

ε)− Λ ·DyV
ε

√
ε

+ λV ε = 0.

The new term 1√
ε
Λ(y) · DyV

ε appearing in the equation is a lower order term with respect

to 1
εL(y,DyV

ε,D2
yyV

ε) and does not affect the convergence argument. In particular it is
sufficient to check the validity of Steps 2, 3, and 4 in the proof of Theorem 5.1.

In Step 2, we substitute formula (41) with

−L(yn,Dyψ,D
2
yyψ)

≤ εn
[
ψt −H

(
xn, yn,Dxψ,D

2
xxψ,

1√
εn
D2

xyψ

)
− λV εn

]
+
√
εnΛ(yn) ·Dyψ

and observe that the right-hand side is vanishing as εn → 0 since Dyψ is locally bounded and
Λ is bounded.

In Step 3, we replace formula (44) with

−ψt +H
(
xn, yn,Dxψ,D

2
xxψ, 0

)
+ λV εn − L(yn,Dyχ,D

2
yyχ) ≤

√
εnΛ(yn) ·Dyχ
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and repeat the same argument since the right-hand side is vanishing as εn → 0, due again to
the boundedness of Λ and the smoothness of the approximate corrector χ.

Finally in Step 4, we substitute the Cauchy problem (45) with{
wt − L(y,Dw,D2w)−√εΛ(y) ·Dw = 0 in (0,+∞) ×R

m,
w(0, y) = sup{|x−x|≤r, x≥0} g(x, y)

and denote with wr,ε its unique bounded solution. Stability properties of viscosity solutions
imply that wr,ε converges, as r → 0, ε → 0, to wx, solution to (35), uniformly on compact
sets.

6. Examples and extensions.

6.1. The model problem: Risky assets with stochastic volatility. We consider N under-
lying risky assets with price Xi evolving according to the standard lognormal model:

(49)

⎧⎨⎩ dXi
t = αiXi

tdt+
√
2Xi

tfi(Yt) · dW t, Xi
to = xi ≥ 0, i = 1, . . . , n,

dY j
t = 1

εb
j(Yt)dt+

√
2
ενj(Yt)dZ

j
t , Y j

to = yj ∈ R, j = 1, . . . ,m, ε > 0,

where fi : R
m → R

k is a bounded Lipschitz continuous function, with each component
bounded away from 0, and bi : Rm → R and νj : Rm → R are locally Lipschitz continu-
ous functions with linear growth (see (7)). We assume that

(50) ν2j (y) > 0 ∀ y ∈ R
m, j = 1, . . . ,m.

The processes W t and Zt are, respectively, standard k- and m-dimensional Brownian
motions, and they are correlated. In particular we assume that there exists an m-dimensional
standard Brownian motion Zt such that Wt = (W t, Zt) is a (k + m)-dimensional standard
Brownian motion and

(51) Z
j
t =

k∑
i=1

ρijW
i
t +

(
1−

k∑
i=1

ρ2ij

) 1
2

Zj
t ∀ j = 1, . . . ,m, ∀ t ≥ 0.

This model problem is essentially the one described in [23, sect. 10.6], where k = n = m.

We denote with ρ the correlation (k ×m)-matrix (ρij) and with cj the quantity

(52) cj :=

(
1−

k∑
i=1

ρ2ij

) 1
2

.

In the following proposition we describe the main properties of ρ.

Proposition 6.1.
(i) −1 ≤ ρij ≤ 1 for every i ∈ {1, . . . , k} and j ∈ {1, . . . ,m};
(ii)

∑k
i=1 ρ

2
ij ≤ 1 for every j ∈ {1, . . . ,m};

(iii)
∑k

i=1 ρijρil = 0 for every l = j ∈ {1, . . . ,m}.
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Proof. Items (i) and (ii) can be easily proved by exploiting the definition of ρij . To

show (iii), we multiply
∑k

i=1 ρijρil by t, for fixed l = j ∈ {1, . . . ,m}, and use the properties
of W · to get

(53) t
k∑

i=1

ρijρil = E
k∑

i=1

ρijW
i
tρilW

i
t = E

(
k∑

i=1

ρijW
i
t

k∑
i=1

ρilW
i
t

)

since the components of W t are independent. Substituting (51) in (53) we get

t

k∑
i=1

ρijρil = E
[(
Z

j
t − cjZj

t

)(
Z

l
t − clZ l

t

)]
= E(Z

j
tZ

l
t)− cjE(Zj

tZ
l
t)− clE(Z

j
tZ

l
t) + cjclE(Zj

tZ
l
t) = 0

for j = l, since the components of the Brownian motions Zt and Zt are independent and,
moreover,

E(Zj
tZ

l
t) = 0,

as can be easily obtained using (51) and the fact that Zt and W t are independent Brownian
motions.

Substituting (51) in (49) we get

(54)

⎧⎨⎩ dXt = φ̃(Xt)dt+
√
2σ̃(Xt, Yt)dWt,

dYt =
1
εb(Yt)dt+

√
2
ετ(Yt)dWt,

where φ̃ : Rn → R
n and σ̃ : Rn × R

m → M
n,k+m are defined as φ̃i(x) = αixi and σ̃ij(x, y) =

xif ji (y) for j = 1, . . . , k and σ̃ij(x, y) = 0 for j = k + 1, . . . , k +m, while τ : Rm → R
m×(k+m)

is the (m× (k +m))-matrix

(55) τ(y) =

⎛⎜⎜⎜⎝
ρ11ν1(y) · · · ρk1ν1(y) c1ν1(y) 0 · · · 0
ρ12ν2(y) · · · ρk2ν2(y) 0 c2ν2(y) · · · 0

...
. . .

...
...

...
. . .

...
ρ1mνm(y) · · · ρkmνm(y) 0 0 0 cmνm(y)

⎞⎟⎟⎟⎠ .

We consider now the matrix τ(y)τT (y). An easy computation shows that the diagonal terms
of this matrix are

(τ(y)τT (y))jj = ν2j (y)

(
k∑

i=1

ρ2ij + (cj)2

)
= ν2j (y)

by the definition of cj in (52). The extra diagonal terms are given by

(τ(y)τT (y))jl = νj(y)νl(y)

(
k∑

i=1

ρijρil

)
= 0
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by item (iii) in Proposition 6.1. Then the matrix ττT is the diagonal matrix

τ(y)τT (y) =

⎛⎜⎝ν
2
1(y) · · · 0
...

. . .
...

0 · · · ν2m(y)

⎞⎟⎠
and in particular satisfies (9) by (50).

Observe that the system (54) fits in our basic assumptions of section 2. It includes as a
special case the multidimensional option pricing model of [23, sect. 10.6], where each Y i

t is a
standard one-dimensional Ornstein–Uhlenbeck processes. Here we are only assuming, besides
standard regularity conditions on b and τ and nondegeneracy (50), that the infinitesimal
generator of the process satisfies the Lyapunov-like condition (16).

The problem we consider here is the pricing of a European option given by a nonnegative
payoff function g depending on the underlying Xi and by a maturity time T . According
to risk-neutral theory, to define a no-arbitrage derivative price we have to use an equivalent
martingale measure P∗ under which the discounted stock prices e−rtXi

t are martingales, where
r is the instantaneous interest rate for lending or borrowing money. For a brief review of no-
arbitrage price theory in the context of stochastic volatility we refer the reader to [23, sect. 2.5].
The system (54) can be written, under a risk-neutral probability P∗, as

(56)

⎧⎨⎩ dXt = rXtdt+
√
2σ̃(Xt, Yt)dW

∗
t ,

dYt =
1
ε

[
b(Yt)−

√
εΛ(Yt)

]
dt+

√
2
ετ(Yt)dW

∗
t

for some volatility risk premium Λ(Y ) chosen by the market and describing the relationship
between the physical measure P under which the stock prices are observed and the risk-
neutral measure P∗ (see [23, sect. 10.6] and [24]). In (56) W ∗ is a (k + m)-dimensional
standard Brownian motion obtained by an appropriate shift of W , and Λ can be assumed
bounded and smooth. In this setting, an European contract has no-arbitrage price given by
the formula

(57) V ε(t, x, y) := E∗[eλ(t−T )g(XT ) | Xt = x, Yt = y], 0 ≤ t ≤ T,
where λ > 0 and the payoff function g satisfies (10). When there is only one asset Xt (say
n = 1 in the system (56)), typically the payoff function g is defined as g(x) = max{(x−K), 0}
for call options and g(x) = max{(K − x), 0} for put options, where K is the contracted strike
price.

The (linear) HJB equation associated with the price function is

−V ε
t +HP

(
x, y,DxV

ε,D2
xxV

ε,
D2

xyV
ε

√
ε

)
+ λV ε

=
1

ε

[L(y,DyV
ε,D2

yyV
ε)−√εΛ(y) ·DyV

ε
]

in (0, T )× R
n
+ × R

m complemented with the obvious terminal condition

V ε(T, x, y) = g(x),
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where
HP (x, y, p,X,Z) := − trace

(
σ̃σ̃TX

)− φr · p− 2 trace
(
σ̃τTZT

)
and L is defined in (14). The prices V ε(t, x, y) converge locally uniformly, as ε → 0, to
the unique viscosity solution V of the limit equation (37), due to our convergence result,
Theorem 5.1 (see also Remark 5.1 describing the slight modifications to the argument in the
proof needed to treat this case). V can be represented as

V (t, x) := E∗
[
eλ(t−T )g(XT ) | Xt = x

]
, 0 ≤ t ≤ T,

where μ is the unique invariant measure associated with the fast subsystem (see section 4)
and Xt satisfies the averaged effective system

(58) dXt = rXtdt+
√
2σ(Xt)dW

∗
t

whose volatility is the so-called mean historical volatility

σ(x) :=

√∫
Rm

σ̃(x, y)σ̃T (x, y) dμ(y).

Therefore the limit of the pricing problem as ε→ 0 is a new pricing problem for the effective
system (58). This convergence result complements and extends a bit section 10.6 of [23] on
multidimensional problems.

Let us recall also that μ(y) is explicitly known in some interesting cases, in particular when
the fast variables are an Ornstein–Uhlenbeck process, as in [23]. For instance, if Yt and Zt

are scalar processes, the measure μ has the Gaussian density

dμ(y) =
1√
2πτ2

e−(y−m)2/2τ2 dy,

with the notations of Example 2.1.

6.2. Merton portfolio optimization problem. We consider now another classical problem
in finance, the Merton optimal portfolio allocation, under the assumption of fast oscillating
stochastic volatility.

We consider a financial market consisting of a nonrisky asset X0 evolving according to the
deterministic equation dX0

t = rX0
t dt, with r > 0, and n risky assets Xi

t evolving according
to the stochastic system (54). We denote by W the wealth of an investor. The investment
policy—which will be the control input—is defined by a progressively measurable process u
taking values in a compact set U , and uit represents the proportion of wealth invested in the
asset Xi

t at time t. Then the wealth process evolves according to the following system:

(59)

⎧⎨⎩ dWt =Wt

(
r +
∑n

i=1 (α
i − r)uit

)
dt+

√
2Wt

∑n
i=1 u

i
tfi(Yt) · dW t, Wto = w > 0,

dYt =
1
ε b(Yt)dt+

√
2
εν(Yt)dZt,

with the same notations and assumptions as in section 6.1. Also this system is a special case
of (6), now with a one-dimensional slow state variable Wt, and it satisfies the assumptions of
section 2.
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The Merton problem consists in choosing a strategy u· which maximizes a given utility
function g at some final time T . In particular the problem can be described in terms of the
value function

(60) V ε(t, w, y) := sup
u·∈U

E[g(WT , YT ) | Wt = w, Yt = y].

Typically the utility functions in financial applications are chosen in the class of HARA (hy-
perbolic absolute risk aversion) functions g(w, y) = a(bw+ c)γ , where a, b, c are bounded and
continuous given functions of y, and γ ∈ (0, 1) is a given coefficient called the relative risk
premium coefficient. Observe that the function g satisfies assumption (10).

We remark also that in the classical HARA functions typically a, b, c are constants. We
choose to consider y dependent coefficients since our method also permits us to manage this
general case and, moreover, utilities of such a form are employed in the pricing of derivatives
with nontraded assets (see [44]).

The HJB equation associated with the Merton value function is

(61) −V ε
t +HM

(
w, y, V ε

w, V
ε
ww,

DyV
ε
w√
ε

)
− 1

ε
L(y,DyV

ε,D2
yyV

ε) = 0

in (0, T )×R+ ×R
m complemented with the terminal condition V ε(T, x, y) = g(x, y). In (61)

L is as in (14) and HM (w, y, p,X,Z) is defined as

inf
u∈U

⎧⎨⎩−
[
r +

n∑
i=1

(αi − r)ui
]
wp−

k∑
j=1

∣∣∣∣∣
n∑

i=1

uif ji (y)

∣∣∣∣∣
2

w2X

− 2

m∑
h=1

k∑
j=1

n∑
i=1

uif ji (y)τhj(y)wZh

⎫⎬⎭ ,

with the matrix τ given by (55). Our main theorem (Theorem 5.1) applies also in this case
and says that the value function V ε converges locally uniformly to the unique solution of the
limit problem

(62)

{
−Vt +

∫
Rm HM (w, y, Vw, Vww, 0) dμ(y) = 0 for t ∈ (0, T ), w > 0,

V (T,w) =
∫
Rm g(w, y) dμ(y) for w > 0,

where μ(y) is the invariant measure associated with the fast subsystem (15).

This convergence result is new even in the case of a single risky asset and g independent
of y that is studied in [23]. Next we interpret it in terms of stochastic control.

For simplicity we restrict ourselves to the case of a single risky asset and a scalar fast
process Yt, i.e., n = m = 1. The equation for the wealth becomes

(63) dWt =Wt (r + (α− r)ut) dt+
√
2Wtutf(Yt) · dW t, α > r,
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and the HJB equation for V ε is

(64) −∂V
ε

∂t
− sup

u∈U

{
[r + (α− r)u]w∂V

ε

∂w
+ u2|f |2w2 ∂

2V ε

∂w2
+

2uw√
ε

k∑
j=1

ρjf
jν
∂2V ε

∂w∂y

}

=
1

ε
L
(
y,
∂V ε

∂y
,
∂2V ε

∂y2

)
,

where ρj is the correlation factor between Z
j
t and W t; see (51). The effective PDE is

(65) −∂V
∂t
−
∫
Rm

max
u∈U

{
[r + (α− r)u]w∂V

∂w
+ u2|f(y)|2w2 ∂

2V

∂w2

}
dμ(y) = 0.

Effective utility. Note that since the utility depends also on y, we have an initial boundary
layer. The effective utility g can be interpreted as an averaged utility which is robust with
respect to fast mean reverting fluctuations and uncertainty in the market (depending also,
e.g., on nontraded assets). If g is independent of y, then the convergence is uniform up to
time T .

Solution of the effective Cauchy problem. In some cases the effective Cauchy problem
(62) can be solved explicitly. As a constraint on the control ut we take the interval

U := [R1, R], with −R ≤ R1 ≤ 0 < R.

We also assume that the terminal cost is the HARA function

g(w, y) = a(y)
wγ

γ
, 0 < γ < 1, a(y) ≥ ao > 0.

Then the terminal condition in (62) is

V (T,w) = a
wγ

γ
, a :=

∫
Rm

a(y) dμ(y),

and we look for solutions of (62) of the form V (t, w) = wγ

γ v(t) with v(t) ≥ 0. By plugging it
into the Cauchy problem we get

v̇ = −γhv, v(T ) = a, h := r +

∫
Rm

max
u∈U

[
(α− r)u+ (γ − 1)|f(y)|2u2] dμ(y).

Therefore the uniqueness of solution to (62) gives

(66) V (t, w) = aeγh(T−t)w
γ

γ
, 0 < t < T.

We compute the rate of exponential increase h and get

h = r +

∫
{y : 2R(1−γ)|f(y)|2<α−r}

[
(α− r)R+ (γ − 1)R2|f(y)|2] dμ(y)

+

∫
{y : 2R(1−γ)|f(y)|2≥α−r}

(α− r)2
4(1− γ)|f(y)|2 dμ(y).
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The limit is a Merton problem. It is interesting to compare this solution with the value
function of the Merton problem with constant volatility σ > 0, where the wealth dynamics is

dWt =Wt (r + (α− r)ut) dt+
√
2WtutσdW t

and the utility function is awγ/γ.
In the case 2R(1−γ)σ ≥ α−r (in particular, for a large or no upper bound on the control)

the value function is given by the classical Merton formula

(67) a exp

[
γ

(
r +

(α− r)2
4(1− γ)σ2

)
(T − t)

]
wγ

γ
.

It coincides with the solution (66) of the effective HJB equation (65) with terminal condition
g = awγ/γ if and only if a = a and

σ = σ :=
α− r

2
√

(1− γ)(h− r)
.

Therefore these are the correct parameters to use in a Merton model with constant volatility
if we consider it as an approximation of a model with fast and ergodic stochastic volatility.
We can call it the effective Merton model.

The effective volatility. The preceding formula for the effective volatility σ simplifies
considerably if the μ-probability of the set {y : 2R(1 − γ)|f(y)|2 ≥ α − r} is 1, e.g., for large
upper bound R on the control. In fact we get

σ =

(∫
Rm

1

|f(y)|2 dμ(y)
)− 1

2

,

a formula derived in section 10.1.2 of [23] in the case of unconstrained controls (R = +∞).
We remark that σ for the Merton problem is the harmonically averaged long-run volatility

that is smaller than the mean historical volatility derived in section 6.1 for uncontrolled
systems. Therefore using the correct parameter in the model leads to an increase of the value
function, i.e., of the optimal expected utility.

The limit of the optimal control. Consider the effective Merton problem (a = a, σ = σ)
and suppose the upper bound R on the control large enough to allow all the usual calculations
of the case R = +∞. The control where the Hamiltonian attains the maximum is

u∗ :=
α− r

2(1 − γ)σ2 =
α− r

2(1 − γ)
∫
Rm

1

|f(y)|2 dμ(y),

which is then the optimal control. We want to compare it with the optimal control for the
problem with ε > 0. For the terminal condition V ε(T,w, y) = a(y)wγ/γ we expect a solution
of (64) of the form V ε(t, w, y) = vε(t, y)wγ/γ. Then we can compute the maximum in the
Hamiltonian of (64) and get

(68) u∗ε(t, y) =
α− r

2(1 − γ)|f(y)|2 +
Φ(y)√
εvε(t, y)

∂vε

∂y
(t, y), Φ(y) :=

∑k
j=1 ρjf

j(y)ν(y)

(1 − γ)|f(y)|2 .
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By our main theorem vε(t, y)→ v(t) locally uniformly in [0, T )×R as ε→ 0, so ∂vε

∂y (t, y)→ 0
in the sense of distributions with respect to y, locally uniformly in t < T . Then we wonder
if the second term of u∗ε vanishes in some sense, despite the

√
ε at the denominator, therefore

giving

(69) lim
ε→0

u∗ε(t, y) =
α− r

2(1 − γ)|f(y)|2 =: u∗0(y).

Note that the candidate limit u∗0 is different from u∗, but u∗ =
∫
Rm u

∗
0(y) dμ(y).

Let us assume for simplicity that

(70) μ has a density ϕ ∈ C1 and lim
|y|→∞

ϕ(y) = 0.

The former assumption is satisfied, for instance, if the coefficients b, ν of L are smooth,
because L∗μ = 0 in the sense of distributions and the regularity theory for elliptic equations
applies (L∗ being the formal adjoint of L). The latter assumption is natural for an integrable ϕ,
and it is satisfied, for instance, by the Ornstein–Uhlenbeck process (ϕ is a Gaussian function).
Then, when we take the integral of (68) with respect to μ and integrate by parts the second
term, we get ∫

Rm

u∗ε(t, y) dμ(y) = u∗ + o

(
1√
ε

)
as ε→ 0,

which again is not very insightful. To get some convergence we write an asymptotic expansion
for v∗ε(t, y) in powers of

√
ε, in the spirit of section 10.1.2 of the book by Fouque, Papanicolaou,

and Sircar [23] but under weaker assumptions and using different arguments.

Proposition 6.2. Besides the standing assumptions of the section and (70) suppose

(71) vε(t, y) = v(t) +
√
εvε1(t, y), v

ε
1(t, y)→ v1(t, y) locally uniformly, v1 bounded.

Then the following hold:
(i) v1 = v1(t), so

1√
ε
∂vε

∂y =
∂vε1
∂y (t, y)→ 0 in the sense of distributions with respect to y;

(ii) if, in addition,

(72) |vε1| ≤ C,
√
ε

∫
Rm

∣∣∣∣∂vε1∂y
∣∣∣∣ dμ(y)→ 0 ∀ t < T,

then

(73) u∗ = lim
ε→0

∫
Rm

u∗ε(t, y) dμ(y) ∀ t < T ;

(iii) if, in addition,

(74) vε1(t, y) = v1(t) + ω(ε)vε2(t, y), ω(ε)→ 0,

∣∣∣∣∂vε2∂y (t, y)

∣∣∣∣ ≤ C(t, y),

then 1√
ε
∂vε

∂y → 0 and (69) holds uniformly on every set where C(·, ·) is bounded.
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Proof. (i) By plugging the optimal control (68) into the HJB equation (64) we get

−∂v
ε

∂t
− γrvε − F1(y)

(
(α− r)vε + F2(y)√

ε

∂vε

∂y

)2

=
1

ε
L
(
y,
∂vε

∂y
,
∂2vε

∂y2

)
for suitable continuous Fi, i = 1, 2. Using the expansion (71) the equation becomes

−L
(
y,
∂vε1
∂y

,
∂2vε1
∂y2

)
=
√
ε

[
∂vε

∂t
+ γrvε + F1(y)

(
(α− r)vε + F2(y)

∂vε1
∂y

)2
]
.

Letting ε→ 0 we obtain, by standard properties of viscosity solutions,

−L
(
y,
∂v1
∂y

,
∂2v1
∂y2

)
= 0 in R,

so v1 is constant with respect to y by the Liouville property, Lemma 4.1.

(ii) First observe that vε is uniformly bounded and bounded away from 0. The upper
bound follows from (19). The lower bound is obtained by using the definition (60) of V ε and
computing the payoff of the control u· ≡ 0. We get

V ε(t, w, y) ≥ E[a(YT ) | Yt = y]eγr(T−t)w
γ

γ

and therefore

vε(t, y) ≥ aoeγr(T−t) ≥ ao ∀ t ≤ T, ∀ y.
From (68) and the expansion (71) we get∫

Rm

u∗ε(t, y) dμ(y) = u∗ +
∫
Rm

Φ(y)

vε(t, y)

∂vε1
∂y

(t, y)ϕ(y) dy.

Integrating by parts, the integral on the right-hand side becomes

−
∫
Rm

∂

∂y

(
Φϕ

vε

)
vε1 dy +

[
Φϕ

vε1
vε

]y→+∞

y→−∞

and the second term is null by (70) and the uniform boundedness of Φvε1/v
ε. The first term

can be written as

−
∫
Rm

∂ (Φϕ)

∂y

vε1
vε
dy +

∫
Rm

√
ε
∂vε1
∂y

Φvε1
(vε)2

ϕdy,

and we let ε → 0: the second integral vanishes by (72) and the uniform boundedness of
Φvε1/(v

ε)2, whereas the first converges to

−v1(t)
v(t)

∫
Rm

∂ (Φϕ)

∂y
(y) dy = 0

by (70). This completes the proof of (73).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VISCOSITY METHODS FOR MULTISCALE FINANCIAL MODELS 259

(iii) By (74)
1√
ε

∂vε

∂y
= ω(ε)

∂vε2
∂y

(t, y)→ 0

uniformly on every set where ∂vε2/∂y is uniformly bounded. By (68) u∗ε converges uniformly
on every such set to u∗0.

We can roughly summarize the preceding proposition by saying that an asymptotic ex-
pansion of vε of the form

vε = v +
√
εv1 + o(

√
ε)vε2

implies that the optimal control u∗ of the effective Merton model is the limit of the averages
and the average of the limit of the optimal controls for the models with ε > 0, i.e.,

u∗ = lim
ε→0

∫
Rm

u∗ε(t, y) dμ(y) =
∫
Rm

lim
ε→0

u∗ε(t, y) dμ(y).

The financial interpretation of this statement is clear: the optimal control for the Merton
problem with constant volatility σ approximates the expectation of the optimal control for
the same problem with stochastic volatility, provided the volatility evolves much faster than
the assets.

6.3. Periodic day effects and volatility with a slow component. Section 10.2 of [23]
discusses a refinement of the model in section 6.1, where the volatilities of the prices depend
on time on a fast periodic scale, thus modeling the daily oscillations. This amounts to replacing
fi(Yt) in (49) and (59) with

fi = fi

(
t

ε
, Yt

)
,

where fi is 1-periodic in the first entry. We incorporate this in our setting by adding the new
variable s := t/ε whose dynamics is ṡ := 1/ε. The fast subsystem now has the additional
variable st that is trivially ergodic on the unit circle with respect to the Lebesgue measure.
Now the effective Hamiltonian of the limit PDE is

H =

∫ 1

0

∫
Rm

H(x, y, s, p,X, 0) dμ(y) ds.

Another possible extension of the model in sections 6.1 and 6.2 is the addition of another
stochastic quantity Zt affecting the volatilities of the prices and evolving on a slower time
scale than the prices:

fi = fi(Yt, Zt),

dZt = θc(Zt)dt+
√
θd(Zt)dWt, Z0 = z,(75)

with θ small, and c, d Lipschitz and growing at most linearly at infinity. This is done, for
instance, in [25, 37]. This modeling allows much more flexibility and is motivated by various
empirical studies (see [25] and the references therein) which outline a volatility composed by
one highly persistent factor and one quickly mean reverting factor. The slow volatility factor
in particular is useful when considering options with longer maturities.
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The value function now depends also on the initial position z of the new variable Zt, and
the HJB equation (12) becomes

λV − Vt +H

(
x, y, z,DxV,D

2
xxV,

D2
xyV√
ε
,
√
θD2

xzV

)
− 1

ε
L(y,DyV ,D

2
yyV )

− θ[c ·DzV + θ trace(ddTD2
zzV )]−

√
θ

ε
trace

[
τdTD2

yzV +D2
yzV τd

T (z)
]
= 0.

In particular this can be seen as a regular perturbation of (12). If θ is independent of ε and
we let it tend to 0, the basic properties of viscosity solutions give the convergence of the value
function V ε,θ(t, x, y, z) to the solution V (t, x, z) of the same effective Cauchy problem as before,
with the only difference that H now depends also on z (but z appears only as a fixed parameter
in the limit PDE). It possible to check this result regardless of the order of taking the limits

θ → 0 and ε→ 0. Indeed the term −
√

θ
ε trace

[
τ(y)dT (z)D2

yzV +D2
yzV τ(y)d

T (z)
]
is a lower

order term with respect to 1
εL(y,DyV,D

2
yyV ), and then a similar argument as in Remark 5.1

holds. If, instead, θ = θ(ε), the same conclusion follows with a much more delicate argument,
following a theorem on regular perturbations of singular perturbation problems proved in [4].

Of course the periodic oscillations in time and the slow component of the volatility can also
be treated simultaneously. As an example, we consider the scalar Merton problem (60), (63)
with volatility and utility functions given by

fi = fi

(
t

ε
, Yt, Zt

)
, g = a(YT , ZT )

Wγ
T

γ
,

with Zt satisfying (75). Then the value function V ε,θ(t, x, y, z) converges locally uniformly to
the classical Merton formula (67) for the problem with constant volatility

σ = σ(z) :=

(∫ 1

0

∫
Rm

1

|f(s, y, z)|2 dμ(y) ds
)− 1

2

,

at least when the upper bound R on the controls is large enough, and

a = a(z) :=

∫
Rm

a(y, z) dμ(y).

6.4. Worst case optimization under unknown disturbances. Assume that the general
stochastic control system (8) is affected by an additional disturbance ũt taking values in a
compact set Ũ , and suppose you want to maximize the payoff under the worst possible be-
havior of ũt. There are several possible reasons for this choice, such as the lack of statistical
information on the disturbance or the desire to avoid with probability one some catastrophic
events caused by a particularly nasty behavior of ũt. The mathematical framework for model-
ing these problems is the theory of two-person 0-sum differential games, where the controller
is the first player and the disturbance is considered as the control of a second player wishing
to minimize the payoff.
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For simplicity we suppose the following form of the drift and diffusion in (6):

φi = φi1(x, y, u) + φi2(x, y, ũ), σi = σi1(x, y, u) + σi2(x, y, ũ),

with φij, σ
i
j bounded, continuous, and Lipschitz in (x, y) uniformly in u, ũ. For the system

written in vector form (8) we then have φ̃i = φ̃i1(x, y, u) + φ̃i2(x, y, ũ) and σ̃i = σ̃i1(x, y, u) +
σ̃i2(x, y, ũ) with the obvious definitions. The Isaacs equation associated with the game is again
of the form (12), but now the Hamiltonian is H = H1 +H2 with

H1(x, y, p,X,Z) := min
u∈U

{
− trace

(
σ̃1σ̃

T
1 X
)− φ̃1 · p− 2 trace

(
σ̃1τ

TZT
)}
,

H2(x, y, p,X,Z) := max
ũ∈Ũ

{
− trace

(
σ̃2σ̃

T
2 X
) − φ̃2 · p− 2 trace

(
σ̃2τ

TZT
)}
.

The precise definition of value function is more delicate for a stochastic differential game, as
well as the proof that it is a viscosity solution of (12), and we refer the reader to [21]. We
remark that the comparison principle of [15] still holds for the Cauchy problem (17) with the
new convex-concave Hamiltonian, and therefore there is a unique viscosity solution V ε. The
convergence theorem (Theorem 5.1) of V ε(t, x, y) to V (t, x) holds with no changes, because
its proof never uses the convexity of H with respect to (p,X). The effective Hamiltonian now
is

H =

∫
Rm

min
u∈U

{
− trace

(
σ̃1σ̃

T
1 X
) − φ̃1 · p}+max

ũ∈Ũ

{
− trace

(
σ̃2σ̃

T
2 X
)− φ̃2 · p} dμ(y).

6.5. Applications to problems with degenerate diffusion. We pointed out in the intro-
duction that we do not make any nondegeneracy assumption on the diffusion matrix σσT for
the slow variables Xt. This makes our methods applicable to a wide range of models, even in
deterministic control, if one wants to study the sensitivity to random parameters evolving on
a fast time scale. For instance, some differential games arising in marketing and advertising
are under investigation.

Within mathematical finance, path-dependent models, such as Asian options, involve de-
generate diffusion processes; see [42, 8] and the references therein. In these models one aug-
ments the state space by a new variable As that is the time integral of some functions of a
price Ss. Therefore an ODE is added to the system, such as dAs = Ss ds for problems involving
the arithmetic mean of the prices or dAs = log(Ss) ds for the geometric mean. Therefore the
process Xs = (Ss, As) is a degenerate diffusion. Models of Asian options with fast stochastic
volatility are studied in Chapter 8.3 of [25] and in [22, 43].

Interest rate models are another area where the uniform nondegeneracy of the diffusion
matrix would not be a reasonable assumption. The LIBOR models with stochastic volatility
reviewed in Chapter 11 of [13] all have a volatility function σ(Xs, Ys) vanishing at Ys = 0.
This event usually has null probability, by the choice of the dynamics for Ys. So the associated
PDE is parabolic but not uniformly parabolic. Some of these models with two time scales are
studied in Chapter 11 of [25].

A stronger form of degeneracy occurs in the Heath–Jarrow–Morton (HJM) framework
for forward rate models, where there are an infinite number of traded assets (one for each
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maturity) and a finite number of sources of randomness (components of the Brownian motion);
see, e.g., Chapter 23 of [10]. The possibility of arbitrage is ruled out by the HJM drift
condition. If one considers a large but finite number of maturities, the assets evolve as a
degenerate diffusion and our methods can be used for the asymptotics of the fast stochastic
volatility problem. HJM models with stochastic volatility (with the same time scale as the
prices) were studied in [11].

7. Conclusion. In this paper we study stochastic control problems with random param-
eters driven by a fast ergodic process. Our methods are based on viscosity solutions theory
and the Hamilton–Jacobi approach to singular perturbations. The assumptions are chosen to
fit problems of pricing derivative securities and optimizing the portfolio allocation in financial
markets with fast mean reverting stochastic volatility.

The main steps of our HJB approach to singular perturbations are the following:

• Write the HJB equation for the value function V ε and characterize it as the unique
viscosity solution of the Cauchy problem for such an equation (see section 3).

• Define a limit (effective) PDE and limit (effective) initial data resolving appropriate
ergodic-type problems (see section 4).

• Prove the (locally) uniform convergence of V ε to a function V , which can be charac-
terized as the unique solution of the effective Cauchy problem (see section 5).

• Interpret the effective PDE as the HJB equation for a limit (effective) control problem.
Such a problem approximates the one with ε > 0, and it has lower-dimensional state
variables; therefore it is easier to solve. There is no general recipe for this step, and
we do it in section 6 for a multidimensional option pricing model and for the Merton
portfolio optimization problem.

The main contributions of the present paper are the following. On the mathematical side
we extend the HJB approach from the setting of periodic fast variables (see [1, 2, 3] and the
references therein) to the case of unbounded fast variables. The probabilistic literature on
singular perturbations in stochastic control (see the monographs [32, 33] and the references
therein) allows unbounded fast variables but makes other restrictive assumptions that rule
out some financial models such as the Merton optimization problem (e.g., in [33] the diffusion
matrix σ̃ is assumed uncontrolled).

On the side of financial models our approach complements the methods of Fouque, Pa-
panicolaou, and Sircar [23]. They assume an asymptotic expansion for V ε of the form

(76) V ε = V +
√
εV1 + εV2 + · · · ,

plug it into the HJB PDE for V ε, set equal to 0 each term multiplying a power of ε, and
solve iteratively such PDEs to compute the correctors Vi. This gives information not only
on the limit but also for ε positive with various orders of magnitude. The validity of the
expansion can be proved in some problems without control; this is done, for instance, in [24]
for the option pricing of a single asset. Our result in section 6.1 complements it by treating
the multiasset problem but only up to the first term of the expansion. Since the PDE is linear
we believe that the arguments can be carried on to study further terms, but we do not try to
do it here.
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For problems with controls, however, the validity of the asymptotic expansion (76) is not
known, even for particular problems like Merton, and presumably it is not true in general.
Section 10.1 of [23] assumes (76) for the Merton problem and gets some interesting insight on
the correction of the optimal control. Our contribution in section 6.2 is a rigorous proof of
the locally uniform convergence of the value function with stochastic volatility to the value of
the Merton problem with constant effective volatility σ (instead of the historical volatility)

lim
ε→0

V ε(t, w, y) = V (t, w), σ2 =

∫
Rm

1

|f(y)|2 dμ(y)

and also for utility functions depending on the fast variable y. The problem of justifying further
terms of the asymptotic expansion is wide open in stochastic control and fully nonlinear PDEs,
even for the first corrector V1. The only related result we know is in the very recent paper by
Camilli and Marchi [14] and concerns the rate of convergence in periodic homogenization. We
plan to study this issue for particular models arising in applications. As for the convergence
of the optimal control, at the end of section 6.2 we assume the expansion

V ε = V +
√
εV1 + o(

√
ε)V ε

2

and prove that

u∗ = lim
ε→0

E [u∗ε(t, Y )] = E
[
lim
ε→0

u∗ε(t, Y )
]
, Y ∼ μ,

which has a clear financial interpretation.
Finally, we remark that our method is very general and can be used for a number of

models, financial or not, including 0-sum differential games and degenerate diffusions. The
case of controls appearing also in the fast variables was studied in [1, 2, 3] and the references
therein when the fast variables are bounded; see also [12]. We plan to push the methods of
the present paper further and treat problems with controlled and unbounded fast variables.
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Maturity-Independent Risk Measures∗
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Abstract. The new notion of maturity-independent risk measures is introduced and contrasted with the existing
risk measurement concepts. It is shown, by means of two examples, one set on a finite probability
space and the other in a diffusion framework, that, surprisingly, some of the widely utilized risk
measures cannot be used to build maturity-independent counterparts. We construct a large class
of maturity-independent risk measures and give representative examples in both continuous- and
discrete-time financial models.

Key words. risk measures, maturity independence, incomplete markets, forward performance processes, expo-
nential utility
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1. Introduction. The abstract notion of a risk measure appeared first in [2, 1]. The simple
axioms set forth in [1] opened a venue for a rich field of research that shows no signs of fatigue.
The main reason for such success is the fundamental need for quantification and measurement
of risk. While the initial impetus came from the requirements of the financial and insurance
industries, applications in a wide range of situations, together with a mathematical tractability
and elegance of this theory, have promoted risk measurement to an independent field of interest
and research. The early cornerstones include (but are not limited to) [11, 12, 14]; see also [13]
for more information.

The first notions of risk measures were all static, meaning that the time of measurement
as well as the time of resolution (maturity, expiry) of the risk were fixed. Soon afterwards,
however, dynamic and conditional risk measures started to appear (see [3, 30, 5, 10, 6, 7, 31]
as well as the book [13]).

Despite all the recent work in this wide area, there are still a number of theoretical, as
well as practical, questions left unanswered. The one we focus on in the present paper deals
with the problem one faces when the maturity (horizon, expiration date, etc.) associated with
a particular risky position is not fixed. We take the view that the mechanism used to measure
the risk content of a certain random variable should not depend on any a priori choice of the
measurement horizon. This is, for example, the case in complete financial markets. Indeed,
consider for simplicity the Samuelson (Black–Scholes) market model with zero interest rate
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and the procedure one would follow to price a contingent claim therein. The fundamental
theorem of asset pricing tells us to simply compute the expectation of the discounted claim
under the unique martingale measure. There is no explicit mention of the maturity date of the
contingent claim in this algorithm or, for that matter, any other prespecified horizon. Letting
the claim’s payoff stay unexercised for any amount of time after its expiry would not change
its arbitrage-free price in any way.

It is exactly this property that, in our opinion, has not received sufficient attention in the
literature. As one of the fundamental properties clearly exhibited under market completeness,
it should be shared by any workable risk measurement and pricing procedure in arbitrary
incomplete markets.

The incorporation of the maturity-independence property described above into the existing
framework of risk measurement has been guided by the principle of minimal impact: we strove
to keep new axioms as similar as possible to the existing ones for convex risk measures and
to implement only minimally needed changes. This led us to the realization that it is the
domain of the risk measure that inadvertently dictates the use of a specific time horizon, and
if we replace it by a more general domain, the maturity independence would follow. Thus,
our axioms are identical to the axioms of a replication-invariant convex risk measure, except
for the choice of the domain which is not a subspace of a function space on FT for a fixed
time horizon T .

In addition to the novel axiom pertinent to maturity independence, a link to the notion
of forward performance processes recently proposed by Musiela and the first author (see
[25, 29, 27, 26, 28]) is established. Indeed, focusing on the exponential case, it is shown that
every forward performance process can be used to create an example of a maturity-independent
risk measure. On one hand, this connection provides a useful and simple tool for (a nontrivial
task of) constructing maturity-independent risk measures. On the other hand, we hope that
it would give a firm decision-theoretic foundation to the theory of forward performances.

We start off by introducing the financial model, trading, and no-arbitrage conditions and
recalling some well-known facts about risk measures. In section 3, we introduce the notion
of a maturity-independent risk measure, argue for its feasibility and relevance, and give first
examples. We also show, via two simple examples, that a näıve approach to the construction of
maturity-independent risk measures can fail. Section 4 opens with the notion of a performance
random field and goes on to describe the important class of forward performance processes.
These objects are, in turn, used to produce a class of maturity-independent risk measures
which we call forward entropic risk measures. Finally, several special cases of these measures
are mentioned and interpreted in section 5, and an independent example, set in a binomial-
type incomplete financial model, is presented.

2. Generalities on the financial market model and risk measures.

2.1. Market setup, absence of arbitrage, and admissible portfolios.

2.1.1. The model. Let (Ω,F ,F,P) be a probability space, with the filtration F = (Ft)t∈[0,∞)

satisfying the usual assumptions. The evolution of the prices of risky assets is modeled by
a k-dimensional locally bounded F-semimartingale S = (S1

t , . . . , S
k
t )t∈[0,∞). The existence of

a liquid risk-free asset S0 is also postulated. As usual, we quote all asset prices in the units
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of S0. Operationally, this amounts to the simplifying assumption S0
t = 1, t ≥ 0, which will

hold throughout.

Remark 2.1. We would like to point out that the theory presented in this paper would
require little or no conceptual adjustment if the normalization S0 ≡ 1 were not introduced
and a general predictable numéraire S0 satisfying the usual regularity conditions were used.
The reason we do not pursue such a generalization is that the notation would unnecessarily
suffer and the important aspects of the theory would, consequently, be obscured.

2.1.2. Portfolio processes. An F-predictable process π = (π1t , . . . , π
k
t )t∈[0,∞) is called a

portfolio (process) if it is S-integrable in the sense of (vector) stochastic integration (see sec-
tion 4d in [19]). A portfolio π is called admissible if there exists a constant a > 0 (possibly de-
pending on π but not on the state of the world) such that the gains process Xπ = (Xπ

t )t∈[0,∞),
defined as

Xπ
t =

∫ t

0
πs dSs =

k∑
i=1

∫ t

0
πis dS

i
s, t ≥ 0,

is bounded from below by −a, i.e., Xπ
t ≥ −a for all t ≥ 0 a.s. The set of all portfolio

processes π whose gains processes Xπ are admissible is denoted by A. For technical reasons,
which will be clear shortly, we introduce the set Abd of all portfolio processes π whose gains
process Xπ is uniformly bounded from above as well as from below, i.e., Abd = A ∩ (−A) =
{π ∈ A : −π ∈ A}.

2.1.3. No free lunch with vanishing risk. The natural assumption of no arbitrage is
routinely replaced in the literature by the slightly stronger, but still economically feasible,
assumption of no free lunch with vanishing risk (NFLVR). It was shown in the seminal
paper [9] that, when postulated on finite time intervals [0, t], t ∈ (0,∞), NFLVR is equivalent
to the following statement: for each t ≥ 0, there exists a probability measure Q

(t), defined
on Ft, with the following properties:

1. Q
(t) ∼ P|Ft , where P|Ft is the restriction of the probability measure P to Ft; and

2. the stock-price process S is a Q
(t)-local martingale when restricted to the interval [0, t].

It will be a standing assumption that the condition of NFLVR and, thus, the equivalent
statement above are satisfied by (St)t∈[0,∞) on finite intervals [0, t], t ∈ (0,∞). Therefore, for

t ≥ 0, the set of all measures Q(t) with the above properties is nonempty. We will denote this
set byMe

t .

2.1.4. Closed market models. It is immediate that, for 0 ≤ s < t, we have the following
relation:

Me
s =
{
Q

(t)|Fs : Q(t) ∈ Me
t

}
.

The restriction map turns the family (Me
t )t∈[0,∞) into an inversely directed system. In general,

such a system will not have an inverse limit in the family of probability measures equivalent
to P; i.e., there will exist no set Me∞ with the property that Me

t = {Q|Ft : Q ∈ Me∞}
for all t. In other words, even though the market may admit no arbitrage (NFLVR) on any
finite interval [0, t], arbitrage opportunities might arise if we allow the trading horizon to be
arbitrarily long. In order to differentiate those cases, we introduce the notion of a closed
market model.
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Definition 2.2. A market model (St)t∈[0,∞) is said to be closed if there exists a setMe∞ of

probability measures Q ∼ P such that, for every t ≥ 0, Q(t) ∈ Me
t if and only if Q

(t) = Q|Ft

for some Q ∈ Me∞.
Remark 2.3. Most market models used in practice are not closed. The simplest example is

Samuelson’s model, where the filtration is generated by a single Brownian motion (Wt)t∈[0,∞),
and the price of the risky asset satisfies dSt = St(μdt + σ dWt) for some constants μ ∈ R,
σ > 0. For t ≥ 0, the only element inMe

t corresponds to a Girsanov transformation. However,
as t → ∞, this transformation becomes “more and more singular” with respect to P|Ft , and
no Q as in Definition 2.2 can be found (see [21, Remark on p. 193]).

2.2. Convex risk measures.

2.2.1. Axioms of convex risk measures. One of the main reasons for the wide use and
general acceptance of the theory of risk measures lies in its axiomatic nature. Only the most
fundamental traits of an economic agent, such as risk aversion, are encoded parsimoniously
into the axioms of risk measures. The resulting theory is nevertheless rich and relevant to
the financial practice. The pioneering notion of a coherent risk measure (see [1]) has, soon
after its conception, been replaced by a very similar, but more flexible, notion of a convex risk
measure (introduced in [16, 11, 14, 17]).

Definition 2.4. A functional ρ mapping L
∞(Ω,F ,P) into R is called a convex risk measure

if, for all f, g ∈ L
∞, we have

(1) ρ(f) ≤ 0 if f ≥ 0 a.s. (antipositivity),

(2) ρ(f −m) = ρ(f) +m, m ∈ R (cash translativity),

(3) ρ(λf + (1− λ)g) ≤ λρ(f) + (1− λ)ρ(g), λ ∈ [0, 1] (convexity).

2.2.2. Replication invariance. The idea that two risky positions which differ only by a
quantity replicable in the market at no cost should have the same risk content has appeared
very soon after the notion of a risk measure has been applied to the study of financial markets.
In order to expand on this tenet, let us, temporarily, pick an arbitrary time T > 0, and suppose
that we are dealing with a finite-horizon financial market (St)t∈[0,T ], where all finite-horizon
analogues of the assumptions and definitions above hold. In such a situation, the investors will
trade in the market in order to reduce the overall risk of the terminal position, as measured
by the risk measure ρ defined on L

∞(FT ). In other words, the combination of the financial
market and the risk measure ρ will give rise to a new risk measure, denoted herein by ρ(·;T ),
given by

ρ(f ;T ) = inf
π∈Abd

ρ

(
f +

∫ T

0
πs dSs

)
.

We will use the T -notation to stress the dependence of this risk measure on the specific
maturity date. In addition to axioms (1)–(3) from Definition 2.4, the functional ρ(·;T ) satisfies
the following property:

(4) ρ(f ;T ) = ρ

(
f +

∫ T

0
πs dSs;T

)
∀ f ∈ L

∞(FT ), π ∈ Abd

(replication invariance).
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Definition 2.5. A mapping ρ(·;T ) : L∞(Ω,FT ,P|FT
) → R is called a replication-invariant

convex risk measure if it satisfies axioms (1)–(3) of Definition 2.4 and (4) above.

The notion of replication invariance was introduced in [11] and further developed and
generalized in [15]. An accessible discussion of coherent and convex risk measures, as well as
the notion of replication invariance, can be found in Chapter 4 of [13].

Remark 2.6.

1. When the market model is complete, the restrictions imposed by adding the replica-
tion invariance axiom will necessarily force any replication-invariant risk measure to
coincide with the replication price functional (the “Black–Scholes price”). It is only
in the setting of incomplete markets that the interplay between risk measurement and
trading in the market produces a nontrivial theory.

2. It may seem somewhat counterintuitive at first glance that a replication-invariant risk
measure should assign the same risk content to the constant S0 as to the random
variable ST (where (St)t∈[0,T ] is a price process of a traded risky asset). The resolution
can be found in the fact that the risk contained in ST is virtual since it can be
hedged away completely in the financial market. Replication-invariant measures are,
however, typically not law-invariant; i.e., there are random variables with the same
P-distribution as ST whose risk content is possibly much larger.

The following examples of (maturity-specific) replication-invariant convex risk measures
are very well known (see [13]). We use them as test cases for the notion of maturity inde-
pendence introduced in Definition 3.1. One can easily show that all of them satisfy axioms
(1)–(4).

Example 2.7.

1. Superhedging. For f ∈ L
∞(FT ), let ρ̂(f ;T ) be the superhedging price of f , i.e.,

ρ̂(f ;T ) = inf

{
m ∈ R : ∃ π ∈ Abd,

∫ T

0
πs dSs ≥ m+ f a.s.

}
.

The risk measure ρ̂(·;T ) is extremal in the sense that, for each replication-invariant
convex risk measure ρ(·;T ), we have ρ̂(f ;T ) ≥ ρ(f ;T ) for all f ∈ L

∞(FT ).
2. Entropic risk measures. For f ∈ L

∞(FT ), the entropic risk measure ρ(f ;T ), with risk
aversion coefficient γ > 0, is defined as the unique solution ρ ∈ R to the indifference-
pricing equation

sup
π∈Abd

E

[
− exp

(
−γ
(
x+ ρ+ f +

∫ T

0
πs dSs

))]
= sup

π∈Abd

E

[
− exp

(
−γ
(
x+

∫ T

0
πs dSs

))]
, x ∈ R.

(2.1)

The value ρ(−f ;T ) at the negative of f is also known as the exponential indifference
price ν(f ;T ) of f . The measure ρ(·;T ) admits a simple dual representation

(2.2) ρ(f ;T ) = sup
Q∈Me

T

(
E
Q[−f ]− 1

γH(Q|P;T )
)
,
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where the relative entropy H(Q|P;T ) of Q ∈ Me
T with respect to P is given by

H(Q|P;T ) = E
Q

[
ln

(
dQ

d(P|FT
)

)]
∈ [0,∞].

3. General replication-invariant risk measures. Under appropriate topological regularity
conditions replication-invariant convex risk measure ρ(·;T ) : L∞(FT )→ R admits the
following dual representation:

(2.3) ρ(f ;T ) = sup
Q∈Me

T

(
E
Q[−f ]− α(Q)

)
for some convex penalty function α :Me

T → [0,∞]. See Theorem 17, p. 445 in [11] for
the proof in the discrete-time case. The proof in our setting is similar.

3. Maturity-independent risk measures.

3.1. The need for maturity independence. The classical notion of a convex risk measure
as well as its replication-invariant specialization are inextricably linked to a specific maturity
date with respect to which risk measurement is taking place while ignoring all other time
instances. On the other hand, a fundamental property of financial markets is that they
facilitate transfers of wealth among different time points as well as between different states
of the world. The notion of replication invariance, introduced above, abstracts the latter
property and ties it to the decision-theoretic notion of a convex risk measure. The former
property, however, has not yet been incorporated into the risk measurement framework in the
same manner in the existing literature. One of the goals herein is to do exactly this. We,
then, pose and address the following question:

Is there a class of risk measures that are not constructed in reference to
a specific time instance and can be, thus, used to measure the risk content of
claims of all (arbitrary) maturities?

Equivalently, we wish to avoid the case when two versions of the same risk measure (differing
only in the choice of the maturity date) give different risk values to the same contingent claim.1

Before we proceed with formal definitions, let us recall some of the fundamental properties
of the arbitrage-free pricing (“Black–Scholes”) functional PBS in the context of a complete
financial market. For a “regular-enough” contingent claim f , the value PBS(f) is defined as the
capital needed at inscription to replicate it perfectly and is computed by taking the expectation
E
Q[f ] with respect to the unique risk-neutral measure Q. The functional ρBS(f) = PBS(−f)

satisfies the axioms of convex risk measures and is replication-invariant. Moreover, it is
per se unaffected by the expiration date of the generic claim f . Indeed, the risk-neutral

1One could object to the above reasoning by pointing out that different maturities should give rise to
different risk assessments due to the effect of time impatience. In response, we take the view that the market
is efficient in the sense that all time impatience is already incorporated in the investment possibilities present
in it. More specifically, we remind the reader that the assumption that S0 ≡ 1 effectively means that all
contingent claims are quoted in terms of time-0 currency. As pointed out in Remark 2.1, one can easily extend
the theory presented here to the more general case where the time value of money is modeled explicitly. We
feel, however, that such a generalization would only obscure the central issue herein and render the present
paper less accessible.
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pricing measure corresponding to the earlier time horizon s is the restriction of the time-t risk-
neutral pricing measure to a smaller σ-algebra Fs. Therefore, two claims, one with maturity t
and the other with maturity s, which give identical payoffs, measurable with respect to the
σ-algebra Fs, will be given identical risk-neutral prices.

The observation that risk-neutral prices in complete markets are maturity-independent
(in the above sense) leads naturally to axiomatization and a search for examples of decision-
theoretic tools consistent with it, even in the absence of completeness. To give the reader a
better feel for what exactly such an axiom entails, here is how it can be deduced from even more
fundamental (but somewhat harder to make precise) postulates. Consider an economic agent
who values the risks of two contingent claims with the same payoffs but different maturities
in a simplified market environment where the time value of money is 0. Let the dollar value
of this payoff be modeled by a random variable f ∈ Fs, and let the two maturities be s and
t > s. The agent’s risk measurements of these two contingent claims are denoted ρ(f, s) and
ρ(f, t).

To relate ρ(f, s) and ρ(f, t), we let the agent act according to the following strategy: at
time 0, he/she invests ρ(f, s) dollars in an optimal way and ends up with an acceptable total
wealth of ρ(f, s)+

∫ s
0 πu dSu + f at time s. After that, he/she relaxes and does nothing up to

time t. Therefore, the influx of ρ(f, s) dollars at time 0 surely guarantees a trading strategy
(namely, π1[0,s] +01(s,t]) which makes f acceptable at time t. Consequently, ρ(f, t) ≤ ρ(f, s).
On the other hand, ρ(f, t) dollars can be used to produce a trading strategy π̂ such that
ρ(f, t) +

∫ t
0 π̂u dSu + f is acceptable at time t. Then, ρ(f, t) +

∫ s
0 π̂u dSu + f must also be

acceptable at time s, which would imply ρ(f, t) ≤ ρ(f, s), and, consequently, ρ(f, s) = ρ(f, t).
This is, indeed, the case; otherwise, the two time-t positions

X = ρ(f, t) +

∫ t

0
π̂u dSu + f and X̂ = ρ(f, t) +

∫ s

0
π̂u dSu + f,

which differ in a zero-cost-replicable quantity
∫ t
s π̂u dSu, would differ in acceptability.

If we analyze the assumptions made in the above argument, we reach the conclusion that
whenever one

1. does not change his/her attitude towards risk from one time point to another in a
qualitative way and

2. accepts replication invariance for claims with a fixed maturity,
one must also accept the axiom of maturity independence. The above two properties also
point towards situations when maturity independence is not appropriate. This is the case, for
example, if there is a cost (or any other kind of friction) associated with transfer of wealth
across time instances or if the agent’s general attitude towards risk changes with time (due to
effects of more/less stringent regulation, e.g.).

3.2. Definition of maturity independence. Let L denote the set of all bounded random
variables with finite maturities, i.e.,

L =
⋃
t≥0

L
∞(Ft).

The set L will serve as a natural domain for the class of risk measures we propose in what
follows. Note that L contains all Ft-measurable bounded contingent claims for all times t ≥ 0,
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but it avoids the (potentially pathological) cases of random variables in L
∞(Fτ ), where τ is a

finite, but possibly unbounded, stopping time.

We are now ready to define the class of maturity-independent risk measures. With a
slight abuse of notation, we still use the symbol ρ. In contrast to their maturity-dependent
counterparts ρ(·;T ), however, all maturity-specific notation has vanished.

Definition 3.1. A functional ρ : L → R is called a maturity-independent convex risk mea-
sure if it has the following properties for all f, g ∈ L, and λ ∈ [0, 1]:

(1) ρ(f) ≤ 0 ∀ f ≥ 0 (antipositivity),

(2) ρ(λf + (1− λ)g) ≤ λρ(f) + (1− λ)ρ(g) (convexity),

(3) ρ(f −m) = ρ(f) +m ∀m ∈ R, and (cash translativity)

(4) ∀ t ≥ 0, and π ∈ Abd, ρ

(
f +

∫ t

0
πs dSs

)
= ρ(f)

(replication and maturity independence).

We note that the properties which differentiate the maturity-independent risk measures
from the existing notions are the choice of the domain L on the one hand and the validity of
axiom (4) for all maturities t ≥ 0 on the other.

3.3. Motivational examples. We start off our investigation of maturity-independent risk
measures by giving three examples—one of an extremal such risk measure, one of a class
of maturity-independent risk measures for closed markets, and one in which the maturity
independence property fails.

3.3.1. Superhedging prices. The simplest example of a maturity-independent risk mea-
sure is the superhedging price, i.e., its risk-measure analogue ρ̂ : L→ R given by

ρ̂(f) = inf

{
m ∈ R : ∃ π ∈ Abd, m+

∫ ∞

0
πs dSs + f ≥ 0 a.s.

}
.

It is easy to see that it satisfies all axioms in Definition 3.1. As in the maturity-dependent
case, ρ̂ has the extremal property ρ̂(f) ≥ ρ(f) for any f ∈ L and any maturity-independent
risk measure ρ.

3.3.2. The case of closed markets. The dual characterization (2.3) of replication-
invariant risk measures for finite maturities can be used to construct maturity-independent
risk measures when the market model is closed (see Definition 2.2 and subsection 2.1.4 for
notation and terminology). Indeed, let α :Me∞ → [0,∞] be a proper function (i.e., satisfying
α(Q) <∞ for at least one Q ∈ Me∞). It is not difficult to check that the functional ρ : L→ R,
defined by

ρ(f) = sup
Q∈Me∞

(
E
Q[−f ]− α(Q)

)
,

is a maturity-independent risk measure. We have already seen that many market models used
in practice are not closed. The natural construction used above will clearly not be applicable
in those cases, and, thus, an entirely different approach will be needed.
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S0

S1 S1

ω1

S2 S2

ω2

S3

S4

ω3

S5

ω4

Figure 1. The market tree.

3.3.3. Risk measures lacking maturity independence. When markets are incomplete—
and no canonical (“Black–Scholes”) pricing mechanism exists—some traditional and widely
used risk measures are not maturity-independent. In other words, under these measures, indif-
ference prices of the same contingent claim but calculated in terms of two distinct maturities
will, in general, differ.

It is tempting to assume that a maturity-independent risk measure ρ can always be con-
structed by identifying a maturity date t associated with a contingent claim f and setting
ρ(f) = ρ(f ; t) for some replication-invariant risk measure ρ(·; t). As shown in the following
two examples, this construction will not always be possible even if we restrict our attention
to the well-explored class of entropic risk measures. Both examples are based on the entropic
risk measure (see 2 in Example 2.7). Note that the first example can easily be fitted in the
framework described in section 2 by extending its paths to be constant on intervals [0, 1),
[1, 2), and [2,∞).

(a) A noncompliance example on a finite probability space. We present a simple
two-period example in which entropic risk measurement gives different results for the same
time-1-measurable contingent claim f when considered at times 1 and 2. The market structure
is described by the simple tree in Figure 1, where the (physical) probability of each of the
branches leaving the initial node is 1

3 , and the conditional probabilities of the two contingencies
(leading to S4 and S5) after the node S3 are equal to

1
3 and 2

3 , respectively. One can implement
the described situation on a 4-element probability space Ω = {ω1, ω2, ω3, ω4}, as in Figure 1,
with P[ω1] = P[ω2] = 1/3, P[ω3] = 1/9, and P[ω4] = 2/9.

There are two financial instruments: a riskless bond S0 ≡ 1, and a stock S = S1 whose
price is denoted by S0, . . . , S5 for various nodes of the information tree, such that the following
relations hold:

S0 = S2, S2 =
1
2

(
S1 + S3

)
, S1 �= S3, S3 =

1
2

(
S4 + S5

)
, S4 �= S5.

This implies, in particular, that the market is arbitrage-free, and, due to its incompleteness,
the set of equivalent martingale measures is larger that just a singleton. Next, we consider a
family {fa}a>0 of contingent claims defined by

fa(ω) =

{
0, ω = ω1, ω2,

a, ω = ω3, ω4.
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We are going to compare ρ(fa; 1) and ρ(fa; 2), where ρ(fa; t), t = 1, 2, is the value of the
entropic risk measure (as defined in (2.1)) of the contingent claim fa, seen as the time-t
random variable (note that fa is F1-measurable for all a).

Let us first focus on ρ(f ; 2). The set of all martingale measures is given by M ={
Q

ν : ν ∈ (−1
6 ,

1
3)
}
, where

Q
ν(ω) =

⎧⎪⎨⎪⎩
1
3 − ν, ω = ω1,
1
3 + 2ν, ω = ω2,
1
2

(
1
3 − ν
)
, ω = ω3, ω4.

By a finite-dimensional analogue of (2.2), we have

ρ(fa; 2) = sup
ν∈(−1/6,1/3)

(
E
Qν

[−fa]− h2(ν)
)

= sup
ν∈(−1/6,1/3)

(
−a(1/3 − ν)− h2(ν)

)
,

(3.1)

where, as one can easily check, the relative-entropy function h2 is given by

h2(ν) = h̄2(ν)− inf
μ
h̄2(μ),

where

h̄2(ν) =
Qν [ω1]
P[ω1]

ln
(
Qν [ω1]
P[ω1]

)
+ Qν [ω2]

P[ω2]
ln
(
Qν [ω2]
P[ω2]

)
+ Qν [ω3]

P[ω3]
ln
(
Qν [ω3]
P[ω3]

)
+ Qν [ω4]

P[ω4]
ln
(
Qν [ω4]
P[ω4]

)
.

Similarly,

ρ(fa; 1) = sup
ν∈(−1/6,1/3)

(
E
Q

ν
[−fa]− h1(ν)

)
= sup

ν∈(−1/6,1/3)

(
−a(1/3 − ν)− h1(ν)

)
,

(3.2)

where the function h1 is given by h1(ν) = h̄1(ν)− infν h̄1(ν), with

h̄1 (ν) = Q
ν [ω1] ln

(
Q

ν [ω1]
P[ω1]

)
+Q

ν[ω2] ln
(
Q

ν [ω2]
P[ω2]

)
+ (Qν [ω3] +Q

ν [ω4]) ln
(
Q

ν [ω3]+Q
ν [ω4]

P[ω3]+P[ω4]

)
.

The expressions (3.1) and (3.2) can be seen as the Legendre–Fenchel transforms of the trans-
lated entropy functions h2(1/3 − ν) and h1(1/3 − ν). Therefore, by the bijectivity of these
transforms and the convexity of the functions h1 and h2, the equality ρ(fa; 1) = ρ(fa; 2), for
all a > 0, would imply that h1 = h2. It is now a matter of a straightforward computation to
show that that is, in fact, not the case. Thus, the two values do not coincide; i.e., for at least
one a > 0,

ρ(fa; 1) �= ρ(fa; 2).
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(b) A noncompliance example in a diffusion market model. We consider a finan-
cial market as in section 2, with k = 1 (one risky asset) and an augmentation of the filtration
generated by two independent driving Brownian motions (W 1

t )t∈[0,∞) and (W 2
t )t∈[0,∞). It will

be enough to consider a stock-price process with stochastic volatility of the form

(3.3) dSs = Ss(μds+ σ(Bs) dWs),

s ≥ 0, where Bt = ρW 1
t +
√

1− ρ2W 2
t is a Brownian motion correlated with W 1, with the

correlation coefficient ρ ∈ (0, 1). It will be convenient to introduce the market price of risk
λ(y) = μ/σ(y), assuming throughout that λ : R → (0,∞) is a strictly increasing C1-function
with range of the form (ε,M) for some constants 0 < ε < M <∞. In addition to its usefulness
in what follows, this assumption will guarantee that the condition NFLVR holds on each finite
time interval [0, t]. To facilitate the dynamic-programming approach, we assume that trading
starts at time t, after which two maturities T, T̄ , with T < T̄ , are chosen.

Let CT = −BT model the payoff of a contingent claim which is, clearly, nonreplica-
ble. The value of the time-t entropic (γ = 1) risk measure ρt(CT ;T ) equals the indifference
price νt(−CT ;T ) of the claim BT measured on the trading horizon [t, T ]. According to [32],
ρt(CT ;T ) admits a representation in terms of a solution to a partial differential equation.
More precisely, taking into account the fact that neither the payoff CT nor the dynamics
of the volatility depends on the stock price, we have ρt(CT ;T ) = p(t,−Bt) a.s., where the
function p : [0, T ]× R→ R is a classical solution of the quasi-linear equation

(3.4)

{
pt + Lfp+ 1

2 (1− ρ2)p2y = 0,

p(T, y) = y,

where Lfp = 1
2pyy +

(
fy/f − ρλ(y)

)
py. The function f : [0, T ]×R→ R is the unique solution

to the linear problem

(3.5)

{
ft +Af = 0,
f(T, y) = 1,

where Af = 1
2fyy − ρλ(y)fy − 1

2(1 − ρ2)λ2(y)f . Standard arguments show that f is of class
C1,3 and admits a representation in the manner of Feynman and Kac as

(3.6) f(t, y) = E[e
∫ T
t

(1−ρ2)
2

λ2(Ys) ds|Yt = y], (t, y) ∈ [0, T ]× R,

where {Ys}s∈[t,∞) is the unique strong solution to dYs = dBs−ρλ(Ys) ds, Yt = y. In particular,
there exists a constant C > 1 such that 1 ≤ f(t, y) ≤ C for (t, y) ∈ [0, T ]× R.

Similarly, the indifference price νt(−CT ; T̄ ) (which equals the value ρt(CT ; T̄ ) of the
maturity-T̄ entropic risk measure ρt(·; T̄ ) applied to the same contingent claim only on the
longer horizon [0, T̄ ], T̄ > T ) can be represented via p̄(t, y), where p̄ solves

(3.7)

{
p̄t + Lf̄ p̄+ 1

2 (1− ρ2)p̄2y = 0,

p̄(T, y) = y.
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Herein, Lf̄ is given as in (3.5) with f replaced by the function f̄ , which solves

(3.8)

{
f̄t +Af̄ = 0,

f̄(T̄ , y) = 1.

Just like f , the function f̄ admits a representation analogous to (3.6) and a uniform bound
1 ≤ f̄(t, y) ≤ C̄ for (t, y) ∈ [0, T ] × R.

The goal of this example is to show that the indifference prices ν(BT ;T ) and ν(BT ; T̄ ),
or, equivalently, the entropic risk measures ρt(CT ;T ) and ρt(CT ; T̄ ), do not always coincide,
i.e., that p(t, y) and p̄(t, y) differ for at least one choice of (t, y) ∈ [0, T ) × R. We start with
an auxiliary result, namely,

(3.9)
fy(T, y)

f(T, y)
�= f̄y(T, y)

f̄(T, y)
for each y ∈ R.

In order to establish (3.9), we note that the function g : [0, T ]×R→ R, defined by g = fy, is
a classical solution to

(3.10)

{
gt + Bg = 0,
g(T, y) = 0,

where
Bg = 1

2gyy − ρλ(y)gy −A(y)g −B(t, y),

with A(y) = ρλ′(y) + 1
2(1− ρ2)λ2(y) and B(t, y) = (1− ρ2)λ(y)λ′(y)f(t, y).

Thanks to the assumptions placed on ρ and λ, and the positivity of f , we have

(3.11) A(y) > 0 and B(t, y) > 0 ∀ (t, y) ∈ [0, T ] × R.

The function ḡ = f̄y is defined in an analogous fashion (only on the larger domain
[0, T̄ ] × R), and a similar set of properties can be derived. Since fy(T, y) = 0 for all y ∈ R,
it will be enough to show that f̄y(T, y) > 0 for all y ∈ R. This follows immediately from the
strict inequalities in (3.11) and the Feynman–Kac representation

(3.12) ḡ(T, y) = f̄y(T, y) = E

[∫ T̄

T
B(t, Yt)e

∫ T̄
t

A(Ys) ds dt|YT = y

]
, y ∈ R.

Having established (3.9), we conclude that, thanks to the smoothness of the functions f
and f̄ , the operators Lf and Lf̄ differ in the ∂

∂y -coefficient in some open neighborhood N of
the line {T}×R in [0, T ]×R. Assuming that p̄ and p coincide in N , subtracting the equations
(3.4) and (3.7) yields

(3.13)

(
fy
f
(t, y)− f̄y

f̄
(t, y)

)
p̄y(t, y) = 0 for (t, y) ∈ N .

Equation (3.9) now implies that p̄y = 0 on N , which is clearly in contradiction with the
terminal condition p̄(T, y) = y, y ∈ R. Therefore, there exists (t, y) ∈ N \{T}×R ⊆ [0, T )×R

such that p(t, y) �= p̄(t, y).
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4. Forward entropic risk measures. In the previous section, we saw three examples of
risk measures and their dependence on the specific choice of the maturity date. In particular,
we pointed out that the superhedging risk measure in subsection 3.3.1, as well as the ones
constructed in subsection 3.3.2, for the class of closed markets, are maturity-independent.
However, both of these classes are rather restrictive. Indeed, the one associated with super-
hedging is extremely conservative, while the other requires the rather stringent assumption of
market closedness.

In this section, we introduce a new family of convex risk measures that have the maturity
independence property and, at the same time, are applicable to a wide range of settings. Their
construction is based on the idea mentioned in the introductory paragraph of subsection 3.3.3
but avoids the pitfalls responsible for the failure of examples (a) and (b) following it.

The risk measures we are going to introduce are closely related to indifference prices. The
novelty of the approach is that the underlying risk preference functionals are not tied down to
a specific maturity, as has been the case in the standard expected utility formulation. Rather,
they can be seen as specified at initiation and subsequently “generated” across all times. This
approach was proposed by the first author and Musiela (see [25, 29, 27, 26, 28]) and is briefly
reviewed below.

4.1. Forward exponential performances. The notion of a forward performance process
has arisen from the search for ways to measure the performance of investment strategies across
all times in [0,∞). In order to produce such a nontrivial object, we look for a random field
U = Ut(ω, x) defined for all times t ≥ 0 and parametrized by a wealth argument x such that
the mapping x �→ Ut(ω, x) admits the classical properties of utility functions. More precisely,
we have the following definition.

Definition 4.1. A mapping U : [0,∞)×Ω×R→ R is called a performance random field if
the following hold:

(1) for each (t, ω) ∈ [0,∞)×Ω, the mapping x �→ Ut(x, ω) defines a utility function: it is
strictly concave, strictly increasing, continuously differentiable, and satisfies the Inada
conditions limx→∞U ′(x) = 0 and limx→−∞U ′(x) = +∞;

(2) U·(·, ·) is measurable with respect to the product of the progressive σ-algebra on Ω ×
[0,∞) and the Borel σ-algebra on R; and

(3) E |Ut(x)| <∞ for all (t, x) ∈ [0,∞)× R.
Remark 4.2.
1. The last requirement in Definition 4.1 implies, in particular, that E |Ut(ξ)| <∞ for all

random variables ξ ∈ L
∞.

2. It is possible to construct a parallel theory where the performance functions Ut(ω, ·)
are defined on the positive semiaxis (0,∞). We choose the domain R for the wealth
argument x because it leads to a slightly simpler analysis and because the examples
to follow will be based on the exponential function.

On an arbitrary trading horizon, say [s, t], 0 ≤ s < t <∞, the investor whose preferences
are described by the random field U seeks to maximize the expected investment performance:

(4.1) V t
s (x) = esssup

π∈Abd

E[Ut(X
x,π
t )|Fs], 0 ≤ s ≤ t.

Herein, Xx,π denotes the investor’s wealth process, x ∈ R the investor’s initial wealth at
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time s, and π a generic investment strategy belonging to Abd (the set of admissible policies
introduced in subsection 2.1.2). To concentrate on the new notions, we abstract throughout
from control and state constraints as well as the most general specification of admissibility
requirements.

It has been argued in [28] that the class of performance random fields with the additional
property

(4.2) V t
s (x) = Us(x) a.s. ∀ 0 ≤ s ≤ t <∞, x ∈ R,

possesses several desirable properties and gives rise to an analytically tractable theory.

Definition 4.3. A random field U satisfying (4.2), where V is defined by (4.1), is called
self-generating.

Remark 4.4. We remind the reader that a classical example of a self-generating perfor-
mance random field (albeit only on the finite horizon [0, T ]) is the traditional value function,
defined as

Ut(x) = esssup
π∈Abd

E[UT (X
x,π
T )|Ft], t ∈ [0, T ], x ∈ R,

where T is a prespecified maturity beyond which no investment activity is measured, and
UT (·, ·) : Ω × R → R is a classical (state-dependent) utility function (see, for example, [20,
23, 22, 34]). When the horizon is infinite, such a construction will not produce any results.
Indeed, there is no appropriate time for the final datum to be given.

What (4.1) and (4.2) tell us is that (under additional regularity conditions) the sought-after
criterion (performance random field) U must have the property that the stochastic process
Ut(X

x,π
t ) is a supermartingale for an arbitrary control π ∈ Abd and becomes “closer and

closer” to a martingale as the controls get “better and better.” In the case when the class of
control problems (4.1) actually admits an optimizer π∗ ∈ Abd (or in some larger, appropriately

chosen, class), the composition Ut(X
x,π∗
t ) becomes a martingale.

In the traditional framework, as already mentioned in Remark 4.4, the datum (terminal
utility) is assigned at some fixed future time T . Alternatively, in the case of an infinite time
horizon, it is more natural to think of the datum u0 : R→ R as being assigned at time t = 0
and a self-generating performance random field Ut chosen so that U0(x) = u0(x). It is because
of this interpretation that the self-generating performance random fields may also be referred
to as forward performances.

The notion of forward performance processes was first developed for binomial models
in [25, 29] and later generalized to diffusion models with a stochastic factor [26] and, more
recently, to models of Itô asset price dynamics (see, among others, [26, 28] as well as [4]).
A related stochastic optimization problem that allows for semimartingale price processes and
random horizons can be found in [8]. A similar notion of utilities without horizon preference
was developed in [18]; therein, asset prices are taken to be lognormal, leading to deterministic
forward solutions.

While traditional performance random fields on finite horizons are straightforward to
construct and characterize, producing a “forward” performance random field on [0,∞) from a
given initial datum u0 is considerably more difficult. Several examples of such a construction,
all based on the exponential initial datum, are given in the following subsection. These
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random fields are the most important building blocks for the class of maturity-independent
risk measures presented in subsection 4.2.

Definition 4.5. A performance random field U is called a forward exponential performance
if

(1) it is self-generating, and
(2) there exists a constant γ > 0 such that

(4.3) U0(x) = −e−γx, x ∈ R.

The construction presented below can be found in [27]. The assumptions and definitions
from section 2 will be used in what follows without explicit mention. For the statement of
Theorem 4.8 (and, also, for some of the later sections), we introduce an additional set of
assumptions on the structure of (St)t∈[0,∞). Before we do, we remind the reader that the
Moore–Penrose pseudoinverse of a real m× n matrix M is the unique real n×m matrix A+

such that AA+A = A and A+AA+ = A+, and the matrices AA+ and A+A are symmetric.
Assumption 4.6. The filtration F is the usual augmentation of the filtration generated

by a d-dimensional Brownian motion (Wt)t∈[0,∞) = (W 1
t , . . . ,W

d
t )t∈[0,∞) and (St)t∈[0,∞) =

(S1
t , . . . , S

k
t )t∈[0,∞) is an Itô process of the form

(4.4) dSi
t = Si

t

(
μit dt+

d∑
j=1

σjit dW
j
t

)

for t ≥ 0, i = 1, . . . , k, and j = 1, . . . , d, where the processes (μit)t∈[0,∞) and (σjit )t∈[0,∞) are F-
progressively measurable and bounded uniformly by a deterministic constant on each segment
[0, t], t > 0.

Moreover, the matrix σ admits a progressively measurable and bounded Moore–Penrose
pseudoinverse σ+. Consequently, the d-dimensional bounded and progressively measurable
process (λt)t∈[0,∞), given by

(4.5) λjt =
k∑

i=1

(σ+)jit μ
i
t, t ≥ 0, a.s.,

satisfies

(4.6)

d∑
j=1

σjit λ
j
t = μit, i = 1, . . . , k, t ≥ 0, a.s.

Remark 4.7. It is one of the main properties of the Moore–Penrose inverse that λt is the
smallest (in Euclidean norm) solution of the linear system σtλt = μt. It would, therefore,
be enough to ask in Assumption 4.6 that some progressively measurable solution to (4.6) be
bounded uniformly on each segment [0, t].

Theorem 4.8 (see Theorem 4 in [27]). Under conditions and notation of Assumption 4.6,
let (δt)t∈[0,∞) and (φt)t∈[0,∞) be k-dimensional F-progressive processes such that σtσ

+
t δt = δt

for all t ≥ 0 a.s. Define two continuous (one-dimensional) processes (Yt)t∈[0,∞), (Zt)t∈[0,∞) by

(4.7) dYt = Ytδt(λtdt+ dWt), Y0 = 1/γ



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATURITY-INDEPENDENT RISK MEASURES 281

and

(4.8) dZt = ZtφtdWt, Z0 = 1,

where we assume that δ and φ are regular enough for the integrals in (4.7) and (4.8) to be
defined. Moreover, we assume that Z is a positive martingale and that, when restricted to any
finite interval [0, t], Y is uniformly bounded from above and away from zero.

With the process (At)t∈[0,∞) defined as

(4.9) At =

∫ t

0

∥∥σsσ+s (λs + φs)− δs
∥∥2 ds,

the random field U , given by

(4.10) Ut(x;ω) = −Zt exp

(
− x
Yt

+
At

2

)
,

is a forward exponential performance. In particular, for 0 ≤ s ≤ t and ξ ∈ L
∞(Fs), we have

(4.11) Us(ξ) = esssup
π∈Abd

E

[
Ut

(
ξ +

∫ t

s
πu dSu

) ∣∣∣∣Fs

]
a.s.

Remark 4.9. In (4.10), one can give a natural financial interpretation to the processes Y
(which normalizes the wealth argument) and Z (which appears as a multiplicative factor). One
might think of Y as a benchmark (or a numéraire) in relation to which we wish to measure the
performance of our investment strategies. The values of the process Z, on the other hand, can
be thought of as Radon–Nikodym derivatives of the investor’s subjective probability measure
with respect to the measure P.

4.2. Forward entropic risk measures. We are now ready to introduce the forward entropic
risk measures (FERMs). We start with an auxiliary object, denoted by ρ(C; t).

Definition 4.10. Let U be the forward exponential performance defined in (4.10), and let
t ≥ 0 be arbitrary but fixed. For a contingent claim written at time s = 0 and yielding a payoff
C ∈ L

∞(Ft), we define ρ(C; t) ∈ R as the unique solution of
(4.12)

sup
π∈Abd

E

[
Ut

(
x+

∫ t

0
πs dSs

)]
= sup

π∈Abd

E

[
Ut

(
x+ ρ(C; t) + C +

∫ t

0
πs dSs

)]
∀x ∈ R.

The mapping ρ(·; t) : L∞(Ft)→ R is called the t-normalized forward entropic measure.

One can readily check that (4.12) indeed admits a unique solution (independent of the
initial wealth x), so that the t-normalized forward entropic measures are well defined. The
reader can convince him-/herself of the validity of the following result.

Proposition 4.11. The t-normalized FERMs are replication-invariant convex risk measures
on L

∞(Ft) for each t ≥ 0.

The fundamental property in which FERMs differ from a generic replication-invariant risk
measure (see examples in subsection 3.3.2) is the following.
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Proposition 4.12. For 0 ≤ s < t < ∞, and C(s) ∈ L
∞(Fs), consider the s- and t-

normalized forward entropic measures ρ(C(s); s) and ρ(C(s); t) applied to the contingent claim
C(s). Then,

(4.13) ρ(C(s); s) = ρ(C(s); t).

More generally, for C(r) ∈ L
∞(Fr), where 0 ≤ r < s < t <∞, we have

(4.14) ρ(C(r); s) = ρ(C(r); t).

Proof. We are going to only establish (4.13) since (4.14) follows from similar arguments.
To this end, note that a self-financing policy π ∈ Abd if and only if π1[0,t] ∈ Abd and π1(t,∞) ∈
Abd. Using Definition 4.10 at x = 0, we obtain

U0(0) = sup
π∈Abd

E

[
Ut

(
ρ(C(s); t) + C(s) +

∫ t

0
πu dSu

)]
= sup

π,π′∈Abd

E

[
E

[
Ut

(
ρ(C(s); t) + C(s) +

∫ s

0
πu dSu +

∫ t

s
π′u dSu

) ∣∣∣∣Fs

]]

= sup
π∈Abd

E

[
esssup
π′∈Abd

E

[
Ut

(
ρ(C(s); t) + C(s) +

∫ s

0
πu dSu +

∫ t

s
π′u dSu

) ∣∣∣∣Fs

]]

= sup
π∈Abd

E

[
Us

(
ρ(C(s); t) + C(s) +

∫ s

0
πu dSu

)]
,

where we used the semigroup property (4.11) of U and the fact that the random variable
ρ(C(s); t)+C(s)+

∫ s
0 πu dSu is an element of L∞(Fs) for all π ∈ Abd. We compare the obtained

expression with the defining equation (4.12) to conclude that ρ(C(s); t) = ρ(C(s); s).
We are now ready to define the FERMs.
Definition 4.13. For C ∈ L, define the earliest maturity tC ∈ [0,∞) of C as

(4.15) tC = inf {t ≥ 0 : C ∈ Ft} .
The FERM ν : L→ R is defined as

(4.16) ρ(C) = ρ(C; tC),

where ρ(C; tC) is the value of the tC-normalized FERM, defined in (4.12), applied to the
contingent claim C.

The focal point of the present section is the following theorem.
Theorem 4.14. The mapping ρ : L→ R is a maturity-independent risk measure.
Proof. We need to verify axioms (1)–(4) of Definition 3.1. Axioms (1) and (3) follow

directly from elementary properties of the t-normalized forward risk measures. To show axiom
(2) we take λ ∈ (0, 1) and C1, C2 ∈ L. Then, since λC1 + (1 − λ)C2 ∈ Fmax(tC1

,tC2
), we have

max(tC1 , tC2) ≥ tλC1+(1−λ)C2
. Therefore,

ρ(λC1 + (1− λ)C2) = ρ(λC1 + (1− λ)C2; tλC1+(1−λ)C2
)

= ρ(λC1 + (1− λ)C2;max(tC1 , tC2)),
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where we used (4.13). Using property (4.13) and the fact that the t-FERMs are convex risk
measures, we get

ρ(λC1 + (1− λ)C2) ≤ λρ(C1;max(tC1 , tC2)) + (1− λ)ρ(C2;max(tC1 , tC2))

= λρ(C1; tC1) + (1− λ)ρ(C2; tC2)

= λρ(C1) + (1− λ)ρ(C2).

It remains to check the replication and maturity independence axiom (4). To this end, we
let ξ =

∫∞
0 πu dSu for some portfolio process π ∈ Abd. We need to show that

ρ(C + ξ) = ρ(C)

for any C ∈ L. Observe that max(tC , tξ) ≥ tC+ξ, and, therefore, by (4.13) and (4.16), we have

ρ(C + ξ) = ρ(C + ξ; tC+ξ) = ρ(C + ξ;max(tC , tξ)).

On the other hand, Proposition 4.11, the form of ξ, and (4.13) yield

ρ(C + ξ;max(tC , tξ)) = ρ(C;max(tC , tξ)) = ρ(C; tC) = ρ(C),

establishing axiom (4).
Next, we provide an explicit representation of the FERMs.
Theorem 4.15. Let Y , Z, A, and Ut(·) be as in Theorem 4.8. For C ∈ L, its FERM is

given by

(4.17) ρ(C) = inf
π∈Abd

(
1

γ
lnE

[
−Ut

(
C +

∫ t

0
πs dSs

)])
for any t ≥ tC ,

where tC is defined in (4.15).
Proof. Equation (4.12) (with x = −ρ(C; t) and t ≥ tC) and the property (4.11) of the

random field U yield that

(4.18) − exp(γρ(C)) = sup
π∈Abd

E

[
Ut

(
C +

∫ t

0
πs dSs

)]
for any t ≥ tC .

By (4.11), the right-hand side of (4.18) is independent of t for t ≥ tC .
4.3. Relationship with dynamic risk measures. Before we present concrete examples

of maturity-independent risk measures in section 5, let us briefly discuss their relationship
with the dynamic risk measures (see the introduction for references). A family of mappings
ρs(·; t) : L∞(Ft) → L

∞(Fs), where 0 ≤ s ≤ t ≤ T , with T ∈ [0,∞], is said to be a dynamic
(time-consistent) risk measure if each ρs(·; t) satisfies the analogues of the axioms of convex
risk measures and the semigroup property

ρs(−ρt(f ;u); t) = ρs(f ;u), 0 ≤ s ≤ t ≤ u ≤ T,
holds. Using a version of Definition 4.13 and Theorem 4.14, the reader can readily check
that each replication-invariant dynamic risk measure defined on the whole positive semiaxis
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[0,∞) (i.e., when T = ∞) gives rise to a maturity-independent risk measure. Under certain
conditions, the reverse construction can be carried out as well (details will be presented in [33]).

The philosophies of the two approaches are quite different, though. Perhaps the best way
to illustrate this point is through the analogy with the expected utility theory. Dynamic
risk measures correspond to the traditional utility framework where a system of decisions
relating various maturity dates is interlaced together through a consistency criterion. The
maturity-independent risk measures take the opposite point of view and correspond to forward
performances. While the dynamic risk measures are natural in the case T <∞, the maturity-
independent risk measures fit well with infinite or unprespecified maturities.

5. Examples. In this section, we provide two representative classes of FERMs. For the
first one, we adopt the setting and notation of Assumption 4.6 and single out some of the
special cases obtained when specific choices for the processes Z and Y (of Theorem 4.8) are
used in conjunction with Definition 4.13 of the FERMs. Then, we illustrate the versatility of
the general notion of maturity-independent risk measures by constructing an example in an
incomplete binomial-type model which can be seen as a special case of the locally bounded
semimartingale setup of section 2. Some background and technical details pertaining to this
example can be found in [24].

5.1. Itô-process-driven markets. This example is set in a financial market described in
Assumption 4.6, with k = 1 (one risky asset) and d = 2 (two driving Brownian motions).
Without loss of generality, we assume that σ12t ≡ 0, and σt = σ11t > 0, i.e., that the second
Brownian motion does not drive the tradeable asset. In this case, we have λt = (λ1t , λ

2
t ), where

λ1t = μt/σt and λ
2
t = 0. Therefore, the stock-price process satisfies

dSt = St(μt dt+ σt dW
1
t )

on an augmented filtration generated by a two-dimensional Brownian motion (W 1,W 2). The
processes Z, Y,A from Theorem 4.8 can be written as

(5.1) dYt = Ytδt(λ
1
t dt+ dW 1

t ), Y0 = 1/γ > 0, dZt = ZtφtdW
1
t , Z0 = 1

and

(5.2) At =

∫ t

0
(λ1s + φs − δs)2 ds, A0 = 0,

subject to a choice of two processes φ and δ, under the regularity conditions stated in Theo-
rem 4.8.

(a) φ ≡ δ ≡ 0. In this case, Zt ≡ 1, Yt ≡ 1/γ, At ≡
∫ t
0 (λ

1
s)

2 ds, and the random field U
of (4.10) becomes

Ut(x) = − exp

(
−γx+

At

2

)
.

Using the indifference-pricing equation (4.12) and the self-generation property (4.11) of Ut,
we deduce that for C ∈ L the value ρ(C) satisfies

− exp(γρ(C)) = sup
π∈Abd

E

[
− exp

(
−γ
(
C +

∫ t

0
πs dSs

)
+
At

2

)]
for any t ≥ tC .
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On the other hand, the classical (exponential) indifference price, ν(C− At
2γ ; t), of the contingent

claim C − At
2γ , maturing at time t, satisfies

sup
π∈Abd

E

[
− exp

(
−γ
(
ν(C − At

2γ ; t) +

∫ t

0
πs dSs

))]
= sup

π∈Abd

E

[
− exp

(
−γ
(
C − At

2γ +

∫ t

0
πs dSs

))]
.

WithHt = ln supπ∈Abd
E[− exp(−γ ∫ t0 πs dSu)] (which will be recognized by the reader familiar

with exponential utility maximization as the aggregate relative entropy), we now have

(5.3) ρ(C) = −ν(C − At
2γ ; t)− 1

γHt for any t ≥ tC .

(b) δ ≡ 0. Then Yt ≡ 1/γ, At ≡
∫ t
0 (λ

1
s + φs)

2 ds, and the random field U of (4.10) takes
the form

Ut(x) = −Zt exp

(
−γx+

At

2

)
.

The risk measure ρ(C) can be represented as in (5.3), with one important difference. Specif-
ically, the (physical) probability measure P has to be replaced by the probability P̃ whose
Radon–Nikodym derivative with respect to P is given by Zt on Ft for any t ≥ 0.

We leave the discussion of further examples in this setting—in particular for the case
δ �= 0—for the upcoming work of the second author [33].

5.2. The binomial case. Let (Ω,F ,P) be a probability space on which two sequences
{ξt}t∈N and {ηt}t∈N of random variables are defined. The stochastic processes {St}t∈N0 and
{Yt}t∈N0 are defined, in turn, as follows:

St =

t∏
k=1

ξk, Yt =

t∏
k=1

ηk, t ∈ N, S0 = Y0 = 1.

The process S models the evolution of a (traded) risky asset, and Y is a (nontraded) factor.
We assume, for simplicity, that the agents are allowed to invest in a zero-interest riskless bond
S0 ≡ 1. The following two filtrations are naturally defined on (Ω,F ,P):

FS
t = σ(S0, S1, . . . , St) = σ(ξ1, . . . , ξt), t ∈ N0, and

Ft = σ(S0, Y0, S1, Y1, . . . , St, Yt) = σ(ξ1, . . . , ξt, η1, . . . , ηt), t ∈ N0.

We assume that for each t ∈ N there exist ξut , ξ
d
t , η

u
t , η

d
t ∈ R with 0 < ξdt < 1 < ξut and 0 < ηdt <

ηut such that P[ξt = ξut |Ft−1] = 1− P[ξt = ξdt |Ft−1] > 0 a.s., and P[ηt = ηut ] = 1− P[ηt = ηdt ].
The agent starts with initial wealth x ∈ R and trades in the market by holding αt+1 shares

of the asset S in the interval (t, t + 1], t ∈ N0, financing his/her purchases by borrowing (or
lending to) the risk-free bond S0. Therefore, the wealth process {Xt}t∈N0 is given by

Xt = x+
t−1∑
k=0

αk+1(Sk+1 − Sk), t ∈ N,
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with X0 = x. It can be shown that, for each t ∈ N, there exists a unique minimal martingale
measure Q

(t) on Ft (see [24] for details).

Define the Ft-predictable (Ft−1-adapted) process {ht}t∈N given by

ht = qt ln

(
qt

P [At|Ft−1]

)
+ (1− qt) ln

(
1− qt

1− P [At|Ft−1]

)
, t ∈ N0,

with

At = {ω : ξt (ω) = ξut } and qt =
1− ξdt
ξut − ξdt

= Q
(t) [At|Ft−1] .

In [24] (see also [25]) it is shown that the random field U : Ω× N0 × R→ R defined by

Ut(x) = − exp

(
−x+

t∑
k=1

hk

)

is a forward exponential performance. We also consider the inverse U−1 of U given by

U−1
t (y) = − ln (−y)−

t∑
k=1

hk

for y ∈ (−∞, 0) and {ht}t∈N0 as above.

For t ∈ N0, we define the (single-period) iterative forward price functional E(t,t+1) :
L
∞(Ft+1)→ L

∞(Ft), given by

E(t,t+1)(C) = E
Q(t+1)

[
−U−1

t+1

(
E
Q(t+1) [Ut+1(−C)|Ft ∨ FS

t+1]
)∣∣∣Ft

]
for any C ∈ L

∞(Ft+1). Similarly, for t < t′ and C ∈ L
∞(Ft′) we define the (multistep)

forward pricing functional E(t,t′) : L∞(Ft′)→ L
∞(Ft) by

E(t,t′)(C) = E(t,t+1)
(
E(t+1,t+2)

(
. . . (E(t′−1,t′)(C))

))
.

Proposition 5.1. Let ρ (· ; t) : L∞ (Ft)→ R be defined by

ρ (C; t) = E(0,t)(C).

Then, the mapping ρ : L =
⋃

t∈N0
L
∞(Ft)→ R defined by

ρ(C) = ρ(C; tC)

for tC = inf {t ≥ 0 : C ∈ Ft} is a maturity-independent convex risk measure.

The statement of the proposition follows from an argument analogous to the one in the
proof of Proposition 4.12. For a detailed exposition of all steps, see [24].
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6. Summary and future research. The goals of the present paper are twofold:
1. we want to bring forth and illustrate the concept of maturity-independent risk mea-

sures; and
2. we want to provide a class of such measures.

Two examples—one defined on a finite probability space and the other in an Itô-process
setting—are given. Their analysis shows that, while plausible and simple from the decision-
theoretic point of view, the notion of maturity independence is nontrivial and reveals an
interesting structure.

One of the major sources of appeal of the theory of maturity-independent risk measures
is, in our opinion, the fact that it opens a venue for a wide variety of research opportunities
both from the mathematical as well as the financial points of view. One of these directions,
which we intend to pursue in a forthcoming work (see [33]), follows the link between ma-
turity independence and forward performance processes in the direction opposite to the one
explored here: while FERMs provide a wide class of examples of maturity-independent risk
measures, it is natural to ask whether there are any others. In other words, we would like to
give a full characterization of maturity-independent risk measures arising from performance
random fields. Such a characterization would not only complete the outlined theory from the
mathematical point of view, but it would also provide a firm decision-theoretic foundation for
the sister theory of forward performance processes.
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Analysis in Finance and Insurance,” Oberwolfach, January 2008, and “AMS Sectional Meet-
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[34] G. Žitković, Utility maximization with a stochastic clock and an unbounded random endowment, Ann.

Appl. Probab., 15 (2005), pp. 748–777.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. FINANCIAL MATH. c© 2010 Society for Industrial and Applied Mathematics
Vol. 1, pp. 289–325

Time Dependent Heston Model∗

E. Benhamou†, E. Gobet‡, and M. Miri†

Abstract. The use of the Heston model is still challenging because it has a closed formula only when the
parameters are constant [S. Heston, Rev. Financ. Stud., 6 (1993), pp. 327–343] or piecewise constant
[S. Mikhailov and U. Nogel, Wilmott Magazine, July (2003), pp. 74–79]. Hence, using a small
volatility of volatility expansion and Malliavin calculus techniques, we derive an accurate analytical
formula for the price of vanilla options for any time dependent Heston model (the accuracy is less
than a few bps for various strikes and maturities). In addition, we establish tight error estimates.
The advantage of this approach over Fourier-based methods is its rapidity (gain by a factor 100 or
more) while maintaining a competitive accuracy. From the approximative formula, we also derive
some corollaries related first to equivalent Heston models (extending some work of Piterbarg on
stochastic volatility models [V. Piterbarg, Risk Magazine, 18 (2005), pp. 71–75]) and second, to the
calibration procedure in terms of ill-posed problems.

Key words. asymptotic expansion, Malliavin calculus, small volatility of volatility, time dependent Heston
model
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1. Introduction. Stochastic volatility modeling emerged in the late nineties as a way to
manage the smile. In this work, we focus on the Heston model, which is a lognormal model
where the square of volatility follows a Cox–Ingersoll–Ross (CIR)1 process. The call (and put)
price has a closed formula in this model thanks to a Fourier inversion of the characteristic
function (see Heston [22], Lewis [27], and Lipton [29]). When the parameters are piecewise
constant, one can still derive a recursive closed formula using a PDE method (see Mikhailov
and Nogel [31]) or a Markov argument in combination with affine models (see Elices [16]),
but formula evaluation becomes increasingly time consuming. However, for general time
dependent parameters there is no analytical formula and one usually has to perform Monte
Carlo simulations. This explains the interest of recent works for designing more efficient Monte
Carlo simulations: see Broadie and Kaya [13] for an exact simulation and bias-free scheme
based on Fourier integral inversion; see Andersen [4] based on a Gaussian moment matching
method and a user friendly algorithm; see Smith [40] relying on an almost exact scheme;
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see Alfonsi [2] using higher order schemes and a recursive method for the CIR process. For
numerical PDEs, we refer the reader to Kluge’s doctoral dissertation [25].

Comparison with the literature. A more recent trend in the quantitative literature
has been the use of the so-called approximation method to derive analytical formulas. This has
led to an impressive number of papers, with many original ideas. For instance, Alòs, León,
and Vives [3] have been studying the short time behavior of implied volatility for stochas-
tic volatility using an extension of Itô’s formula. Another trend has focused on analytical
techniques to derive the asymptotic expansion of the implied volatility near expiry (see, for
instance, Berestycki, Busca, and Florent [10], Labordère [26], Hagan et al. [21], Lewis [28],
Osajima [34], or Forde [17]). But in these works the implied volatility near expiry does not
have a closed formula because the related geodesic distance is not explicit. It can, however,
be approximated by a series expansion [28]. The drawback to these methods is their inability
to handle nonhomogeneous (that is, time dependent) parameters. For long maturities, an-
other approach has been the asymptotic expansion w.r.t. the mean reversion parameter of the
volatility as shown in [18]. In the case of zero correlation, averaging techniques as exposed in
[36] and [35] can be used. Antonelli and Scarlatti take another view in [5] and have suggested
price expansion w.r.t. correlation. For all of these techniques, the domain of availability of the
expansion is restricted to short or long maturities, to zero correlation, or to homogeneous pa-
rameters. However, in [19] regular and singular expansions are generalized to the case of time
dependent parameters (with volatilities of Ornstein–Uhlenbeck type). The PDE approach
used in [19] could also be used in the present situation and would lead formally to the same
expansion we derive. In our work, we aim to give an analytical formula which covers both
short and long maturities that also handles time inhomogeneous parameters as well as nonnull
correlations. As a difference with several previously quoted papers, our purpose consists also
of justifying our approximation mathematically.

The results closest to ours are probably those based on an expansion w.r.t. the volatility
of volatility by Lewis [27]: it is based on formal analytical arguments and is restricted to
constant parameters. Our formula can be viewed as an extension of Lewis’ formula in order to
address a time dependent Heston model, using a direct probabilistic approach. In addition, we
prove an error estimate which shows that our approximation formula for call/put is of order
2 w.r.t. the volatility of volatility. The advantage of this current approximation is that the
evaluation is about 100 to 1000 times quicker than a Fourier-based method (see our numerical
tests).

Comparison with our previous works [8] and [7]. Our approach here consists of
expanding the price w.r.t. the volatility of volatility and of computing the correction terms
using Malliavin calculus. In these respects, the current approach is similar to our previous
works [8] and [7]; however, the techniques for estimating error are different. Indeed, we use
the fact that the price of vanilla options can be expressed as an expectation of a smooth price
function for stochastic volatility models. This is based on a conditioning argument as in [38].
Consequently, the smoothness hypotheses (H1,H2,H3) of our previous papers are no longer
required. Note also that the square root function arising in the martingale part of the CIR
process is not Lipschitz continuous. Hence, the Heston model does not fit the smoothness
framework used previously. Therefore, to overcome this difficulty, we derive new technical
results in order to prove the accuracy of the formula.
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Contribution of the paper. We give an explicit analytical formula for the price of
vanilla options in a time dependent Heston model. Our approach is based on an expansion
w.r.t. a small volatility of volatility. This is practically justified by the fact that this parameter
is usually quite small (of order 1 or less; see [6], [27], or [13], for instance). The resulting
formula is the sum of two terms: the leading term is the Black–Scholes price for the model
without volatility of volatility, while the correction term is a combination of Greeks of the
leading term with explicit weights depending only on the model parameters. Proving the
accuracy of the expansion is far from straightforward, but with some technicalities and a
relevant analysis of error we succeed in giving tight error estimates. Our expansion enables
us to obtain averaged parameters for the dynamic Heston model.

Formulation of the problem. We consider the solution of the stochastic differential
equation (SDE)

dXt =
√
vtdWt − vt

2
dt, X0 = x0,(1.1)

dvt = κ(θt − vt)dt+ ξt
√
vtdBt, v0,(1.2)

d〈W,B〉t = ρtdt,

where (Bt,Wt)0≤t≤T is a two-dimensional correlated Brownian motion on a filtered probability
space (Ω,F , (Ft)0≤t≤T ,P) with the usual assumptions on filtration (Ft)0≤t≤T . In our setting,
(Xt)t is the log of the forward price and (vt)t is the square of the volatility which follows a
CIR process with an initial value v0 > 0, a positive mean reversion κ, a positive long-term
level (θt)t, a positive volatility of volatility (ξt)t, and a correlation (ρt)t. These time dependent
parameters are assumed to be measurable and bounded on [0, T ].

To develop our approximation method, we will examine the following perturbed process
w.r.t. ε ∈ [0, 1]:

dXε
t =

√
vεtdWt − vεt

2
dt, Xε

0 = x0,

dvεt = κ(θt − vεt)dt+ εξt
√
vεtdBt, vε0 = v0,(1.3)

so that our perturbed process coincides with the initial one for ε = 1: X1
t = Xt, v

1
t = vt.

For the existence of the solution vε, we refer the reader to Chapter IX in [39] (moreover, the
process is nonnegative for kθt ≥ 0; see also the proof of Lemma 4.2). Our main purpose is to
give an accurate analytic approximation, in a certain sense, of the expected payoff of a put
option:

(1.4) g(ε) = e−
∫ T
0 rtdtE[(K − e

∫ T
0 (rt−qt)dt+Xε

T )+],

where r (resp., q) is the risk-free rate (resp., the dividend yield), T is the maturity, and ε = 1.
Extensions to call options and other payoffs are discussed later.

Outline of the paper. In section 2, we explain the methodology of the small volatility
of volatility expansion. An approximation formula is then derived in Theorem 2.2 and its
accuracy stated in Theorem 2.3. This section ends by explicitly expressing the formula’s
coefficients for general time dependent parameters (constant, smooth, and piecewise constant).
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Our expansion allows us to give equivalent constant parameters for the time dependent Heston
model (see subsection 2.5). As a second corollary, the options calibration for Heston’s model
using only one maturity becomes an ill-posed problem; we give numerical results to confirm
this situation. In section 3, we provide numerical tests to benchmark our formula with the
closed formula in the case of constant and piecewise constant parameters. In section 4, we
prove the accuracy of the approximation stated in Theorem 2.3: this section is the technical
core of the paper. In section 5, we establish lemmas used to make the calculation of the
correction terms explicit (those derived in Theorem 2.2). In section 6, we conclude this work
and give a few extensions. In the appendix, we recall details about the closed formula (of
Heston [22] and Lewis [27]) in the case of constant (and piecewise constant) parameters.

2. Smart Taylor expansion.

2.1. Notations.
Notation 2.1 (extremes of deterministic functions). For a càdlàg function l : [0, T ] � R, we

denote lInf = inft∈[0,T ] lt and lSup = supt∈[0,T ] lt.

Notation 2.2 (differentiation).

(i) For a smooth function x �→ l(x), we denote by l(i)(x) its ith derivative.
(ii) Given a fixed time t and for a function ε � f εt , we denote (if it has a meaning) the

ith derivative at ε = 0 by fi,t =
∂ifε

t

∂εi
|ε=0.

2.2. About the CIR process.
Assumptions. In order to bound the approximation errors, we need a positivity assump-

tion for the CIR process.

Assumption P. The parameters of the CIR process (1.2) verify the following conditions:

ξInf > 0,

(
2κθ

ξ2

)
Inf

≥ 1.

This assumption is crucial to ensure the positivity of the process on [0, T ], which is stated
in detail in Lemma 4.2 (remember that v0 > 0). We have

P(∀t ∈ [0, T ] : vt > 0) = 1.

When the functions θ and ξ are constant, Assumption (P) coincides with the usual Feller test
condition 2κθ

ξ2
≥ 1 (see [24]).

Note that the above assumption ensures that the positivity property also holds for the
perturbed CIR process (1.3): for any ε ∈ [0, 1], we have

P(∀t ∈ [0, T ] : vεt > 0) = 1

(see Lemma 4.2). We also need a uniform bound of the correlation in order to preserve the
nondegeneracy of the SDE (1.1) conditionally on (Bt)0≤t≤T .

Assumption R. The correlation is bounded away from −1 and +1:

|ρ|Sup < 1.
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2.3. Taylor development. In this section, we present the main steps leading to our results.
Complete proofs are given later.

If (FB
t )t denotes the filtration generated by the Brownian motion B, the distribution of

Xε
T conditionally to FB

T is a Gaussian distribution with mean x0 +
∫ T
0 ρt

√
vεtdBt − 1

2

∫ T
0 vεtdt

and variance
∫ T
0 (1 − ρ2t )vεtdt (ε ∈ [0, 1]). Therefore, the function (1.4) can be expressed as

follows:

(2.1) g(ε) = E

[
PBS

(
x0 +

∫ T

0
ρt
√
vεtdBt −

∫ T

0

ρ2t
2
vεtdt,

∫ T

0
(1− ρ2t )vεtdt

)]
,

where the function (x, y) � PBS(x, y) is the put function price in a Black–Scholes model with

spot ex, strike K, total variance y, risk-free rate req =
∫ T
0 r(t)dt

T , dividend yield qeq =
∫ T
0 q(t)dt

T ,
and maturity T . For the sake of completeness, we recall that PBS(x, y) has the following
explicit expression:

Ke−reqTN
(

1√
y
log

(
Ke−reqT

exe−qeqT

)
+

1

2

√
y

)
− exe−qeqTN

(
1√
y
log

(
Ke−reqT

exe−qeqT

)
− 1

2

√
y

)
.

In the following, we expand PBS(., .) w.r.t. its two arguments. For this, we note that PBS

is a smooth function (for y > 0). In addition, there is a simple relation between its partial
derivatives:

∂PBS

∂y
(x, y) =

1

2

(
∂2PBS

∂x2
(x, y)− ∂PBS

∂x
(x, y)

)
∀x ∈ R,∀y > 0,(2.2)

which can be proved easily by a standard calculation left to the reader.

Under Assumption (P), for any t, vεt is C
2 w.r.t ε at ε = 0 (differentiation in the Lp sense).

This result will be shown later. In addition, vε does not vanish (for any ε ∈ [0, 1]). Hence, by

putting vεi,t =
∂ivεt
∂εi

, we get

dvε1,t = −κvε1,tdt+ ξt
√
vεtdBt + εξt

vε1,t

2
√
vεt
dBt, vε1,0 = 0,

dvε2,t = −κvε2,tdt+ ξt
vε1,t√
vεt
dBt + εξt

vε2,t

2
√
vεt
dBt − εξt

[vε1,t]
2

4[vεt ]
3/2

dBt, vε2,0 = 0.

From the definitions vi,t ≡ ∂ivεt
∂εi
|ε=0, we easily deduce

v0,t = e−κt

(
v0 +

∫ t

0
κeκsθsds

)
,

v1,t = e−κt

∫ t

0
eκsξs

√
v0,sdBs,(2.3)

v2,t = e−κt

∫ t

0
eκsξs

v1,s

(v0,s)
1
2

dBs.(2.4)
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Note that v0,t coincides also with the expected variance E(vt) because of the linearity of the
drift coefficient of (vt)t. Now, to expand g(ε), we use the Taylor formula twice, first applied
to ε � vεt and

√
vεt at ε = 1 using derivatives computed at ε = 0:

v1t = v0,t + v1,t +
v2,t
2

+ · · · ,√
v1t =

√
v0,t +

v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

− v21,t

8(v0,t)
3
2

+ · · · ;

second, it is applied to the smooth function PBS at the second order w.r.t. the first and

second variables around (x0+
∫ T
0 ρt
√
v0,tdBt−

∫ T
0

ρ2t
2 v0,tdt,

∫ T
0 (1−ρ2t )v0,tdt). For convenience,

we simply write

P̃BS = PBS

(
x0 +

∫ T

0
ρt
√
v0,tdBt −

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1− ρ2t )v0,tdt

)
,(2.5)

∂i+jP̃BS

∂xiyj
=
∂i+jPBS

∂xiyj

(
x0 +

∫ T

0
ρt
√
v0,tdBt −

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1− ρ2t )v0,tdt

)
.

Then, one gets

g(1) = E[P̃BS ](2.6)

+ E

[
∂P̃BS

∂x

(∫ T

0
ρt

(
v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

− v21,t

8(v0,t)
3
2

)
dBt(2.7)

−
∫ T

0

ρ2t
2

(
v1,t +

v2,t
2

)
dt

)]

+ E

[
∂P̃BS

∂y

∫ T

0
(1− ρ2t )

(
v1,t +

v2,t
2

)
dt

]
(2.8)

+
1

2
E

⎡⎣∂2P̃BS

∂x2

(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

)2
⎤⎦(2.9)

+
1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
(1− ρ2t )v1,tdt

)2
]

(2.10)

+ E

[
∂2P̃BS

∂xy

(∫ T

0
(1− ρ2t )v1,tdt

)(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

)]
(2.11)

+ E ,(2.12)

where E is the error in our Taylor expansion. In fact, we notice that

E[P̃BS ] = E[E[e−
∫ T
0

rtdt(K − ex0+
∫ T
0
(rt−qt− v0,t

2
)dt+

∫ T
0

√
v0,t(ρtdBt+

√
1−ρ2tdB

⊥
t ))+|FB

T ]]

= PBS

(
x0,

∫ T

0
v0,tdt

)
,
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where B⊥ is a Brownian motion independent on FB
T . Furthermore, the relation (2.2) remains

the same for P̃BS , and this enables us to simplify the expansion above. This gives the following
proposition.

Proposition 2.1. The approximation (2.12) is equivalent to

g(1) = PBS

(
x0,

∫ T

0
v0,tdt

)
+ E

[
∂P̃BS

∂y

∫ T

0
(v1,t + v2,t)dt

]
+

1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
v1,tdt

)2
]
+ E .

The details of the proof are given in subsection 5.3. At first sight, the above formula
looks like a Taylor formula of PBS w.r.t. the cumulated variance. In fact, it is different; note
that the coefficient of v2,t is not 1/2 but 1. We do not have any direct interpretation of this
formula.

The next step consists of making explicit the correction terms as a combination of Greeks
of the Black–Scholes price.

Theorem 2.2. Under Assumptions (P) and (R), the put2 price is approximated by

e−
∫ T
0 rtdtE[(K − e

∫ T
0 (rt−qt)dt+X1

T )+] = PBS(x0, varT ) +
2∑

i=1

ai,T
∂i+1PBS

∂xiy
(x0, varT )

+
1∑

i=0

b2i,T
∂2i+2PBS

∂x2iy2
(x0, varT ) + E ,(2.13)

where

varT =

∫ T

0
v0,tdt, a1,T =

∫ T

0
eκsρsξsv0,sds

∫ T

s
e−κudu,

a2,T =

∫ T

0
eκsρsξsv0,sds

∫ T

s
ρtξtdt

∫ T

t
e−κudu,

b0,T =

∫ T

0
e2κsξ2sv0,sds

∫ T

s
e−κtdt

∫ T

t
e−κudu, b2,T =

a21,T
2
.

The proof is postponed to subsection 5.4. Finally, we give an estimate regarding the error
E arising in the above theorem.

Theorem 2.3. Under Assumptions (P) and (R), the error in the approximation (2.13) is
estimated as follows:

E = O
(
ξ3SupT

2
)
.

In view of Theorem 2.3, we may refer to the formula (2.13) as a second order approximation
formula w.r.t. the volatility of volatility.

2The approximation formula for the call price is obtained using the call/put parity relation: in (2.13), it
consists of replacing on the left-hand side the put payoff by the call one, and on the right-hand side the put
price function PBS by the similar call price function, while the coefficients remain the same.
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2.4. Computation of coefficients.
Constant parameters. The case of constant parameters (θ, ξ, ρ) gives us the coefficients

a and b explicitly. Using Mathematica, we derive the following explicit expressions.
Proposition 2.4 (explicit computations). For constant parameters, one has

varT = m0v0 +m1θ, a1,T = ρξ(p0v0 + p1θ),

a2,T = (ρξ)2(q0v0 + q1θ), b0,T = ξ2(r0v0 + r1θ),

where

m0 =
e−κT

(−1 + eκT
)

κ
, m1 = T − e−κT

(−1 + eκT
)

κ
,

p0 =
e−κT

(−κT + eκT − 1
)

κ2
, p1 =

e−κT
(
κT + eκT (κT − 2) + 2

)
κ2

,

q0 =
e−κT

(−κT (κT + 2) + 2eκT − 2
)

2κ3
, q1 =

e−κT
(
2eκT (κT − 3) + κT (κT + 4) + 6

)
2κ3

,

r0 =
e−2κT

(−4eκTκT + 2e2κT − 2
)

4κ3
, r1 =

e−2κT
(
4eκT (κT + 1) + e2κT (2κT − 5) + 1

)
4κ3

.

Remark 2.1. In the case of constant parameters (θ, ξ, ρ), we retrieve the usual Heston
model. In this particular case, our expansion coincides exactly with Lewis’s volatility of
volatility series expansion (see equation (3.4), p. 84 in [27] for Lewis’s expansion formula and
p. 93 in [27] for the explicit calculation of the coefficients J (i) with ϕ = 1

2). Using his notation,

we have a1,T = J (1), a2,T = J (4), and b0,T = J (3).
Smooth parameters. In this case, we may use a Gauss–Legendre quadrature formula

for the computation of the terms a and b.
Piecewise constant parameters. The computation of the variance varT is straightfor-

ward. Thus, it remains to provide explicit expressions of a and b as a function of the piecewise
constant data. Let T0 = 0 ≤ T1 ≤ · · · ≤ Tn = T such that θ, ρ, ξ are constant on each interval
]Ti, Ti+1[ and are equal, respectively, to θTi+1, ρTi+1 , ξTi+1 . Before giving the recursive relation,

we need to introduce the following functions: ω̃1,t =
∫ t
0 e

κsρsξsv0,sds, ω̃2,t =
∫ t
0 e

2κsξ2sv0,sds,

αt =
∫ t
0 e

κsρsξsv0,sds
∫ t
s ρuξudu, βt =

∫ t
0 e

2κsξ2sv0,sds
∫ t
s e

−κudu.
Proposition 2.5 (recursive calculations). For piecewise constant coefficients, one has

a1,Ti+1 = a1,Ti + ω̃−κ
Ti,Ti+1

ω̃1,Ti + ρTi+1ξTi+1f
1
κ,v0,Ti

(θTi+1 , Ti, Ti+1),

a2,Ti+1 = a2,Ti + ω̃−κ
Ti,Ti+1

αTi + ρTi+1ξTi+1ω̃
0,−κ
Ti,Ti+1

ω̃1,Ti + (ρTi+1ξTi+1)
2f2κ,v0,Ti

(θTi+1, Ti, Ti+1),

b0,Ti+1 = b0,Ti + ω̃−κ
Ti,Ti+1

βTi + ω̃−κ,−κ
Ti,Ti+1

ω̃2,Ti + ξ2Ti+1
f0κ,v0,Ti

(θTi+1 , Ti, Ti+1),

αTi+1 = αTi + ρTi+1ξTi+1(Ti+1 − Ti)ω̃1,Ti + ρ2Ti+1
ξ2Ti+1

g1κ,v0,Ti
(θTi+1, Ti, Ti+1),

βTi+1 = βTi + ω̃−κ
Ti,Ti+1

ω̃2,Ti + ξ2Ti+1
g2κ,v0,Ti

(θTi+1 , Ti, Ti+1),

ω̃1,Ti+1 = ω̃1,Ti + ρTi+1ξTi+1h
1
κ,v0,Ti

(θTi+1 , Ti, Ti+1),

ω̃2,Ti+1 = ω̃2,Ti + ξ2Ti+1
h2κ,v0,Ti

(θTi+1, Ti, Ti+1),

v0,Ti+1 = e−κ(Ti+1−Ti)(v0,Ti − θTi+1) + θTi+1,
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where

f0κ,v0(θ, t, T ) =
e−2κT (e2κt(θ−2v0)+e2κT ((−2κt+2κT−5)θ+2v0)+4eκ(t+T )((−κt+κT+1)θ+κ(t−T )v0))

4κ3 ,

f1κ,v0(θ, t, T ) =
e−κT (eκT ((−κt+κT−2)θ+v0)−eκt((κt−κT−2)θ−κtv0+κTv0+v0))

κ2 ,

f2κ,v0(θ, t, T ) =
e−κ(t+3T )(2eκ(t+3T )((κ(T−t)−3)θ+v0)+e2κ(t+T )((κ(κ(t−T )−4)(t−T )+6)θ−(κ(κ(t−T )−2)(t−T )+2)v0 ))

2κ3 ,

g1κ,v0(θ, t, T ) =
2eκT θ+eκt(κ2(t−T )2v0−(κ(κ(t−T )−2)(t−T )+2)θ)

2κ2 ,

g2κ,v0(θ, t, T ) =
e−κT (e2κT θ−e2κt(θ−2v0)+2eκ(t+T )(κ(t−T )(θ−v0)−v0))

2κ2 ,

h1κ,v0(θ, t, T ) =
eκT θ+eκt((κt−κT−1)θ+κ(T−t)v0)

κ ,

h2κ,v0(θ, t, T ) =
(eκt−eκT )(eκt(θ−2v0)−eκT θ)

2κ ,

and ω̃u
t,T = −etu+eTu

u , ω̃0,u
t,T = eTu(−tu+Tu−1)+etu

u2 , ω̃u,u
t,T =

(etu−eTu)
2

2u2 .
Proof. According to Theorem 2.2, one has

a1,Ti+1 =

∫ Ti

0
eκtρtξtv0,t

(∫ Ti+1

t
e−κsds

)
dt+

∫ Ti+1

Ti

eκtρtξtv0,t

(∫ Ti+1

t
e−κsds

)
dt

= a1,Ti +

∫ Ti

0
eκtρtξtv0,t

(∫ Ti+1

Ti

e−κsds

)
dt+

∫ Ti+1

Ti

eκtρtξtv0,t

(∫ Ti+1

t
e−κsds

)
dt

= a1,Ti +

(∫ Ti+1

Ti

e−κsds

)∫ Ti

0
eκtρtξtv0,tdt+

∫ Ti+1

Ti

eκtρtξtv0,t

(∫ Ti+1

t
e−κsds

)
dt

= a1,Ti + ω̃−κ
Ti,Ti+1

ω̃1,Ti + ρTi+1ξTi+1f
1
κ,v0,Ti

(θi+1, Ti, Ti+1),

where the functions f1κ,v0 and ω̃−κ are calculated analytically using Mathematica. The other
terms are calculated analogously.

2.5. Corollaries of the approximation formula (2.13).
Averaging Heston’s model parameters. We derive a first corollary of the approxi-

mation formula in terms of equivalent Heston models. As explained in [36], this averaging
principle may facilitate efficient calibration. Namely, we search for equivalent constant pa-
rameters κ̄, θ̄, ξ̄, ρ̄ for the Heston model3

dX̄t =
√
v̄tdWt − v̄t

2
dt, X̄0 = x0,

dv̄t = κ̄(θ̄t − v̄t)dt+ ξ̄
√
v̄tdBt, v̄0 = v0,

d〈W,B〉t = ρ̄dt

that equalize the price of call/put options maturing at T in the time dependent model (equal-
ity up to the approximation error E). The following rules give the equivalent parameters as
a function of the variance varT and the coefficients a1,T , a2,T , b0,T that are computed in the
time dependent model.

3In this approach, we leave the initial value v̄0 equal to v0. Indeed, it is not natural to modify its value
since it is not a parameter but rather an unobserved factor.
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Averaging rule in the case of zero correlation. If ρt ≡ 0, the equivalent constant
parameters (for maturity T ) are

κ̄ = κ, θ̄ =
varT −m0v0

m1
, ξ̄ =

√
b0,T

r0v0 + r1θ̄
, ρ̄ = 0.

Proof. Two sets of prices coincide at maturity T if they have the same approximation
formula (2.13). In this case a1,T = a2,T = b2,T = 0; thus the approximation formula depends
only on two quantities varT and b0,T . It is quite clear that there is not a single choice of
parameters to fit these two quantities. A simple solution results from the choices of κ̄ = κ
and ρ̄ = 0: then, using Proposition 2.4, we obtain the announced parameters θ̄ and ξ̄.

Remark 2.2. In this case of zero correlation and θ = v0 = θ̄, we exactly retrieve Piterbarg’s
results for the averaged volatility of volatility ξ̄ (see [36]).

Averaging rule in the case of nonzero correlation. We follow the same arguments
as before. Now the approximation formula also depends on the four quantities varT , a1,T ,
a2,T , and b2,T . Thus, equalizing call/put prices at maturity T is equivalent to equalizing
these four quantities in both models, by adjusting κ̄, θ̄, ξ̄, and ρ̄. Unfortunately, we have not
found a closed expression for these equivalent parameters. An alternative and simpler way of
proceeding consists of modifying the unobserved initial value v̄0 of the variance process while
keeping κ̄ = κ. For nonvanishing correlation (ρt)t, it leads to two possibilities

v̄0 =b
(b±√b2 − 4ac)

2a
− p1varT
m1p0 −m0p1

, θ̄ =
varT −m0v̄0

m1
,

ξ̄ =

√
b0,T

r0v̄0 + r1θ̄
, ρ̄ =− 2a

ξ̄(b±√b2 − 4ac)
,

such that

a =
a2,Tm1

m1q0 −m0q1
, b = − a1,Tm1

m1p0 −m0p1
, c = varT

(
p1

m1p0 −m0p1
− q1
m1q0 −m0q1

)
,

where m0,m1, p0, p1, q0, q1, r0, and r1 are given in Proposition 2.4.
In practice, only one solution gives realistic parameters. However, this rule is heuristic

since there is a priori no guarantee that these averaged parameters satisfy Assumption (P),
which is the basis for the argument’s correctness.

Proof. Using Proposition 2.4, one has to solve the following system of equations:

varT = m0v̄0 +m1θ̄, a1,T = ρ̄ξ̄(p0v̄0 + p1θ̄),

a2,T = (ρ̄ξ̄)2(q0v̄0 + q1θ̄), b0,T = ξ̄2(r0v̄0 + r1θ̄).

The first equation gives θ̄ = varT−m0v̄0
m1

. Replacing this identity in a1,T and a2,T gives

v̄0 =

(
a1,T

(ρ̄ξ̄)
− p1varT

m1

)
m1

p0m1 − p1m0
, v̄0 =

(
a2,T

(ρ̄ξ̄)2
− q1varT

m1

)
m1

q0m1 − q1m0
.

It readily leads to a quadratic equation ax2+bx+c = 0 with x = 1
ρ̄ξ̄
. By solving this equation,

we easily complete the proof of the result.
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Collinearity effect in the Heston model. Another corollary of the approximation
formula (2.13) is that we can obtain the same vanilla prices at time T with different sets of
parameters. For instance, take on the one hand v0 = θ = 4%, κ1 = 2, and ξ1 = 30% (model
M1) and on the other hand v0 = θ = 4%, κ2 = 3, and ξ2 = 38.042% (model M2), both
models having zero correlation. The resulting errors between implied volatilities within the
two models are presented in Table 1: they are so small that prices can be considered as equal.
Actually, this kind of example is easy to create even with nonnull correlation: as before, in
view of the approximation formula (2.13), it is sufficient to equalize the four quantities varT ,
a1,T , a2,T , and b2,T .

Table 1
Errors in implied Black–Scholes volatilities (in bps) between the closed formulas (see the appendix) of the

two models M1 and M2 expressed as relative strikes. Maturity is equal to one year.

Strikes K 80% 90% 100% 110% 120%

Model M1 20.12% 19.64% 19.50% 19.62% 19.92%
Model M2 20.11% 19.65% 19.51% 19.62% 19.92%
Errors
(bps)

0.69 −0.35 −0.81 −0.42 0.34

As a consequence, calibrating a Heston model using options with a single maturity is an
ill-posed problem, which is not a surprising fact. From the work [16] by Elices, we know that
it may be possible to compute in a unique manner the Heston parameters by adding other
options in the set of calibrated instruments.

3. Numerical accuracy of the approximation. We give numerical results of the perfor-
mance of our method. In what follows, the spot S0, the risk-free rate r, and the dividend
yield q are set, respectively, to 100, 0%, and 0%. The initial value of the variance process is
set to v0 = 4% (initial volatility equal to 20%). Then we study the numerical accuracy w.r.t.
K, T , κ, θ, ξ, and ρ by testing different values for these parameters.

In order to present more interesting results for various relevant maturities and strikes, we
allow the range of strikes to vary over the maturities. The strike values evolve approximately
as S0 exp(c

√
θT ) for some real numbers c and θ = 6%. The extreme values of c are chosen to

be equal to ±2.57, which represents the 1%–99% quantile of the standard normal distribution.
This corresponds to very out-of-the-money options or very deep-in-the-money options. The
set of pairs (maturity, strike) chosen for the tests is given in Table 2.

Constant parameters. In Table 3, we report the numerical results when θ = 6%, κ = 3,
ξ = 30%, and ρ = 0%, giving the errors of implied Black–Scholes volatilities between our
approximation formula (see (2.13)) and the price calculated using the closed formula (see the
appendix) for the maturities and strikes of Table 2. The table should be read as follows:
for example, for one year maturity and strike equal to 170, the implied volatility is equal to
24.14% using the closed formula and 24.20% with the approximation formula, giving an error
of −6.33 bps. In Table 3, we observe that the errors do not exceed 7 bps for a large range of
strikes and maturities. We notice that the errors are surprisingly higher for short maturities.
At first sight, it is counterintuitive, as one would expect our perturbation method to work
better for short maturities and worse for long maturities, since the difference between our
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Table 2
Set of maturities and relative strikes (in %) used for the numerical tests.

T/K

3M 70 80 90 100 110 120 125 130
6M 60 70 80 100 110 130 140 150
1Y 50 60 80 100 120 150 170 180
2Y 40 50 70 100 130 180 210 240
3Y 30 40 60 100 140 200 250 290
5Y 20 30 60 100 150 250 320 400
7Y 10 30 50 100 170 300 410 520
10Y 10 20 50 100 190 370 550 730

Table 3
Implied Black–Scholes volatilities of the closed formula and of the approximation formula and related errors

(in bps), expressed as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%,
κ = 3, ξ = 30%, and ρ = 0%.

3M 23.24% 22.14% 21.43% 21.19% 21.39% 21.86% 22.14% 22.44%
23.06% 22.19% 21.42% 21.19% 21.38% 21.88% 22.19% 22.49%
18.01 − 4.86 0.53 0.38 0.65 −2.68 −4.86 −4.71

6M 24.32% 23.29% 22.55% 21.99% 22.10% 22.75% 23.17% 23.60%
24.12% 23.36% 22.57% 21.98% 22.09% 22.79% 23.24% 23.65%
19.69 −7.17 −1.89 0.93 1.05 −3.97 −7.12 −4.57

1Y 24.85% 24.06% 23.14% 22.90% 23.06% 23.66% 24.14% 24.38%
24.78% 24.12% 23.14% 22.89% 23.06% 23.71% 24.20% 24.42%
7.72 −6.49 0.26 1.12 0.72 −4.54 −6.33 −4.27

2Y 24.86% 24.36% 23.82% 23.61% 23.73% 24.16% 24.46% 24.76%
24.86% 24.40% 23.82% 23.61% 23.72% 24.19% 24.50% 24.78%
−0.21 −3.51 −0.12 0.68 0.37 −2.54 −3.62 −1.71

3Y 24.95% 24.53% 24.10% 23.89% 23.98% 24.27% 24.53% 24.74%
24.94% 24.55% 24.10% 23.89% 23.98% 24.28% 24.55% 24.75%
1.80 −2.12 −0.33 0.39 0.19 −1.27 −2.12 −1.26

5Y 24.88% 24.56% 24.20% 24.12% 24.17% 24.38% 24.53% 24.69%
24.86% 24.57% 24.20% 24.12% 24.17% 24.39% 24.54% 24.70%
1.38 −0.96 0.03 0.17 0.10 −0.58 −0.95 −0.59

7Y 25.03% 24.46% 24.30% 24.23% 24.27% 24.42% 24.54% 24.65%
24.97% 24.46% 24.30% 24.22% 24.27% 24.42% 24.55% 24.66%
5.72 −0.43 −0.02 0.09 0.04 −0.33 −0.54 −0.35

10Y 24.72% 24.51% 24.34% 24.30% 24.34% 24.44% 24.54% 24.62%
24.71% 24.51% 24.34% 24.30% 24.34% 24.44% 24.54% 24.62%
0.42 −0.28 0.02 0.05 0.02 −0.17 −0.29 −0.19

proxy model (BS with volatility (v0,t)t) and the original one is increasing w.r.t. time. In fact,
this intuition is true for prices but not for implied volatilities. When we compare the price
errors (in price bp4) for the same data, we observe in Table 4 that the error terms are not any
bigger for short maturities but vary slightly over time with two observed effects. The error
term first increases over time as the error between the proxy and the original model increases

4Error price bp= Price Approximation−True Price
Spot

× 10000.
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Table 4
Put prices of the closed formulas and of the approximation formula and related errors (in bps), expressed

as a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%,
and ρ = 0%.

3M 30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
30.00 20.08 10.87 4.22 1.14 0.24 0.10 0.04
0.03 −0.11 0.06 0.08 0.09 −0.15 −0.14 −0.07

6M 40.01 30.07 20.52 6.20 2.72 0.40 0.14 0.05
40.01 30.08 20.52 6.19 2.71 0.40 0.14 0.05
0.05 −0.16 −0.18 0.26 0.26 −0.34 −0.29 −0.08

1Y 50.01 40.11 21.84 9.12 3.08 0.51 0.15 0.09
50.01 40.11 21.84 9.11 3.07 0.52 0.16 0.09
0.04 −0.21 0.06 0.44 0.23 −0.51 −0.29 −0.12

2Y 60.03 50.20 32.08 13.26 4.71 0.79 0.28 0.11
60.03 50.20 32.08 13.26 4.71 0.79 0.29 0.11
0.00 −0.18 −0.03 0.38 0.17 −0.43 −0.29 −0.06

3Y 70.02 60.15 41.70 16.39 5.73 1.21 0.36 0.15
70.02 60.15 41.70 16.39 5.73 1.21 0.37 0.15
0.01 −0.09 −0.08 0.27 0.11 −0.31 −0.22 −0.07

5Y 80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
80.01 70.15 43.80 21.26 8.50 1.61 0.58 0.21
0.01 −0.04 0.01 0.15 0.08 −0.19 −0.15 −0.04

7Y 90.00 70.42 53.15 25.14 9.32 1.97 0.66 0.26
90.00 70.42 53.15 25.14 9.32 1.97 0.67 0.26
0.00 −0.04 −0.01 0.09 0.04 −0.14 −0.10 −0.03

10Y 90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
90.01 80.23 55.22 29.92 11.49 2.62 0.84 0.33
0.00 −0.02 0.01 0.06 0.03 −0.09 −0.07 −0.02

over time, as forecasted. But for long maturities, presumably because the volatility converges
to its stationary regime, errors decrease. The mean absolute error over the 64 prices is 0.13
bps. When we convert these prices to implied Black–Scholes volatilities, these error terms are
dramatically amplified for short maturities due to very small vega. Finally, note that for fixed
maturity, price errors are quite uniform w.r.t. strike K.

Impact of the correlation. Results are analogous for various values of correlation. For
instance for ρ = 20% (resp., −20% and −50%), the mean absolute error for the price is 0.28
bps (resp., 0.33 bps and 0.84 bps). We refer to Table 5 for the prices when ρ = −50% (for
other values of ρ, results can be found in the first version of this work [9]). We notice that the
errors are smaller for a correlation close to zero and become larger when the absolute value
of the correlation increases. However, for realistic correlation values (−50%, for instance),
the accuracy for the usual maturities and strikes remains excellent, except for very extreme
strikes.

Impact of the volatility of volatility. In view of Theorem 2.3, the smaller the volatility
of volatility, the more accurate the approximation. In the following numerical tests, we increase
ξ. We consider as Heston parameters the calibrated parameters obtained in [6, Table III]:
κ = 1.15, θ = 3.48%, ξ = 39%, and ρ = −64%. Moreover, we set v0 = 4%. We vary the value
of ξ in the numerical tests from 0% to 100%. There are two important values for ξ:

• The positivity value
√
2κθ. For this value, the so-called positivity ratio is 2κθ

ξ2
= 1.
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Table 5
Put prices of the closed formula and of the approximation formula and related errors (in bp), expressed as

a function of maturities in fractions of years and relative strikes. Parameters: θ = 6%, κ = 3, ξ = 30%, and
ρ = −50%.

3M 30.01 20.14 11.01 4.21 0.95 0.12 0.03 0.01
30.01 20.15 11.02 4.21 0.94 0.11 0.03 0.01
0.21 −0.47 −0.31 0.04 0.57 0.82 0.16 −0.36

6M 40.02 30.15 20.70 6.16 2.43 0.19 0.04 0.01
40.02 30.15 20.71 6.15 2.42 0.17 0.04 0.02
0.37 −0.59 −1.33 0.23 0.81 1.59 −0.09 −1.05

1Y 50.04 40.21 22.11 9.03 2.59 0.22 0.03 0.01
50.04 40.22 22.12 9.02 2.57 0.21 0.05 0.03
0.36 −0.88 −1.17 0.61 2.27 1.67 −1.05 −1.69

2Y 60.08 50.33 32.38 13.11 4.06 0.39 0.08 0.02
60.08 50.34 32.39 13.10 4.03 0.37 0.09 0.04
0.09 −1.00 −1.32 0.80 2.47 1.59 −0.84 −2.00

3Y 70.05 60.25 41.99 16.20 4.98 0.69 0.13 0.03
70.05 60.25 42.00 16.19 4.96 0.67 0.13 0.05
0.17 −0.54 −1.21 0.72 2.20 1.73 −0.74 −1.80

5Y 80.03 70.23 44.06 21.01 7.65 0.99 0.25 0.06
80.03 70.23 44.07 21.00 7.64 0.98 0.26 0.07
0.11 −0.30 −0.53 0.54 1.54 1.29 −0.38 −1.50

7Y 90.00 70.54 53.40 24.84 8.36 1.28 0.31 0.09
90.00 70.55 53.40 24.84 8.35 1.27 0.32 0.10
0.06 −0.41 −0.44 0.43 1.32 1.04 −0.45 −1.32

10Y 90.02 80.30 55.42 29.57 10.43 1.82 0.44 0.13
90.02 80.30 55.42 29.57 10.42 1.81 0.44 0.14
0.03 −0.18 −0.20 0.34 1.04 0.89 −0.42 −1.17

Hence, the positivity assumption (Assumption (P)) is maintained while ξ is smaller
than

√
2κθ. For the current example, the positivity value is 28.28%.

• The calibrated value. For this example, it is 39%. Remark that the related positivity
ratio is 0.53 < 1. Hence, the positivity assumption (Assumption (P)) is not satisfied
for the calibrated parameters.

We plot in Figure 1 the mean absolute error for the prices5 at each maturity (in bps) according
to the volatility of volatility. As expected from Theorem 2.3, we observe that the mean absolute
error is increasing w.r.t. the volatility of volatility and the maturity. For ξ ≤ √2κθ (when
the positivity assumption (Assumption (P)) is satisfied), the accuracy is excellent. For the
calibrated value, this is very satisfactory as well. Even for larger values of ξ, it is very accurate
for nonlarge maturities.

Piecewise constant parameters. Heston’s constant parameters have been set to v0 =
4%, κ = 3. In addition, the piecewise constant functions θ, ξ, and ρ are equal, respectively, at
each interval of the form ] i4 ,

i+1
4 [ to 4% + i× 0.05%, 30% + i× 0.5%, and −20% + i× 0.35%.

In Tables 7 and 8, we report values using three different formulas. For a given maturity, the
first row is obtained using the closed formula with piecewise constant parameters (see the
appendix), the second row uses our approximation formula (2.13), and the third row uses the

5For higher values of ξ, we compute the price taking in consideration the no-arbitrage interval.
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Figure 1. The mean absolute error for the prices (in bps), expressed as a function of the volatility of
volatility and computed for each maturity.

Table 6
Equivalent averaged parameters.

T v̄0 θ̄ ξ̄ ρ̄

3M 4 % 4 % 30 % −20 %
6M 3.97 % 4.04 % 30.12 % −19.93 %
1Y 3.28 % 4.38 % 30.89 % −19.72 %
2Y 4.64 % 4.02 % 31.12 % −18.95 %
3Y 56.24 % 4.04 % 32.10 % −18.20 %
5Y 28.58 % 2.68 % 33.63 % −16.52 %
7Y 84.92 % 0.59 % 35.41 % −14.80 %
10Y 14.54 % 4.57 % 39.98 % −12.32 %

closed formula with constant parameters computed by averaging (see subsection 2.5). In order
to give complete information on our tests, we also report in Table 6 the values used for the
averaging parameters (following subsection 2.5).

Of course, the quickest approach is the use of the approximation formula (2.13). As before,
its accuracy is very good, except for very extreme strikes. It is quite interesting to observe
that the averaging rules that we propose are extremely accurate.

Calibration to real market data. In this section, we will show how the calibration
using time dependent parameters strongly reduces the calibration error.

As a benchmark for the pricing method (i.e., the Lewis formula for constant coefficients
or our formula for time dependent coefficients), we choose a Monte Carlo approach using the
very accurate QE scheme of Andersen [4] (with 100000 simulations and a monthly time step).
Then, we consider the implied Black–Scholes volatility surface of the S&P 500 Index (see
Table 9). The spot value is 1360.14. The equivalent risk-free rate is computed from the bond
price curve on June 6, 2008. First, we calibrate the constant Heston model using the Lewis
formula. The calibrated parameters are κ = 41.95%, ρ = −38.27%, ξ = 59.34%, θ = 12.40%,
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Table 7
Implied Black–Scholes volatilities of the closed formula, of the approximation formula, and of the averaging

formula, expressed as a function of maturities in fractions of years and relative strikes. Piecewise constant
parameters.

3M 23.45% 21.88% 20.58% 19.70% 19.39% 19.55% 19.74% 19.97%
22.73% 21.96% 20.60% 19.69% 19.35% 19.53% 19.84% 20.28%
23.45% 21.88% 20.58% 19.70% 19.39% 19.55% 19.74% 19.97%

6M 24.09% 22.59% 21.30% 19.63% 19.33% 19.58% 19.92% 20.31%
23.09% 22.60% 21.43% 19.61% 19.30% 19.58% 20.19% 20.93%
24.09% 22.59% 21.30% 19.63% 19.33% 19.58% 19.92% 20.31%

1Y 23.95% 22.66% 20.76% 19.70% 19.37% 19.69% 20.12% 20.36%
23.12% 22.66% 20.81% 19.68% 19.32% 19.78% 20.62% 21.05%
23.95% 22.66% 20.76% 19.70% 19.37% 19.69% 20.12% 20.35%

2Y 23.26% 22.30% 21.01% 19.99% 19.66% 19.83% 20.09% 20.37%
22.84% 22.33% 21.04% 19.96% 19.62% 19.90% 20.43% 21.02%
23.26% 22.30% 21.01% 19.98% 19.66% 19.83% 20.09% 20.37%

3Y 23.28% 22.40% 21.27% 20.26% 19.96% 20.02% 20.23% 20.43%
22.81% 22.38% 21.33% 20.24% 19.93% 20.04% 20.47% 20.90%
23.28% 22.40% 21.27% 20.26% 19.96% 20.02% 20.23% 20.42%

5Y 23.22% 22.46% 21.34% 20.77% 20.54% 20.54% 20.65% 20.80%
22.88% 22.44% 21.35% 20.77% 20.52% 20.55% 20.76% 21.09%
23.22% 22.46% 21.34% 20.77% 20.54% 20.54% 20.64% 20.79%

7Y 23.86% 22.36% 21.81% 21.26% 21.06% 21.06% 21.16% 21.27%
23.25% 22.39% 21.82% 21.26% 21.05% 21.07% 21.23% 21.45%
23.86% 22.37% 21.81% 21.26% 21.06% 21.06% 21.15% 21.26%

10Y 23.59% 22.96% 22.30% 21.97% 21.82% 21.83% 21.92% 22.02%
23.46% 22.98% 22.30% 21.97% 21.81% 21.84% 21.96% 22.12%
23.59% 22.96% 22.30% 21.97% 21.82% 21.83% 21.92% 22.01%

and v0 = 4.40%. We give in Table 10 the error of implied Black–Scholes volatilities between
the calibrated price computed using the Monte Carlo scheme and the market price. The mean
absolute error is 0.72%. Now, we calibrate the implied Black–Scholes volatility surface using
our approximation formula (2.13) for piecewise constant parameters. The time break points
are the surface time break points. The calibrated parameters are given in Table 11. For the
reader interested in practical considerations in the calibration procedure, we refer him/her
to [16] for interesting suggestions defining constraints on the parameters that ensure a more
robust calibration. We give in Table 12 the error of implied Black–Scholes volatilities between
the calibrated price computed using the Monte Carlo scheme and the market price. The mean
absolute error is 0.19%. Hence, the accuracy is improved by a factor 3.8, which demonstrates
the potential interest of using the time dependent Heston model. However, in this example,
we observe that the time parameters vary greatly and the use of the Heston model (on these
data) is questionable.

Computational time. Regarding the computational time, the approximation formula
(2.13) yields essentially the same computational cost as the Black–Scholes formula, while
the closed formula requires an additional space integration involving many exponential and
trigonometric functions for which evaluation costs are higher. For instance, using a 2.6 GHz
Pentium PC, the computations of the 64 numerical values in Table 3 (or 5) take 4.71 ms using
the approximation formula and 301 ms using the closed formula. For the example with time
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Table 8
Put prices of the closed formula, of the approximation formula, and of the averaging formula, expressed as

a function of maturities in fractions of years and relative strikes. Piecewise constant parameters.

3M 30.00 20.07 10.78 3.93 0.87 0.13 0.05 0.02
30.00 20.08 10.78 3.93 0.87 0.13 0.05 0.02
30.00 20.07 10.78 3.93 0.87 0.13 0.05 0.02

6M 40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01
40.00 30.06 20.42 5.53 2.05 0.18 0.05 0.02
40.01 30.06 20.41 5.53 2.06 0.18 0.05 0.01

1Y 50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02
50.01 40.07 21.35 7.84 1.95 0.18 0.04 0.02
50.01 40.07 21.33 7.85 1.97 0.17 0.03 0.02

2Y 60.02 50.11 31.38 11.23 2.92 0.24 0.06 0.01
60.01 50.11 31.39 11.23 2.90 0.25 0.07 0.02
60.02 50.11 31.38 11.23 2.92 0.24 0.06 0.01

3Y 70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02
70.01 60.07 41.08 13.92 3.54 0.42 0.09 0.03
70.01 60.07 41.07 13.92 3.55 0.41 0.08 0.02

5Y 80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04
80.01 70.07 42.64 18.36 5.72 0.61 0.16 0.04
80.01 70.07 42.64 18.37 5.74 0.61 0.15 0.04

7Y 90.00 70.24 52.22 22.15 6.46 0.86 0.21 0.06
90.00 70.24 52.22 22.15 6.45 0.86 0.21 0.07
90.00 70.24 52.22 22.15 6.46 0.86 0.21 0.06

10Y 90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11
90.01 80.14 54.13 27.16 8.70 1.42 0.36 0.12
90.01 80.14 54.13 27.17 8.71 1.42 0.35 0.11

Table 9
Implied volatility surface for the S&P 500 Index (on June 16, 2008), expressed as a function of maturities

in fractions of years and relative strikes.

T/K 90.00% 95.00% 97.50% 100.00% 102.50% 105.00% 110.00%

3M 22.48% 21.61% 21.11% 20.60% 20.18% 19.76% 18.88%

1Y 24.62% 23.25% 22.57% 21.87% 21.22% 20.60% 19.30%

1Y+6M 24.66% 23.51% 22.95% 22.38% 21.80% 21.29% 20.22%

2Y 24.83% 23.81% 23.33% 22.84% 22.34% 21.86% 20.93%

dependent coefficients (reported in Table 7), the computational time for the 64 prices is about
40.2 ms using the approximation formula and 2574 ms using the closed formula. Roughly
speaking, the use of the approximation formula enables us to speed up the valuation (and
thus the calibration) by a factor 100 to 600.

4. Proof of Theorem 2.3. The proof is divided into several steps. In subsection 4.1 we
give the upper bounds for derivatives of the put function PBS , in subsection 4.2 the conditions
for positivity of the squared volatility process v, in subsection 4.3 the upper bounds for the
negative moments of the integrated squared volatility

∫ T
0 vtdt, and in subsection 4.4 the upper

bounds for derivatives of functionals of the squared volatility process v. Finally, in subsection
4.5, we complete the proof of Theorem 2.3 using the previous subsections.
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Table 10
Error of implied volatility surface (in %) when calibrating the constant Heston model.

T/K 90.00% 95.00% 97.50% 100.00% 102.50% 105.00% 1.1

3M −1.71% −0.63% −0.26% −0.01% 0.17% 0.18% −0.36%

1Y 1.27% 1.05% 0.88% 0.64% 0.40% 0.12% −0.71%

1Y+6M 1.57% 1.12% 0.89% 0.62% 0.31% 0.03% −0.68%

2Y 2.12% 1.42% 1.10% 0.76% 0.39% 0.04% −0.69%

Table 11
The piecewise constant calibrated parameters.

T/Calibrated parameters κ ρ ξ v0 θ

3M 8.63% −99.30% 15.63% 3.49% 83.35%

1Y 8.63% −99.84% 37.16% 3.49% 19.92%

1Y+6M 8.63% −10.65% 16.85% 3.49% 15.83%

2Y 8.63% 40.91% 0.13% 3.49% 53.15%

Notation. In order to alleviate the proofs, we introduce some notation specific to this
section.

Differentiation. For every process Zε, we write (if these derivatives have a meaning)

(i) Zi,t =
∂iZε

t

∂εi
|ε=0,

(ii) the ith Taylor residual by RZε

i,t = Zε
t −

∑i
j=0

εj

j!Zj,t.

Generic constants. We keep the same notation C for all nonnegative constants

(i) depending on universal constants, on a number p ≥ 1 arising in Lp estimates, on
θInf , v0, and K;

(ii) depending in a nondecreasing way on κ, 1√
1−|ρ|2Sup

, θSup, ξSup,
ξSup

ξInf
, and T .

We write A = O(B) when |A| ≤ CB for a generic constant.

Miscellaneous.

(i) We write σεt =
√
vεt for the volatility for the perturbed process.

(ii) If (Z)t∈[0,T ] is a càdlàg process, we denote by Z∗ its running extremum: Z∗
t =

sups≤t |Zs| for all t ∈ [0, T ].

(iii) The Lp norm of a random variable is denoted, as usual, by ‖Z‖p = E[|Z|p]1/p.

4.1. Upper bounds for put derivatives.

Lemma 4.1. For every (i, j) ∈ N
2, there exists a polynomial P with positive coefficients

such that

sup
x∈R

∣∣∣∣∂i+jPBS

∂xiyj
(x, y)

∣∣∣∣ ≤ P (
√
y)

y
(2j+i−1)+

2

.

Proof. Note that it is enough to prove the estimates for j = 0, owing to the relation (2.2).
We now take j = 0. For i = 0, the inequality holds because PBS is bounded. Thus consider
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Table 12
Error of implied volatility surface (in %) when calibrating the time dependent Heston model.

T/K 90.00% 95.00% 97.50% 100.00% 102.50% 105.00% 110.00%

3M 0.41% 0.24% 0.13% 0.03% 0.04% 0.05% 0.07%

1Y −0.20% −0.25% −0.25% −0.25% −0.18% −0.07% 0.16%

1Y+6M −0.27% −0.18% −0.11% −0.05% 0.02% 0.17% 0.46%

2Y −0.35% −0.32% −0.28% −0.25% −0.24% −0.20% −0.13%

i ≥ 1. Then, by differentiating the payoff, one gets

∂iPBS

∂xi
(x, y) = ∂ixE[e

− ∫ T
0

rtdt(K − ex+
∫ T
0
(rt−qt)dt− y

2
+
√

y
T
WT )+]

= −∂i−1
x E

[
�

(e
x+

∫T
0 (rt−qt)dt−y

2 +
√

y
T

WT ≤K)
ex−

∫ T
0 qtdt− y

2
+
√

y
T
WT

]
= −∂i−1

x E[Ψ(x+G)],

where Ψ is a bounded function (by K) and G is a Gaussian variable with zero mean and

variance equal to y. For such a function, we write E[Ψ(x+G)] =
∫
R
Ψ(z)e

−(z−x)2/(2y)√
2πy

dz, and

from this it follows by a direct computation that∣∣∂i−1
x E[Ψ(x+G)]

∣∣ ≤ C

y
i−1
2

for any x and y. We have proved the estimate for j = 0 and i ≥ 1.

4.2. Positivity of the squared volatility process v. For a complete review related to time
homogeneous CIR processes, we refer the reader to [20]. For time dependent CIR processes,
see [30], where the existence and representation using squared Bessel processes are provided.

To prove the positivity of the process v, we show that it can be bounded from below by a
suitable time homogeneous CIR process, time scale being the only difference (see Definition
5.1.2 in [39]). The arguments are quite standard, but since we need a specific statement that
is not available in the literature, we detail the result and its proof. The time change t �→ At

is defined by

t =

∫ At

0
ξ2sds.

Because ξInf > 0, A is a continuous, strictly increasing time change and its inverse A−1 enjoys
the same properties.

Lemma 4.2. Assume Assumption (P) and v0 > 0. Denote by (ys)0≤s≤A−1
T

the CIR process

defined by

dyt =

(
1

2
− κ

ξ2Inf
yt

)
dt+

√
ytdB̃t, y0 = v0,

where B̃ is the Brownian motion given by

B̃t =

∫ AT

0
ξsdBs.(4.1)
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Then, a.s. one has vt ≥ yA−1
t

for any t ∈ [0, T ]. In particular, (vt)0≤t≤T is a.s. positive.

Proof. Note that (B̃t)0≤t≤A−1
T

is really a Brownian motion because by Lévy’s characteri-

zation theorem it is a continuous local martingale with 〈B̃, B̃〉t = t (see Proposition 5.1.5 in
[39] for the computation of the bracket). Now that we have set ṽt = vAt , our aim is to prove
that ṽt ≥ yt for t ∈ [0, A−1

T ]. Using Propositions 5.1.4 and 5.1.5 in [39], we write

ṽt = v0 +

∫ At

0
(κ(θs − vs)ds+ ξs

√
vsdBs) = v0 +

∫ t

0

(
κ

ξ2As

(θAs − ṽs)ds+
√
ṽsdB̃s

)
.

Now we apply a comparison result for SDEs twice (see Proposition 5.2.18 in [24]).

1. First, one gets ṽt ≥ nt, where (ns)s is the (unique) solution of

nt = 0 +

∫ t

0
− κ

ξ2As

nsds+
√
nsdB̃s,

because v0 ≥ 0 and κ
ξ2As

(θAs − x) ≥ − κ
ξ2As

x for all x ∈ R and s ∈ [0, A−1
T ]. Of course nt = 0;

thus ṽt is nonnegative.
2. Second, using the nonnegativity of ṽ, we need only compare drift coefficients for the

nonnegative variable x. Under Assumption (P), since

κ

ξ2As

(θAs − x) ≥
1

2
− κ

ξ2Inf
x ∀x ≥ 0,∀s ∈ [0, A−1

T ],

we obtain ṽt ≥ yt for t ∈ [0, A−1
T ] a.s.

Moreover, the positivity of y (and consequently that of v) is standard: indeed, y is a
two-dimensional squared Bessel process with a time/space scale change (see [20] or the proof
of Lemma 4.3).

4.3. Upper bound for negative moments of the integrated squared volatility process∫ T
0 vtdt.

Lemma 4.3. Assume Assumption (P). Then, for every p > 0, one has

sup
0≤ε≤1

E

[(∫ T

0
vεtdt

)−p
]
≤ C

T p
.

Before proving the result, we mention that analogous estimates appear in [12] (Lemmas
A.1 and A.2): some exponential moments are stated under stronger conditions than those in
Assumption (P). In addition, the uniformity of the estimates w.r.t. ξ (or equivalently w.r.t.
ε) is not emphasized. In our study, it is crucial to get uniform estimates w.r.t. ε.

Proof. Fix p ≥ 1
2 (for 0 < p < 1

2 , we derive the result from the case p = 1
2 using the Hölder

inequality). The proof is divided into two steps. We first prove the estimates in the case of
constant coefficients κ, θ, and ξ with κθ = 1

2 , ε = 1, and ξ = 1. Then, using the time change
of Lemma 4.2, we derive the result for (vεt )t. The critical point is to get estimates that are
uniform w.r.t. ε.
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Step 1. Take θt ≡ θ, ξt ≡ 1, κθ = 1
2 , ε = 1 and consider

dyt =

(
1

2
− κyt

)
dt+

√
ytdBt, y0 = v0

for a standard Brownian motion B. We represent y as a time/space transformed squared
Bessel process (see [20])

yt = e−κtz (eκt−1)
4κ

,

where z is a two-dimensional squared Bessel process. Therefore, using a change of variable
and the explicit expression of the Laplace transform for the integral of z (see [11, p. 377]),
one obtains for any u ≥ 0

E

[
exp

(
−u
∫ T

0

ytdt

)]
≤ E

⎡⎣exp
⎛⎝−4ue−2κT

∫ (eκT −1)
4κ

0

zsds

⎞⎠⎤⎦
≤ cosh

(√
2u(1− e−κT )

2κ

)−1

exp

(
−
√
2ue−κTv0 tanh

(√
2u(1− e−κT )

2κ

))
.

Combining this with the identity x−p = 1
Γ(p)

∫∞
0 up−1e−uxdu for x =

∫ T
0 ytdt, one gets

E

[(∫ T

0
ytdt

)−p
]
≤ 1

Γ(p)

∫ ∞

0
up−1 cosh

(√
2u(1− e−κT )

2κ

)−1

× exp

(
−
√
2ue−κT v0 tanh

(√
2u(1− e−κT )

2κ

))
du.

Define the parameter λ2 = (eκT−1)
2κv0

and the new variable n =
√
2u(1−e−κT )

2κ = v0e
−κTλ2

√
2u. It

readily follows that

E

[(∫ T

0
ytdt

)−p
]
≤ C

(
eκT

λ2

)2p ∫ ∞

0
n2p−1 cosh(n)−1 exp

(
−tanh(n)n

λ2

)
dn,

where C is a constant depending only on v0 and p. We upper bound the above integral
differently according to the value of λ.

(i) If λ ≥ 1, then

(4.2) E

[(∫ T

0
ytdt

)−p
]
≤ C

(
eκT

λ2

)2p ∫ ∞

0
n2p−1 cosh(n)−1dn ≤ Ce2pκT .

(ii) If λ ≤ 1, split the integral into two parts, n ≤ arctanh(λ) and n ≥ arctanh(λ). For
the first part, simply use n ≥ tanh(n) for any n. For the second part, use tanh(n) ≥ λ and
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cosh(n)−1 ≤ 1. This gives

E

[(∫ T

0
ytdt

)−p
]
≤ C

[(
eκT

λ2

)2p ∫ arctanh(λ)

0
n2p−1 cosh(n)−1 exp

(
−tanh2(n)

λ2

)
dn

+

(
eκT

λ2

)2p ∫ ∞

arctanh(λ)
n2p−1 exp

(
−n
λ

)
dn

]
:= C[T1 + T2].(4.3)

We upper bound the two terms separately.
1. Term T1. Using the change of variable m = tanh(n)

λ , one has

T1 ≤ e2pκTλ−4p+1

∫ 1

0
arctanh(λm)2p−1 cosh(arctanh(λm)) exp(−m2)dm.

Because of λ ≤ 1, we have the following inequalities for m ∈ [0, 1[:

arctanh(λm) ≤ λarctanh(m), cosh(arctanh(λm)) ≤ cosh(arctanh(m)).

Using 2p − 1 ≥ 0, it readily follows that

(4.4) T1 ≤
(
e2κT

λ2

)p ∫ 1

0
arctanh(m)2p−1 cosh(arctanh(m)) exp(−m2)dm.

2. Term T2. Clearly, we have

(4.5) T2 ≤
(
eκT

λ2

)2p ∫ ∞

0
n2p−1 exp

(
−n
λ

)
dn =

(
e2κT

λ2

)p ∫ ∞

0
v2p−1e−vdv.

Combining (4.3), (4.4), and (4.5), we obtain E[(
∫ T
0 ytdt)

−p] ≤ C(e
2κT

λ2 )p. In view of the in-

equality (ex − 1 ≥ x, x ≥ 0), we have λ2 = (eκT−1)
2κv0

≥ T
2v0

, which gives

(4.6) E

[(∫ T

0
ytdt

)−p
]
≤ C e

2pκT

T p
,

available when λ ≤ 1.

To sum up (4.2) and (4.6), we have proved that

(4.7) E

[(∫ T

0
ytdt

)−p
]
≤ Ce2pκT

(
1 +

1

T p

)

for a constant C depending only on p and v0.

Step 2. Take ε ∈]0, 1]. We apply Lemma 4.2 to vε, in order to write vεt ≥ yε
A−1

ε,t

, where

t =
∫ Aε,t

0 (εξs)
2ds and dyεt = (12 − κ

(εξInf )2
yεt)dt +

√
yεtdB̃

ε
t , y

ε
0 = y0. Thus, we get

∫ T
0 vεtdt ≥
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(
∫ A−1

ε,t

0 yεsds)/(εξSup)
2 and, in view of (4.7), it follows that

E

[(∫ T

0
vεtdt

)−p
]
≤ (εξSup)

2p
E

(∫ A−1
ε,T

0
yεsds

)−p

≤ C(εξSup)
2pe

2p κ
(εξInf )2

A−1
ε,T

(
1 +

1

[A−1
ε,T ]

p

)

≤ Ce
2pκ

ξ2Sup

ξ2
Inf

T
(
ξ2pSup +

ξ2pSup

ξ2pInf

1

T p

)
,

where we have used ε2ξ2InfT ≤ A−1
ε,T ≤ ε2ξ2SupT .

Note that the upper bound does not depend on ε ∈]0, 1]. For ε = 0, the upper bound in
Lemma 4.3 is also true because (v0t )t is deterministic and

(4.8) max(v0, θSup) ≥ v0t ≥ min(v0, θInf ) > 0.

4.4. Upper bound for residuals of the Taylor development of g(ε) defined in (1.4).
Throughout the following section, we assume that Assumption (P) is in force. We define the
variables:

P ε
T =

∫ T

0
ρt(σ

ε
t − σ0,t)dBt −

∫ T

0

ρ2t
2
(vεt − v0,t)dt, Qε

T =

∫ T

0
(1− ρ2t )(vεt − v0,t)dt.

Notice that (x0+
∫ T
0 ρt
√
v0,tdBt−

∫ T
0

ρ2t
2 v0,tdt,

∫ T
0 (1−ρ2t )v0,tdt)+(P 1

T , Q
1
T ) = (x0+

∫ T
0 ρt

√
v1t dBt−∫ T

0
ρ2t
2 v

1
t dt,

∫ T
0 (1− ρ2t )v1t dt).

The main result of this subsection is the following proposition, the statement of which
uses the notation introduced at the beginning of section 4.

Proposition 4.4. One has the following estimates for every p ≥ 1:

‖P 1
T ‖p ≤ C(ξSup

√
T )
√
T ,

‖RP 1

2,T ‖p ≤ C(ξSup
√
T )3
√
T ,

‖R(P 1)2

2,T ‖p ≤ C(ξSup
√
T )3T,

‖Q1
T ‖p ≤ C(ξSup

√
T )T,

‖RQ1

2,T ‖p ≤ C(ξSup
√
T )3T,

‖R(Q1)2

2,T ‖p ≤ C(ξSup
√
T )3T 2,

‖RP 1Q1

2,T ‖p ≤ C(ξSup
√
T )3T

3
2 .

To estimate the derivatives and the residuals for the variables P ε
T and Qε

T , we first need
to prove the existence of the derivatives and the residuals of the volatility process σεt =

√
vεt

and its square vε. Finally we prove Proposition 4.4.
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4.4.1. Upper bounds for derivatives of σε and vε. Under Assumption (P), the volatility
process σεt is governed by the SDE

dσεt =

((
κθt
2
− ε2ξ2t

8

)
1

σεt
− κ

2
σεt

)
dt+

εξt
2
dBt, σε0 =

√
v0,(4.9)

where we have used Itô’s lemma and the positivity of vεt (see Lemma 4.2).

In order to estimate Rσε

0,t, we are going to prove that it verifies a linear equation (Lemma
4.5) from which we deduce an a priori upper bound (Proposition 4.6). We iterate the same
analysis for the residuals Rσε

1,t (Proposition 4.7) and Rσε

2,t (Proposition 4.8). Analogously, we
give upper bounds for the residuals of vεt (Corollary 4.9).

Lemma 4.5. Under Assumption (P), the process (Rσε

0,t = σεt − σ0t )0≤t≤T is given by

Rσε

0,t = U ε
t

∫ t

0
(U ε

s)
−1

(
− ε

2ξ2s
8σ0,s

ds+
εξs
2
dBs

)
,

where

dU ε
t = −αε

tU
ε
t dt, U ε

t = 1,

αε
t =

(
κθt
2
− ε2ξ2t

8

)
1

σεtσ0,t
+
κ

2
.

Proof. From the definition (σ0,t)t = (σ0t )t and (4.9), one obtains the SDE

dσ0,t =

(
κθt
2σ0,t

− κ

2
σ0,t

)
dt, σ0,0 =

√
v0.

Substitute this equation in (4.9) to obtain

(4.10) dRσε

0,t = −αε
tR

σε

0,tdt−
ε2ξ2t
8σ0,t

dt+
εξt
2
dBt, Rσε

0,0 = 0.

Note that Rσε

0,. is the solution of a linear SDE. Hence, it can be explicitly represented using
the process U ε (see Theorem 52 in [37]):

Rσε

0,t = U ε
t

∫ t

0
(U ε

s)
−1

(
− ε

2ξ2s
8σ0,s

ds+
εξs
2
dBs

)
.

Proposition 4.6. Under Assumption (P), for every p ≥ 1 one has

‖(Rσε

0,.)
∗
t ‖p ≤ CεξSup

√
t.

In particular, the application ε � σεt is continuous6 at ε = 0 in Lp.

6Note that from the upper bound (4.11) in the proof we easily obtain that the continuity also holds a.s.
and not only in Lp. Since only the latter is needed in what follows, we do not go into detail.
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Proof. At first sight, the proof seems to be straightforward from Lemma 4.5. But actually,
the difficulty lies in the fact that one cannot uniformly in ε upper bound U ε

t in Lp (because
of the term with 1/σεt in αε

t).
Using Lemma 4.5 and Itô’s formula for the product (U ε

t )
−1(
∫ t
0

εξs
2 dBs), one has

Rσε

0,t = U ε
t

∫ t

0
(U ε

s)
−1

(
− ε

2ξ2s
8σ0,s

)
ds+

∫ t

0

εξs
2
dBs − U ε

t

∫ t

0

(∫ s

0

εξu
2

dBu

)
d(U ε

s)
−1.

Under Assumption (P), one has αε
t ≥ κ/2 > 0, which implies that t �→ U ε

t is decreasing and
t �→ (U ε

t )
−1 is increasing. Thus, 0 ≤ U ε

t (U
ε
s)

−1 ≤ 1 for s ∈ [0, t]. Consequently, we deduce

|Rσε

0,t| ≤
∫ t

0

ε2ξ2s
8σ0,s

ds+

(∫ .

0

εξs
2
dBs

)∗

t

+

(∫ .

0

εξs
2
dBs

)∗

t

(1− U ε
t )

≤
∫ t

0

ε2ξ2s
8σ0,s

ds+

(∫ .

0
εξsdBs

)∗

t

.(4.11)

Now we easily complete the proof by observing that σ0,s ≥ min(
√
θInf ,

√
v0) and ‖(

∫ .
0 ξsdBs)

∗
t ‖p

≤ CξSup
√
t.

We define (σ1,t)0≤t≤T as the solution of the linear equation (4.12), which is obtained by
taking derivatives w.r.t. ε of (4.9) and setting ε equal to zero thereafter:

dσ1,t = −
(

κθt
2(σ0,t)2

+
κ

2

)
σ1,tdt+

ξt
2
dBt, σ1,0 = 0.(4.12)

The solution of this SDE is obtained similarly as was done with (4.10) and is given by the
equation

σ1,t = U0
t

∫ t

0
(U0

s )
−1 ξs

2
dBs.

For every p ≥ 1, taking into account that 0 ≤ U0
t (U

0
s )

−1 ≤ 1 for s ∈ [0, t], the upper bound is
given by (4.13) (see now that there is a uniform bound w.r.t. ε):

‖(σ1,.)∗t ‖p ≤ CξSup
√
t.(4.13)

Proposition 4.7. Under Assumption (P), the process (Rσε

1,t = σεt − σ0t − εσ1,t)0≤t≤T fulfills
the equality

Rσε

1,t = U ε
t

∫ t

0
(U ε

s)
−1

(
− ε

2ξ2s
8σ0,s

+ εσ1,s

((
αε
s

σ0,s
− κ

2σ0,s

)
Rσε

0,s +
ε2ξ2s
8σ0,s

))
ds.

Moreover, for every p ≥ 1, one has

‖(Rσε

1,.)
∗
t ‖p ≤ C(εξSup

√
t)2.

In particular, the application ε � σεt is C1 at ε = 0 in the Lp sense with the first derivative at
ε = 0 equal to σ1,t (justifying a posteriori the definition Rσε

1,.).
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Proof. From (4.10) and (4.12), it readily follows that

dRσε

1,t = −αε
tR

σε

1,tdt− εσ1,t
(
αε
t −

κθt
2(σ0,t)2

− κ

2

)
dt− ε2ξ2t

8σ0,t
dt, Rσε

1,0 = 0.

Because of the identity

−
(
αε
t −

κθt
2(σ0,t)2

− κ

2

)
=

((
αε
t

σ0,t
− κ

2σ0,t

)
Rσε

0,t +
ε2ξ2t

8(σ0,t)2

)
,

one deduces the equality

Rσε

1,t = U ε
t

∫ t

0
(U ε

s)
−1

(
− ε

2ξ2s
8σ0,s

+ εσ1,s

((
αε
s

σ0,s
− κ

2σ0,s

)
Rσε

0,s +
ε2ξ2s

8(σ0,s)2

))
ds.

Then

|Rσε

1,t| ≤
∫ t

0
U ε
t (U

ε
s)

−1

(
ε2ξ2s
8σ0,s

+ ε|σ1,s|
((

αε
s

σ0,s
+

κ

2σ0,s

)
|Rσε

0,s|+
ε2ξ2s

8(σ0,s)2

))
ds

≤
∫ t

0
U ε
t (U

ε
s)

−1

(
ε2ξ2s
8σ0,s

+ ε|σ1,s|
(

κ

2σ0,s
|Rσε

0,s|+
ε2ξ2s

8(σ0,s)2

))
ds

+ ε

∫ t

0
U ε
t (U

ε
s)

−1 α
ε
s

σ0,s
|σ1,s‖Rσε

0,s|ds

≤
∫ t

0

(
ε2ξ2s
8σ0,s

+ ε|σ1,s|
(

κ

2σ0,s
|Rσε

0,s|+
ε2ξ2s

8(σ0,s)2

))
ds+ ε

(
σ1,.R

σε

0,.

σ0,.

)∗

t

,

where we have used U ε
t (U

ε
s)

−1 ≤ 1 for every s ∈ [0, t] and U ε
t

∫ t
0 α

ε
s(U

ε
s)

−1ds = 1 − U ε
t ≤ 1 for

the third inequality. Apply Proposition 4.6 and inequality (4.13) to complete the proof of the
estimate of ‖(Rσε

1,.)
∗
t ‖p.

We define (σ2,t)0≤t≤T as the solution of the linear equation (4.14), which is obtained by
differentiating twice (4.9) w.r.t. ε and setting ε equal to zero:

dσ2,t =

(
−
(

κθt
2(σ0,t)2

+
κ

2

)
σ2,t + κθt

(σ1,t)
2

(σ0,t)3
− ξ2t

4σ0,t

)
dt, σ2,0 = 0.(4.14)

Clearly, for p ≥ 1, we have

‖(σ2,.)∗t ‖p ≤ C(ξSup
√
t)2.(4.15)

Proposition 4.8. Under Assumption (P), the process (Rσε

2,t = σεt − σ0t − εσ1,t − ε2

2 σ2,t)0≤t≤T

fulfills the equality

Rσε

2,t = U ε
t

∫ t

0
(U ε

s )
−1

[
ε2
((

αε
s

σ0,s
− κ

2σ0,s

)
Rσε

0,s +
ε2ξ2s

8(σ0,s)2

)(
σ2,s
2
− (σ1,s)

2

σ0,s

)
+ ε

((
αε
s

σ0,s
− κ

2σ0,s

)
Rσε

1,s +
ε2ξ2s

8(σ0,s)2

)
σ1,s

]
ds.
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Moreover, for every p ≥ 1, one has

‖(Rσε

2,.)
∗
t ‖p ≤ C(εξSup

√
t)3.

In particular, the application ε � σεt is C2 at ε = 0 in the Lp sense with the second derivative
at ε = 0 equal to σ2,t.

Proof. The equality is easy to check. The estimate is proved in the same way as in the
proof of Proposition 4.7; we therefore skip the details.

Corollary 4.9. The application ε � vεt is C2 at ε = 0 in the Lp sense. The residuals for the
squared volatility satisfy the following inequalities: for every p ≥ 1, one has

‖(Rvε

0,.)
∗
t ‖p ≤ CεξSup

√
t,

‖(Rvε

1,.)
∗
t ‖p ≤ C(εξSup

√
t)2,

‖(Rvε
2,.)

∗
t ‖p ≤ C(εξSup

√
t)3.

Proof. Note that vεt = (σεt)
2 = (σ0,t + Rσε

0,t)
2 = v0,t + 2σ0,tR

σε

0,t + (Rσε

0,t)
2. Thus, we have

Rvε
0,t = 2σ0,tR

σε

0,t + (Rσε

0,t)
2, which leads to the required estimate using σ0,t ≤ max(

√
v0,
√
θSup)

and Proposition 4.6. The other estimates are proved analogously using Propositions 4.7 and
4.8 and inequalities (4.13) and (4.15).

4.4.2. Proof of Proposition 4.4. We can write

P 1
T =

∫ T

0
ρtR

σ1

0,tdBt −
∫ T

0

ρ2t
2
Rv1

0,tdt, RP 1

2,T =

∫ T

0
ρtR

σ1

2,tdBt −
∫ T

0

ρ2t
2
Rv1

2,tdt.

Then, using Propositions 4.6 and 4.8 and Corollary 4.9, we prove the two first estimates of
Proposition 4.4. The others inequalities are proved in the same way.

4.5. Proof of Theorem 2.3. For convenience, we introduce the following notation for
λ ∈ [0, 1]:

P̄BS(λ) = PBS

(
x0 +

∫ T

0
ρt

(
(1− λ)√v0,t + λ

√
v1t

)
dBt −

∫ T

0

ρ2t
2
((1− λ)v0,t + λv1t )dt,∫ T

0
(1− ρ2t )((1− λ)v0,t + λv1t )dt

)
,

∂i+jP̄BS

∂xiyj
(λ) =

∂i+jPBS

∂xiyj

(
x0 +

∫ T

0
ρt

(
(1− λ)√v0,t + λ

√
v1t

)
dBt −

∫ T

0

ρ2t
2
((1− λ)v0,t + λv1t )dt,∫ T

0
(1− ρ2t )((1− λ)v0,t + λv1t )dt

)
.

Notice that P̃BS (see (2.5)) is a particular case of P̄BS for λ = 0:

P̃BS = P̄BS(0),
∂i+jP̃BS

∂xiyj
=
∂i+jP̄BS

∂xiyj
(0).
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Now, we represent the error E in (2.12) using the previous notation. A second order Taylor
expansion leads to

g(1) = E(P̄BS(1)) = E

(
P̄BS(0) + ∂λP̄BS(0) +

1

2
∂2λP̄BS(0) +

∫ 1

0
dλ

(1− λ)2
2

∂3λP̄BS(λ)

)
.

The first term E(P̄BS(0)) is equal to (2.6). Approximations of the three above derivatives
contribute to the error E .

1. We have E(∂λP̄BS(0)) = E(∂P̃BS
∂x P 1

T + ∂P̃BS
∂y Q1

T ). These two terms are equal to (2.7)
and (2.8) plus an error equal to

E

(
∂P̃BS

∂x
RP 1

2,T +
∂P̃BS

∂y
RQ1

2,T

)
.

2. W.r.t. the second derivatives, we have E(12∂
2
λP̄BS(0)) = E(12

∂2P̃BS
∂x2 (P 1

T )
2+1

2
∂2P̃BS
∂y2

(Q1
T )

2+

∂2P̃BS
∂xy P 1

TQ
1
T ). These terms are equal to (2.9), (2.10), and (2.11) plus an error equal to

E

(
1

2

∂2P̃BS

∂x2
R

(P 1)2

2,T +
1

2

∂2P̃BS

∂y2
R

(Q1)2

2,T +
∂2P̃BS

∂xy
RP 1Q1

2,T

)
.

3. The last term with ∂3λP̄BS is neglected and thus is considered as an error.

To sum up, we have shown that

E =

1∑
i=0

E

[
∂1P̄BS

∂xiy1−i
(0)R

(P 1)i(Q1)1−i

2,T

]
+

2∑
i=0

Ci
2

2
E

[
∂2P̄BS

∂xiy2−i
(0)R

(P 1)i(Q1)2−i

2,T

]

+

∫ 1

0

(1− λ)2
2

3∑
i=0

Ci
3E

[
∂3P̄BS

∂xiy3−i
(λ)(P 1

T )
i(Q1

T )
3−i

]
dλ.

Using Lemma 4.1 and Assumption (R), one obtains for all λ ∈ [0, 1]

∥∥∥∥∂i+jP̄BS

∂xiyj
(λ)

∥∥∥∥
2

≤ C
∥∥∥∥∥∥
(∫ T

0
((1 − λ)v0,t + λv1t )dt

)−(2j+i−1)+
2

∥∥∥∥∥∥
4

≤ C
⎛⎝(1− λ)

∥∥∥∥∥∥
(∫ T

0
v0,tdt

)−(2j+i−1)+
2

∥∥∥∥∥∥
4

+ λ

∥∥∥∥∥∥
(∫ T

0
v1t dt

)−(2j+i−1)+
2

∥∥∥∥∥∥
4

⎞⎠ ,

where we have applied a convexity argument. Finally, apply Lemma 4.3 with ε = 0 and ε = 1
to conclude that ∥∥∥∥∂i+jP̄BS

∂xiyj
(λ)

∥∥∥∥
2

≤ C

(
√
T )(2j+i−1)+
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uniformly w.r.t. λ ∈ [0, 1]. Combining this with Proposition 4.4 yields that

|E| ≤ C
(

1∑
i=0

(ξSup
√
T )3

T 1−i/2

(
√
T )1−i

+
2∑

i=0

(ξSup
√
T )3

T 2−i/2

(
√
T )3−i

+
3∑

i=0

(ξSup
√
T )3

T 3−i/2

(
√
T )5−i

)
≤ Cξ3SupT 2.

Theorem 2.3 is proved.

5. Proofs of Proposition 2.1 and Theorem 2.2.

5.1. Definitions. In order to make the approximation explicit, we introduce the following
family of operators indexed by maturity T .

Definition 5.1 (integral operator).We define the integral operator ω
(.,.)
.,T as follows:

(i) For any real number k and any integrable function l, we set

ω
(k,l)
t,T =

∫ T

t
ekuludu ∀t ∈ [0, T ].

(ii) For any real numbers (k1, . . . , kn) and for any integrable functions (l1, . . . , ln), the
n-times iteration is given by

ω
(k1,l1),...,(kn,ln)
t,T = ω

(k1,l1ω
(k2,l2),...,(kn,ln)
.,T )

t,T ∀t ∈ [0, T ].

(iii) When the functions (l1, . . . , ln) are equal to the unity constant function 1, we simply
write

ω̃k1,...,kn
t,T = ω

(k1,1),...,(kn,1)
t,T ∀t ∈ [0, T ].

Note that with this short notation used in Theorem 2.2, we have a1,T = ω
(κ,ρξv0,.),(−κ,1)
0,T ,

a2,T = ω
(κ,ρξv0,.),(0,ρξ),(−κ,1)
0,T , and b0,T = ω

(2κ,ξ2v0,.),(−κ,1),(−κ,1)
0,T .

5.2. Preliminary results. In this section, we bring together the results (and their proofs)
which allow us to derive the explicit terms in the formula (2.13). Before stating the lemmas,
we give some guidance about the way to express the correction terms as derivatives of the
leading price (2.13):

• Lemma 5.2 is the equivalent for random variables of the integration by parts formula.
It allows expressing the expectation of an Itô integral multiplied by a random variable.
This will lead to taking derivatives of P̃BS (the objective of the reduction).

• Lemma 5.3 is a simpler version of Lemma 5.2 in order to simplify some calculus.
• Lemma 5.4 is a simple application of the integration by parts formula w.r.t. time.
• Lemma 5.5 computes the expectation of integrals of derivatives w.r.t. ε of the stochas-

tic process vt in terms of the expectation of the derivatives of P̃BS .
• Lemma 5.6 computes the expectation of the derivatives of P̃BS .

In the following, αt (resp., βt) is a square integrable and predictable process (resp., determin-
istic) and l is a smooth function with derivatives having, at most, exponential growth.

For the next Malliavin calculus computations, we freely use standard notation from [33].
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Lemma 5.2 (see [33, Lemma 1.2.1]). Let G ∈ D
1,∞(Ω). One has

E

[
G

∫ t

0
αsdBs

]
= E

[∫ t

0
αsD

B
s (G)ds

]
,

where DB(G) = (DB
s (G))s≥0 is the first Malliavin derivative of G w.r.t. B.

Taking G = l(
∫ T
0 ρt
√
v0,tdBt) gives D

B
s (G) = l(1)(

∫ T
0 ρt
√
v0,tdBt)ρs

√
v0,s1s≤T . Hence, we

obtain immediately the following result.
Lemma 5.3. One has

E

[(∫ T

0
αtdBt

)
l

(∫ T

0
ρt
√
v0,tdBt

)]
= E

[(∫ T

0
ρt
√
v0,tαtdt

)
l(1)
(∫ T

0
ρt
√
v0,tdBt

)]
.

Lemma 5.4. For any deterministic integrable function f and any continuous semimartin-
gale Z vanishing at t = 0, one has∫ T

0
f(t)Ztdt =

∫ T

0
ω
(0,f)
t,T dZt.

Proof. This is an application of the Itô formula to the product ω
(0,f)
t,T Zt.

Lemma 5.5. One has

E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
βtv1,tdt

]
= ω

(κ,ρξv0,.),(−κ,β)
0,T E

[
l(1)
(∫ T

0
ρt
√
v0,tdBt

)]
,

E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
βtv

2
1,tdt

]
= ω

(2κ,ξ2v0,.),(−2κ,β)
0,T E

[
l

(∫ T

0
ρt
√
v0,tdBt

)]
+ 2ω

(κ,ρξv0,.),(κ,ρξv0,.),(−2κ,β)
0,T E

[
l(2)
(∫ T

0
ρt
√
v0,tdBt

)]
,

E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
βtv2,tdt

]
= ω

(κ,ρξv0,.),(0,ρξ),(−κ,β)
0,T E

[
l(2)
(∫ T

0
ρt
√
v0,tdBt

)]
.

Proof. Using Lemmas 5.3 (f(t) = e−κtβt, Zt =
∫ t
0 e

κsξs
√
v0,sdBs) and 5.4, one has

E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
βtv1,tdt

]
= E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
e−κtβt

∫ t

0
eκsξs

√
v0,sdBsdt

]
= E

[
l

(∫ T

0
ρt
√
v0,tdBt

)∫ T

0
ω
(−κ,β)
t,T eκtξt

√
v0,tdBt

]
= E

[
l(1)
(∫ T

0
ρt
√
v0,tdBt

)]∫ T

0
ω
(−κ,β)
t,T eκtρtξtv0,tdt,

which gives the first equality. The second and the third equalities are proved in the same
way.

Lemma 5.6. One has

E

[
∂i+jP̃BS

∂xiyj

]
=
∂i+jPBS

∂xiyj

(
x0,

∫ T

0
v0,tdt

)
.
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Proof. One has

E

[
∂iP̃BS

∂xi

]
= ∂ix=x0

E

[
PBS

(
x0 +

∫ T

0
ρt
√
v0,tdBt −

∫ T

0

ρ2t
2
v0,tdt,

∫ T

0
(1− ρ2t )v0,tdt

)]
=
∂iPBS

∂xi

(
x0,

∫ T

0
v0,tdt

)
.

Since P̃BS verifies the relation

∂P̃BS

∂y
=

1

2

(
∂2P̃BS

∂x2
− ∂P̃BS

∂x

)
,(5.1)

we immediately obtain the result.

5.3. Proof of Proposition 2.1. One has

E

[
∂P̃BS

∂x

(∫ T

0
ρt

(
v1,t

2(v0,t)
1
2

+
v2,t

4(v0,t)
1
2

− v21,t

8(v0,t)
3
2

)
dBt −

∫ T

0

ρ2t
2

(
v1,t +

v2,t
2

)
dt

)]

= E

[
1

2

(
∂2P̃BS

∂x2
− ∂P̃BS

∂x

)∫ T

0
ρ2t

(
v1,t +

v2,t
2

)
dt

]
− E

[
∂2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt

]

= E

[
∂P̃BS

∂y

∫ T

0
ρ2t

(
v1,t +

v2,t
2

)
dt

]
− E

[
∂2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt

]
,

where we have used Lemma 5.3 at the first equality and identity (5.1) at the second one.
Plugging this relation into the approximation (2.12) and summing the second and third lines,
one has

g(1) = E[P̃BS ] + E

[
∂P̃BS

∂y

∫ T

0

(
v1,t +

v2,t
2

)
dt

]

− E

[
∂2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt

]
+

1

2
E

⎡⎣∂2P̃BS

∂x2

(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

)2
⎤⎦

+
1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
(1− ρ2t )v1,tdt

)2
]

+ E

[
∂2P̃BS

∂xy

(∫ T

0
(1− ρ2t )v1,tdt

)(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

)]
+ E .(5.2)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

320 E. BENHAMOU, E. GOBET, AND M. MIRI

In addition, one has

− E

[
∂2P̃BS

∂x2

∫ T

0

ρ2t v
2
1,t

8v0,t
dt

]
+

1

2
E

⎡⎣∂2P̃BS

∂x2

(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

)2
⎤⎦

= E

[
∂2P̃BS

∂x2

∫ T

0

(∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs −
∫ t

0

ρ2s
2
v1,sds

)(
ρt

v1,t

2(v0,t)
1
2

dBt − ρ2t
2
v1,tdt

)]

= E

[
1

2

(
∂3P̃BS

∂x3
− ∂2P̃BS

∂x2

)∫ T

0

(∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs −
∫ t

0

ρ2s
2
v1,sds

)
ρ2t v1,tdt

]

= E

[
∂2P̃BS

∂xy

∫ T

0

(∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs −
∫ t

0

ρ2s
2
v1,sds

)
ρ2t v1,tdt

]
,

where we have used Itô’s lemma for the square at the first equality, Lemma 5.3 at the second
one, and identity (5.1) at the third one. Substituting this relation in the approximation (5.2)
and summing the second and fourth lines, one gets

g(1) = E[P̃BS ] + E

[
∂P̃BS

∂y

∫ T

0

(
v1,t +

v2,t
2

)
dt

]

+ E

[
∂2P̃BS

∂xy

(∫ T

0

(∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs −
∫ t

0

ρ2s
2
v1,sds

)
ρ2t v1,tdt

+

(∫ T

0
(1− ρ2t )v1,tdt

)(∫ T

0
ρt

v1,t

2(v0,t)
1
2

dBt −
∫ T

0

ρ2t
2
v1,tdt

))]

+
1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
(1− ρ2t )v1,tdt

)2
]
+ E .(5.3)

First, we define

Ht =

∫ t

0
ρs

v1,s

2(v0,s)
1
2

dBs −
∫ t

0

ρ2s
2
v1,sds, dHt = ρt

v1,t

2(v0,t)
1
2

dBt − ρ2t
2
v1,tdt.

We now study the second term of (5.3). In the computations below, we use Itô’s lemma
for the second equality, Lemma 5.3 and identity (5.1) for the third equality, and Lemma 5.2
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(G = ∂2P̃BS
∂xy v1,t) for the fourth equality; it gives

A = E

[
∂2P̃BS

∂xy

(∫ T

0
Htρ

2
t v1,tdt+

(∫ T

0
(1− ρ2t )v1,tdt

)
HT

)]

= E

[
∂2P̃BS

∂xy

(∫ T

0
Ht(ρ

2
t + 1− ρ2t )v1,tdt+

∫ T

0

(∫ t

0
(1− ρ2s)v1,sds

)
dHt

)]

=

∫ T

0
E

[
∂2P̃BS

∂xy
v1,tHt

]
dt+ E

[
∂2P̃BS

∂y2

∫ T

0

(∫ t

0
(1− ρ2s)v1,sds

)
ρ2t v1,tdt

]

=

∫ T

0
E

[
∂2P̃BS

∂xy

(
v1,t

(
−
∫ t

0

ρ2s
2
v1,sds

)
+

∫ t

0
ρs

v1,s
2
√
v0,s

DB
s v1,tds

)

+
∂3P̃BS

∂x2y
v1,t

∫ t

0

ρ2s
2
v1,sds

]
dt+ E

[
∂2P̃BS

∂y2

∫ T

0

(∫ t

0
(1− ρ2s)v1,sds

)
ρ2t v1,tdt

]
.

From (2.3), one has DB
s v1,t = e−kteksξs

√
v0,s. Hence it is deterministic. Thus, using identity

(5.1) and Lemma 5.3 for the first equality and (2.4) for the second equality, one has

A = E

[
∂2P̃BS

∂y2

(∫ T

0

(∫ t

0
ρ2sv1,sds

)
v1,tdt+

(∫ t

0
(1 − ρ2s)v1,sds

)
ρ2t v1,tdt

)]

+ E

[
∂P̃BS

∂y

∫ T

0

(∫ t

0

v1,s
2v0,s

e−kteksξs
√
v0,sdBs

)
dt

]

= E

[
∂2P̃BS

∂y2

(∫ T

0

(∫ t

0
ρ2sv1,sds

)
v1,tdt+

(∫ t

0
(1 − ρ2s)v1,sds

)
ρ2t v1,tdt

)]

+ E

[
∂P̃BS

∂y

∫ T

0

v2,t
2

dt

]
.

Now, plug this last equality into (5.3) and use the easy identity∫ T

0

((∫ t

0
ρ2sv1,sds

)
v1,tdt+

(∫ t

0
(1− ρ2s)v1,sds

)
ρ2t v1,tdt

)
+

1

2

(∫ T

0
(1− ρ2t )v1,tdt

)2

=

∫ T

0

((∫ t

0
ρ2sv1,sds

)
v1,tdt+

(∫ t

0
(1− ρ2s)v1,sds

)
(ρ2t + 1− ρ2t )v1,tdt

)
=

∫ T

0

((∫ t

0
(ρ2s + 1− ρ2s)

)
v1,sds

)
v1,tdt =

1

2

(∫ T

0
v1,tdt

)2

;

it immediately gives the result.

5.4. Proof of Theorem 2.2.
Proof. Step 1. We show the equality

E

[
∂P̃BS

∂y

∫ T

0
(v1,t + v2,t)dt

]
=

2∑
i=1

ai,T
∂i+1PBS(x0,

∫ T
0 v0,tdt)

∂xiy
,
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where

a1,T = ω
(κ,ρξv0,.),(−κ,1)
0,T , a2,T = ω

(κ,ρξv0,.),(0,ρξ),(−κ,1)
0,T .

Actually, the result is an immediate application of Lemmas 5.5 and 5.6.
Step 2. We show the equality

1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
v1,tdt

)2
]
=

1∑
i=0

b2i,T
∂2i+2PBS(x0,

∫ T
0 v0,tdt)

∂x2iy2
,

where

b0,T = ω
(2κ,ξ2v0,.),(−κ,1),(−κ,1)
0,T ,

b2,T = ω
(κ,ρξv0,.),(−κ,1),(κ,ρξv0,.),(−κ,1)
0,T + 2ω

(κ,ρξv0,.),(κ,ρξv0,.),(−κ,1),(−κ,1)
0,T =

a21,T
2
.

Indeed, one has

1

2
E

[
∂2P̃BS

∂y2

(∫ T

0
v1,tdt

)2]
= E

[
∂2P̃BS

∂y2

∫ T

0

(∫ t

0
v1,sds

)
v1,tdt

]

= E

[
∂2P̃BS

∂y2

∫ T

0

(∫ T

t
e−κsds

)(
eκtv21,tdt+ ξt

√
v0,te

κt

(∫ t

0
v1,sds

)
dBt

)]

= E

[
∂2P̃BS

∂y2

∫ T

0

(∫ T

t
e−κsds

)
eκtv21,tdt

]
+ E

[
∂3P̃BS

∂xy2

∫ T

0
ω
(κ,ρξv0,.),(−κ,1)
t,T v1,tdt

]
,

where we have used Lemma 5.4 (f(t) = e−κt, Zt = (
∫ t
0 v1,sds)(e

κtv1,t)) for the second equality

and Lemmas 5.3 and 5.4 (f(t) = (
∫ T
t e−κsds)ρtξtv0,te

κt, Zt =
∫ t
0 v1,sds) for the third equality.

An application of the first and second equalities in Lemma 5.5 gives the announced result.
Actually, it remains to show that b2,T = a21,T /2. Indeed, consider two càdlàg functions f and
g : [0, T ] � R. Then

(
∫ T
0 ft(

∫ T
t gsds)dt)

2

2
=

∫ T
0

∫ T
0 ft1(

∫ T
t1
gt3dt3)ft2(

∫ T
t2
gt4dt4)dt2dt1

2

=

∫ T

0
ft1

(∫ T

t1

∫ T

t1

gt3ft2

(∫ T

t2

gt4dt4

)
dt3dt2

)
dt1

=

∫ T

0
ft1

(∫ T

t1

ft2

∫ T

t2

∫ T

t2

gt3gt4dt3dt4dt2

+

∫ T

t1

gt3

∫ T

t3

ft2

∫ T

t2

gt4dt4dt2dt3

)
dt1

= 2

∫ T

0
ft1

∫ T

t1

ft2

∫ T

t2

gt3

∫ T

t3

gt4dt3dt4dt2dt1

+

∫ T

0
ft1

∫ T

t1

gt3

∫ T

t3

ft2

∫ T

t2

gt4dt4dt2dt3dt1.
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Putting f(t) = ρtξtv0,te
kt and g(t) = e−kt in the previous equality readily gives b2,T =

a21,T
2 ,

which finishes the proof.

6. Conclusion. We have established an approximation pricing formula for call/put op-
tions in the time dependent Heston models. We prove that the error is of order 3 w.r.t. the
volatility of volatility and 2 w.r.t. the maturity. In practice, taking the Fourier method as a
benchmark, the accuracy is excellent for a large range of strikes and maturities. In addition,
the computational time is about 100 to 1000 times smaller than using an efficient Fourier
method.

Following the arguments in [8], our formula extends immediately to other payoffs depend-
ing on ST (note that the identities (2.2) and (5.1) are valid for any payoff of this type). As
explained in [8], the smoother the payoff, the higher the error order w.r.t. T ; the less smooth
the payoff, the lower the error order w.r.t. T . For digital options, the error order w.r.t. T
becomes 3/2 instead of 2.

Extensions to exotic options and to the third order expansion formula w.r.t. the volatility
of volatility are left for further research.

7. Appendix: Closed formulas in the Heston model. There are few closed representa-

tions for the call/put prices written on the asset St = e
∫ t
0 (rs−qs)dseXt in the Heston model

(defined in (1.1) and (1.2)). We focus on the Heston formula [22] and on the Lewis formula
[27]. Both of them rely on the knowledge of the characteristic function of the log-asset price
(Xt)t and on Fourier transform-based approaches.

(i) In [22], Heston obtains a representation in a Black–Scholes form

CallHeston(t, St, vt;T,K) = Ste
− ∫ T

t qsdsP1 −Ke−
∫ T
t rsdsP2,

where both probabilities P1 and P2 are equal to a one-dimensional integral of characteristic
functions.

(ii) In [27], Lewis takes advantage of the generalized Fourier transform, by using an
integration along a straight line in the complex plane parallel to the real axis. It is important
to detect the strip where the integration is safe. Lewis suggests the use of complex numbers
z such that Im(z) = 1

2 . His formula writes

CallHeston(t, St, vt;T,K) = Ste
− ∫ T

t qsds − Ke−
∫ T
t rsds

2π

∫ i
2
+∞

i
2
−∞

e−izXφT (−z) dz

z2 − iz ,

where X = log(Ste
− ∫ T

t qsds

Ke−
∫T
t rsds

) and φT (z) = E(ez(XT−Xt)|Ft). Then, the above integral is evalu-

ated by numerical integration.
Using PDE arguments in combination with affine models, we can obtain an explicit formula

for φT (z) in the case of constant Heston parameters. In addition, it can be computed without
discontinuities in z, following the arguments in [23]. For piecewise constant parameters, the
characteristic function φT (z) can be computed recursively using nested Riccati equations with
constant coefficients: we refer the reader to the work by Mikhailov and Nogel [31].

In our numerical tests, we prefer the Lewis formula, which gives better numerical results,
in particular for very small or very large strikes, compared to the Heston formula.
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Abstract. The class of time-decreasing forward performance processes is analyzed in a portfolio choice model
of Itô-type asset dynamics. The associated optimal wealth and portfolio processes are explicitly
constructed and their probabilistic properties are discussed. These formulae are, in turn, used in
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1. Introduction. This paper is a contribution to portfolio management from the perspec-
tive of investor preferences and, hence, in its spirit is related to the classical expected utility
maximization problem introduced by Merton [8]. Therein, one first chooses an investment
horizon and assigns a utility function at the end of it and, in turn, seeks an investment strat-
egy which delivers the maximal expected (indirect) utility of terminal wealth. Recently, we
proposed an alternative approach to optimal portfolio choice which is based on the so-called
forward performance criterion (see, among others, [10] and [9]). In this approach, the investor
does not choose her risk preferences at a single point in time, as is the case in the Merton
model, but has the flexibility to revise them dynamically.

Herein, we focus on a specific case of a forward performance criterion, originally intro-
duced in [12]. This criterion is a composition of deterministic and stochastic inputs. The
deterministic input corresponds to the investor’s preferences, or alternatively, to her tolerance
towards risk. It is investor specific, represented by a function u (x, t) , which is increasing and
concave in x and decreasing in t. The stochastic input, however, is universal for all investors
and is given by At =

∫ t
0 |λs|2 ds, t ≥ 0, with λt being the Sharpe ratio of the securities avail-

able for trading. The performance criterion is, then, given by the process Ut (x) = u (x,At) ,
t ≥ 0. Because of its form and the properties of the involved inputs, the performance process
is monotone in wealth and time.
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Our contribution is threefold. First, we provide a general characterization of the differen-
tial input function, u (x, t) . A space-time harmonic function plays a pivotal role in achieving
this. This function is fully characterized by a positive measure which, in turn, becomes the
underlying element in the specification of all quantities of interest. An important ingredient
is the support of this measure, as it directly affects the domain of the differential input. We
provide a detailed study of this interplay.

The second contribution is the explicit construction of the optimal investment strategy
and the associated optimal wealth. The specification of these processes is rather general, for
it does not rely on any Markovian assumptions on asset dynamics or on any specific structure
of the investor’s input. To our knowledge, this is one of the very rare cases in which such
explicit formulae can be derived in a model as general as the one considered herein.

The third contribution is the initiation of a study on how we can learn about the investor’s
risk preferences from her investment goals. For example, the investor may want to specify
the average level of wealth she could generate in future times, in the particular market she
chooses. This information is then used to deduce risk preferences which are consistent with
this investment target. Such inference problems are, in general, very hard to solve due to
the lack of closed form formulae, a difficulty that is overcome herein due to the availability
of explicit solutions. It is important to notice that the assessment of market movements
is implicitly embedded in the investor’s desired investment goals. In many aspects, this
approach can be compared with the calibration of derivative pricing models. Indeed, therein,
one also needs to make a statement about the market under the historical measure. Then,
assuming no arbitrage, derivatives are valued under the risk neutral measure, with valuation
requiring calibration of the model to the observable market prices of the relevant assets. There
is, however, an important difference between derivative pricing and the portfolio selection
problem. In the latter, we cannot rely on the market to give information about the investor’s
individual preferences. However, we show how to acquire information about them by asking
the investor to specify the desirable properties of the wealth process she wishes to generate.

The criterion studied in this paper does not allow for arbitrary stochastic evolution of
preferences as the performance process is monotonically decreasing, and hence its quadratic
variation is equal to zero. To incorporate more flexibility, one needs to work with selection
criteria in their full generality. Preliminary results in this direction can be found in [11].

The paper is organized as follows. The model and the general portfolio selection criteria
are defined in the next section. In section 3, we present the monotone performance criterion
and provide explicit solutions for the associated optimal wealth and portfolio processes. In
section 4, we provide a detailed construction of the differential input via the associated space-
time harmonic function. In section 5, we analyze the case of deterministic market price of
risk and discuss the distributional properties of the optimal wealth. We finish by discussing
how the investor-specific input can be inferred from targeted properties of her future expected
wealth.

2. The model and portfolio selection criteria. The market environment consists of one
riskless and k risky securities. The prices of risky securities are modelled as Itô processes.
Namely, the price Si

t, t > 0, of the ith risky asset follows
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dSi
t = Si

t

⎛⎝μitdt+ d∑
j=1

σjit dW
j
t

⎞⎠ ,

with Si
0 > 0 for i = 1, . . . , k. The process Wt =

(
W 1

t , . . . ,W
d
t

)
, t ≥ 0, is a standard d-

dimensional Brownian motion, defined on a filtered probability space (Ω,F ,P). The coeffi-
cients μit and σ

i
t =

(
σ1it , . . . , σ

di
t

)
, i = 1, . . . , k, t ≥ 0, are Ft-adapted processes with values in

R and R
d, respectively. For the sake of brevity, we write σt to denote the volatility matrix,

i.e., the d × k random matrix (σjit ), whose ith column represents the volatility σit of the ith
risky asset. We may, then, alternatively write the above equation as

(1) dSi
t = Si

t

(
μitdt+ σit · dWt

)
.

The riskless asset, the savings account, has the price process Bt, t > 0, satisfying

dBt = rtBtdt,

with B0 = 1 and for a nonnegative Ft-adapted interest rate process rt. Also, we denote by μt
the k-dimensional vector with coordinates μit, and by 1 the k-dimensional vector with every
component equal to one. The processes, μt, σt, and rt satisfy the appropriate integrability
conditions.

We assume that the volatility vectors are such that

(2) μt − rt1 ∈ Lin
(
σTt
)
,

where Lin(σTt ) denotes the linear space generated by the columns of σTt . This implies that
σTt (σ

T
t )

+ (μt − rt1) = μt − rt1, and therefore the vector

(3) λt =
(
σTt
)+

(μt − rt1)
is a solution to the equation σTt x = μt− rt1. The matrix (σTt )

+ is the Moore–Penrose pseudo-
inverse1 of the matrix σTt .

Occasionally, we will be referring to λt as the market price of risk. It easily follows that

(4) σtσ
+
t λt = λt

and, hence, λt ∈ Lin (σt). We assume throughout that the process λt is bounded by a
deterministic constant c > 0; i.e., for all t ≥ 0,

(5) |λt| ≤ c.
Starting at t = 0 with an initial endowment x ∈ R, the investor invests at any time t > 0

in the riskless and risky assets. The present values of the amounts invested are denoted by π0t
and πit, i = 1, . . . , k, respectively.

The present value of her investment is, then, given by Xπ
t =

∑k
i=0 π

i
t, t > 0. We will

refer to Xπ
t as the discounted wealth. The investment strategies will play the role of control

1See [13] and [7].
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processes and are taken to satisfy the standard assumption of being self-financing. Using (1),
we then deduce that the discounted wealth satisfies

(6) dXπ
t =

k∑
i=1

πitσ
i
t · (λtdt+ dWt) = σtπt · (λtdt+ dWt) ,

where the (column) vector πt =
(
πit; i = 1, . . . , k

)
. The set of admissible strategies, A, is

defined as

(7) A =

{
π : self-financing with πt ∈ Ft and E

(∫ t

0
|σsπs|2 ds

)
<∞, t > 0

}
.

The problem we propose to address is that of a choice of an investment strategy from
the set A. To this aim, we introduce below a process which measures the performance of
any admissible portfolio and gives us a selection criterion. Specifically, a strategy is deemed
optimal if it generates a wealth process whose average performance is maintained over time.
In other words, the average performance of this strategy at any future date, conditional on
today’s information, preserves the performance of this strategy up until today. Any strategy
that fails to maintain the average performance over time is, then, suboptimal.

We present the definition of the forward performance next. It first appeared in [10] and is
given herein for completeness. We note that this definition is slightly different than the original
one, introduced by the authors in [12], in that the initial condition is not explicitly included.
As the analysis in section 4 will show, not all strictly increasing and concave solutions can
serve as initial conditions, even for the special classes of monotone processes we examine
herein. Characterizing the set of appropriate initial conditions is challenging and is currently
being investigated by the authors.

Definition 1. An Ft-adapted process Ut (x) is a forward performance if for t ≥ 0 and x ∈ R:
(i) the mapping x→ Ut (x) is strictly concave and increasing;
(ii) for each π ∈ A, E (Ut (X

π
t ))

+ <∞, and

(8) E (Us (X
π
s ) |Ft ) ≤ Ut (X

π
t ) , s ≥ t;

(iii) there exists π∗ ∈ A, for which

(9) E
(
Us

(
Xπ∗

s

)
|Ft

)
= Ut

(
Xπ∗

t

)
, s ≥ t.

The intuition behind the above definition comes from the analogous martingale and
supermartingale properties that the traditional maximal expected utility (value function) has
(see, among others, [8], [5], and [14]). Indeed, we recall that the latter is defined in a finite
trading horizon, say [0, T ] , by

(10) v (x, t;T ) = sup
AT

E (V (Xπ
T )| Ft,X

π
t = x) ,

with (x, t) ∈ R× [0, T ] , where AT is the set of admissible policies defined similarly to A herein,
and V is the investor’s utility, given by an increasing, concave, and smooth function. Under
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rather general model assumptions, the value function satisfies the dynamic programming prin-
ciple (DDP), namely, for 0 ≤ t ≤ s ≤ T,
(11) v (x, t;T ) = sup

AT

E (v (Xπ
s , s;T )| Ft,X

π
t = x) .

One then sees that if the above supremum is achieved and certain integrability conditions
hold, the processes v (Xπ

s , s;T ) and v (X∗
s , s;T ) are, respectively, a supermartingale and a

martingale on [0, T ].
We stress that the analogous equivalence in the forward formulation of the problem has

not yet been established. Specifically, one could define the forward performance process via
the (forward) stochastic optimization problem

Ut (x) = sup
A
E (Us (X

π
s )| Ft,X

π
t = x),

for all 0 ≤ t ≤ s, and for an appropriately defined initial condition. Characterizing its
solutions poses a number of challenging questions, some of them being currently investigated
by the authors.2 From a different perspective, one could seek an axiomatic construction of
a forward performance process. Results in this direction, as well as on the dual formulation
of the problem, can be found in [19] for the exponential case (see, also, [1] for a constrained
case). We refer the reader to [10] for further discussion on the forward performance and its
similarities to and differences from the classical value function.

The definition of the forward performance process requires the integrability of (Ut(X
π
t ))

+.
This allows us to define the conditional expectations E (Us (X

π
s ) |Ft ) for s ≥ t and, in turn,

obtain a more practical intuition for our criteria. This leads, however, to additional inte-
grability assumptions which further constrain the class of forward solutions the investor may
employ. On the other hand, from the applications perspective, this may help in the calibration
process of the investor’s initial risk preferences.

Alternatively, and simpler from the mathematical viewpoint, we could replace conditions
(ii) and (iii) above with corresponding local statements, as proposed next. To this end, we
first relax the set of admissible strategies to

(12) Al =

{
π : self-financing with πt ∈ Ft and P

(∫ t

0
|σsπs|2 ds<∞

)
= 1, t > 0

}
.

Definition 2. An Ft-adapted process Ut (x) is a local forward performance if for t ≥ 0 and
x ∈ R:

(i) the mapping x→ Ut (x) is strictly concave and increasing,
(ii) for each π ∈ Al the process Ut (X

π
t ) is a local supermartingale, and

(iii) there exists π∗ ∈ Al such that the process Ut

(
Xπ∗

t

)
is a local martingale.

Herein, we do not analyze the relaxed formulation of the problem but only present an
example of a local forward performance (see Example 13).

Other modifications of the definition of the forward performance process are possible,
all based on the same principle, namely, to choose an investment strategy that keeps the

2While revising this work, the authors came across the revised version of [1], where similar questions are
studied for the nonnegative wealth case.
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expected investment performance constant across time. For example, one can relax or modify
the assumption on monotonicity and (strict) concavity. This is desirable, in particular, for the
development of time consistent behavioral portfolio selection models. A natural modification
would be to assume the existence of a reference point for the investor’s wealth that defines
gains and losses (see, for example, [4]). The mapping x → Ut (x) should then be concave
for gains and convex for losses. The supermartingality condition in the above definitions
would have to be replaced by a statement about the sign of the drift in the semimartingale
decomposition of Ut (X

π
t ). Specifically, the drift would be negative when the wealth is above

the reference point and positive when below. However, such modifications and extensions are
beyond the scope of this paper and are mentioned here only to expose the flexibility of our
definition.

We conclude by mentioning that the classical Markowitz portfolio selection problem (see,
among others, [3] and [6]) could also be incorporated into our framework. Indeed, one would
need to choose the mean level of wealth and find the portfolio that deviates from it the least,
in the variance sense. Note that not all mean functions would be admissible, as is already
demonstrated in this paper (however, with respect to criteria not covering the case of variance).
The variance-based criteria deserve a separate treatment which will be carried out in a future
study.

3. Monotone performance processes and their optimal wealth and portfolio processes.
We focus on the class of time-decreasing performance processes introduced by the authors in
[10] (see also [12] and [9]) and provide a full characterization of the associated optimal wealth
and portfolio processes.

It was shown in [10] (see Theorems 4 and 8) that the performance process, Ut (x) , is
constructed by compiling market related input with a deterministic function of space and
time. Specifically, for t ≥ 0, we have

(13) Ut (x) = u (x,At),

where u (x, t) is increasing and strictly concave in x and satisfies

(14) ut =
1

2

u2x
uxx

,

with At as in (20) below. It was also shown that the optimal wealth and the associated invest-
ment process, denoted respectively by X∗

t and π∗t , t ≥ 0, are constructed via an autonomous
system of stochastic differential equations whose coefficients depend functionally on the spatial
derivatives of u. Specifically, let R : R× [0,+∞)→ R

+ be defined as

(15) R (x, t) = − ux (x, t)

uxx (x, t)
,

with u satisfying (14), and define (with slight abuse of notation) the process

(16) R∗
t = R (X∗

t , At),
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with At, t ≥ 0, as in (20). Consider the system

(17)

⎧⎨⎩
dX∗

t = R (X∗
t , At)λt (λtdt+ dWt) ,

dR∗
t = Rx (X

∗
t , At) dX

∗
t ,

and its solution (X∗
t , R

∗
t ) , t ≥ 0. Then, the process π∗t defined by

(18) π∗t = R∗
tσ

+
t λt

is optimal and generates the optimal wealth process X∗
t .

The main contribution of this section is the explicit construction of the optimal processes.
We establish that, in analogy to the forward performance process, X∗

t and π∗t are also given
as a compilation of market input and deterministic functions of space and time. Namely, we
show that

X∗
t = h

(
h(−1) (x, 0) +At +Mt, At

)
and π∗t = hx

(
h(−1) (X∗

t , At) , At

)
σ+t λt,

where h (x, t) is strictly increasing in x and solves the (backward) heat equation

(19) ht +
1

2
hxx = 0

for (x, t) ∈ R× [0,+∞) . The function h(−1) stands for the spatial inverse of h.
The market input processes At and Mt, t ≥ 0, are defined as

(20) At =

∫ t

0
|λs|2 ds and Mt =

∫ t

0
λs · dWs,

with λt as in (3).
The above formulae demonstrate that all quantities of interest can be fully specified as long

as the market price of risk is chosen and the functions u and h are known. A considerable
part of this paper is, thus, dedicated to the study of these functions and, especially, their
representation and connection with each other. For the reader’s convenience, we choose to
present the detailed results separately. We do this because different cases for the domain and
range of the functions u and h require appropriately modified and computationally tedious
arguments which, if presented at this point, would obscure the clarity of the presentation.
It is shown in section 4 (see Propositions 10, 14, 15, and 19) that there exists a one-to-one
correspondence (modulo normalization constants) between increasing and strictly concave
solutions to (14) with strictly increasing solutions to (19). It is also shown that the latter can
be represented in terms of the bilateral Laplace transform of a positive finite Borel measure,
denoted throughout by ν. This measure then emerges as the defining element in the entire
analysis of the problem at hand. Its presence originates from the classical results of Widder
(see Chapter XIV in [17]) on the construction of positive solutions to the heat equation (19).
In the investment model we consider, the solution h of (19) is used to construct the optimal
wealth which, however, can take arbitrary values. As a result, a more detailed study is required
depending on the range of h.
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In order to present the general ideas and provide some insights for the upcoming main
theorem, we present the following representative case. We stress that the results below are not
complete but are presented in this form in order to build intuition. The complete arguments
are presented in Propositions 9 and 10.

To this end, we introduce the set of measures B+ (R) defined by

(21) B+ (R)=

{
ν ∈ B (R) : ∀B ∈ B, ν (B) ≥ 0 and

∫
R

eyxν (dy) <∞, x ∈ R

}
.

Proposition 3. (i) Let ν ∈ B+ (R). Then the function h defined, for (x, t) ∈ R× [0,+∞) ,
by

h (x, t) =

∫
R

eyx−
1
2
y2t − 1

y
ν (dy) + C

is a strictly increasing solution to (19).
(ii) Assume that h above is of full range for each t ≥ 0, and let h(−1) : R× [0,+∞) → R

be its spatial inverse. Then, the function u defined for (x, t) ∈ R× [0,+∞) and given by

u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds +

∫ x

0
e−h(−1)(z,0)dz

is an increasing and strictly concave solution of (14).
We proceed with the main theorem in which we provide closed form expressions for the

optimal wealth, the associated optimal investment strategy, and the space-time monotone
forward performance process. We state the result without making specific reference to the
range of h, or to the domain and range of u, as the different cases are analyzed in detail later.
We also do not make any reference to the regularity of these functions, since the required
smoothness follows trivially from their representation.

We stress, however, that we introduce the integrability condition (22). This condition is
stronger than the one needed for the representations of h (cf. (21)), and in turn of u, but
sufficient in order to guarantee the admissibility of the candidate optimal policy (24). It
may be relaxed if, for example, one chooses to work instead with local forward performance
processes, introduced in Definition 2. For additional comments on condition (22), see the
discussion after Example 13.

Theorem 4. (i) Let h be a strictly increasing solution to (19), for (x, t) ∈ R× [0,+∞) , and
assume that the associated measure ν satisfies

(22)

∫
R

eyx+
1
2
y2tν (dy) <∞.

Let also At and Mt, t ≥ 0, be as in (20), and define the processes X∗
t and π∗t by

(23) X∗
t = h

(
h(−1) (x, 0) +At +Mt, At

)
and

(24) π∗t = hx

(
h(−1) (X∗

t , At) , At

)
σ+t λt,
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t ≥ 0, x ∈ R, with h as above and h(−1) standing for its spatial inverse. Then, the portfolio
π∗t is admissible and generates X∗

t , i.e.,

(25) X∗
t = x+

∫ t

0
σsπ

∗
s · (λsds + dWs) .

(ii) Let u be the associated with h increasing and strictly concave solution to (14). Then,
the process u (X∗

t , At) , t ≥ 0, satisfies

(26) du (X∗
t , At) = ux (X

∗
t , At) σtπ

∗
t · dWt,

with X∗
t and π∗t as in (23) and (24).

(iii) Let Ut (x), t ≥ 0, x ∈ R, be given by

(27) Ut (x) = u (x,At) .

Then, Ut (x) is a forward performance process and the processes X∗
t and π∗t are optimal.

Proof. We provide the proof only when h is of infinite range since the cases of semi-infinite
range can be worked out by analogous arguments.

As was mentioned earlier, the representation of h is established in section 4. When h is of
infinite range, it is given in Proposition 9 (cf. (39)), rewritten below for convenience, namely,

h (x, t) =

∫
R

eyx−
1
2
y2t − 1

y
ν (dy)

for (x, t) ∈ R× [0,+∞) (for simplicity we take C = 0 in (39)).
For x ∈ R and At and Mt as in (20), we then define the process

Nt = h(−1) (x, 0) +At +Mt,

where h(−1) is the spatial inverse of h. Applying Itô’s formula to X∗
t , given in (23), and using

(19) yields

(28) dX∗
t = hx (Nt, At) dNt.

On the other hand, (23) and (24) imply

π∗t = hx (Nt, At) σ
+
t λt,

t ≥ 0, and (25) follows from the above and (4).
To establish that π∗t ∈ A, it suffices to show that the integrability condition in (7) is

satisfied. Using that

hx (x, t) =

∫
R

eyx−
1
2
y2tν (dy)

(cf. (81)) and (23), we have (
hx

(
h(−1) (X∗

t , At) , At

))2
=

∫
R

∫
R

e(y1+y2)(h(−1)(x,0)+At+Mt)− 1
2(y

2
1+y22)Atν (dy1) ν (dy2) .
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From (4), Fubini’s theorem, and (20), we deduce

E

(∫ t

0
|σsπ∗s |2 ds

)
= E

(∫ t

0

∣∣∣hx (h(−1) (X∗
s , As) , As

)
σsσ

+
s λs

∣∣∣2 ds)

= E

(∫ t

0

(
hx

(
h(−1) (X∗

s , As) , As

))2
dAs

)
=

∫
R

∫
R

E

(∫ t

0
e(y1+y2)(h(−1)(x,0)+As+Ms)− 1

2(y
2
1+y22)AsdAs

)
ν (dy1) ν (dy2)

=

∫
R

∫
R

E

(∫ At

0
e(y1+y2)(h(−1)(x,0)+s+βs)− 1

2(y
2
1+y22)sds

)
ν (dy1) ν (dy2) ,

where βt = M
A

(−1)
t

and A
(−1)
t stands for the inverse of At, t ≥ 0. Using that βt, t ≥ 0, is

normally distributed with mean 0 and variance t, we obtain

E

(∫ t

0
|σsπ∗s |2 ds

)

≤
∫
R

∫
R

E

(∫ c2t

0
e(y1+y2)(h(−1)(x,0)+s+βs)− 1

2(y
2
1+y22)sds

)
ν (dy1) ν (dy2)

=

∫ c2t

0

∫
R

∫
R

e(y1+y2)(h(−1)(x,0)+s)+y1y2sν (dy1) ν (dy2) ds

≤
∫ c2t

0

(∫
R

ey(h
(−1)(x,0)+s)+ 1

2
y2sν (dy)

)2

ds,

and using (22), we conclude.
(ii) The facts that u satisfies (14) and has the claimed monotonicity and strict concavity

properties are established separately, in Proposition 10, where a detailed construction of this
function is presented.

To show (26), we apply Itô’s formula to u (X∗
t , At), t ≥ 0. To this end, using (28) yields

du (X∗
t , At) = ux (X

∗
t , At) dX

∗
t + ut (X

∗
t , At) dAt +

1

2
uxx (X

∗
t , At) d 〈X∗〉t

= ux (X
∗
t , At) hx

(
h(−1) (X∗

t , At) , At

)
λt · dWt

+ ux (X
∗
t , At) hx

(
h(−1) (X∗

t , At) , At

)
dAt

+ ut (X
∗
t , At) dAt +

1

2
uxx (X

∗
t , At) d 〈X∗〉t .

From (91) in the proof of Proposition 10, we deduce that

(29) − ux (X
∗
t , At)

uxx (X∗
t , At)

= hx

(
h(−1) (X∗

t , At) , At

)
,
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which combined with the above yields

du (X∗
t , At) = ux (X

∗
t , At)hx

(
h(−1) (X∗

t , At) , At

)
λt · dWt

− (ux (X
∗
t , At))

2

uxx (X
∗
t , At)

dAt + ut (X
∗
t , At) dAt +

1

2
uxx (X

∗
t , At) d 〈X∗〉t .

On the other hand, (28) gives

uxx (X
∗
t , At) d 〈X∗〉t = uxx (X

∗
t , At)

(
hx

(
h(−1) (X∗

t , At) , At

))2
dAt

=
(ux (X

∗
t , At))

2

uxx (X
∗
t , At)

dAt.

Therefore,

du (X∗
t , At) = ux (X

∗
t , At)hx

(
h(−1) (X∗

t , At) , At

)
λt · dWt

+

(
ut (X

∗
t , At)− 1

2

(ux (X
∗
t , At))

2

uxx (X
∗
t , At)

)
dAt,

and (26) follows since u satisfies (14).
(iii) We need to establish that Ut (x) satisfies all conditions in Definition 1. The facts that

u (x,At) is Ft-adapted and that the mapping x→ u (x,At) is increasing and strictly concave
follow trivially from the properties of u and At.

To establish the integrability condition E (Ut (X
π
t ))

+ < ∞, we work as follows. We first
observe that the strict concavity of u together with (14) yields ut < 0 and, hence, u (x, t) ≤
u (x, 0) ≤ ax+ + b, for some positive constants a and b. Also, (6) implies

(Xπ
t )

+ ≤ x+ +
1

2

∫ t

0
|σsπs|2 ds+ 1

2

∫ t

0
|λs|2 ds+

∣∣∣∣∫ t

0
σsπs · dWs

∣∣∣∣ .
The integrability of E (Ut (X

π
t ))

+ then follows, using (5) and that πt ∈ A.
To show (8), we observe that for πt ∈ A and Xπ

t as in (6), Itô’s formula yields

du (Xπ
t , At) =

(
ux (X

π
t , At) σtπt · λt + ut (X

π
t , At) |λt|2 + 1

2
uxx (X

π
t , At) |σtπt|2

)
dt

+ux (X
π
t , At)σtπt · dWt

=

(
ux (X

π
t , At)σtπt · λt + 1

2

(ux (X
π
t , At))

2

uxx (Xπ
t , At)

|λt|2 + 1

2
uxx (X

π
t , At) |σtπt|2

)
dt

+ux (X
π
t , At)σtπt · dWt

=
1

2
uxx (X

π
t , At)

∣∣∣∣σtπt + ux (X
π
t , At)

uxx (Xπ
t , At)

λt

∣∣∣∣2 dt+ ux (X
π
t , At) σtπt · dWt,

where we used that u solves (14). Using the concavity of u, we conclude.
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To show (9) we use the form of the above drift, (29), and (24).
We remind the reader that the forward performance process in [10] is more general than

the one in (13); namely, it is given by

(30) Ut (x) = u

(
x

Yt
, Ãt

)
Zt,

where the processes (Yt, Zt) represent, respectively, a benchmark (or numeraire) and alterna-
tive market views. They solve

dYt = Ytδt · (λtdt+ dWt) and dZt = Ztφt · dWt,

with Y0 = Z0 = 1 and δt, φt being Ft-adapted processes, satisfying σtσ
+
t δt = δt and σtσ

+
t φt =

φt, t ≥ 0. The process Ãt has a form similar to (20),

Ãt =

∫ t

0
|λs + φs − δs|2 ds.

Herein, we assume δt = φt = 0, t ≥ 0, throughout, as we focus on monotone in time forward
performance processes. It is immediate, as (30) shows, that the more general form of the
forward process can be readily constructed once the function u is specified and the market
input processes At, Yt, and Zt (which are independent of u) are chosen.

3.1. Dependence on the initial wealth. The explicit formulae (23) and (24) enable us to
analyze the mappings x→ X∗

t (ω) and x→ π∗t (ω) for fixed t and ω.We study this dependence
next. To ease the presentation, we discuss only the case Range (h) = (−∞,+∞) . We also use
the notation X∗,x

t (ω) and π∗,xt and introduce the function r : R× [0,+∞)→ (0,+∞) , defined
as

(31) r (x, t) = hx

(
h(−1) (x, t) , t

)
.

A detailed discussion on its role, representation, and differential properties is provided in
section 4.5. Using (31), the optimal portfolio (cf. (24)) can then be written, for t ≥ 0, as

(32) π∗,xt = r
(
X∗,x

t , At

)
σ+t λt.

Proposition 5. Let X∗,x
t be given in (23), t ≥ 0, and r be as in (31). Then,

(33)
∂

∂x
X∗,x

t =
r
(
X∗,x

t , At

)
r (x, 0)

and

(34)
∂

∂x
π∗,xt = rx

(
X∗,x

t , At

) r (X∗,x
t , At

)
r (x, 0)

σ+t λt.

Proof. Differentiating (23) with respect to x yields

∂

∂x
X∗,x

t = hx

(
h(−1) (x, 0) +At +Mt, At

) ∂

∂x
h(−1) (x, 0) ,
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and (33) follows from (31). To establish (34) we differentiate (32) and use (33).
The above result implies that the mapping x→ X∗,x

t is increasing. This is to be expected
because the larger the initial endowment, the larger the future wealth should be. It also shows
that the mapping x→ π∗,xt is increasing (or decreasing) depending on the monotonicity of the
function r and the sign of λt. In general, the latter is not monotone, and therefore nothing
specific can be said about the dependence of the optimal allocation in terms of the initial
endowment.3 The monotonicity holds, however, in a special but frequently considered case,
namely when there is no bankruptcy, or more generally when the wealth stays always above
a certain threshold. This case is considered in Proposition 23 herein, where it is shown that
rx ≥ 0 (see (65)). As a result, the mapping x → π∗,xt is always increasing. Respectively, the
other results in the same proposition show that the mapping x→ π∗,xt is always decreasing if
the wealth stays below a threshold.

The optimal wealth formula (23) enables us to calculate higher order derivatives. For
example, the second order derivative is given below.

Proposition 6. Let X∗,x
t , t ≥ 0, be given in (23), and let r be as in (31). Then,

∂2

∂x2
X∗,x

t =
rx
(
X∗,x

t , At

)− rx (x, 0)
r (x, 0)

∂

∂x
X∗,x

t .

Proof. Differentiating (33) yields

∂2

∂x2
X∗,x

t =
rx
(
X∗,x

t , At

)
r (x, 0)

∂

∂x
X∗,x

t − rx (x, 0)

r (x, 0)

r
(
X∗,x

t , At

)
r (x, 0)

,

and we easily conclude using (33) once more.
Representation (23) reveals how the market input processes, At and Mt, t ≥ 0, interact

with the deterministic input, h, to generate the optimal wealth process. The function h is, on
the other hand, fully specified by the measure ν. It is, then, natural to ask how the function
h and, in turn, the process X∗

t , t ≥ 0, depend on the total mass ν (R).
The result below shows an interesting scaling property which allows us to normalize the

function h and assume that ν is a probability measure. For simplicity, we discuss only the
case Range (h) = (−∞,+∞) .

Let h0 = ν (R), and denote, with a slight abuse of notation, the associated wealth process
by X∗

t (x;h0), t ≥ 0.
Proposition 7. For h0 = ν (R), the optimal wealth process (cf. (23)) satisfies, for t ≥ 0,

1

h0
X∗

t (x;h0) = X∗
t

(
x

h0
; 1

)
.

Proof. Let h (x, t) = h(x,t)
h0

. Then,

X∗
t (x;h0) = h0h

(
h(−1) (x, 0) +At +Mt, At

)
.

3See, for example, the case r (x, t) =
√
ax2 + be−at analyzed in [18].
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On the other hand, h(−1) (x, 0) = h
(−1)

( x
h0
, 0), and, hence,

X∗
t (x;h0) = h0h

(
h
(−1)

(
x

h0
, 0

)
+At +Mt, At

)
= h0X

∗
t

(
x

h0
; 1

)
.

4. Representation of the functions u and h. The functions u and h were instrumental in
the construction of the forward performance and the associated optimal wealth and portfolio
processes (Theorem 4). In this section, we focus on the representation of these functions and
their connection with each other. We recall that they satisfy (14) and (19), respectively, and
that we are interested in solutions of (14) that are increasing and strictly concave in their
spatial argument. We will show that there is a one-to-one correspondence (modulo normal-
ization constants) between these functions and strictly increasing solutions to the (backward)
heat equation (19).

As was discussed in the previous section (see representative results in Proposition 3), the
key idea is to represent h in terms of a finite positive Borel measure ν and, in turn, construct u
from h. This measure, then, emerges as the defining element in the construction of any object
of interest. The main assumption about ν is that its bilateral Laplace transform exists.4

Namely, we will be working throughout this section with measures belonging to B+ (R), given
in (21). The connection between ν and h originates from the classical result of Widder (see
[17]) for nonnegative solutions of (19). For completeness and motivation we present this result
below.

Theorem 8 (Widder). Let g (x, t), (x, t) ∈ R× [0,+∞), be a positive solution of (19). Then,
there exists μ ∈ B+ (R) such that g is represented as

(35) g (x, t) =

∫
R

eyx−
1
2
y2tμ (dy) .

This result cannot be applied directly herein because, for the investment applications we
consider, the wealth may not be assumed to remain always positive or, more generally, stay
above (or below) a given threshold. As a consequence, different choices for the range of h,
which represents the optimal wealth (cf. (23)), require different analysis. However, Widder’s
theorem will be applied to the function hx which is positive (due to the assumed monotonicity
of h) and also solves (19).

We start with the general theorem which gives us the representation of strictly increasing
solutions to the heat equation (19). Its proof as well as all other proofs in this section are
presented in the appendix.

We introduce the following sets:

B+0 (R) =
{
ν ∈ B+ (R) and ν ({0}) = 0

}
,(36)

B++ (R) =
{
ν ∈ B+0 (R) : ν ((−∞, 0)) = 0

}
(37)

and

(38) B+− (R) =
{
ν ∈ B+0 (R) : ν ((0,+∞)) = 0

}
.

4We remind the reader that this condition is sufficient for the finiteness of h and u but does not, in general,
guarantee admissibility of the associated policies. For the latter, condition (22) is used.
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It is assumed throughout that the trivial case ν (R) = 0 is excluded.
In what follows, C represents a generic constant. Special choices for it are discussed later.
Proposition 9. (i) Let ν ∈ B+ (R). Then, the function h defined, for (x, t) ∈ R× [0,+∞),

by

(39) h (x, t) =

∫
R

eyx−
1
2
y2t − 1

y
ν (dy) + C

is a strictly increasing solution to (19).
Moreover, if ν({0}) > 0, or ν(−∞, 0) > 0 and ν(0,+∞) > 0, or ν ∈ B++ (R) and∫ +∞

0+
ν(dy)
y = +∞, or ν ∈ B+− (R) and

∫ 0−
−∞

ν(dy)
y = −∞, then Range (h) = (−∞,+∞) for

t ≥ 0.
On the other hand, if ν ∈ B++ (R) with

∫ +∞
0+

ν(dy)
y < +∞ (resp., ν ∈ B+− (R) with∫ 0−

−∞
ν(dy)
y > −∞), then Range (h) = (C − ∫ +∞

0+
ν(dy)
y ,+∞) (resp., Range (h) = (−∞, C −∫ 0−

−∞
ν(dy)
y )) for t ≥ 0.

(ii) Conversely, let h : R × [0,+∞) → R be a strictly increasing solution to (19). Then,
there exists ν ∈ B+ (R) such that h is given by (39).

Moreover, if Range (h) = (−∞,+∞), t ≥ 0, then it must be either that ν ({0}) > 0, or

ν(−∞, 0) > 0 and ν(0,+∞) > 0, or ν ∈ B++ (R) and
∫ +∞
0+

ν(dy)
y = +∞, or ν ∈ B+− (R) and∫ 0−

−∞
ν(dy)
y = −∞.

On the other hand, if Range (h) = (x0,+∞) (resp., Range (h) = (−∞, x0)), t ≥ 0 and

x0 ∈ R, then it must be that ν ∈ B++ (R) with
∫ +∞
0+

ν(dy)
y < +∞ (resp., ν ∈ B+− (R) with∫ 0−

−∞
ν(dy)
y > −∞).

We continue with the representation of increasing and strictly concave solutions to (14).
As mentioned earlier, we will show that there is a one-to-one correspondence (modulo nor-
malization constants) between this class and that of strictly increasing solutions to (19).

4.1. Range (h) = (−∞,+∞). We recall that h is given by (39), for (x, t) ∈ R ×
[0,+∞). For convenience, we choose C = 0, and thus

(40) h (0, 0) = 0.

We show how to construct from such an h a globally defined, increasing, and strictly
concave solution u to (14). We also show the converse construction.

Note that from the properties of u we would have ux (x, t) 
= 0 and |u (x, t)| < +∞, t ≥ 0,
for (x, t) ∈ R × [0,+∞). In addition, solutions of (14) are invariant with respect to affine
transformations. Therefore, if u is a solution, the function

û (x, t) =
1

ux (x0, 0)
u (x, t)− u (x0, 0)

ux (x0, 0)

is also a solution, for each x0 ∈ R. Without loss of generality, we may choose, as in (40),
x0 = 0 to be a reference point. We then assume that

(41) u (0, 0) = 0 and ux (0, 0) = 1.
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Note, however, that while the first equality is imposed in an ad hoc way, the second one is in
accordance with (40) (see (88) in the proof of next proposition).

Proposition 10. (i) Let ν ∈ B+ (R) and h : R× [0,+∞)→ R be as in (39) with the measure
ν being used. Assume that h is of full range, for each t ≥ 0, and let h(−1) : R× [0,+∞)→ R

be its spatial inverse. Then, the function u defined for (x, t) ∈ R× [0,+∞) and given by

(42) u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds +

∫ x

0
e−h(−1)(z,0)dz

is an increasing and strictly concave solution of (14) satisfying (41).
Moreover, for t ≥ 0, the Inada conditions,

(43) lim
x→−∞ux (x, t) = +∞ and lim

x→+∞ux (x, t) = 0,

are satisfied.
(ii) Conversely, let u be an increasing and strictly concave function satisfying, for (x, t) ∈

R × [0,+∞) , (14) and (41) and the Inada conditions (43), for t ≥ 0. Then, there exists ν ∈
B+ (R) such that u admits representation (42) with h given by (39), for (x, t) ∈ R× [0,+∞).
Moreover, h is of full range, for each t ≥ 0, and satisfies (40).

Example 11. Let ν = δ0, where δ0 is a Dirac measure at 0. Then, (39) yields

h (x, t) = x,

and therefore (42) implies

u (x, t) = −1

2

∫ t

0
e−x+ s

2ds+

∫ x

0
e−zdz = 1− e−x+ t

2 .

This class of forward performance processes is analyzed in detail in [9].
Example 12. Let ν (dy) = b

2 (δa + δ−a), a, b > 0, and let δ±a be Dirac measures at ±a. We
then have

h (x, t) =
b

a
e−

1
2
a2t sinh (ax) .

Thus,

h(−1) (x, t) =
1

a
ln

(
a

b
xe

1
2
a2t +

√
a2

b2
x2ea2t + 1

)
and, in turn,

hx

(
h(−1) (x, t) , t

)
= be−

1
2
a2t cosh

(
ln

(
a

b
e

1
2
a2t +

√
a2

b2
x2ea2t + 1

))

=
√
a2x2 + b2e−a2t.

If, a = 1, then (42) yields

u (x, t) =
1

2

(
ln
(
x+

√
x2 + b2e−t

)
− et

b2
x
(
x−

√
x2 + b2e−t

)
− t

2

)
− 1

2
ln b,
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while, if a 
= 1,

u (x, t) =
a
√
a

a2 − 1
e

1−a
2

t
b2e−a2t + a (1 + a)

(
ax2 + x

√
a2x2 + b2e−a2t

)
(
ax+

√
a2x2 + b2e−a2t

)1+ 1
a

−
a
√
a

a2 − 1
b1−

1
a .

The calculations involved are cumbersome and, for this, omitted. A complete description
of this class of solutions can be found in [18].

It is worth mentioning that the above functions provide an interesting extension of the
traditional power and logarithmic utilities, most frequently used in portfolio choice. Note,
however, that the latter utilities are not globally defined, while the above are.

Example 13. Let ν (dy) = 1√
2π
e−

1
2
y2dy. Then,

(44) h (x, t) = F

(
x√
t+ 1

)
with F (x) =

∫ x

0
e

1
2
z2dz, x ∈ R.

Therefore, h(−1) (x, t) =
√
t+ 1F (−1) (x) and thus,

(45) hx

(
h(−1) (x, t) , t

)
=

1√
t+ 1

f
(
F (−1) (x)

)
,

with f (x) = F ′ (x). Then, (42) becomes

u (x, t) = −1

2

∫ t

0

1√
s+ 1

f
(
F (−1) (x)

)
e−

√
s+1F (−1)(x)+ s

2ds+

∫ x

0
e−F (−1)(z)dz.

It turns out that

(46) u (x, t) = k1F
(
F (−1) (x)−√t+ 1

)
+ k2,

with k1 = e−
1
2 and k2 = e−

1
2

∫ 0
−1 e

1
2
z2dz.

The calculations are rather tedious, but one can verify that u satisfies (41) and solves (42).
Indeed,

ut (x, t) = −k1
f
(
F (−1) (x)−√t+ 1

)
2
√
t+ 1

, ux (x, t) = k1
f
(
F (−1) (x)−√t+ 1

)
f
(
F (−1) (x)

) ,

and

uxx (x, t) = −k1
√
t+ 1

f
(
F (−1) (x)−√t+ 1

)(
f
(
F (−1) (x)

))2 ,

and (14) follows. The equalities in (41) also follow from the form of u and the choice of the
constants k1, k2. Note, moreover, that the above yields

ux

(
F

(
x√
t+ 1

)
, t

)
= e−x+ t

2 ,
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and (44) follows from (89).
From (24) and (45), we deduce that the optimal policy of the above example turns out to

be

(47) π∗t =
1√

At + 1
f
(
F (−1) (X∗

t )
)
σ+t λt,

with At, t ≥ 0, as in (20) and

X∗
t = F

(
F (−1) (x) +At +Mt√

At + 1

)
,

with the latter following from (23) and (44).

We can see that the above measure, ν (dy) = 1√
2π
e−

1
2
y2dy, violates condition (22) (for

t > 0) and satisfies only (21). In turn, straightforward calculations show that π∗t , t ≥ 0,
is admissible but only in the local sense, i.e., π∗t ∈ Al but π∗t /∈ A. We then deduce that
the process Ut (x) = u (x,At), with u as in (46), satisfies Definition 2 of a local forward
performance process.

4.2. Range (h) = (x0,+∞), x0 ∈ R. We recall that in this case, h is given by (39),
where ν satisfies

(48) ν ∈ B++ (R) and

∫ +∞

0+

ν (dy)

y
< +∞,

with B++ (R) given in (37). For convenience, we set C =
∫ +∞
0+

1
yν (dy) in (39), yielding5 that

Range (h) = (0,+∞), as

(49) h (x, t) =

∫ +∞

0+

eyx−
1
2
y2t

y
ν (dy) .

We can easily see, using the above and (14), that h is convex in its spatial argument and
decreasing with regards to time,

(50) hxx (x, t) > 0 and ht (x, t) < 0.

Next, we obtain the representation of the differential input u analogous to (42). As (42)
shows, h plays the role of the space argument of u. Thus, the latter is now defined on the
half-line. Consideration, then, needs to be given to limx→0 u (x, t), t ≥ 0. The results below
demonstrate that, depending on where the measure ν is concentrated, this limit can be finite
or infinite. For the case of finite limit we have the following result.

Proposition 14. (i) Let ν satisfy (48) and, in addition, ν ((0, 1]) = 0 and
∫ +∞
1+

ν(dy)
y−1 < +∞.6

Let also h : R × [0,+∞) → (0,+∞) be as in (49) and h(−1) : (0,+∞) × [0,+∞) → R be its

5One may alternatively represent h as h (x, t) =
∫ +∞
0

eyx−
1
2
y2tν′ (dy) with ν′ (dy) = ν(dy)

y
. Note that

ν′ ∈ B+ (R) . Such a representation was used in [1].
6The authors would like to thank an anonymous referee for pointing out that this integrability condition is

needed.
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spatial inverse. Then, the function u defined, for (x, t) ∈ (0,+∞)× [0,+∞), by

(51) u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds+

∫ x

0
e−h(−1)(z,0)dz

is an increasing and strictly concave solution of (14) with

(52) lim
x→0

u (x, t) = 0 for t ≥ 0.

Moreover, for t ≥ 0, the Inada conditions

(53) lim
x→0

ux (x, t) = +∞ and lim
x→+∞ux (x, t) = 0

are satisfied.
(ii) Conversely, let u, defined for (x, t) ∈ (0,+∞)× [0,+∞), be an increasing and strictly

concave function satisfying (14), (52), and the Inada conditions (53). Then, there exists ν ∈
B+ (R) satisfying (48), ν ((0, 1]) = 0, and

∫ +∞
1+

ν(dy)
y−1 < +∞ such that u admits representation

(51) with h given by (49), for (x, t) ∈ R× [0,+∞) .
Working along similar arguments, we obtain the result covering the case of an infinite

limit.
Proposition 15. (i) Let ν satisfy (48) and, in addition, either ν ((0, 1]) > 0 or ν ((0, 1]) = 0

and
∫ +∞
1+

ν(dy)
y−1 = +∞. Let also h : R × [0,+∞) → (0,+∞) be as in (49) and let h(−1) :

(0,+∞) × [0,+∞) → R be its spatial inverse. Then, the function u defined, for (x, t) ∈
(0,+∞)× [0,+∞), by

(54) u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds+

∫ x

x0

e−h(−1)(z,0)dz,

for x0 > 0, is an increasing and strictly concave solution of (14) with

(55) lim
x→0

u (x, t) = −∞ for t ≥ 0.

Moreover, for each t ≥ 0, the Inada conditions

(56) lim
x→0

ux (x, t) = +∞ and lim
x→+∞ux (x, t) = 0

are satisfied.
(ii) Conversely, let u, defined for (x, t) ∈ (0,+∞)× [0,+∞), be an increasing and strictly

concave function satisfying (14), (55), and the Inada conditions (56). Then, there exists

ν ∈ B+ (R) satisfying (48) and ν ((0, 1]) > 0, or (48) and ν ((0, 1]) = 0 and
∫ +∞
1+

ν(dy)
y−1 = +∞,

such that u admits representation (54) with h given, for (x, t) ∈ R× [0,+∞), by (49).
Example 16. Let ν = δγ , γ > 1. Then, (49) yields

h (x, t) =
1

γ
eγx−

1
2
γ2t,
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for (x, t) ∈ R×[0,+∞). We, then, have h(−1) (x, t) = ln (γx)
1
γ+ 1

2γt, (x, t) ∈ (0,+∞)×[0,+∞),

and, thus, hx(h
(−1) (x, t) , t) = γx.

Since ν ((0, 1]) = 0, u is given by (51) and, therefore,

u (x, t) = −1

2

∫ t

0
γxe

−
(
ln(γx)

1
γ + 1

2
γs

)
+ s

2
ds+

∫ x

0
(γz)−

1
γ dz

=
γ

γ−1
γ

γ − 1
x

γ−1
γ e−

γ−1
2

t.

Example 17. Let ν = δγ , γ = 1. Then, (49) yields

h (x, t) = ex−
1
2
t,

for (x, t) ∈ R × [0,+∞) . We, then, have h(−1) (x, t) = lnx + 1
2t, (x, t) ∈ (0,+∞) × [0,+∞),

and, thus, hx(h
(−1)(x, t), t) = x.

Since ν ((0, 1]) 
= 0, u is given by (54). Therefore, for (x, t) ∈ (0,+∞) × [0,+∞) and
x0 > 0,

u (x, t) = −1

2

∫ t

0
xe−(lnx+ 1

2
s)+ s

2ds+

∫ x

x0

1

z
dz = ln

x

x0
− t

2
.

Example 18. Let ν = δγ , γ ∈ (0, 1). Using Example 16 and that ν ((0, 1]) 
= 0, we easily
deduce, using (54), that u is given by

u (x, t) = −1

2

∫ t

0
γxe

−
(
ln(γx)

1
γ + γ

2
s

)
+ s

2
ds +

∫ x

x0

(γz)−
1
γ dz

= − γ
γ−1
γ

1− γ x
γ−1
γ e

1−γ
2

t +
γ

γ−1
γ

1− γ x
γ−1
γ

0 ,

for x0 > 0.

4.3. Range (h) = (−∞, x0), x0 ∈ R. We recall that in this case, h is given by (39),
where ν satisfies

(57) ν ∈ B+− (R) and

∫ 0−

−∞

ν (dy)

y
> −∞,

with B+− (R) given in (38). For convenience, we set C =
∫ 0−
−∞

ν(dy)
y in (39), yielding Range (h) =

(−∞, 0), as

(58) h (x, t) =

∫ 0−

−∞

eyx−
1
2
y2t

y
ν (dy) .

In analogy to (50), one can show that h is concave in its spatial argument and increasing with
regards to time,

(59) hxx (x, t) < 0 and ht (x, t) > 0.
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The next proposition follows from a modification of the arguments used to prove Propo-
sition 14.

Proposition 19. (i) Let ν be as in (57). Let also h : R × [0,+∞) → (−∞, 0) be as in (58)
and h(−1) : (−∞, 0) × [0,+∞) → R be its spatial inverse. Then, the function u defined, for
(x, t) ∈ (−∞, 0)× [0,+∞), by

(60) u (x, t) = −1

2

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s), s

)
ds −

∫ 0

x
e−h(−1)(z,0)dz

is an increasing and strictly concave solution of (14) with

(61) lim
x→0

u (x, t) = 0 for t ≥ 0.

Moreover, for each t ≥ 0, the Inada conditions

(62) lim
x→−∞ux (x, t) = +∞ and lim

x→0
ux (x, t) = 0

are satisfied.
(ii) Conversely, let u be an increasing and strictly concave function satisfying, for (x, t) ∈

(−∞, 0)× [0,+∞), (14), (61), and the Inada conditions (62), for t ≥ 0. Then, there exists ν
as in (57) such that u admits representation (60) with h given by (58).

Example 20. We take ν = δγ , γ = − 1
2k+1 , k > 0. Then, (58) yields, for (x, t) ∈ (−∞, 0)×

[0,+∞),

h (x, t) = −1

γ
eγx−

1
2
γ2t.

Working as in Example 16, we deduce that, for (x, t) ∈ (−∞, 0)× [0,+∞),

u (x, t) =
γ

γ−1
γ

γ − 1
x

γ−1
γ e−

γ−1
2

t = −(2k + 1)−2k−1

2 (k + 1)
x2(k+1)e

k+1
2k+1

t.

4.4. Range (h) = (x1, x2), x1, x2 ∈ R. The case of finite range is not considered
since it does not yield a meaningful solution. Indeed, we recall the following result derived by
Widder (see [17]).

Proposition 21. Let h be a solution to (19) such that for (x, t) ∈ R× [0,∞), −M ≤ h (x, t) ≤
M, for some constant M. Then, h (x, t) is constant.

It then easily follows that in this case the problem degenerates, as there is no strictly
increasing solution to (19) or, in turn, to (14).

4.5. The local risk tolerance. In the previous section we introduced the function r in
(31). This function facilitates the representation of the optimal portfolio policy (cf. (32)) and,
as is shown below, is represented in terms of the spatial derivatives of u. In the traditional
maximal expected utility models, a similar quantity is used, known as the risk tolerance. We
keep an analogous terminology herein.

For the generic spatial domain D appearing below, we have D = R, (0,+∞) or (−∞, 0) .
To ease the presentation, we omit any reference to the specific range h (and, thus, to the
domain of u).
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The following result is a direct consequence of (31) and (89) (for an alternative proof, see
[10]).

Proposition 22. Let r : D× [0,∞)→ (0,+∞) be given by (31), i.e.,

(63) r (x, t) = hx

(
h(−1) (x, t), t

)
,

and let u be the associated with h differential utility input. Then, for (x, t) ∈ D× [0,∞),

r (x, t) = − ux (x, t)

uxx (x, t)
.

Therefore, r (x, t) = R (x, t) with R (x, t) as in (15).
In (34) we saw that the monotonicity of the optimal investment strategy with regards

to the initial endowment depends directly on the sign of the partial derivative rx (x, t) . As
was mentioned in section 3, when the risk tolerance is defined on R × [0,+∞), very little if
anything can be established for its monotonicity or limiting behavior. When, however, its
domain is semi-infinite, we have the following results.

Proposition 23. Let r : D× [0,+∞) → (0,+∞) with D =(0,+∞) or (−∞, 0) . Then, for
t ≥ 0,

(64) lim
x→0

r (x, t) = 0.

If D =(0,+∞), then

(65) rx (x, t) ≥ 0,

while if D =(−∞, 0),

(66) rx (x, t) ≤ 0,

for t ≥ 0.
Proof. We establish (64) only when D =(0,+∞). Recalling that

hx (x, t) =

∫ +∞

0+
eyx−

1
2
y2tν (dy)

(cf. (49)), (63) yields

r (x, t) =

∫ ∞

0+
eyh

(−1)(x,t)− 1
2
y2tν (dy) .

Passing to the limit and using the monotone convergence theorem and (93), we conclude.
Next, we show (65). Differentiating (63) yields

rx (x, t) =

(
∂

∂x
h(−1) (x, t)

)
hxx

(
h(−1) (x, t) , t

)
.

When D =(0,+∞) (resp., D =(−∞, 0)), then (65) (resp., (66)) follows from (50) (resp.,
(59)).
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5. Deterministic market prices of risk. In this section we assume that the process λt, t ≥
0, (cf. (3)) is deterministic. This, in turn, yields that At, t ≥ 0, (see (20)) is deterministic.

The goal is twofold. First, we study distributional properties of the optimal wealth and
compute its cumulative distribution, density, and moments. Second, we explore some inverse
problems, namely, how the investor’s preferences could be inferred from information about
the targeted mean of his optimal wealth.

5.1. Distribution of the optimal wealth process. Recalling At andMt from (20), we have
〈M〉t = At, t ≥ 0, and thus, by Levy’s theorem, the processMt is a Gaussian martingale. This
leads to the following properties of the distribution of the investor’s optimal wealth process.
The functions N and n below stand, respectively, for the cumulative distribution and the
density functions of a standard normal variable. We recall that h solves (19), h(−1) stands for
its spatial inverse, and r is given in (31).

Proposition 24. (i) The cumulative distribution and probability density functions of the
optimal wealth X∗,x

t , t > 0, are given, respectively, by

(67) P
(
X∗,x

t ≤ y) = N

(
h(−1) (y,At)− h(−1) (x, 0)−At√

At

)

and

fX∗,x
t

(y) = n

(
h(−1) (y,At)− h(−1) (x, 0)−At√

At

)
1

r (y,At)
√
At
,

with At as in (20).
(ii) For all p ∈ [0, 1] and t > 0, the quantile of order p, i.e., the point yp (t) for which

P(X∗,x
t ≤ yp(t)) = p, is given by

yp (t) = h
(
h(−1) (x, 0) +At +

√
AtN

(−1) (p), At

)
.

Proof. The first statement follows directly from (23). Indeed,

P
(
X∗,x

t ≤ y) = P

(
h
(
h(−1) (x, 0) +At +Mt, At

)
≤ y

)
= P

(
h(−1) (x, 0) +At +Mt ≤ h(−1) (y,At)

)
,

and we easily conclude. The other two statements are also immediate.
Properties of the multivariate distributions may be analyzed along similar arguments.
Next, we study the expected value of the optimal wealth and portfolio processes.
Proposition 25. Let X∗,x

t and π∗,xt be as in (23) and (24). Then, for t > 0,

(68) E
(
X∗,x

t

)
= h

(
h(−1) (x, 0) +At, 0

)
.

Moreover,

(69)
∂

∂x
E
(
X∗,x

t

)
=
r
(
E
(
X∗,x

t

)
, 0
)

r (x, 0)
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and

(70) E
(
r
(
X∗,x

t , At

))
= r

(
E
(
X∗,x

t

)
, 0
)
.

Proof. We establish the above when the function h is as in (39), with the other cases,
exhibited in (49) and (58), following along similar arguments.

From (23) we have

E
(
X∗,x

t

)
= E

(
h
(
h(−1) (x, 0) +At +Mt, At

))
= E

(∫
R

ey(h
(−1)(x,0)+At+Mt)− 1

2
y2At − 1

y
ν (dy)

)

=

∫
R

E

(
ey(h

(−1)(x,0)+At+Mt)− 1
2
y2At − 1

y

)
ν (dy)

=

∫
R

ey(h
(−1)(x,0)+At) − 1

y
ν (dy) = h

(
h(−1) (x, 0) +At, 0

)
.

Above we used that the two integrals can be interchanged. For this, it suffices to have

(71) E

(∫
R

∣∣∣∣∣ey(h
(−1)(x,0)+At+Mt)− 1

2
y2At − 1

y

∣∣∣∣∣ ν (dy)
)
< +∞.

Indeed, inequality (79) yields∫
R

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ν (dy) ≤ ν (R)(ex+ t
2 + e−x+ t

2

)
+

∫
R

eyx−
1
2
y2tν (dy) .

Therefore,

E

(∫
R

∣∣∣∣∣ey(h
(−1)(x,0)+At+Mt)− 1

2
y2At − 1

y

∣∣∣∣∣ ν (dy)
)

≤ ν (R)E
(
eh

(−1)(x,0)+At+Mt+
At
2 + e−(h

(−1)(x,0)+At+Mt)+At
2

)
+E

(∫
R

ey(h
(−1)(x,0)+At+Mt)− 1

2
y2Atν (dy)

)
.

On the other hand,

E
(
eh

(−1)(x,0)+At+Mt+
At
2 + e−(h

(−1)(x,0)+At+Mt)+At
2

)
≤ eh

(−1)(x,0)+ 3
2 c2t

E
(
eMt
)
+ e−h(−1)(x,0),

where we used (5) and (20). Similarly,
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E

(∫
R

ey(h
(−1)(x,0)+At+Mt)− 1

2
y2Atν (dy)

)

=

∫
R

E
(
ey(h

(−1)(x,0)+At+Mt)− 1
2
y2At

)
ν (dy)

=

∫
R

ey(h
(−1)(x,0)+At)ν (dy) <

∫
R

ey(h
(−1)(x,0)+c2t)ν (dy) < +∞,

and we easily obtain (71). Assertion (69) follows from (68) and (31).
To show (70), we recall (23), (31), and (81), yielding

E
(
r
(
X∗,x

t , At

))
= E

(∫
R

ey(h
(−1)(x,0)+At+Mt)− 1

2
y2Atν (dy)

)

=

∫
R

ey(h
(−1)(x,0)+At)ν (dy) = hx

(
h(−1) (x, 0) +At, 0

)
,

and we easily conclude.

5.2. Inferring the investor’s preferences. The investment performance criterion (27)
combines the investor’s preferences with the market input. As a consequence, the optimal
portfolio and the associated wealth (see (24) and (23), respectively) contain implicit informa-
tion about these preferences. In this section, we discuss how to learn about the individual’s
risk attitude by analyzing distributional characteristics of his optimal wealth. One can say,
using the language of the derivatives industry, that our aim is to calibrate the investor’s pref-
erences, given the market dynamics and his desirable distributional outcomes for his wealth
process.

This idea is relatively new. To the best of our knowledge, the authors of [15] were the first
to propose a model and show how information about an investor’s marginal utility of wealth
can be inferred from her choice of a distribution. Other, more recent relevant references, are
[2] and [16].

We discuss two examples in which we infer the investor’s preferences using information
about the behavior of her average future wealth. For simplicity, we concentrate only on the
no-bankruptcy case, Range (h) = (0,+∞) (see section 4.2).

We remind the reader that the market price of risk is taken to be deterministic. As a
result, At, t ≥ 0, (cf. (20)) is also deterministic.

Proposition 26. Let the mapping x → E
(
X∗,x

t

)
be linear, for all x > 0 and t ≥ 0. Then,

there exists a positive constant γ > 0 such that the investor’s forward performance process is
given by

(72) Ut (x) =
γ

γ−1
γ

γ − 1
x

γ−1
γ e−

1
2
(γ−1)At

if γ 
= 1, and by

(73) Ut (x) = lnx− 1

2
At
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if γ = 1. Moreover,

(74) E
(
X∗,x

t

)
= xeγAt .

Proof. Differentiating (69), we deduce

∂2

∂x2
E
(
X∗,x

t

)
=
rx
(
E
(
X∗,x

t

)
, 0
)

r (x, 0)

∂

∂x
E
(
X∗,x

t

)− r (E (X∗,x
t

)
, 0
) rx (x, 0)
r2 (x, 0)

=
rx
(
E
(
X∗,x

t

)
, 0
) − rx (x, 0)

r2 (x, 0)
r
(
E
(
X∗,x

t

)
, 0
)
.

By assumption, ∂2

∂x2E(X∗,x
t ) = 0. Moreover, r(E(X∗,x

t ), 0) > 0, as it follows from (70). There-
fore, we must have

rx
(
E
(
X∗,x

t

)
, 0
)
= rx (x, 0)

and, in turn,
∂

∂t
rx
(
E
(
X∗,x

t

)
, 0
)
= rxx

(
E
(
X∗,x

t

)
, 0
) ∂
∂t
E
(
X∗,x

t

)
= 0.

However, (68) implies ∂
∂tE

(
X∗,x

t

) 
= 0, and thus we deduce that

rxx
(
E
(
X∗,x

t

)
, 0
)
= 0.

Therefore, the function r(x, 0) must be linear in E(X∗,x
t ) and, in turn, in x, per our assumption.

Using (64), we obtain

r (x, 0) = γx,

for some γ > 0. From (31) and (49) we then deduce that, for all x > 0,∫ +∞

0+
eyh

(−1)(x,0)ν (dy) = γx

and, in turn, ∫ +∞

0+
eyxν (dy) = γ

∫ +∞

0+

eyx

y
ν (dy) .

Therefore, we must have

ν (dy) = δγ ,

where δγ is a Dirac measure at γ > 0. This yields

h (x, t) =
1

γ
eγx−

1
2
γ2t,

and assertions (72) and (73) follow from Examples 16, 17, 18, and 20.
Equality (74) follows from (68) and the form of h.
From the above analysis, we see that calibrating the investor’s preferences consists of

choosing a time horizon and the level of the mean of her optimal wealth, say t0 and mx
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(m > 1), respectively. Then, (74) implies that the corresponding γ must satisfy xeγAt0 = mx,
or, equivalently,

γ =
lnm

At0

.

Note that, under the linearity assumption, the investor can calibrate her expectations only
for a single time horizon. The model interpolates for all other trading horizons, giving

E (X∗x
t ) = xm

At
At0 .

We easily deduce that the distribution of the optimal wealth X∗,x
t is lognormal for all (x, t) .

The linearity of the mapping x→ E
(
X∗,x

t

)
is a very strong assumption. Indeed, it allows

for calibration of only a single parameter, namely, the slope, and, moreover, for a single
time horizon. Therefore, if one intends to calibrate the investor’s preferences to more refined
information, then one needs to accept a more complicated dependence of E(X∗,x

t ) on x. We
discuss this case next.

To this end, let us fix the level of initial wealth at x = 1 and consider calibration to
E(X∗,1

t ) for t > 0. The investor then chooses an increasing function m (t) (with m (t) > 1) to
represent the latter; i.e., for t > 0,

(75) E
(
X∗,1

t

)
= m (t) .

What does this choice reveal about her preferences? Moreover, can she choose an arbitrary
increasing function m (t)? We give answers to these questions below.

In analogy to the previous proposition, we consider only the no-bankruptcy case, which
corresponds to h given in (49). Using arguments similar to those used in Proposition 7, we

may assume, without loss of generality, that
∫ +∞
0

ν(dy)
y = 1. We then have h(−1) (1, 0) = 0,

which, combined with (68), yields

E
(
X∗,1

t

)
= h (At, 0) =

∫ ∞

0+

eyAt

y
ν (dy) .

We easily see that the investor may only choose a function m(t), t ≥ 0, which can be repre-
sented in the form

(76) m (t) =

∫ ∞

0+

eyAt

y
ν (dy) .

Therefore, the choice of a feasible m (t) reduces to the choice of the appropriate measure ν.
Specifically, we must have

(77) m
(
A

(−1)
t

)
=

∫ ∞

0+

eyt

y
ν (dy) = h (t, 0) ,

where A
(−1)
t stands for the inverse of the function At, t ≥ 0. Note that the right-hand side

above is the moment generating function of the probability measure μ (dy) = ν(dy)
y .
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Assume now that the mean m (t) (cf. (75)) was chosen so that (77) holds for some measure
ν. Then, for other values of x > 0, x 
= 1, we have, using (68),

E
(
X∗,x

t

)
= m

(
A(−1)

(
h(−1) (x, 0) +A (t)

))

= m
(
A(−1)

(
A
(
m(−1) (x)

)
+A (t)

))
,

where, for notational convenience, At (resp., A
(−1)
t ) is denoted by A(t) (resp., A(−1)(t)).

In summary, the market related input At, coupled with the investor’s targeted mean m (t)
(at initial wealth x = 1), yields the investor’s preferences by choosing the measure ν, appearing
in (76). Note that the function At determines the distribution of the martingale Mt, and the
measure ν defines the function h, which, in turn, determines the functions u and r. Once these
quantities are specified, we are able to construct the optimal portfolio process that generates
the optimal wealth satisfying (75). The distribution of the optimal wealth process X∗,x

t , for
x > 0, x 
= 1, is, in turn, deduced from the specification of the targeted mean, m(t), the
market input At, and (67).

We conclude by mentioning that one may prefer to calibrate the distribution of the optimal
wealth at a given time, say, X∗,1

t0 , rather than the mean, E(X∗,1
t ), for t ≥ 0. It is easy to see

what distributions are attainable. Indeed, Proposition 24 would give

P

(
X∗,1

t0 ≤ y
)
= N

(
h(−1) (y,At0)−At0√

At0

)

with

h (y,At0) =

∫ ∞

0+

ezy−
1
2
z2At0

y
ν(dz).

Further analysis of this and other calibration issues is left for future research.

6. Appendix.
Proof of Proposition 9. (i) Without loss of generality, we take C = 0. We first establish

that h (x, t) is well defined. Indeed, for (x, t) ∈ R× [0,+∞), we have

(78)

∫
R

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ν (dy) =
∫
|y|>1

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ν (dy) +
∫
|y|≤1

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ν (dy) .
On the other hand, one can show that, for fixed (x, t) and |y| ≤ 1, the inequality

(79)

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ≤ e|x|+ t
2 − 1



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

354 M. MUSIELA AND T. ZARIPHOPOULOU

holds.7 Combining the above, we deduce

(80)

∫
R

∣∣∣∣∣eyx−
1
2
y2t − 1

y

∣∣∣∣∣ ν (dy) ≤
∫
|y|>1

eyxν (dy) + ν (R) e|x|+
t
2 < +∞.

Differentiating under the integral yields

(81) hx (x, t) =

∫
R

eyx−
1
2
y2tν (dy),

and the claimed monotonicity of h follows. Note that hx (x, t) is well defined because 0 ≤
hx (x, t) < hx (x, 0) < +∞, as ν ∈ B+ (R) . Further differentiation yields

hxx (x, t) =

∫
R

yeyx−
1
2
y2tν (dy) and ht (x, t) = −1

2

∫
R

yeyx−
1
2
y2tν (dy) .

The fact that h solves (19) would follow, provided that the above integrals are well defined.
For x 
= 0, we have ∣∣∣∣∫

R

yeyx−
1
2
y2tν (dy)

∣∣∣∣ ≤ 1

|x|
∫
R

|yx| eyx− 1
2
y2tν (dy)

≤ 1

|x|
∫
R

(
e|yx| − 1

)
eyx−

1
2
y2tν (dy)

≤ 1

|x|
(∫

yx≤0

(
e|yx| − 1

)
eyx−

1
2
y2tν (dy) +

∫
yx>0

(
e|yx| − 1

)
eyx−

1
2
y2tν (dy)

)
≤ 1

|x|
(∫

yx≤0
(1− eyx) e− 1

2
y2tν (dy) +

∫
yx>0

e2yx−
1
2
y2tν (dy)

)
≤ 1

|x|
∫
yx≤0

ν (dy) +
1

|x|
∫
yx>0

e2yxν(dy),

and the assertion follows, using that ν ∈ B+ (R). The case x = 0 follows trivially.
Next, we establish that if ν has the above-mentioned properties, then, for each t ≥ 0, h is

of full range. Given that h is continuous, we need to show that, for t ≥ 0,

(82) lim
x→−∞h (x, t) = −∞ and lim

x→+∞h (x, t) = +∞.

From (39) we have

(83) h (x, t) =

∫ 0−

−∞

eyx−
1
2
y2t − 1

y
ν (dy) + xν ({0}) +

∫ +∞

0+

eyx−
1
2
y2t − 1

y
ν (dy) .

7Indeed, we have e
yx− 1

2
y2t−1

y
=

∑∞
n=1

yn−1(x− 1
2
yt)n

n!
and, therefore,

∣

∣

∣

∣

∣

eyx−
1
2
y2t − 1

y

∣

∣

∣

∣

∣

≤
∞
∑

n=1

|y|n−1
∣

∣x− 1
2
yt
∣

∣

n

n!
≤

∞
∑

n=1

(|x|+ 1
2
|y| t)n

n!
≤ e|x|+

t
2 − 1.
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We first look at the case ν ({0}) > 0. If both ν ((−∞, 0)) = 0 and ν ((0,+∞)) = 0, (82)
follows directly. If ν ((−∞, 0)) = 0 and ν ((0,+∞)) > 0, the monotone convergence theorem
yields

lim
x→±∞

(
xν ({0}) +

∫ +∞

0+

eyx−
1
2
y2t − 1

y
ν (dy)

)
= ±∞.

The case ν ((−∞, 0)) > 0 and ν ((0,+∞)) = 0 follows similarly.
Next, we assume that ν ((−∞, 0))× ν ((0,+∞)) > 0. Then, (83) yields

h (x, t) =

∫ 0−

−∞

eyx−
1
2
y2t − 1

y
ν (dy) +

∫ +∞

0+

eyx−
1
2
y2t − 1

y
ν(dy),

and we easily deduce (82).
If ν ∈ B+0 (R) and it also satisfies ν ((−∞, 0)) = 0 and

∫ +∞
0+

1
yν (dy) = +∞, then the

monotone convergence theorem yields

lim
x→+∞h (x, t) = lim

x→+∞

∫ +∞

0+

eyx−
1
2
y2t − 1

y
ν (dy) = +∞

and

lim
x→−∞h (x, t) = −

∫ +∞

0+

1

y
ν (dy) = −∞.

The case ν ∈ B+− (R) with
∫ 0−
−∞

1
yν (dy) = −∞ follows similarly, as well as the cases ν ∈ B++ (R)

with
∫ +∞
0+

1
yν (dy) < +∞, and ν ∈ B+− (R) with

∫ 0−
−∞

1
yν (dy) > −∞.

(ii) Let h be a strictly increasing solution to (19). Then, its spatial derivative satisfies
hx (x, t) ≥ 0 and solves (19). Thus, Widder’s theorem implies the existence of ν ∈ B+ (R)
such that the representation

(84) hx (x, t) =

∫
R

eyx−
1
2
y2tν (dy)

holds. We then have hxx (x, t) =
∫
R
yeyx−

1
2
y2tν (dy) (its finiteness follows easily), which,

combined with (19), yields

ht (x, t) = −1

2

∫
R

yeyx−
1
2
y2tν (dy) .

If Range(h) = (−∞,+∞), t ≥ 0, integrating yields

(85) h (x, t) =

∫ t

0
ht (x, s) ds+

∫ x

x0

hx (z, 0) dz + h (x0,0)

for any x0 ∈ R. Combining the above, we obtain

(86) h (x, t) = −1

2

∫ t

0

∫
R

yeyx−
1
2
y2sν (dy) ds+

∫ x

x0

∫
R

eyzν (dy) dz + h (x0, 0) .
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Note that, for ν ∈ B+(R),∫ t

0

∫
R

∣∣∣yeyx− 1
2
y2s
∣∣∣ ν (dy) ds ≤ t ∫

R

|y| eyxν (dy) <∞,

and thus Fubini’s theorem yields

−1

2

∫ t

0

∫
R

yeyx−
1
2
y2sν (dy) ds = −1

2

∫
R

∫ t

0
yeyx−

1
2
y2sdsν (dy)

=

∫
R

eyx−
1
2
y2t − eyx
y

ν (dy) .

Moreover, Tonelli’s theorem yields∫ x

x0

∫
R

eyzν (dy) dz =

∫
R

∫ x

x0

eyzdzν (dy) =

∫
R

eyx − eyx0

y
ν (dy) .

Observe that both integrals above are well defined, as was shown in the proof of part (i).
Using (86) gives

h (x, t) =

∫
R

eyx−
1
2
y2t − eyx0

y
ν (dy) + h(x0, 0).

Without loss of generality we choose x0 = 0, and we easily conclude.
Next, we establish that if h is of full range, for each t ≥ 0, it must be that ν ({0}) > 0, or,

otherwise, either ν(−∞, 0) > 0 and ν(0,+∞) > 0, or ν ∈ B++ (R) with
∫ +∞
0+

1
yν (dy) = +∞,

or ν ∈ B+− (R) with
∫
0−−∞

1
yν (dy) = −∞. Note that (82) must hold, for each t ≥ 0, as h is

continuous.
Let us assume that ν ∈ B++ (R) and

∫ +∞
0+

1
yν (dy) < +∞. Then, (83) would give

lim
x→−∞h (x, t) = lim

x→−∞

∫ +∞

0+

eyx−
1
2
y2t − 1

y
ν (dy) = −

∫ +∞

0+

1

y
ν (dy) > −∞,

contradicting (82). All other cases follow along similar arguments, and their proof is thus
omitted.

The following auxiliary result will be used in what follows. Because we will examine the
various cases of the range of h separately, we state the result without making specific reference
to the domain of the spatial inverse, h(−1).

Lemma 27. A strictly increasing function, say h, satisfies (19) if and only if its spatial
inverse, h(−1), satisfies

(87)
∂

∂t
h(−1) (x, t) +

1

2

∂2

∂x2h
(−1) (x, t)(

∂
∂xh

(−1) (x, t)
)2 = 0.

We continue with the proofs of Propositions 10, 14, and 15.
Proof of Proposition 10. (i) First, we establish that the integrals in (42) are well defined.

Using (84) and Tonelli’s theorem, we have
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0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds =

∫ t

0

∫
R

e(y−1)h(−1)(x,s)+ s
2
− 1

2
y2sν (dy) ds

≤ e t
2

∫
R

∫ t

0
e(y−1)h(−1)(x,s)dsν (dy)

= e
t
2

∫
y≥1

∫ t

0
e(y−1)h(−1)(x,s)dsν (dy) + e

t
2

∫
y<1

∫ t

0
e(y−1)h(−1)(x,s)dsν (dy)

≤ te t
2

∫
y≥1

e(y−1)max0≤s≤t h
(−1)(x,s)ν (dy) + te

t
2

∫
y<1

e(y−1)min0≤s≤t h
(−1)(x,s)ν (dy) .

Using Tonelli’s theorem once more, we have that the second integral in (42) satisfies∫ x

0
e−h(−1)(z,0)dz =

∫ h(−1)(x,0)

h(−1)(0,0)
e−z′hx

(
z′, 0

)
dz′

=

∫ h(−1)(x,0)

h(−1)(0,0)

∫
R

e(y−1)z′ν (dy) dz′ =
∫
R

e(y−1)h(−1)(x,0) − e(y−1)h(−1)(0,0)

y − 1
ν(dy),

and its finiteness follows from arguments similar to those used in the proof of Proposition 9.
Differentiating (42) and using that h solves (19) yields

ux (x, t) =
1

2

∫ t

0

(
1− hxx

(
h(−1)(x, s), s

)
hx
(
h(−1)(x, s), s

) ) e−h(−1)(x,s)+ s
2 ds+ e−h(−1)(x,0)

=
1

2

∫ t

0

(
1 + 2

ht
(
h(−1)(x, s), s

)
hx
(
h(−1)(x, s), s

)) e−h(−1)(x,s)+ s
2ds + e−h(−1)(x,0)

=

∫ t

0

(
1

2
− ∂

∂s
h(−1) (x, s)

)
e−h(−1)(x,s)+ s

2 ds+ e−h(−1)(x,0),

and, therefore,

(88) ux (x, t) = e−h(−1)(x,t)+ t
2 .

Further differentiation yields

u2x (x, t)

uxx (x, t)
= −e

−h(−1)(x,t)+ t
2

∂
∂xh

(−1) (x, t)
.

On the other hand, (42) implies

ut (x, t) = −1

2
e−h(−1)(x,t)+ t

2hx

(
h(−1)(x, t), t

)
= −1

2

e−h(−1)(x,t)+ t
2

∂
∂xh

(−1) (x, t)
.

Combining the above two equalities, we deduce that u satisfies (14).
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To establish (41) and (43), we first observe that the assumption of full range yields, for
each t ≥ 0, limx→±∞ h(−1) (x, t) = ±∞. Both assertions then follow from (88).

(ii) Let u be an increasing and strictly concave function, defined for (x, t) ∈ R×[0,+∞) and

satisfying (14), (41), and (43). Using that ux is invertible, with (ux)
(−1) : (0,+∞)×[0,+∞)→

R, we define, for (x, t) ∈ R×[0,+∞), the function h by

(89) h (x, t) = (ux)
(−1)

(
e−x+ t

2 , t
)
.

Note that h is invertible in the space variable since

hx (x, t) = − e−x+ t
2

uxx (h (x, t) , t)
> 0.

Differentiating (14) yields

(90) uxt = ux − 1

2

u2xuxxx
u2xx

.

In turn,

uxt (x, t) =

(
− ∂

∂t
h(−1) (x, t) +

1

2

)
ux (x, t) ,

(91) uxx (x, t) = −
(
∂

∂x
h(−1) (x, t)

)
ux (x, t)

and

uxxx (x, t) =

(
− ∂2

∂x2
h(−1) (x, t) +

(
∂

∂x
h(−1) (x, t)

)2
)
ux (x, t) .

Combining the above, we obtain that h(−1) satisfies

∂

∂t
h(−1) (x, t) +

1

2

∂2

∂x2h
(−1) (x, t)(

∂
∂xh

(−1) (x, t)
)2 = 0,

and using Lemma 27, we deduce that its spatial inverse, h, solves (19). On the other hand,
(89) and (41) yield that h (0, 0) = 0. Finally, (89) and the Inada conditions yield

lim
x→−∞h (x, t) = −∞ and lim

x→+∞h (x, t) = +∞.

Therefore, h solves (19) and is strictly increasing and of full range, for each t ≥ 0. Using
Proposition 9(ii), we obtain (39) for some ν ∈ B+ (R) with the appropriate properties.

It remains to show that u is given by (42). Using (14), (89), and the form of uxx(x, t), we
obtain

ut (x, t) = −1

2
e−h(−1)(x,t)+ t

2hx

(
h(−1) (x, t) , t

)
.
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Integrating and using (41) yields

u (x, t) =

∫ t

0
ut (x, s) ds+

∫ x

0
ux (z, 0) dz,

and (42) follows from direct integration. Note that the above two integrals are well defined,
as follows from arguments used in the proof of part (i). We easily conclude.

The next result will be used in the proofs that follow.
Lemma 28. Let h be such that Range(h) =(0,+∞) (resp., Range(h) =(−∞, 0)). Then, for

each x, h(−1) (x, t) is increasing (resp., decreasing) in t.
Proof. We look only at the case Range(h) =(0,+∞). Using (50) and differentiating the

identity h(h(−1)(x, t), t) = x with respect to time yields the claimed monotonicity of
h(−1) (x, t) .

Proof of Proposition 14. (i) We first establish that u in (51) is well defined for x > 0,
t ≥ 0. From (49) and the assumptions on the measure ν, we easily deduce that

(92) hx (x, t) =

∫ +∞

1+
eyx−

1
2
y2tν (dy) .

Therefore, ∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds

=

∫ t

0

∫ +∞

1+
e(y−1)h(−1)(x,s)+ s

2
− 1

2
y2sν (dy) ds

≤ te−h(−1)(x,0)+ t
2

∫ +∞

1+
eyh

(−1)(x,t)ν(dy),

where we used Lemma 27. The finiteness of the integral then follows from the assumptions
on the measure ν.

The finiteness of the second integral in (51) also follows. Indeed, first observe that (49)
yields

(93) lim
x→−∞h (x, t) = 0 and lim

x→+∞h (x, t) = +∞.

Using the above, (92), and Tonelli’s theorem, we obtain∫ x

0
e−h(−1)(z,0)dz =

∫ h(−1)(x,0)

−∞
e−z′hx

(
z′, 0

)
dz′

=

∫ h(−1)(x,0)

−∞

∫ +∞

1+
e(y−1)z′ν (dy) dz′ =

∫ +∞

1+

∫ h(−1)(x,0)

−∞
e(y−1)z′dz′ν (dy)

=

∫ +∞

1+

1

y − 1

(
e(y−1)h(−1)(x,0) − lim

z′→−∞
e(y−1)z′

)
ν (dy) .
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Using that limz′→−∞ e(y−1)z′ = 0 for y > 1 and that
∫ +∞
1+

ν(dy)
y−1 < +∞, we deduce that

(94)

∫ x

0
e−h(−1)(z,0)dz =

∫ +∞

1+

1

y − 1
e(y−1)h(−1)(x,0)ν (dy) .

For ε > 0, we then have∫ x

0
e−h(−1)(z,0)dz =

∫ 1+ε

1+

1

y − 1
e(y−1)h(−1)(x,0)ν (dy) +

∫ +∞

1+ε

1

y − 1
e(y−1)h(−1)(x,0)ν (dy)

≤ max
(
1, eεh

(−1)(x,0)
)∫ 1+ε

1+

ν (dy)

y − 1
+
e−h(−1)(x,0)

ε

∫ +∞

1+ε
eyh

(−1)(x,0)ν (dy) .

Using the assumptions on the measure ν, we easily conclude.
The fact that u solves (14) and has the claimed monotonicity and concavity properties

follows from arguments similar to those used in the proof of Proposition 10(i).
Next, we establish (52). We first show that

(95) lim
x→0

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1)(x, s), s

)
ds = 0.

Indeed, note that the above integrand is monotone in x. This follows easily from its represen-
tation,

e−h(−1)(x,t)+ t
2hx

(
h(−1) (x, t) , t

)
=

∫ +∞

1+
e(y−1)h(−1)(x,t)− 1

2
y2t+ t

2 ν(dy),

combined with the monotonicity of h(−1). Using the monotone convergence theorem and (93),
we obtain (95).

On the other hand, (94) yields

lim
x→0

∫ x

0
e−h(−1)(z,0)dz = lim

x→0

∫ +∞

1+

1

y − 1
e(y−1)h(−1)(x,0)ν (dy) .

Using the monotone convergence theorem, (93) (for t = 0), and that
∫ +∞
1+

ν(dy)
y−1 < +∞, we

conclude.
(ii) Using arguments similar to those in the proof of Proposition 10(ii), we deduce that

the function h given, for (x, t) ∈ R× [0,+∞), by

(96) h (x, t) = (ux)
(−1)

(
e−x+ t

2 , t
)

is well defined and solves (19). Moreover, the assumptions on u imply that h (x, t) ≥ 0 and
hx (x, t) ≥ 0. Therefore, from Proposition 10, we have that there exists ν ∈ B+ (R) satisfying
(48) and such that representation (49) holds. The Inada conditions (53) then yield that the
normalization constant must be chosen as C =

∫ +∞
0+

1
yν (dy).

Using (52) and working along arguments similar to those used in the proof of Proposition
10, we deduce the representation (51).
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It remains to establish that ν satisfies ν ((0, 1]) = 0 and
∫ +∞
1+

ν(dy)
y−1 < +∞. We argue by

contradiction. To this end, we first note that, because of (52), we have, for x > 0,

u (x, t) =

∫ x

0
ux (z, t) dz =

∫ h(−1)(x,t)

−∞

∫ +∞

0
e(y−1)z′+ t

2(1−y2)ν (dy) dz′,

where we used (89) and (93). We then observe that ν cannot include a Dirac measure at
y = 1, as this would yield

u (x, t) ≥
∫ h(−1)(x,t)

−∞
dz′ = +∞,

contradicting the finiteness of u (x, t) . Therefore, we must have

u (x, t) =

∫ h(−1)(x,t)

−∞

∫ 1−

0+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′

+

∫ h(−1)(x,t)

−∞

∫ +∞

1+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′,

and, in turn, for x > 0,

(97)

∫ h(−1)(x,t)

−∞

∫ 1−

0+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′ < +∞

and

(98)

∫ h(−1)(x,t)

−∞

∫ +∞

1+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′ < +∞.

However, using Tonelli’s theorem, we deduce∫ h(−1)(x,t)

−∞

∫ 1−

0+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′

=

∫ 1−

0+

∫ h(−1)(x,t)

−∞
e(y−1)z′+ t

2(1−y2)dz′ν (dy)

=

∫ 1−

0+

1

y − 1

(
e(y−1)h(−1)(x,t) − lim

z′→−∞
e(y−1)z′

)
e

t
2(1−y2)ν(dy),

and we easily get a contradiction to (97) if ν ((0, 1)) 
= 0.
Similarly, for all x > 0, we must have∫ h(−1)(x,t)

−∞

∫ +∞

1+
e(y−1)z′+ t

2(1−y2)ν (dy) dz′

=

∫ +∞

1+

1

y − 1

(
e(y−1)h(−1)(x,t) − lim

z→−∞ e(y−1)z

)
e

t
2(1−y2)ν (dy)

=

∫ +∞

1+

1

y − 1
e(y−1)h(−1)(x,t)+ t

2(1−y2)ν (dy) < +∞.
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By assumption, for each t ≥ 0, Range(h(−1)) = (−∞,+∞) . Therefore, for t = 0, there exists
x0 such that h(−1) (x0, 0) = 0. We easily conclude.

Proof of Proposition 15. We prove only some of the main points, for the rest of the proof
follows along arguments similar to those in the previous proof. To this end, we first show that
the function given in (54) is well defined. Indeed,

∫ t

0
e−h(−1)(x,s)+ s

2hx

(
h(−1) (x, s) , s

)
ds

=

∫ t

0

∫ +∞

0+
e(y−1)h(−1)(x,s)+ s

2
− 1

2
y2sν (dy) ds

≤ te−h(−1)(x,0)+ t
2

∫ +∞

0+
eyh

(−1)(x,t)ν(dy),

where we used Lemma 27. The finiteness of the integral follows from the assumptions on the
measure ν.

Moreover, for x > x0 (the case x < x0 follows similarly),

∫ x

x0

e−h(−1)(z,0)dz =

∫ h(−1)(x,0)

h(−1)(x0,0)
e−z′hx

(
z′, 0

)
dz′

=

∫ h(−1)(x,0)

h(−1)(x0,0)

∫ +∞

0+
e(y−1)z′ν (dy) dz′ =

∫ +∞

0+

∫ h(−1)(x,0)

h(−1)(x0,0)
e(y−1)z′dz′ν (dy)

=

∫ +∞

0+

1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)
ν (dy) .

We have ∫ +∞

0+

∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣ ν (dy)
=

∫ 2

0+

∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣ ν (dy)
+

∫ +∞

2

∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣ ν (dy)
≤
∫ 2

0+

∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣ ν (dy)
+ e−h(−1)(x,0)

∫ +∞

2
eyh

(−1)(x,0)ν (dy) + e−h(−1)(x0,0)

∫ +∞

2
eyh

(−1)(x0,0)ν (dy) .
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On the other hand,
1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)

=
1

y − 1

(
+∞∑
n=1

(
(y − 1)n

(
h(−1) (x, 0)

)n
n!

− (y − 1)n
(
h(−1) (x0, 0)

)n
n!

))

=
+∞∑
n=1

(
(y − 1)n−1 (h(−1) (x, 0)

)n
n!

− (y − 1)n−1 (h(−1) (x0, 0)
)n

n!

)
.

For 0 ≤ y ≤ 2, ∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣
≤

+∞∑
n=1

(
|y − 1|n−1

∣∣h(−1) (x, 0)
∣∣n

n!
+
|y − 1|n−1

∣∣h(−1) (x0, 0)
∣∣n

n!

)

≤ e|h(−1)(x,0)| + e|h(−1)(x,0)| − 2.

Combining the above yields∫ +∞

0+

∣∣∣∣ 1

y − 1

(
e(y−1)h(−1)(x,0) − e(y−1)h(−1)(x0,0)

)∣∣∣∣ ν (dy)
≤
(
e|h(−1)(x,0)| + e|h(−1)(x,0)| − 2

)
ν ([0, 2])

+ e−h(−1)(x,0)

∫ +∞

2
eyh

(−1)(x,0)ν (dy) + e−h(−1)(x0,0)

∫ +∞

2
eyh

(−1)(x0,0)ν (dy),

and we easily conclude.
Next we show that, under the assumptions on the measure ν, (55) holds.
First we assume that ν ((0, 1]) > 0. Observe that for x sufficiently small,∫ x

x0

e−h(−1)(z,0)dz = −
∫ +∞

0+

∫ h(−1)(x0,0)

h(−1)(x,0)
e(y−1)z′dz′ν (dy)

= −
(∫ 1

0+

∫ h(−1)(x0,0)

h(−1)(x,0)
e(y−1)z′dz′ν (dy) +

∫ +∞

1+

∫ h(−1)(x0,0)

h(−1)(x,0)
e(y−1)z′dz′ν (dy)

)

≤ −
∫ 1

0+

1

y − 1

(
e(y−1)h(−1)(x0,0) − e(y−1)h(−1)(x,0)

)
ν (dy).

Passing to the limit and using the monotone convergence theorem yields

lim
x→0

∫ 1

0+

1

y − 1

(
e(y−1)h(−1)(x0,0) − e(y−1)h(−1)(x,0)

)
ν (dy) = +∞.
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Next we look at the case ν ((0, 1]) = 0 and
∫ +∞
1+

ν(dy)
y−1 = +∞. We then have

∫ x

x0

e−h(−1)(z,0)dz = −
∫ +∞

1+

∫ h(−1)(x0,0)

h(−1)(x,0)
e(y−1)z′dz′ν (dy)

= −
∫ +∞

1+

1

y − 1

(
e(y−1)h(−1)(x0,0) − e(y−1)h(−1)(x,0)

)
ν (dy).

Using the monotone convergence theorem and that

lim
x→0

(
e(y−1)h(−1)(x0,0) − e(y−1)h(−1)(x,0)

)
= e(y−1)h(−1)(x0,0)

yields

lim
x→0

∫ x

x0

e−h(−1)(z,0)dz = −
∫ +∞

1+

1

y − 1

(
e(y−1)h(−1)(x0,0)

)
ν (dy).

The elementary inequality e(y−1)h(−1)(x0,0) ≥ 1 + (y − 1) h(−1) (x0, 0) in turn implies

−
∫ +∞

1+

1

y − 1

(
e(y−1)h(−1)(x0,0)

)
ν (dy)

≤ −
∫ +∞

1+

1

y − 1

(
1 + (y − 1) h(−1) (x0, 0)

)
ν (dy)

= −
∫ +∞

1+

1

y − 1
ν (dy)− h(−1) (x0, 0) ν ((1,+∞)),

and we easily conclude.
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Merton Problem with Taxes: Characterization, Computation, and Approximation∗

Imen Ben Tahar†, H. Mete Soner‡, and Nizar Touzi§

Abstract. We formulate a computationally tractable extension of the classical Merton optimal consumption-
investment problem to include the capital gains taxes. This is the continuous-time version of the
model introduced by Dammon, Spatt, and Zhang [Rev. Financ. Stud., 14 (2001), pp. 583–616]. In
this model the tax basis is computed as the average cost of the stocks in the investor’s portfolio.
This average rule introduces only one additional state variable, namely the tax basis. Since the
other tax rules such as the first in first out rule require the knowledge of all past transactions,
the average model is computationally much easier. We emphasize the linear taxation rule, which
allows for tax credits when capital gains losses are experienced. In this context wash sales are
optimal, and we prove it rigorously. Our main contributions are a first order explicit approximation
of the value function of the problem and a unique characterization by means of the corresponding
dynamic programming equation. The latter characterization builds on technical results isolated in
the accompanying paper [I. Ben Tahar, H. M. Soner, and N. Touzi, SIAM J. Control Optim., 46
(2007), pp. 1779–1801]. We also suggest a numerical computation technique based on a combination
of finite differences and the Howard iteration algorithm. Finally, we provide some numerical results
on the welfare consequences of taxes and the quality of the first order approximation.

Key words. optimal consumption and investment in continuous time, transaction costs, capital gains taxes,
finite differences
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1. Introduction. Since the seminal papers of Merton [26, 27], there has been extensive
literature on the problem of optimal consumption and investment decision in financial markets
subject to imperfections. We refer the reader to Cox and Huang [10] and Karatzas, Lehoczky,
and Shreve [21] for the case of incomplete markets, Cvitanić and Karatzas [11] for the case of
portfolio constraints, and Constantinides and Magill [9], Davis and Norman [13], Shreve and
Soner [28], Barles and Soner [3], and Duffie and Sun [15] for the case of transaction costs.

However, the problem of taxes on capital gains received limited attention, although taxes
represent a much higher percentage than transaction costs in real securities markets. Com-
pared to ordinary income, capital gains are taxed only when the investor sells the security,
allowing for a deferral option. One may think that the taxes on capital gains have an apprecia-
ble impact on an individual’s consumption and investment decisions. Indeed, under taxation
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of capital gains, the portfolio rebalancing implies additional charges, therefore altering the
available wealth for future consumption. This possibly induces a depreciation of consumption
opportunities compared to a tax-free market. On the other hand, since taxes are paid only
when embedded capital gains are actually realized, the investor may choose to defer the re-
alization of capital gains and liquidate his/her position in case of a capital loss, particularly
when the tax code allows for tax credits.

The first relevant work in the previous literature is due to Constantinides [8], who shows
that the investment and consumption decisions are separable and that the optimal strategy
consists in realizing losses and deferring gains. These results rely heavily on the possibility
of short selling the risky asset. Since capital gains realizations are observed in real securities
markets, the subsequent literature considers the problem under the no-short-sales constraint.

In a multiperiod context, many challenging difficulties appear because of the path depen-
dency of the problem. The taxation code specifies the basis to which the price of a security
has to be compared in order to evaluate the capital gains (or losses). The tax basis is defined
as either (i) the specific purchase price of the asset to be sold, (ii) the purchase price of a freely
chosen share held in the portfolio (of course the number of chosen shares must be more than
the ones to be sold), or (iii) the weighted average of past purchase prices. In some countries,
investors can choose any one of the above definitions of the tax basis.

A deterministic model with the above definition (i) of the tax basis, together with the first
in first out priority rule for the stock to be sold, is introduced by Jouini, Koehl, and Touzi
[20, 19]. An existence result is proved, and the first order conditions of optimality are derived
under some conditions. However, the numerical complexity due to the path dependency of
the problem is not solved in the context of this model.

A financial model with the above definition (ii) of the taxation rule was considered by
Dybvig and Koo [16] in the context of a four-period binomial model. Some numerical progress
was achieved later by DeMiguel and Uppal [14], who were able to consider more periods in
the binomial model and/or more stocks. This numerical progress is limited, as these authors
were not able to go beyond 10 periods in the single-asset framework.

The taxation rule (iii), where the tax basis is the weighted average of past purchase prices,
was first considered by Dammon, Spatt, and Zhang [12] in the context of a binomial model
with short-sales constraints and the linear taxation rule. The average tax basis is actually
used in Canada. Dammon, Spatt, and Zhang [12] considered the problem of maximizing the
expected discounted utility from future consumption and provided a numerical analysis of this
model based on the dynamic programming principle. The important technical feature of this
model is that the path dependency of the problem is seriously reduced, as the dynamics of the
tax basis is Markov. This implies a significant advantage of this model in comparison to [16].
This advantage was further justified by DeMiguel and Uppal [14], who provided numerical
evidence that the certainty equivalent loss from using the average tax basis (iii) instead of
the exact tax basis (ii) is typically less than 1% for a large choice of parameter values. The
analysis of [12] was further extended to the multiasset framework by Gallmeyer, Kaniel, and
Tompaidis [18].

In this paper, we formulate a continuous-time version of the Dammon–Spatt–Zhang utility
maximization problem under capital gains taxes. Our model is similar to that of Leland [24],
who instead considered the problem of minimizing the tracking error to some benchmark index.
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The financial market consists of a tax-free riskless asset and a risky one. The holdings in the
risky asset are subject to the no-short-sales constraint, and the total wealth is restricted by
the no-bankruptcy condition. The risky asset is subject to taxes on capital gains. As in [12],
the tax basis is defined as the weighted average of past purchase prices, and the taxation rule
is linear, thus allowing for tax credits. However, we differ from [12] by considering an infinite
horizon problem, as our main goal is to provide analytical tools for this class of problems. In
particular, our model does not allow for tax forgiveness at death. Clearly, one should keep
this difference in mind when interpreting results for investors with a short horizon.

The investor preferences are described by a power utility with a constant relative risk
aversion factor. This assumption is needed only to reduce the computational complexity of
the problem. However, with this reduction explicit descriptions of the value function and the
optimal strategy are still not available.

This model enables us to rigorously prove several interesting properties observed in prac-
tice. Although these results are sometimes intuitively clear, their proofs require careful anal-
ysis and the use of the tractability of the model. The first of these results is the optimality of
the wash sales. Namely, in Proposition 3.5 we prove that it is always optimal to realize capital
losses whenever the tax basis exceeds the spot price. This property is observed in practice and
is stated and embedded directly in the definition of the tax basis in [12]. We also prove the
continuity of the value function (and even Lipschitz continuity, up to a change of variables).
We recall that, in the tax-free models of [26, 9, 13, 28], this property follows from the obvious
concavity of the value function. Under capital gains taxes, the concavity argument fails, and
the numerical results of section 6 suggest that the value function is indeed not concave!

The first main result of this paper is to provide an explicit approximation of the value
function which follows from an upper and a lower bound proved in section 4. In view of the
absence of closed form solutions, such an approximation is useful for understanding the model
better. Although this explicit approximation holds for small interest rate and tax parameters,
our numerical experiments indicate that this approximation is satisfactory with realistic values
of interest rate and tax parameters, as it leads to a relative error within 10%. These findings
are reported in section 6. This first order approximation allows one to draw the following
observations:

• The lower bound is derived as the limit of the value implied by a sequence of strate-
gies which mimics the Merton optimal strategy in a Merton-type fictitious frictionless
financial market with tax-deflated drift and volatility coefficients. The risk premium
of this fictitious financial market is smaller than that of the original market. So, even
if the optimal strategy in our problem is not available in explicit form, our first or-
der expansion is accompanied by an explicit strategy which achieves “the first order
maximal utility value.”

• In a situation of a capital loss, our first order approximation is increasing in the tax
rate. For small interest rate and tax parameters, the advantage taken from an initial
tax credit is never compensated by the increase of tax over the lifetime horizon. This
is in agreement with Cadenillas and Pliska [7], who found that “sometimes investors
are better off with a positive tax rate.”

• Finally, the investment component of this approximation sequence exhibits a smaller
exposition to the risky asset. This is in line with the risk premium puzzle highlighted
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by Mehra and Prescott [25]. However, one should note that this model is only a partial
equilibrium model and that the level of the equity premium is determined by general
equilibrium considerations.

Our analysis of the optimal consumption-investment problem relies on a numerical ap-
proach based on dynamic programming and partial differential equations. Therefore, the
second main result of this paper is a characterization of the value function as the limit (uni-
formly on compact subsets) of an approximating sequence defined by a slight perturbation of
the “natural” dynamic programming equation of our problem. The financial interpretation of
our perturbation is, on the one hand, to introduce a small transaction cost parameter and, on
the other hand, to modify simultaneously the taxation rule when the tax basis approaches the
critical point zero. Our analysis relies on the technical results in our accompanying paper [5],
which shows that the perturbed dynamic programming equation has a unique continuous
viscosity solution within the class of polynomially growing functions.

Finally, based on our dynamic programming characterization, we suggest a numerical ap-
proximation method combining finite differences with the Howard iterations. Unfortunately,
we have no theoretical convergence result for our algorithm. Indeed, establishing such con-
vergence results for Hamilton–Jacobi–Bellman equations corresponding to singular control
problems is an open question in numerical analysis, and the existing results, based on the
monotone scheme method of Barles and Souganidis [4], are restricted to the bounded control
context; see Bonnans and Zidani [6], Krylov [22, 23], Barles and Jakobsen [2], and Fahim,
Touzi, and Warin [17]. This difficulty was already observed in the related literature on trans-
action costs; see Akian, Menaldi, and Sulem [1] and Tourin and Zariphopoulou [31]. Following
the latter papers, we therefore concentrate our effort on realizing the empirical convergence
of the algorithm. The numerical scheme is implemented to obtain the qualitative behavior of
the solution and to understand the welfare consequences of the taxation. In particular, the
numerical approximation of the optimal strategy displays a bang-bang behavior, as expected
in our singular control problem. As in the transaction cost context of [9, 13, 28], the state
space is partitioned into three regions: the no-transaction region NT, the buy region B, and
the sell region S; but in contrast with the transaction cost framework these regions are not
cones.

Notation. For a domain D in R
n, we denote by USC(D) (resp., LSC(D)) the collection

of all upper semicontinuous (resp., lower semicontinuous) functions from D to R. The set
of continuous functions from D to R is denoted by C0(D) := USC(D) ∩ LSC(D). For a
parameter δ > 0, we say that a function f : D −→ R has δ-polynomial growth if

sup
x∈D

|f(x)|
1 + |x|δ <∞.

We finally denote USCδ(D) := {f ∈ USC(D) : f has δ-polynomial growth}. The sets LSCδ(D)
and C0

δ(D) are defined similarly.

2. Consumption-investment models with capital gains taxes.

2.1. The financial assets. Throughout this paper, we consider a complete probability
space (Ω,F ,P), endowed with a standard scalar Brownian motion W = {Wt, 0 ≤ t}, and we
denote by F the P-completion of the natural filtration of the Brownian motion. We consider
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a financial market consisting of one bank account with constant interest rate r > 0 and one
risky asset whose price process evolves according to the Black–Scholes model:

(2.1) dPt = Pt [(r + θσ)dt + σ dWt] ,

where θ > 0 is a constant risk premium, and σ > 0 is a constant volatility parameter. The
positivity restriction on the risk premium coefficient ensures that positive investment in the
risky asset is interesting.

2.2. Taxation rule on capital gains. The sales of the stock are subject to taxes on capital
gains. The amount of tax to be paid for each sale of risky asset, at time t, is computed by
comparison of the current price Pt to an index Bt defined as the weighted average price of the
shares purchased by the investor up to time t. When Pt ≥ Bt, i.e., the current price of the
risky asset is greater than the weighted average price, the investor would realize a capital gain
by selling the risky asset. Similarly, when Pt ≤ Bt, the sale of the risky asset corresponds to
the realization of a capital loss.

In order to better explain the definition of the tax basis B, we provide the following
example derived from the official Canadian tax code.

Table 1 reports transactions performed by an individual on shares of STU Ltd and how
the tax basis of the individual changes over time.

Table 1
Extracted from Capital Gains 2007; http://www.cra.gc.ca.

Transaction Price P Number of shares Portfolio composition Tax basis B
(dollars) (unitless) (unitless) (dollars)

Purchase at t1 15.00 100 100 : $15.00/share 15.00

Purchase at t2 20.00 150 100 : $15.00/share
150 : $20.00/share 18.00

Sale at t3 - 200 20 : $15.00/share
= 4

5
(100 + 150) 30 : $20.00/share 18.00

Purchase at t4 21.00 350 20 : $15.00/share
30 : $20.00/share

350 : $21.00/share 20.625

Just after a sale transaction, the tax basis is not changed. However, sales do alter the
tax basis starting from the date of the next purchase. Notice, however, that the tax basis is
affected only by the number of shares sold and not by the sale price.

The sale of a unit share of stock at some time t is subject to the payment of an amount of
tax computed according to the tax basis of the portfolio at time t. In this paper, we consider
a linear taxation rule, i.e., this amount of tax is given by

(2.2) �(Pt −Bt) := α (Pt −Bt) ,

where α ∈ [0, 1) is a constant tax rate coefficient. Our interest is of course in the case α > 0.
When the tax basis is smaller than the spot price, the investor realizes a capital gain. Then, by
selling one unit of risky asset at the spot price Pt, the amount of tax to be paid is α(Pt−Bt).
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When the tax basis is larger than the spot price, the investor receives the tax credit α(Bt−Pt)
for each unit of asset sold at time t.

Remark 2.1. In practice, the realized capital losses are deduced from the total amount of
taxes that the investor has to pay, and the annual deductible capital losses amount may be
limited by the tax code. In our model, we follow Dammon, Spatt, and Zhang [12] by adopting
the simplifying assumption that capital losses are credited immediately without any limit.

Remark 2.2. Our definition of the tax basis B is slightly different from that of Dammon,
Spatt, and Zhang [12], who set the tax basis to be equal to the spot price whenever the average
purchase price exceeds the current price. This does not affect the results, as Proposition 3.5
shows that wash sales are optimal.

2.3. Consumption-investment strategies. We denote by Xt the (cash) position on the
bank, Yt the amount invested in the risky assets, and

(2.3) Kt := Bt
Yt
Pt
, t ≥ 0,

the position on the risky asset account evaluated at the basis price. The trading in risky assets
is subject the no-short-sales constraint

(2.4) Yt ≥ 0 P-a.s. for all t ≥ 0,

and the position of the investor is required to satisfy the solvency condition

(2.5) Zt := Xt + Yt − � (Pt −Bt)
Yt
Pt

= Xt + (1− α)Yt + αKt ≥ 0 P-a.s.;

i.e., the after-tax liquidation value of the portfolio is nonnegative at any point in time.

Trading on the financial market is described by means of the transfers between the two
investment opportunities defined by two F-adapted, right-continuous, and nondecreasing pro-
cesses L = {Lt, t ≥ 0} and M = {Mt, t ≥ 0} with L0− = M0− = 0. The amount transferred
from the bank to the nonrisky asset account at time t is given by dLt and corresponds to a
purchase of risky asset. The amount transferred from the risky asset account to the bank at
time t, corresponding to a sale of risky asset, is given by Yt−dMt and is expressed in terms of
proportions of the total holdings in risky asset as in the example of Table 1.

To force the short-sales constraint (2.4) to hold, we restrict the jumps of M by

(2.6) ΔMt ≤ 1 for t ≥ 0 P-a.s.

With these notations, the evolution of the wealth on the risky asset account is given by

(2.7) dYt = Yt
dPt

Pt
+ dLt − Yt−dMt,

and, by definition of the tax basis B and (2.3), we have

(2.8) dKt = dLt −Kt−dMt.
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Observe that the contribution of the sales in the dynamics of Kt is evaluated at the basis price.
For any given initial condition (Y0−,K0−), (2.7)–(2.8) define a unique F-adapted process (Y,K)
taking values in R

2
+, the nonnegative orthant of R2.

In addition to the trading activities, the investor consumes in continuous time at the rate
C = {Ct, t ≥ 0}. Here, C is an F-progressively measurable process with

(2.9) C ≥ 0 and

∫ T

0
Ctdt < ∞ P-a.s. for all T > 0.

Then, the bank component of the wealth process satisfies the dynamics

dXt = (rXt − Ct) dt− dLt + Yt−dMt − � (Pt −Bt−)
Yt−dMt

Pt

= (rXt − Ct) dt− dLt + [(1− α)Yt− + αKt−] dMt.(2.10)

Since the processes Y and K have been defined previously, the above dynamics uniquely
defines an F-adapted process X valued in R for any given initial condition X0−.

Remark 2.3. In Dammon, Spatt, and Zhang [12], the nonrisky asset is also subject to a
constant proportional taxation rule. This is obviously caught by our model by interpreting r
as the after-tax instantaneous interest rate.

For later use, we report the dynamics of the corresponding liquidation value process defined
in (2.5), which follows from (2.7), (2.8), (2.9), and (2.10):

(2.11) dZt = (rZt − Ct) dt+ (1− α)Yt
(
dPt

Pt
− rdt

)
− rαKtdt.

Definition 2.1. (i) A consumption investment strategy is a triple of F-adapted processes
ν = (C,L,M), where C satisfies (2.9), L and M are nondecreasing and right continuous,
L0− =M0− = 0, and the jumps of M satisfy (2.6).

(ii) Given an initial condition s = (x, y, k) ∈ R×R+×R+ and a consumption-investment
strategy ν, we denote by Ss,ν = (Xs,ν , Y s,ν,Ks,ν) the unique strong solution of (2.7), (2.8),
(2.9), and (2.10) with initial condition Ss,ν

0− = s.
(iii) Given an initial condition s = (x, y, k) ∈ R × R+ × R+, a consumption-investment

strategy ν is said to be s-admissible if the corresponding state process Ss,ν satisfies the no-
bankruptcy constraint (2.5). We shall denote by A(s) the collection of all s-admissible con-
sumption-investment strategies.

The admissibility conditions imply that the process Ss,ν is valued in the closure S̄ of

(2.12) S =
{
(x, y, k) ∈ R

3 : x+ (1− α)y + αk > 0 , y > 0 , k > 0
}
.

We partition the boundary of S into ∂S = ∂zS ∪ ∂yS ∪ ∂kS with

∂yS :=
{
(x, y, k) ∈ S̄ : y = 0

}
, ∂kS :=

{
(x, y, k) ∈ S̄ : k = 0

}
and

∂zS =
{
(x, y, k) ∈ S̄ : z := x+ (1− α)y + αk = 0

}
.
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2.4. The consumption-investment problem. The investor preferences are characterized
by a power utility function with constant relative risk aversion coefficient 1− p ∈ (0, 1):

U(c) :=
cp

p
, c ≥ 0, for some p ∈ (0, 1).

The restriction on the relative risk aversion coefficient to (0, 1) allows us to simplify the analysis
of this paper, as the boundary condition on ∂zS is easily obtained; see Proposition 3.2.
However, several of our results hold for a general parameter p < 0, and we will indicate
whenever it is the case.

For every initial data s ∈ S̄ and any admissible strategy ν ∈ A(s), we introduce the
consumption-investment criterion

(2.13) JT (s, ν) := E

[∫ T

0
e−βtU(Ct)dt+ e−βTU(Zs,ν

T )1{T<∞}

]
, T ∈ R+ ∪ {+∞}.

The consumption-investment problem is defined by

(2.14) V (s) := sup
ν∈A(s)

J∞(s, ν), s ∈ S̄.

We shall assume that the parameters r, θ, σ, p, and β satisfy the condition

(2.15) c̄(r, θ) :=
β − pr
1− p −

pθ2

2(1 − p)2 > 0,

which has been pointed out as a sufficient condition for the finiteness of the value function in
the context of a financial market without taxes in [26] and [28].

2.5. Review of the tax-free model. In this section, we briefly review the solution of the
consumption-investment problem when the financial market is free from taxes on capital gains.
The properties of the corresponding value function are going to be useful to state relevant
bounds for the maximal utility achieved in a financial market with taxes.

In the classical formulation of the tax-free consumption-investment problem [26], the in-
vestment control variable is described by means of a unique process π which represents the
proportion of wealth invested in risky assets at each time, and the consumption process C is
expressed as a proportion c of the total wealth:

(2.16) dZ̄t = Z̄t [(r − ct)dt+ πtσ(θdt+ dWt)] .

In this context, a consumption-investment admissible strategy is a pair of adapted processes
(c, π) such that c is nonnegative and∫ T

0
ctdt +

∫ T

0
|πt|2dt < ∞ P-a.s. for all T > 0.

We shall denote by Ā the collection of all such consumption-investment strategies. For every
initial condition z ≥ 0 and strategy (c, π) ∈ Ā, there is a unique strong solution to (2.16) that
we denote by Z̄z,c,π. The frictionless consumption-investment problem is

(2.17) V̄ (z) := sup
(c,π)∈Ā

E

[∫ ∞

0
e−βtU

(
ctZ̄

z,c,π
t

)
dt

]
.
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Theorem 2.1 (see [26]). Let condition (2.15) hold. Then, for all z ≥ 0,

V̄ (z) = c̄(r, θ)p−1 z
p

p
,

and the constant consumption-investment strategy c̄(r, θ), π̄(σ, θ) := θ
(1−p)σ is optimal.

Remark 2.4. The reduction of the model of section 2 to the frictionless case, i.e., α = 0,
does not alter the value function. This can be proved by approximating any investment
strategy by a sequence of bounded variation strategies. However, the investment strategies
in our formulation are constrained to have bounded variation. This is needed because sales
and purchases have different impacts on the bank component of the wealth process (2.10).
Since the Merton optimal strategy is well known to be unique and has unbounded variation,
it follows that existence fails to hold in our formulation.

3. First properties of the value function. We first show that the optimal consumption-
investment problem under taxes reduces to the Merton problem when the interest rate is zero.
Let c̄(r, θ) be as in Theorem 2.1.

Proposition 3.1. For r = 0, V (s) = c̄(0,θ)p−1

p (x+ (1− α)y + αk)p, s = (x, y, k) ∈ S̄.
Proof. Notice that the optimal consumption-investment problem (2.14) can be expressed

equivalently in terms of the state processes (Z, Y,K) instead of (X,Y,K), and observe that
the interest rate parameter r is involved only in the dynamics of Z. When r = 0, the dynamics
of the process Z in (2.11)

dZt = −Ctdt+ (1− α)Yt dPt

Pt

is independent of the tax basis Kt. Since the dynamics of Y in (2.7) is independent of K, it
follows that the value function does not depend on the variable k. Next, for Zt > 0, defining
ct := Ct/Zt and πt := (1−α)Yt/Zt, we see that the solution Z of the above equation is the same
as the solution Z̄z,c,π of (2.16). In view of the state constraint Z ≥ 0, our state dynamics
in the context r = 0 is then equivalent to (2.16). Then, the only difference between the
control problem V and the corresponding Merton problem V̄ is the class of admissible trading
strategies, which does not induce any difference on the value function; see Remark 2.4.

The argument in the above proof clearly does not involve the specific nature of the utility
function. Therefore an analogous result holds for any utility function.

Since the tax basis is not inflated by the interest rate r, for nonzero values of r the tax
basis plays a role in the solution. This explains the importance of the point r = 0.

We next discuss the value function on the boundary of the state space S. Observe that
there is no a priori information on the boundary components ∂yS and ∂kS. This is one source
of difficulty in the numerical part of this paper, as this state constraint problem needs special
treatment; see [5].

Proposition 3.2. For every s ∈ ∂zS, we have V (s) = 0.
Proof. Let s be in ∂zS, and let ν be in A(s). By the definition of the set admissible

controls, the process Zs,ν is nonnegative. By Itô’s lemma, together with the nonnegativity of
C and K and the nondecrease of L, this provides

0 ≤ e−rtZs,ν
t ≤ (1− α)

∫ t

0
e−ruY s,ν

u σ [θdu+ dWu] .
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Let Q be the probability measure equivalent to P under which the process {θu+Wu, u ≥ 0}
is a Brownian motion. The process appearing on the right-hand side of the last inequality is a
Q-supermartingale because it is a nonnegative Q-local martingale. By taking expected values
under Q, it then follows from the last inequalities that Zs,ν = Y s,ν = Ks,ν = C = L ≡ 0.
We have then proved that, for s ∈ ∂zS, any admissible strategy ν = (C,L,M) ∈ A(s) is such
that C = L ≡ 0, implying that V (s) = 0.

Proposition 3.3. The value function V is nondecreasing with respect to each of the variables
x, y, and k. Moreover, for (x, y, k) ∈ S̄ with z := x+ (1− α)y + αk > 0,

(3.1) V (x, y, k) = zp V
(
y

z
,
k

z

)
, where V(ξ, ζ) := V (1− (1− α)ξ − αζ, ξ, ζ) .

Proof. 1. The monotonicity property with respect to x, y, and k follows immediately from
the dynamics of the problem and the bound ΔM ≤ 1.

2. Let ν = (C,L,M) be an arbitrary strategy in A(s), and define the strategy ν ′ :=
(δC, δL,M). We easily verify that Sδs,ν′ = δSs,ν ∈ S̄, which implies that ν ′ is in A(δs), and
therefore

V (δs) ≥ E

[∫ ∞

0
e−βuU(δCu)du

]
= δpJ∞(δ, ν),

where the last equality follows from the homogeneity property of the utility function U . By
the arbitrariness of ν in A(s), this shows that V (δs) ≥ δpV (s).

3. By writing V (s) = V
(
δ−1δs

) ≥ δ−pV (δs), it follows from the previous step that we in
fact have V (δs) = δpV (s), and the required result follows immediately from this homotheticity
property.

In the absence of taxes on capital gains, i.e., α = 0, it is easy to deduce from the concavity
of U that the value function V is concave and therefore continuous. The numerical results
exhibited in section 6 reveal that this property is no longer valid when α > 0. The proof of
the following continuity result is obtained by first reducing the continuity problem to the ray
{(x, 0, 0), x ∈ R+}. This is achieved by means of a comparison result in the sense of viscosity
solutions. Then the continuity on the latter ray is proved by a direct argument.

Proposition 3.4. The function V of (3.1) is Lipschitz continuous on S̄.
Proof. See Appendix A.
We now show that it is always worth realizing capital losses whenever the tax basis exceeds

the spot price of the risky asset. In other words, given s = (x, y, k) ∈ S̄, every admissible
strategy ν ∈ A(s), with Ks,ν

τ > Y s,ν
τ (i.e., Bs,ν

τ > Pτ ) for some stopping time τ , can be
improved strictly by realizing the capital loss on the entire portfolio at time τ . This property
is observed in practice and is known as a wash sale. It was stated in [12] and embedded
directly in the definition of the tax basis. This result is independent of the choice of the utility
function.

Proposition 3.5. Consider some s ∈ S̄ and ν = (C,L,M) ∈ A(s). Assume that Ks,ν
τ >

Y s,ν
τ a.s. for some finite stopping time τ . Then, there exists an admissible strategy ν̃ =(
C̃, L̃, M̃

) ∈ A(s) such that, for any utility function,

Y ν̃ = Y ν , ΔM̃ −ΔM = 1{τ}, and J∞(s, ν̃) > J∞(s, ν);

i.e., a wash sale is optimal.
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Proof. We organize the proof in two steps.
1. Set (L′,M ′) := (L,M) + (Yτ , 1)(1−ΔMτ )1t≥τ . We shall prove that ν ′ = (C,L′,M ′) ∈

A(s) and that the resulting state process satisfies

Y s,ν′ = Y s,ν, Zs,ν′ ≥ Zs,ν, Ks,ν′ ≤ Ks,ν a.s. and Zν′
t > Zν

t a.s. on {t > τ}.
To see this, observe that since ν and ν ′ differ only by the jump at the stopping time τ , and
ΔY ν′

τ = ΔY ν
τ , we have

Y s,ν′ = Y s,ν ,
(
Zs,ν′
t ,Ks,ν′

t

)
= (Zs,ν

t ,Ks,ν
t ) for t < τ and Zs,ν′

τ = Zs,ν
τ

by the continuity of the process Z. Observe that the newly defined strategy ν ′ consists in

selling out the whole portfolio at time τ as ΔM ′
τ = 1. Hence Ks,ν′

τ = Y s,ν′
τ = Y s,ν

τ , and we
compute directly from (2.8) that

Ks,ν′
t −Ks,ν

t = (Y s,ν
τ −Ks,ν

τ ) e−Mc
t +Mc

τ

∏
τ<u≤t

(1−ΔMu) > 0 for t ≥ τ,

since Y s,ν
τ −Ks,ν

τ < 0. By (2.11), this provides

e−rt
(
Zs,ν′
t − Zs,ν

t

)
= −rα

∫ t

τ
e−ru

(
Ks,ν′

u −Ks,ν
u

)
du > 0 for t > τ,

which shows that Zs,ν′ ≥ 0 and ν ′ ∈ A(s).
2. Define the strategy ν̃ = (C̃, L̃, M̃) by

(3.2) C̃t := Ct + ξ
(
Zs,ν̃
t − Zs,ν

t

)
1t≥τ and

(
L̃, M̃

)
:=

(
L′,M ′) ,

where ξ is an arbitrary positive constant. Observe that (Y s,ν̃,Ks,ν̃) = (Y s,ν′ ,Ks,ν′), and

Zs,ν̃
t = Zs,ν′

t = Zs,ν
t for t ≤ τ . In particular, Ks,ν̃ − Ks,ν = Ks,ν′ − Ks,ν ≤ 0. Set ΔK :=

Ks,ν̃ −Ks,ν and ΔZ := Zs,ν̃ − Zs,ν. In order to check the admissibility of the strategy ν̃, we
directly compute that

e−r(t−τ)ΔZt = ΔZτ − rα
∫ t

τ
e−r(u−τ)ΔKudu+ ξ

∫ t

τ
e−r(u−τ)ΔZudu

≥ ξ
∫ t

τ
e−r(u−τ)ΔZudu.

By the Gronwall inequality, this implies that Z ν̃
t > Zν

t on {t > τ}, and therefore C̃ > C on
{t > τ} with positive Lebesgue⊗P measure. Hence J∞(s; ν̃) > J∞(s; ν).

Remark 3.1. It follows from the previous proposition that V (x, y, k) = V (x+ y+α(k− y),
0, 0) whenever k > y. Then, we may restrict our analysis of the value function to the set
{(x, y, k) ∈ S̄ : k ≤ y}. We could not find any benefit from this reduction. Even the
numerical implementation is not simplified by this domain restriction because we have no
natural boundary condition on {k = y}. We therefore continue our analysis of the value
function V on the total domain S̄.
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Remark 3.2. The previous proposition highlights the difficulty in characterizing a solution
of the optimal consumption-investment problem under taxes. The optimality of wash sales
suggests that the optimal trading strategy has a local time type of behavior. We have no
theoretical result to support this intuition. Our very limited information on the regularity of
the value function is the main obstacle in developing a verification argument similar to that
of Davis and Norman [13].

4. The first order approximation. In this section, we provide upper and lower bounds
for the value function. The upper bound expresses that there is no way for the investor to
take advantage of tax credits in order to do better than in the tax-free financial market, and
this holds for any utility function. Our derivation of the lower bound explicitly uses the power
utility but without any restriction on the risk aversion factor p. These bounds will be used in
order to obtain a first order approximation result for p < 1.

Proposition 4.1. For any s = (x, y, k) ∈ S̄, we have V (s) ≤ V̄ (x+ (1− α)y + αk).
Proof. Let s = (x, y, k) be in S̄. Consider some consumption-investment strategy ν =

(C,L,M) in A(s). Define a consumption-investment strategy ν̃ = (C, (1 − α)L,M), and
denote by (X̃, Ỹ ) the corresponding tax-free bank and risky asset account processes with the
initial endowment (x+αk, (1−α)y). Clearly, Ỹ = (1−α)Y s,ν ≥ 0. To see that ν̃ is admissible
in the tax-free financial market, observe that the process Z̃ := X̃ + Ỹ satisfies

Z̃0− − Zs,ν
0− = 0 and Z̃t − Zs,ν

t ≥ ert
∫ t

0
e−rurαKs,ν

u du ≥ 0,

so that Z̃s,ν ≥ Zs,ν ≥ 0. Hence, V̄ (x + (1 − α)y + αk) ≥ J∞(s, ν); see Remark 2.4. The
required result follows from the arbitrariness of ν ∈ A(s).

Proposition 4.2. For s = (x, y, k) in S̄ and z = x+ (1− α)y + αk, there exists a sequence
of admissible strategies (νn)n≥1 ⊂ A(s) such that

V (s) ≥ c̄
(
r, θ̃α

)p−1 zp

p
= lim

n→∞J∞ (s, νn) , where θ̃α := θ − rα

σ(1 − α) ;

i.e., the value function of the Merton frictionless problem with the smaller risk premium θ̃α

can be approached as close as possible in the context of the financial market with taxes.
This result is proved by producing a sequence of admissible strategies (Cn, Ln,Mn)n≥1 ⊂

A(s) which approximates Merton’s value function with the smaller risk premium θ̃α. To give
an intuitive justification of this result, we rewrite (2.11) as

(4.1) dZt = (rZt − Ct) dt + Yt σ̃
α
(
dWt + θ̃αdt

)
+ rα (Yt −Kt) dt,

where θ̃α is defined as in the statement of Proposition 4.2 and σ̃α := (1 − α)σ. Compare
the above Z̄ dynamics to (2.16) with modified parameters (σ̃α, θ̃α) and with ct = Ct/Z̄t,
πt = Yt/Z̄t. The only difference is the term rα(Y −K). However, in view of Proposition 3.5,
we expect this term to be nonnegative for the optimal strategy (if it exists). This hints that
the liquidation value process Z̄ (with the above choices C and Y ) is larger than the wealth
process in the fictitious tax-free financial market with a modified risk premium. This formally
justifies the inequality of Proposition 4.2.
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The proof reported in Appendix B exhibits an explicit sequence of strategies which mimics
the optimal consumption-investment strategy in the Merton frictionless model while keeping
the difference Y −K small or, equivalently, the tax basis close to the spot price of the risky
asset.

Remark 4.1. Let b := r + θσ be the instantaneous mean return coefficient in our financial
market. Then, the modified risk premium θ̃α can be easily interpreted in terms of the mod-
ified volatility coefficient σα = (1 − α)σ and a similarly modified instantaneous mean return
coefficient bα := (1 − α)b as θ̃α = (bα − r)/σα. This fictitious financial market with such
modified coefficients corresponds to the situation where the investor is forced to realize the
capital gains or losses, at each time t, before adjusting the portfolio.

Propositions 4.1 and 4.2 provide the following bounds on the value function V :

(4.2)
c̄(r, θ̃α)p−1

p
(x+ (1− α)y + αk)p ≤ V (x, y, k) ≤ c̄ (r, θ)p−1

p
(x+ (1− α)y + αk)p,

where θ̃α is defined as in the statement of Proposition 4.2, and c̄ is defined as in Theorem 2.1.
Observe that θ̃α = θ whenever α = 0 or r = 0. Therefore, we might expect that these bounds
are tight for small interest rate or tax parameters.

Corollary 4.1. For s = (x, y, k) ∈ S, we have

V (s) = V app(s) + o(α + r),

where o(ξ) is a function on R with o(ξ)/ξ −→ 0 as ξ → 0, and

V app(s) :=
c̄(0, θ)p−1

p

(
1 +

rp

c̄(0, θ)

)
(x+ y)p + α c̄(0, θ)p−1(k − y)(x+ y)p−1.

Proof. It is sufficient to observe that the bounds on the value function V in (4.2) are
smooth functions with the identical partial gradient with respect to (r, α) at the origin. This
follows from the fact that (∂θ̃α/∂α) = (∂θ̃α/∂r) = 0 at (r, α) = (0, 0).

Remark 4.2. Observe that the function c̄ defined in Theorem 2.1 is increasing in the r
variable. Then, the above first order expansion shows that the value function V is also
increasing in the interest rate variable (for small interest rate and tax parameters). This is
intuitively clear, as the larger interest rate provides the investor a better opportunity set.

The dependence of the value function on the tax rate α is more complex, and it depends
on the initial position of the tax basis. If the initial tax basis is larger than the spot price, i.e.,
in a situation of capital gain loss, the investor takes immediate advantage of the tax credit,
as stated in Proposition 3.5, and the value function V is increasing in α (for small α). In
the opposite situation, i.e., when the initial tax basis is smaller than the spot price, the value
function is decreasing in α. Finally, when the initial tax basis coincides with the spot price,
the value function is not sensitive to the tax rate in the first order.

This variation of the value function (up to the first order) in terms of the tax rate α
is somehow surprising. Indeed, in a capital loss situation, an increase of the tax parameter
implies two opposing results:

• an increase of the tax credit is received initially by the agent;
• a larger amount of tax is paid during the infinite lifetime of the agent.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MERTON PROBLEM WITH TAXES 379

Our first order expansion shows that, for small interest rate and tax parameters, the increase
of initial tax credit is never compensated by the increase of tax over the infinite lifetime. This
is in agreement with Cadenillas and Pliska [7], who found that “sometimes investors are better
off with a positive tax rate.”

The same reasoning also shows that when there are no initial embedded capital gains (i.e.,
when y = k = 0) the effect of the tax parameter is only second order.

Remark 4.3. Since the lower bound in (4.2) has the same first order Taylor expansion as
the value function V , we can view the corresponding strategy as nearly optimal. From the
discussion following Proposition 4.2, the portfolio allocation defining the lower bound is by
definition an approximation of the constant portfolio allocation

π̄(σ̃α, θ̃α) =
1

(1− p)σ2
[

b

1− α −
r

(1− α)2
]
,

where b := σθ + r is the instantaneous mean return of the risky asset. Direct computation
shows that π̄(σ̃α, θ̃α) ≤ π̄(σ, θ) if and only if r ≥ (1 − α) (b− (1− α)(b − r)). Using the
data set of Dammon, Spatt, and Zhang [12] (r = 6%, b = 9%, α = 36%), we see that
π̄(σ̃α, θ̃α) ≤ π̄(σ, θ). Since this nearly optimal strategy exhibits a smaller exposition to the
risky asset, the presence of taxes on capital gains contributes to explaining the equity premium
puzzle highlighted by Mehra and Prescott [25].

Notice that this observation is in contradiction with the numerical results of Dammon,
Spatt, and Zhang [12], who found that the exposition to the risky asset is increased by the
presence of taxes. This is due to the fact that the bank account in their model is also subject
to taxes with the same tax rate as for the risky asset, which implies that the optimal portfolio
strategy in the forced realization case is given by

π̂α =
b(1− α)− r(1− α)
(1− p)σ2(1− α)2 =

π̄(σ, θ)

1− α ,

which is increasing in α.

5. Characterization by the dynamic programming equation. The chief goal of this sec-
tion is to provide a characterization of V by means of a second order partial differential equa-
tion for which we shall provide a numerical solution in the subsequent section. Unfortunately,
we are unable to obtain a characterization of V by the corresponding dynamic programming
equation. Therefore, we shall exhibit a consistent approximation V ε as the unique solution of
an approximating second order partial differential equation.

For s in S̄ and ν = (C,L,M) in A, the jumps of the state processes S are given by

ΔSs,ν
t = −ΔLt g

b − ΔMt

[
(1− α)Y s,ν

t− + αKs,ν
t−
]
gs
(
Ss,ν
t−
)
,

where the vector fields gb and gs(x, y, k) are defined by

gb :=

⎛⎝ 1
−1
−1

⎞⎠ and gs(s) :=

⎛⎝ −1
1

1−α

0

⎞⎠+

⎛⎝ 0
−α
1−α

1

⎞⎠ k

(1− α) y + αk
1(y,k)
=0.
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The value function of our consumption-investment problem is formally expected to solve the
corresponding dynamic programming equation:

(5.1) min
{
−Lv , gb ·Dv , gs ·Dv

}
= 0 on S̄ \ ∂zS and v = 0 on ∂zS,

where L is the second order differential operator defined by

Lv = −βv + rxvx + byvy +
1

2
σ2y2vyy + Ũ(vx), with Ũ(q) = sup

c≥0
(U(c)− cq) .

Observe that we have no information on the regularity of the value function V ; hence we
cannot prove that V is a classical solution to (5.1). Moreover, the value function V is known
only on the boundary ∂zS (see Proposition 3.2), but there is no possible knowledge of V on
∂yS ∪ ∂kS. We then need to use the notion of viscosity solutions which allows for a weak
formulation of solutions to partial differential equations and boundary conditions.

Because gs is not locally Lipschitz continuous, it is not clear that there is a unique char-
acterization of the value function V as the constrained viscosity solution of (5.1). Due to
this technical difficulty, we isolated in the accompanying paper [5] some viscosity results for
a slightly modified equation. The objective of this section is to build on these results in order
to characterize the value function V as a limit of an approximating function defined as the
unique viscosity solution of a conveniently perturbed equation.

For every ε > 0, we define the function

f ε(x, y, k) := 1 ∧
(
k

εz
− 1

)+

, with z := x+ (1− α)y + αk,

together with the approximation of gb and gs:

gb
ε :=

⎛⎝ 1 + ε
−1
−1

⎞⎠ and gs
ε(x, y, k) := gs (x, y, kf ε(s))

for s ∈ S \ ∂zS. Notice that gs
ε is locally Lipschitz continuous on S̄ \ ∂zS, and gs

ε(s) = gs(s)
whenever k ≥ 2εz. The main result of this section provides a characterization of the value
function V by means of the approximating equation:

(5.2) min
{
−Lv , gb

ε ·Dv , gs
ε ·Dv

}
= 0 on S̄ \ ∂zS and v = 0 on ∂zS.

We first recall the notion of a constrained viscosity solution first introduced in [29, 30]. For a
locally bounded function u : S̄ −→ R, we shall use the classical notation in viscosity theory
for the corresponding upper semicontinuous and lower semicontinuous envelopes:

u∗(s) := lim sup
S�s′→s

u(s′) and u∗(s) := lim inf
S�s′→s

u(s′).

Definition 5.1. (i) A locally bounded function u is a constrained viscosity subsolution of
(5.2) if u∗ ≤ 0 on ∂zS, and for all s ∈ S̄ \ ∂zS and ϕ ∈ C2(S̄) with 0 = (u∗ − ϕ)(s) =
maxS̄\∂zS(u∗ − ϕ) we have min

{−Lϕ, gb
ε ·Dϕ, gs

ε ·Dϕ
} ≤ 0.
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(ii) A locally bounded function u is a constrained viscosity supersolution of (5.2) if u∗ ≥ 0
on ∂zS, and for all s ∈ S and ϕ ∈ C2(S) with 0 = (u∗ − ϕ)(s) = minS(u∗ − ϕ) we have
min

{−Lϕ, gb
ε ·Dϕ, gs

ε ·Dϕ
} ≥ 0.

(iii) A locally bounded function u is a constrained viscosity solution of (5.2) if it is a
constrained viscosity subsolution and supersolution.

In the above definition, there is no boundary value assigned to the value function on ∂yS∪
∂kS. Instead, the subsolution property holds on this boundary. Notice that the supersolution
property is satisfied only in the interior of the domain S.

Theorem 5.1. For each ε > 0, the boundary value problem (5.2) has a unique constrained
viscosity solution V ε in the class C0

p

(S̄). Moreover, the following hold:
(i) the family (V ε)ε>0 is nonincreasing and converges to the value function V uniformly

on compact subsets of S̄ as ε↘ 0;
(ii) for every s ∈ S̄ and δ ≥ 0, we have V ε(δs) = δp V ε(s).
Proof. The existence of V ε as the unique constrained viscosity solution of (5.2) in the

class C0
p

(S̄) is shown in Theorem 3.2 of [5], where we introduced the value function vε,λ of
a consumption-investment problem with transaction costs λ > 0 and an ε-modified taxation
rule near the ray {(x, 0, 0), x ∈ R+}. Here V ε = vε,ε.

We next use Theorem 5.1 of [5], which provides a stochastic control representation of vε,λ.
In particular, it follows directly from this representation that vε,λ(δs) = δpvε,λ(s) for all δ ≥ 0.
This homotheticity property is obviously inherited by V ε = vε,ε, as announced in (ii).

We now prove (i) in the next two steps.
Step 1. The monotonicity of the sequence (V ε)ε>0 is inherited from the nonincrease of the

sequence
(
vε,λ

)
ε>0

, proved in Proposition 6.2 of [5], together with the decrease of the sequence(
vε,λ

)
λ>0

. It follows from this monotonicity property that V 0 := limε→0 V
ε is well defined.

Now observe that vε,λ ≤ V ε ≤ v0,ε ≤ V for every λ ≥ ε. Then limλ→0 limε→0 v
ε,λ ≤ V 0 ≤ V .

By Proposition 6.3 of [5], this implies that

(5.3) lim
λ→0

vλ ≤ v0,ε ≤ V, where vλ := lim
ε→0

vε,λ

is the value function of the optimal consumption-investment problem with taxes and pro-
portional transaction cost λ > 0. In order to conclude that V 0 = V , it remains to show
that

lim
λ→0

vλ = V.

Step 2. For fixed s ∈ S̄, let νn = (Cn, Ln,Mn) be such that

V (s)− 1

n
≤ J∞(s, νn) for all n ≥ 1.

Denote by Zλ,n the after-tax liquidation value process with consumption-investment strategy
νn in a financial market subject to taxes and constant proportional transaction cost parameter
λ. See Appendix A for the precise formulation. We also denote by Zn the corresponding after-
tax liquidation value process without transaction costs. Then, it follows immediately from
the dynamics of these processes that

Zλ,n
t = Zn

t − λLn
t for all t ≥ 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

382 IMEN BEN TAHAR, H. METE SONER, AND NIZAR TOUZI

Then the stopping times

τλ := inf

{
t > 0 : Zλ,n ≤ 1

2
Zn
t

}
satisfy τλ −→∞ as λ↘ 0 P-a.s.

Define the strategies ν̃n by

ν̃n := νn1[0,τλ) +
(
0, Ln

τλ−,M
n
τλ− + 1

)
1[τλ,∞).

Clearly, ν̃n is admissible for the problem with transaction costs, i.e., ν̃n ∈ Aλ(s) in the notation
of Appendix A. Then

vλ(s) ≥ J∞(s, ν̃n) = E

[∫ τλ

0
U(Cn

t )dt

]
−→ E

[∫ ∞

0
U(Cn

t )dt

]
≥ V (s)− 1

n
,

where we use the monotone convergence theorem. By the arbitrariness of n and (5.3), this
shows that V 0 = V . Finally the convergence holds uniformly on compact subsets by the
monotonicity of (V ε) and the continuity of the limit V .

6. Numerical estimate for V . We have stated in the previous section that the value
function V is approximated by the functions (V ε)ε>0, where, for each ε > 0, V ε can be com-
puted as the unique viscosity solution of the boundary value problem (5.2). In this section, we
provide a numerical estimate for V , based on a numerical scheme for (5.2). Unfortunately, we
have no theoretical convergence result for our algorithm. Indeed, as discussed in the introduc-
tion, establishing convergence results for Hamilton–Jacobi–Bellman equations corresponding
to singular control problems is an open question in numerical analysis. We therefore fol-
low previous related works such as [1] and [31] by concentrating our effort on realizing the
empirical convergence of the algorithm.

Following Akian, Menaldi, and Sulem [1], we adopt a numerical scheme based on the finite
difference discretization and the classical Howard algorithm. For the convenience of the reader
we briefly describe it hereafter, and we refer the reader to [1] for a detailed discussion.

6.1. Change of variables and reduction of the state dimension. By the homotheticity
property of V ε (Theorem 5.1(ii)) we have for s = (x, y, k) ∈ S̄ \∂zS and z := x+[(1−α)y+αk]

V ε(s) = zp Vε
(
y

z
,
k

z

)
, where Vε(ξ1, ξ2) := V ε (1− (1− α)ξ1 − αξ2, ξ1, ξ2) .

Next, for a vector ξ ∈ R
2
+, we define the vector ζ ∈ [0, 1)2 by

ζi := ξi/(1 + ξi), i = 1, 2, and Ψε(ζ) := Vε(ξ).
This reduces the domain of Vε from R

2
+ to the bounded domain [0, 1)2. By changing variables,

it is immediately checked that Ψε is a continuous constrained viscosity solution on [0, 1)×[0, 1)
of

(6.1) min
a∈A

{
β(a)Ψε(ζ)−

2∑
i=1

bi(a, ζ) ·DiΨ
ε(ζ)− 1

2

2∑
i,j=1

ηij(a, ζ)D
2
ijΨ

ε(ζ)− g(a)
}

= 0,

where the control set A and the expressions of β, (bi)i=1,2, (ηi,j)i,j=1,2, and g are obtained by
immediate calculation.
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6.2. Finite differences for (6.1). We adopt a classical finite difference discretization in
order to obtain a numerical scheme for (6.1). Let N be a positive integer, and set h := 1

N ,
the finite difference step; we set e1 := (1, 0) and e2 := (0, 1), and we define the uniform
grid S̄h := [0, 1]2 ∩ (hZ)2. We denote by ζh := (ζh1 , ζ

h
2 ) a point of the grid S̄h, and we set

Sh := (0, 1) × [0, 1) ∩ (hZ)2. In order to define a discretization of (6.1), we approximate the
partial derivatives of Ψε by the corresponding backward and forward finite differences

bi(a, ζ)∂iΨ
ε(ζ) ≈

{
bi(a, ζ)D

+
i Ψ

ε(ζ) if bi(a, ζ) ≥ 0,
bi(a, ζ)D

−
i Ψ

ε(ζ) if bi(a, ζ) < 0,

∂iiΨ
ε(ζ) ≈ D2

iΨ
ε(ζ),

ηij(a, ζ)∂ijΨ
ε(ζ) ≈

{
ηij(a, ζ)D

+
ijΨ

ε(ζ) if ηij(a, ζ) ≥ 0,

ηij(a, ζ)D
−
ijΨ

ε(ζ) if ηij(a, ζ) < 0,

where the finite difference operators are defined for i �= j ∈ {1, 2} by

D+
i Ψ

ε(ζ) =
Ψε(ζ + hei)−Ψε(ζ)

h
, D−

i Ψ
ε(ζ) =

Ψε(ζ)−Ψε(ζ − hei)
h

,

D2
iΨ

ε(ζ) =
Ψε(ζ + hei)− 2Ψε(ζ) + Ψε(ζ − hei)

h2
,

D±
ijΨ

ε(ζ) =
1

2h2
{2Ψε(ζ) + Ψε(ζ + hei ± hej) + Ψε(ζ − hei ∓ hej)
−Ψε(ζ + hei)−Ψε(ζ − hei)−Ψε(ζ + hej)−Ψε(ζ − hej)} .

In order to compute these differences at every point of Sh, we extend Ψε as follows:

Ψε
(
ζh0

)
= Ψε

(
ζh0 + he1

)
, Ψε

(
ζh1

)
= Ψε

(
ζh1 − he1

)
for ζh0 ∈ {0} × [0, 1] and ζh1 ∈ {1} × [0, 1] and

Ψε
(
ζh0 − he2

)
= Ψε

(
ζh0

)
, Ψε

(
ζh1

)
= Ψε

(
ζh1 − he2

)
for ζh0 ∈ [0, 1] × {0} and ζh1 ∈ [0, 1] × {1}. This provides a system of (N − 1)N nonlinear
equations with the (N − 1)N unknowns Ψε

h(ζ
h), ζh ∈ Sh:

(6.2) min
a∈A
{Aa

hΨ
ε
h − g(a)} = 0.

6.3. The classical Howard algorithm. To solve (6.2) we adopt the classical Howard al-
gorithm, which can be described as follows:

Step 0: start from an initial value for the control a0 ∈ A,

Ψ0
h solution of Aa0

h ϕ− g(a0) = 0,

Step k + 1, k ≥ 0: find ak+1 ∈ argmina∈A
{
Aa

hΨ
k
h − g(a)

}
,

Ψk+1
h solution of Aak+1

h ϕ− g(ak+1) = 0.
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7. Numerical results. We implement the above numerical algorithm with the following
parameters:

p = 0.3, σ = 0.3, and β = 0.1.

We also fix the instantaneous mean return of the risky asset to

b := θσ + r = 0.11.

Our numerical experiments showed that by taking a finite difference step 1/20 ≤ h ≤ 1/40
our algorithm converges within a reasonable computation time: convergence error |Ψk+1

h −
Ψk

h| ∼ 10−6, computation time ∼ 1–5 minutes.

7.1. Accuracy of the first order Taylor expansion. It is clear that one should not expect
this algorithm to be reliable near the boundary of the grid. However, realistic initial points
are far from the boundary, and we expect the error to be small for these points. The main
purpose of this subsection is to examine the accuracy of the first order approximation for
different sets of parameters r and α:

r ∈ {0.001 , .01 , .07} and α ∈ {.001 , .01 , .05 , .1 , .2 , .3 , .36} .
Figure 1 plots the mean relative error between the results of the first order expansion and

the numerical algorithm over all points of the grid:

1

N(N − 1)

∑
i,j

∣∣∣Vhε (ζhij)− Vapp (ζhij)∣∣∣
Vapp

(
ζhij

) ,

where N(N − 1) is the total number of points in the grid, Vhε is the approximation of Vε
obtained by our numerical scheme, and

Vapp (ξ1, ξ2) := V app (1− (1− α)ξ1 − αξ2, ξ1, ξ2) .
As expected, the relative error is zero at the origin and increases when the values of the
parameters r and α increase. The error size is large due to the boundary effects.

Indeed, in Figure 2 we focus our attention on a region away from the boundary and
concentrate on (y, k) ∈ [0, 1]2 (i.e., a region with small initial embedded capital gains). We
observe that the average relative error is remarkably small and is of the order of 4% for realistic
values of r and α. This figure is our main numerical result, as it shows the reasonable accuracy
of the first order Taylor approximation V app of the value function V .

7.2. Welfare analysis. In view of Remark 4.3, an ε-maximizing strategy is given by the
constant portfolio allocation π̄α and the constant consumption-wealth ratio c̄(r, θ̃α). The
expected utility realized by following this approximating strategy corresponds to the lower
bound Ṽ (z) = c̄(r, θ̃α)zp/p of Proposition 4.2.

In order to compare this approximating strategy to the optimal one, we report in Figures
3 and 4 the welfare cost, z∗ such that V (1 − (1 − α)ξ1 − αξ2, ξ1, ξ2) = Ṽ (1 + z∗), with the
following parameters:

p = .3, β = .1, b := r + θσ = .11, σ = .3, and r = .07.
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Figure 1. Mean relative error on [0, 10]2. Figure 2. Mean relative error on [0, 1]2.

Figure 3. Welfare cost for α = 0.20. Figure 4. Welfare cost for α = 0.36.

The welfare cost is nonincreasing with respect to the tax basis and remains relatively small
for reasonable values of the parameters α: it reaches a maximum of 8% for α = 0.2 and of
12% for α = 0.36.

7.3. Optimal consumption-investment strategies. Throughout this subsection we imple-
ment our numerical algorithm with the following parameters: p = 0.3, β = 0.1, b := r+ θσ =
0.11, σ = 0.3, and r = .07.

The tax-free model. For α = 0.0, our algorithm produces the well-known results of the Mer-
ton frictionless model. Given the above values of the parameters, Merton’s optimal strategy
is given by π̄ = 0.6349 and c̄ = 0.1074.

Figure 5 reports the numerical solution for the function Vhε . We verify that the function Vhε
in this tax-free context does not depend on the variable ξ2, so that the value function V h

ε does
not depend on the k component. We also see that the value function is concave. Figure 6
reports the optimal investment strategy and produces the expected partition of the state space
into three regions:

• The region of no transaction (NT) corresponds to positions such that the proportion
of wealth allocated to the risky asset y/(x+y) is equal to π̄. In this region no position
adjustment is considered by the investor.

• The Sell region is where the investor immediately sells risky assets so as to attain the
region NT by moving along the ray (1,−1).
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Figure 5. Vh
ε for α = 0.0. Figure 6. Partition for α = 0.0.

Figure 7. Vh
ε for α = 0.20.

Figure 8. Vh
ε for α = 0.36.

• The Buy region is where the investor immediately purchases risky assets so as to attain
the region NT by moving along the ray (−1, 1).

We numerically verify again that this partition is independent of the variable ξ2.

The value function approximation with taxes. We next concentrate on the case where the
tax coefficient is positive. Figures 7 and 8 report the numerical solution for the function Vhε
for α = 0.2 and 0.36. The main observation out of these numerical results is that, for a
positive tax parameter, the value function is no longer concave. This surprising feature leads
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Figure 9. Partition for α = 0.20. Figure 10. Partition for α = 0.36.

to mathematical difficulties, as we had to derive the dynamic programming equation without
any a priori knowledge that the value function is continuous.

Optimal investment strategy under taxes. Figures 9 and 10 show that, for positive α, the
domain is again partitioned into three nonintersecting regions:

• The no-transaction region NT is where no portfolio adjustment is performed by the
optimal investor.

• The Sell region is where the investor immediately sells risky assets so as to attain
the region NT by moving towards the origin along the ray ((1 − α)y + αk,−y,−k) =
−[(1− α)y + αk]gs.

• The Buy region is where the investor immediately purchases risky assets so as to attain
the region NT by moving along the ray (−1, 1, 1) = −gb.

For positive α, the boundaries of the no-transaction region depend on the tax basis. The
range of the proportion of wealth allocated to the risky asset, (y/z), for which no-transaction
is optimal, is very sensible to the values of the tax basis (k/z). Indeed, we observe that the
Buy region is limited from the left side by the wash-sales region which is part of the Sell
region, exactly according to the statement of Proposition 3.5.

We also observe that, for small values of the k variable, the no-transaction region NT con-
tains the Merton optimal portfolio proportions π̄(σ, θ) and π̄(σ̃α, θ̃α) corresponding, respec-
tively, to our financial market and to the fictitious financial market with modified parameters.

Optimal consumption strategy under taxes. Figures 11 and 12 report the consumption-
wealth ratio for α = .2 and .36. We notice that this ratio depends on the value of the basis
as well as on proportion of wealth allocated to the risky asset. Moreover, in the presence of
taxes, on each point of the grid this ratio is higher than Merton’s optimal consumption-wealth
ratio.

Appendix A. Proof of Proposition 3.4. In order to prove the continuity of V , we follow [5]
by introducing the approximation vλ defined as the value function of the control problem

(A.1) vλ(s) := sup
ν∈Aλ(s)

Jλ(s, ν), where Jλ(s, ν) := E

[∫ ∞

0
e−βtU(Ct)dt

]
,

and Aλ(s) is the collection of all F-adapted processes ν = (C,L,M), where C satisfies (2.9),
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Figure 11. Consumption for α = 0.20. Figure 12. Consumption for α = 0.36.

L and M are nondecreasing and right continuous, L0− = M0− = 0, the jumps of M satisfy
(2.6), and the process Ss,ν = (Xs,ν , Y s,ν,Ks,ν) defined by Ss,ν

0− = s and the dynamics (2.7),
(2.8),

dXt = (rXt − Ct) dt− (1 + λ)dLt + [(1− α)Yt− + αKt−] dMt

takes values in S̄.
The above control problem corresponds to an optimal consumption investment problem

with capital gains taxes and proportional transaction cost λ > 0 on purchased risky assets.
Clearly,

(A.2) vλ ↘ V as λ↘ 0.

For later use, we recall the following results from [5].
Theorem A.1. For λ ≥ 0, the function vλ is a constrained viscosity solution of

(A.3) min
{
−Lvλ;gb

λ ·Dvλ;gs ·Dvλ
}
= 0 on S̄ \ ∂zS and vλ = 0 on ∂zS.

Theorem A.2. For λ > 0, let u be an upper semicontinuous viscosity subsolution of (A.3)
and v be a lower semicontinuous viscosity supersolution of (A.3), with (u− v)+ ∈ USCp(S̄).
Assume further that (u− v)(x, 0, 0) ≤ 0 for all x ≥ 0. Then u ≤ v on S̄.

We first need to prove the continuity of vλ.
Lemma A.1. The function vλ is continuous on S̄.
Proof. By Proposition 4.1, the semicontinuous envelopes vλ∗ and vλ∗ satisfy the polynomial

growth condition
(
vλ∗ − vλ∗

)+ ∈ USCp(S̄). We also know from Theorem A.1 that they are,
respectively, a constrained subsolution and supersolution of (5.1). We now claim that

(A.4)
(
vλ∗ − vλ∗

)
(x, 0, 0) = 0 for all x ≥ 0,

so that vλ∗ ≥ vλ∗ by the comparison result of Theorem A.2, and therefore vλ∗ = vλ∗ since the
reverse inequality holds by definition.

It remains to prove (A.4). Notice that for all s = (x, y, k) ∈ S̄ and z := x+ (1−α)y + αk

(A.5) vλ(z, 0, 0) ≤ vλ(s) ≤ vλ (z + y, 0, 0) .
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Before proving these inequalities, let us complete the proof of vλ∗ = vλ∗ on {(x, 0, 0) : x ≥ 0}.
For an arbitrary x ∈ R+, let {sn = (xn, yn, kn), n ≥ 1}, {s′n = (x′n, y′n, k′n), n ≥ 1} be two
sequences in S̄ such that

sn, s
′
n −−−→n→∞ (x, 0, 0), vλ(sn) −−−→

n→∞ vλ∗ (x, 0, 0), and vλ(s′n) −−−→n→∞ vλ∗(x, 0, 0).

By (A.5), together with the homotheticity property of Proposition 3.3, we see that

vλ(s′n) ≤ vλ(z′n + y′n, 0, 0) =
(
z′n + y′n

)p
vλ(1, 0, 0),

vλ(sn) ≥ vλ(zn, 0, 0) = (zn)
p vλ(1, 0, 0),

where zn = xn+(1−α)yn+αkn and z′n = x′n+(1−α)y′n+αk′n. Letting n→∞ in the above
inequalities and recalling that zn, z

′
n + y′n → x, we get the required result.

We now turn to the proof of (A.5).
• The left-hand side of (A.5) holds since for each consumption-investment strategy ν =

(C,L,M) ∈ A(z, 0, 0) the strategy ν̄ := ν + {1−ΔM0} (0, 0, 1) ∈ A(s).
• The right-hand side of (A.5) holds since for each ν = (C,L,M) ∈ A(s) the strategy
ν̄ := ν + {y(1−ΔM0)} (0, 1, 0) ∈ A(s̄), where s̄ := (z + y, 0, 0).

Indeed, since ν and ν̄ differ only by the jump at time t = 0, the dynamics of the state processes
Ss,ν and S s̄,ν̄ are such that Y s,ν

0 = Y s̄,ν̄
0 and therefore Y s,ν

t = Y s̄,ν̄
t for t ≥ 0, and

K s̄,ν̄
t −Ks,ν

t =
(
K s̄,ν̄

0 −Ks,ν
0

)
e−Mc

t

∏
0≤s≤t

(1−ΔMs)

≤ (K s̄,ν̄
0 −Ks,ν

0

)+
= (y − k)+(1−ΔM0).

Then the corresponding liquidation value processes Zs,ν and Z s̄,ν̄ are such that

Z s̄,ν̄
t − Zs,ν

t = ert
{
Z s̄,ν̄
0 − Zs,ν

0 − α
∫ t

0
e−rs

(
Ks,ν −K s̄,ν̄

)
s
ds

}
≥ ert {Z s̄,ν̄

0 − Zs,ν
0 − (Ks,ν

0 −K s̄,ν̄
0 )+

}
= ert

{
y − (y − k)+(1−ΔM0)

} ≥ 0.

It follows that Z s̄,ν ≥ 0; hence ν̄ ∈ A(s̄).
Proof of Proposition 3.4. Since

(
vλ
)
λ>0

is a nonincreasing sequence of continuous functions
(Lemma A.1) converging to V as λ↘ 0, it follows that the function V is lower semicontinuous.

Let V be the lower semicontinuous function defined on R
2
+ by

(A.6) V(ξ, ζ) := V (1− (1− α)ξ + αζ, ξ, ζ) ,

so that

(A.7) V (x, y, k) = zp V
(
y

z
,
k

z

)
, with z = x+ (1 − α)y + αk,

by the homotheticity property of V stated in Proposition 3.3. By Theorem A.1, we have
gb · DV ≥ 0 and gs · DV ≥ 0 in the viscosity sense. By a direct change of variables, this
implies that V is a lower semicontinuous viscosity supersolution of the equation

pV − (ξVξ + ζVζ)− ε−1 (Vξ + Vζ) ≥ 0 and ξVξ + ζVζ ≥ 0.
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Also, from the monotonicity of V in x, y, and k, it follows that V is a lower semicontinuous
viscosity supersolution of the equation

pV − (ξVξ + ζVζ) + min

{
0 ,

1

1− α Vξ ,
1

α
Vζ
}
≥ 0.

Observe that V is bounded as a consequence of the upper bound provided in Proposition 4.1.
We then deduce from the above viscosity supersolution properties that −|∇V| ≥ −A on
(0,∞)2, in the viscosity sense, for some constant A. Hence V is Lipschitz continuous.

Appendix B. Proof of Proposition 4.2.

Preliminaries and notation. For s ∈ S̄ and ν ∈ A(s), the process Zs,ν is defined by the
initial condition Zs,ν

0 = z := x+ (1− α)y + αk and the dynamics

dZs,ν
t = (rZs,ν

t − Ct) dt+ Y s,ν
t σ̃α

(
θ̃αdt+ dWt

)
+ rαY s,ν

t

(
1− Bs,ν

t

Pt

)
dt,

where
σ̃α := (1− α)σ and θ̃α := θ − rα

σ̃α
.

Our purpose is to show that the value function V outperforms the maximal utility achieved in
a frictionless financial market consisting of one bank account with the constant interest rate r
and one risky asset with price process Pα given by

dPα
t = Pα

t

[
rdt+ σ̃α(θ̃αdt+ dWt)

]
and P̃α

0 = P0.

From Theorem 2.1, the solution of the optimal consumption-investment problem with price
process Pα is given by the constant controls c̄α := c̄(r, θ̃α) and π̄α := π̄(σ̃α, θ̃α) and the
corresponding optimal wealth process is defined by

Z̄α = z and dZ̄α
t = Z̄α

[
(r − c̄α)dt+ π̄ασ̃α

(
θ̃αdt+ dWt

)]
.

In order to prove the required result, we shall fix an arbitrary maturity T > 0 and construct
a sequence of admissible strategies ν̂T,n such that

V (s) ≥ lim
n→∞JT

(
s, ν̂T,n

)
= E

[∫ T

0
e−βtU

(
c̄Z̄α

t

)
dt

]
.

Then, the required result follows by sending T to infinity in this inequality.

A sequence of strategies tracking the Merton optimal policy. Let T > 0 be a fixed
maturity. We construct a sequence of consumption-investment strategies ν̂T,n,k by forcing
the tax basis B to be close to the spot price and by tracking Merton’s optimal strategy, i.e.,
keeping the proportion of wealth invested in the risky asset and the proportion of wealth
dedicated for consumption

πt :=
Yt
Zt

1{Zt 
=0} and ct :=
Ct

Zt
1{Zt 
=0}, 0 ≤ t ≤ T,

close to the pair (π̄α, c̄α).
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To do this, we define a convenient sequence (νT,n,m)n,m≥1 := (CT,n,m, LT,n,m,MT,n,m)n,m≥1

for all s = (x, y, k) ∈ S̄. We shall denote by(
XT,n,m, Y T,n,m,KT,n,m

)
=
(
XνT,n,m

, Y νT,n,m
,KνT,n,m

)
the corresponding state processes and by ZT,n,m = ZνT,n,m

the corresponding after-tax liqui-
dation value process. For all integers n ≥ 1 and m ≥ 1, the consumption-investment strategy
νT,n,m is defined as follows:

1. The consumption strategy is defined by CT,n,m
t := c̄αZT,n,m

t for 0 ≤ t ≤ T . The
investment strategy is piecewise constant:

dLT,n,m
t = dMT,n,m

t = 0 for all t ∈ (0, T ] \ {τT,n,mj , j ≤ m},

where the sequence of stopping times (τT,n,mj )j≤m is defined in step 3.

2. At time 0, set ΔLT,n,m
0 := π̄αz and ΔMT,n,m

0 := 1, so that

KT,n,m
0 = Y T,n,m

0 , πT,n,m0 = π̄α, and ZT,n,m
0 = z.

3. We now introduce the sequence of stopping times τT,n,mj as the hitting times of the

pair process (πT,n,m, K
T,n,m

Y T,n,m ) of some barrier close to (π̄, 1). Set

τT,n,m0 := 0 and τT,n,mj := T ∧ τπj ∧ τBj for 1 ≤ j ≤ m,

where

τπj := inf
{
t ≥ τT,n,mj−1 : |πT,n,mt − π̄α| > n−1π̄α

}
,

τBj := inf

{
t ≥ τT,n,mj−1 :

∣∣∣∣1− KT,n,m

Y T,n,m

∣∣∣∣ > n−1

}
.

4. Finally, we specify the jumps
(
ΔLT,n,m,ΔMT,n,m

)
at each time τT,n,mj , j ≥ 1, by

ΔLT,n,m
t := π̄αZT,n,m

t and ΔMT,n,m
t := 1 for t ∈ {τT,n,mj , j < m},

so that
πT,n,mt = π̄α and BT,n,m

t = Pt for t ∈ {τT,n,mj , j < m}.
And at time t = τT,n,mm , set ΔLT,n,m

t := 0 and ΔMT,n,m
t = 1, so that all the wealth is

transferred to the bank:

Y T,n,m
t = KT,n,m

t = 0 and XT,n,m
t = ZT,n,m

τT,n,m
m

er(T−τT,n,m
m ) for τT,n,mm ≤ t ≤ T.

Lemma B.1. For each n ≥ 1, the sequence
(
τT,n,mm

)
m≥0

converges to T P-a.s.

Proof. Let n ≥ 1. In order to alleviate the notation, we shall denote τm := τT,n,mm ,
π := πT,n,m, and (Y,Z,K) :=

(
Y T,n,m, ZT,n,m,KT,n,m

)
.
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1. In a first step, we shall prove that τπm → ∞ a.s. For sufficiently large n, observe that
our sequence of stopping times (τπm)m≥1 is equivalently defined by

τπm+1 := inf {t ≥ τm : |π̃t − π̄α| ≥ π̄α/n} ,

where π̃ is defined by

π̃t = πt∧θ, with θ := inf

{
t ≥ τm : |πt − π̄α| ≥ π̄α

2
and

∣∣∣∣Kt

Yt
− 1

∣∣∣∣ ≥ 1

2

}
.

Notice that dπ̃t = f(u)du+ g(u)dWu, t ≥ τm, with uniformly bounded processes f and g. We
then estimate

P

[
τπm+1 ≤ τm +

1

m

]
≤ P

[
sup

τm≤t≤τm+ 1
m

|π̃t − π̄α| ≥ π̄αn−1

]

≤
( n
π̄α

)4
E

⎡⎣( sup
τm≤t≤τm+ 1

m

|π̃t − π̄α|
)4
⎤⎦

≤ C
(

1

m4
+

1

m2

)
for some positive constant C,

where we used the Chebyshev and the Burkholder–Davis–Gundy inequalities.
2. Following the same reasoning, we prove that P

[
τBm+1 ≤ τm + 1

m

] ≤ C
(

1
m4 + 1

m2

)
,

and we conclude that
∑

m<∞ P
[
τm+1 ≤ τm + 1

m

]
< ∞. Then, by the Borel–Cantelli lemma,

P
[
lim supm{τm+1 ≤ τm + 1

m}
]
< 0, which implies that limm→∞ τm =∞.

Lemma B.2. For each integer n, we have νT,n,m ∈ A(s).
Proof. By (4.1), we have

dZT,n,m
t = ZT,n,m

t

[
(r − c̄α) dt+ πT,ν,mt σ̃α

(
θ̃αdt+ dWt

)
+ rαπT,n,mt

(
1−BT,n

t

)
dt
]
.

Also, 0 <
(
1 − n−1

)
π̄α ≤ πT,n,mt ≤ (

1 + n−1
)
π̄α. In particular, the process πT,n,m is

bounded, so that the above dynamics implies that the process ZT,n,m is positive, and Y T,n,m
t =

πT,n,mt ZT,n,m
t > 0 P-a.s.

The convergence result.
Lemma B.3. There is a constant A depending on T such that

E

[
sup

0≤t≤T

∣∣∣ZT,n,m
t − Z̄α

t

∣∣∣2] ≤ (n−2 + E[T − τT,n,mm ])AeAT .

Proof. By definition of the sequence of consumption-investment strategies
(
νT,n,m

)
, we

have

(B.1) sup
0≤t≤T∧τT,n,m

∣∣∣πT,nt − π̄α
∣∣∣ ≤ 1

n
π̄α and sup

0≤t≤T∧τT,n,m

∣∣∣∣∣1− KT,n,m
t

Y T,n,m
t

∣∣∣∣∣ ≤ 1

n
.
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By direct computation, we decompose the difference ZT,n,m − Z̄α into

Dt := ZT,n,m
t − Z̄α

t = Ft +Gt +Ht,

where

Ft :=

∫ t

0
Dt

[
(r − c̄α)du+ πT,n,mu

(
σ̃αθ̃αdu+ αr

(
1− KT,n,m

u

Y T,n,m
u

)
du+ σ̃αdWu

)]
,

Gt :=

∫ t

0
Z̄α
u σ̃

α
(
πT,n,mt − π̄α

)
(θαdu+ dWu) ,

Ht := αr

∫ t

0
πT,n,mu Z̄α

u

(
1− KT,n,m

u

Y T,n,m
u

)
du.

In the subsequent calculation, A will denote a generic (T -dependent) constant whose value
may change from line to line. We shall also denote V ∗

t := sup0≤u≤t |Vu| for all processes (Vt)t.
We first start by estimating the first component F . Observe that the process πT,n,m is

bounded by 2π̄. Then

|Ft|2 ≤ A
∫ t

0
|D∗

u|2 du+ 2

(∫ t

0
Duπ

t,n,m
u κ̃dWu

)2

.

By the Burkholder–Davis–Gundy inequality, this provides

E |F ∗
t |2 ≤ A

∫ t

0
E |D∗

u|2 du.

By a similar calculation, it follows from the boundedness of πT,n,m and from (B.1) that

E|G∗
t |2 ≤ A

(
n−2 + E[T − τT,n,mm ]

)
and E|H∗

t |2 ≤ A
(
n−2 + E[T − τT,n,mm ]

)
.

Collecting the above estimates, we see that

E|D∗
t |2 ≤ A

(
n−2 + E[T − τT,n,mm ]

)
+K

∫ t

0
E|D∗

u|2du for all t ≤ T,

and we obtain the required result by the Gronwall inequality.

B.1. Proof of Proposition 4.2. For s = (x, y, k) ∈ S̄, and T > 0,∣∣∣∣JT (s, νT,n,m)− ∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt

∣∣∣∣ = ∣∣∣∣∫ T

0
e−βt

(
U
(
c̄αZT,n,m

t

)
− U (c̄αZ̄α

t

)
dt
)∣∣∣∣

≤ A
∫ T

0
e−βt

∣∣∣ZT,n,m
t − Z̄α

t

∣∣∣p dt
for some positive constant A. Now, by Lemma B.1 and the estimate of Lemma B.3, it follows
that

lim
n,m→∞JT (s, ν

T,n,m) =

∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt.

Since V (s) ≥ JT (s, νT,n,m) for every T > 0, this implies that

V (s) ≥ lim
T→∞

∫ T

0
e−βtU

(
c̄αZ̄α

t

)
dt = γ

(
r, θ̃α

) zp
p
.
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Multivariate Extension of Put-Call Symmetry∗

Ilya Molchanov† and Michael Schmutz†

Abstract. Multivariate analogues of the put-call symmetry can be expressed as certain symmetry properties
of basket options and options on the maximum of several assets with respect to some (or all)
permutations of the weights and the strike. The so-called self-dual distributions satisfying these
symmetry conditions are completely characterized and their properties explored. It is also shown how
to relate some multivariate asymmetric distributions to symmetric ones by a power transformation
that is useful to adjust for carrying costs. Particular attention is devoted to the case of asset prices
driven by Lévy processes. Based on this, semistatic hedging techniques for multiasset barrier options
are suggested.

Key words. barrier option, dual market, Lévy process, multiasset option, put-call symmetry, self-dual distri-
bution, semistatic hedging

AMS subject classifications. 60E05, 60G51, 91B28, 91B70

DOI. 10.1137/090754194

1. Introduction. Consider European options on ST = S0e
rT η being the price of a (say

nondividend paying) asset at the maturity time T , where S0 is the spot price and erT η is
the factor by which the price changes, r is the (constant) risk-free interest rate, and η is an
almost surely positive random variable. In arbitrage-free and complete markets, the option
price equals the discounted expected payoff, where the expectation can be taken with respect
to the unique equivalent martingale measure. In this case Eη = 1 and the discounted price
process (Ste

−rt)t∈[0,T ] becomes a martingale. Unless indicated by a different subscript, all
expectations in this paper are understood with respect to the probability measure Q, which
is not necessarily a martingale measure. In this paper we do not address the choice of a
martingale measure in incomplete markets.

One of the most basic relationships between options in arbitrage-free markets is the Eu-
ropean call-put parity. This parity can be expressed by

(1.1) c(k, F ) = e−rT (F − k) + p(k, F ) ,

where c(k, F ) (resp., p(k, F )) denotes the price of the European call (resp., put) option with
strike k on the asset with forward price F . Deterministic dividends or income until maturity
can be incorporated into the forward price, e.g., by setting F = S0e

(r−q)T in the case of
a continuous dividend yield q. The maturity time T is supposed to be the same for all
instruments.
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Recall that η defined from ST = Fη is almost surely positive. If η is distributed according
to a martingale measure Q, then a new probability measure Q̃ can be defined from

dQ̃

dQ
= η .

Since η is usually represented as eHT for a semimartingale (Ht)t∈[0,T ] and (−Ht)t∈[0,T ] is called
the dual to (Ht)t∈[0,T ], the random variable η̃ = η−1 is said to be the dual of η.

The duality principle in option pricing deals with this change of measure and traces its
roots to [3, 7, 20, 26, 27]. This principle has been studied extensively in recent years; e.g., [8]
and [15] discuss the American version of duality. For a detailed presentation of the duality
principle in a general exponential semimartingale setting and for its various applications, see
[17] and the references therein. The multiasset case has been studied in [16].

If the distribution of η under Q coincides with the distribution of η̃ under Q̃, we call
the positive random variable η self-dual. This symmetry property clearly depends on the
probability measure used to define the expectation. The following result is well known.

Theorem 1.1. Assume that the asset price at maturity of an asset with deterministic divi-
dend payments is ST = Fη with self-dual η. Then

(1.2) p(k, F ) = c(F, k) .

For instance, the log-normal distribution in the risk-neutral setting is self-dual, which
implies the put-call symmetry (or the Bates rule) for the Black–Scholes economy. The above
relation and its variants obtained by combining it with the put-call parity are known in the
literature as put-call symmetry ; see, e.g., [4, 5, 7, 10] and more recently [19] for log-infinitely
divisible models. Further recent developments are presented by Carr and Lee [12].

There are various applications of the put-call symmetry, especially in connection with
hedging exotic options. Following [12], semistatic hedging is the replication of contracts by
trading European-style claims at no more than two times after inception. In the univariate
case, [9, 10, 12] and also [1, 2, 31] developed a machinery for replicating barrier contracts
having fundamental relevance for other path-dependent contracts.

Theorem 1.2 (cf. [12, Thm. 2.5]). An integrable random variable η is self-dual if and only
if, for any payoff function f : R+ �→ R+ and any F > 0,

(1.3) Ef(Fη) = E[f(Fη−1)η] .

By (1.2) and writing the call payoff as

(1.4) (ST − k)+ = max(ST , k)− k , ST , k ≥ 0 ,

it is immediately seen that (1.2) is equivalent to

(1.5) Emax(Fη, k) = Emax(F, kη) for all k ≥ 0 .

This paper explores extensions of the put-call symmetry property for the multiasset case.
Section 2 characterizes random vectors that possess symmetry properties generalizing the
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classical put-call symmetry for basket options and options on the maximum of several assets.
The symmetry (or self-duality) is understood with respect to each particular asset or for
all assets simultaneously. It is also shown that the joint distribution of assets is completely
determined by the prices of basket calls, options on the maximum of weighted asset prices, or
calls and puts written on the weighted maximum or minimum of risky assets, complementing
the result of [11] formulated in the absolutely continuous case for basket options, where it
also yields an explicit formula for the probability density function. Relationships between
the self-duality property and the swap invariance in Margrabe-type options have been studied
in [29]. In currency markets, the self-duality results can be interpreted with respect to real
existing markets, yielding the basis for further applications; see [36].

It is shown in section 3 that the joint self-duality implies that expected payoffs from basket
options are symmetric with respect to the weights of all assets and the strike price. The new
effect in the multivariate setting is that the independence of asset prices prevents them from
being jointly self-dual. In other words, symmetry properties for several assets enforce a certain
dependency structure between them, which is explored in this paper.

Section 4 deals with multivariate log-infinitely divisible distributions, exhibiting the multi-
variate put-call symmetry. In order to extend the application range of the self-duality property
and also in view of incorporating the carrying costs, we define in section 5 quasi–self-dual ran-
dom vectors and characterize their distributions. These random vectors become self-dual if
their components are normalized by constants (representing carrying costs) and raised to a
certain power. The related power transformation was used by Carr and Lee [12, sec. 6.2] in the
one-dimensional case. Here we establish an explicit relationship between carrying costs and
the required power of transformation for rather general price models based on Lévy processes.

These results are then used in section 6 to obtain several new results for self-dual random
variables, thereby complementing the results from [12]. In particular, self-dual random vari-
ables have been characterized in terms of their distribution functions; it is shown that self-dual
random variables always have nonnegative skewness, and several examples of self-dual random
variables are given.

As in the univariate case, in the multiasset case there are also various applications of
symmetry results. First, symmetry results may be used for validating models or analyzing
market data, e.g., similarly as in [4, 18] for the univariate case. Furthermore, they could
be used for deriving certain investment strategies; see, e.g., section 7.4. Probably the most
important application will potentially be found in the area of hedging, especially in developing
semistatic replicating strategies of multiasset barrier contracts and possibly more complicated
path-dependent contracts. As far as the relevance of this application is concerned, we should
mention that there has been a liquid market in structured products, particularly in Europe.
At the moment the majority of the trades still occur over the counter, but more and more
trades are also organized at exchanges, especially at the quite new European exchange for
structured products, Scoach. Structured products often involve equity indices, sometimes
several purpose-built shares, and quite often have barriers. Hence, developing robust hedging
strategies for multiasset path-dependent products seems to be of a certain importance. The
importance of developing robust hedging strategies for multiasset path-dependent products is
also particularly stressed by Carr and Laurence [11]. Section 7 contains the first applications of
the multivariate symmetry properties, especially for hedging complex barrier options, thereby
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extending results from [9, 10, 12] for some multiasset options. The development of a more
general multivariate semistatic hedging machinery is left for future research.

2. Characterization of multivariate distributions with symmetry properties. When work-
ing with n assets, we write η for an n-dimensional random vector (η1, . . . , ηn) such that the
price ST i of the ith asset at time T equals Fiηi with Fi being the corresponding forward price.
We denote this in short by

(2.1) ST = F ◦ η = (F1η1, . . . , Fnηn) .

We often extend the n-dimensional random vector η = (η1, . . . , ηn) by adding to it the
first coordinate, which is 1. In the financial setting this extra coordinate represents a riskless
bond. Because of this, we number the coordinates of (n+1)-dimensional vectors as 0, 1, . . . , n
and write these vectors as (u0, u) for u0 ∈ R and u ∈ R

n or as (u0, u1, . . . , un). The scalar
product of n-dimensional vectors u and η is denoted by 〈u, η〉.

Let ST = (ST1, . . . , STn) and integrable η = (η1, . . . , ηn) be as defined in (2.1). Assume
that all coordinates of η are positive, i.e., η ∈ E

n = (0,∞)n and η = eξ for a random vector
ξ = (ξ1, . . . , ξn), where the exponential function is applied componentwise. For simplicity of
notation, we do not write time T as a subscript of η and incorporate the forward prices Fj ,
j = 1, . . . , n, into payoff functions; i.e., payoffs will be real-valued functions of η.

In what follows two specific payoff functions are of particular importance, namely

fb(u0, u1, . . . , un) =

(
n∑

l=1

ulηl + u0

)
+

, u0, u1, . . . , un ∈ R ,

for a European basket option and

fm(u0, u1, . . . , un) = u0 ∨
n∨

l=1

ulηl , u0, u1, . . . , un ≥ 0 ,

for a European derivative on the maximum of n weighted risky assets together with a riskless
bond, where ∨ denotes the maximum operation. Despite the fact that the payoff functions
fb and fm depend on η, we stress their dependence on the coefficients, since it is crucial for
symmetry properties. By (1.4), call and put options on the maximum of several weighted
assets can be written by means of the payoff function fm, e.g.,(

n∨
l=1

ulηl − k
)

+

= fm(k, u1, . . . , un)− k , k ≥ 0 .

It is well known (see, e.g., [6, 32]) that prices of vanilla put or call options with all
possible strikes uniquely determine the asset distribution under the martingale measure and
thereupon the prices of all other European options, while Carr and Madan [13] present an
explicit decomposition of general smooth payoff functions as integrals of vanilla options and
riskless bonds. Carr and Laurence [11] proved that the joint probability density function of
the assets is determined by the prices of basket options on these assets. In the multivariate
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case the following result holds without assuming that the distribution of the assets possesses
a density for (i); cf. [22].

Theorem 2.1. The distribution of an integrable η ∈ E
n is uniquely determined by either

(i) the expected values Efb(u0, u1, . . . , un) for all u0 ∈ R and u ∈ R
n or

(ii) the expected values Efm(u0, u1, . . . , un) for all u0, u1, . . . , un ≥ 0.

Remark 2.2. In view of the positive homogeneity of payoff functions fb and fm, it suffices
to assume that the expected values from (i) and (ii) are known for parameter vectors (u0, u)
with norm one in R

n+1. By also invoking the put-call parity, it suffices to take in (i) any fixed
u0 �= 0 and any u ∈ R

n and in (ii) any fixed u0 > 0 and u with strictly positive coordinates.

Proof of Theorem 2.1. (i) Note that Efb(u0, u1, . . . , un) with u0 < 0 becomes a call option
on the basket 〈u, η〉 and thus uniquely determines the distribution of 〈u, η〉 for each u ∈
R
n. The latter uniquely determines the distribution of η by the Cramér–Wold device. This

uniqueness result can be also derived geometrically by noticing that Efb(u0, u1, . . . , un) is the
support function of the lift zonoid of η, which uniquely identifies the distribution of η; see
[30].

(ii) Note that Efm(u0, u1, . . . , un) = Eu0 ∨ ζ for ζ = u1η1 ∨ · · · ∨ unηn and thus uniquely
determines the distribution of ζ. The cumulative distribution function of ζ is given by

Fζ(t) = P

{
η1 ≤ t

u1
, . . . , ηn ≤ t

un

}
,

and so these functions for all u1, . . . , un uniquely determine the joint cumulative distribution
function of η1, . . . , ηn. Note in this relation that Efm(u0, u1, . . . , un), u0, u1, . . . , un ≥ 0, is the
support function of a convex body called the lift max-zonoid of η; see [28].

Remark 2.3. Consider call and put options that are written on the weighted maximum
max(u1η1, . . . , unηn) or minimummin(u1η1, . . . , unηn) of n integrable assets. By the univariate
version (with n = 1) of Theorem 2.1(i), the prices of such calls and puts determine the
distribution of the weighted maximum and minimum. By the argument similar to the proof
of statement (ii) of Theorem 2.1, it is easy to see that the families of such prices for all weights
u1, . . . , un ≥ 0 uniquely determine the distribution of η = (η1, . . . , ηn).

Fix an arbitrary asset number i ∈ {1, . . . , n} and assume that Q is a probability measure
that makes η integrable. Recall that E without the subscript denotes the expectation with
respect to Q; otherwise the subscript is used to indicate the relevant probability measure.

Since η1/2 = (η
1/2
1 , . . . , η

1/2
n ) = e

1
2
ξ is integrable, we can define new probability measures Qi

and E i by
dQi

dQ
=

ηi
Eηi

,
dE i
dQ

=
e

1
2
ξi

Ee
1
2
ξi
.

Hence, E i is the Esscher (exponential) transform of Q with parameter 1
2 ei, where ei is the ith

standard basis vector in R
n; see [33] and [35, Ex. 7.3] for the Esscher transform in the context

of multivariate Lévy processes. Since EEie−
1
2
ξi = (Ee

1
2
ξi)−1, we see that Q is the Esscher

transform of E i with parameter −1
2 ei.

For simplicity of notation, define families of functions κi : E
n �→ E

n and linear mappings
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Ki : R
n �→ R

n acting as

κi(x) =

(
x1
xi
, . . . ,

xi−1

xi
,
1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
,

Kix = (x1 − xi, . . . , xi−1 − xi,−xi, xi+1 − xi, . . . , xn − xi)(2.2)

for i = 1, . . . , n. The linear mapping Ki can be represented by the matrix Ki = (klm)nlm=1

with kll = 1 for all l �= i, kli = −1 for l = 1, . . . , n with all remaining entries being 0. Note that
κi and Ki are self-inverse, i.e., κi(κi(x)) = x and KiKix = x, and that the ith coordinate of
Kix is −xi. The transpose of Ki is denoted by K�

i . In the following we consider vectors as
rows or columns depending on the situation.

The permutation of the zero coordinate with the ith coordinate of a vector (u0, u) ∈ R
n+1

is denoted by

πi(u0, u) = (ui, u1, . . . , ui−1, u0, ui+1, . . . , un) for i = 1, . . . , n .

Finally, ϕQ
ξ (resp., ϕEi

ξ ) denotes the characteristic function of the random vector ξ under the

probability measureQ (resp., E i). Univariate versions of nearly all statements (apart from (ii),
which implies the equivalence between (1.3) and (1.5)) of the following theorem are already
known from [12, Th. 2.5, Cor. 2.10].

Theorem 2.4. Let η = eξ be an n-dimensional Q-integrable random vector with positive
components and let i be a fixed number from {1, . . . , n}. The following conditions are equiva-
lent:

(i) For all u0 ∈ R and u ∈ R
n,

Efb(u0, u) = Efb(πi(u0, u)) .

(ii) For all u0 ≥ 0 and u ∈ R
n
+,

Efm(u0, u) = Efm(πi(u0, u)) .

(iii) For any payoff function f : Rn
+ �→ R+, we have

Ef(η) = E[f(κi(η))ηi] .

(iv) The distribution of η under Q is identical to the distribution of η̃i = κi(η) under Qi.
(v) The distributions of ξ and Kiξ under E i coincide.
(vi) For every u ∈ R

n,

ϕEi

ξ (u) = ϕEi

ξ (K�
i u)

or, equivalently,

ϕQ
ξ

(
u− 1

2
ıei

)
= ϕQ

ξ

(
K�

i u−
1

2
ıei

)
,

where ı =
√−1 is the imaginary unit and ei is the ith standard basis vector in R

n.
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Since (iv) corresponds to the duality transform in the univariate setting, we say that η
satisfying one of the above conditions is self-dual with respect to the ith numeraire and write
in short η ∈ SDi. If η is self-dual with respect to all numeraires i = 1, . . . , n, we call η jointly
self-dual.

Remark 2.5 (martingale property). If η ∈ SDi, then (iii) applied to f identically equal to one
implies that Eηi = 1, which is the case if the ith component of η arises from a Q-martingale
sampled at maturity. However, Eηj is not necessarily one for i �= j, quite differently from the
univariate case; see [12]. This property has to be imposed additionally, if needed.

Remark 2.6. If the forward prices are not included in the payoff function, then (iii) for the
self-duality of η with respect to the ith numeraire can be equivalently expressed as

Ef(ST1, . . . , STn) = E

[
f

(
ST1Fi

ST i
, . . . ,

ST (i−1)Fi

ST i
,
(Fi)

2

ST i
,
ST (i+1)Fi

ST i
, . . . ,

STnFi

ST i

)
ST i

Fi

]
by applying (iii) to f̃(η) = f(F ◦ η). Note also that the self-duality with respect to the ith
numeraire implies (iii) for not necessarily positive integrable payoff functions.

Remark 2.7 (conditioning in Theorem 2.4). All conditions of Theorem 2.4 can be written
conditionally on a fixed event or conditionally on a σ-algebra. This has the following applica-
tion for stochastic processes. Consider a family {η(t), t ≥ 0} of random vectors being self-dual
with respect to the ith numeraire. If τ is a nonnegative random variable, which is independent
of {η(t), t ≥ 0}, then η(τ) satisfies all statements in Theorem 2.4 with the expectations taken
conditionally on the σ-algebra generated by τ ; i.e., η(τ) is conditionally self-dual with respect
to the ith numeraire.

Proof of Theorem 2.4. We will establish all equivalences in several steps.
(i)⇒(iv) By (i), Eηi = 1, so that for all (u0, u) ∈ R

n+1

EQi

(
n∑

l=1

ulη̃
i
l + u0

)
+

= EQi

(
n∑

l=1, l �=i

ul
ηl
ηi

+
ui
ηi

+ u0

)
+

= E

[(
n∑

l=1, l �=i

ul
ηl
ηi

+
ui
ηi

+ u0

)
+

ηi

]

= E

(
n∑

l=1, l �=i

ulηl + ui + u0ηi

)
+

= E

(
n∑

l=1

ulηl + u0

)
+

,

where the last equality follows from (i). Theorem 2.1(i) yields (iv).
(iv)⇒(iii)⇒(i) The definition of Qi, the self-inverse property of κi, and (iv) (also implying

Eηi = 1) yield that

Ef(η) = EQi [f(η)η−1
i ] = EQi [f(κi(η̃

i))η̃ii ] = E[f(κi(η))ηi] ,

so that (iii) holds. By applying (iii) for the payoff function fb of a basket option, we arrive at
(i).

(iii)⇒(ii)⇒(iv) By applying (iii) to the payoff function fm, we obtain (ii). The next
implication is proved similarly to (i)⇒(iv) above.
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(iii)⇔(v)⇔(vi) Since mi = E(e
1
2
ξi) is finite,

Ef(η) = Ef(eξ) = miEEi [f(eξ)e−
1
2
ξi ] ,

E[f(κi(η))ηi] = E[f(eKiξ)eξi ] = miEEi [f(eKiξ)e
1
2
ξi ] .

Thus, (iii) yields that

(2.3) EEi [f(eξ)e−
1
2
ξi ] = EEi [f(eKiξ)e

1
2
ξi ] = EEi [f(eKiξ)e−

1
2
(Kiξ)i ]

for any payoff function f . Recall that the ith coordinate of Kiξ is −ξi. Choosing f(ex) =

g(ex)e
1
2
xi , we see that the E i-expectations of g(eξ) and g(eKiξ) coincide for all nonnegative

continuous functions g with bounded support, whence ξ coincides in distribution with Kiξ
under E i. Conversely, if ξ and Kiξ share the same distribution under E i, then (2.3) holds and
implies (iii).

Furthermore, (v) is equivalent to

ϕEi

ξ (u) = ϕEi

Kiξ(u) = ϕEi

ξ (K�
i u)

for every u ∈ R
n. Writing the characteristic functions as E i-expectations and referring to the

change of measure, the latter condition is equivalent to

E

[
eı〈u,ξ〉

e
1
2
ξi

Ee
1
2
ξi

]
= E

[
eı〈K

�
i u,ξ〉 e

1
2
ξi

Ee
1
2
ξi

]
, u ∈ R

n ,

so that

ϕQ
ξ

(
u− 1

2
ıei

)
= ϕQ

ξ

(
K�

i u−
1

2
ıei

)
for all u ∈ R

n.
The following result can be helpful for constructing distributions of self-dual random

vectors. Its univariate version is stated in [37, Ex. 8].
Theorem 2.8. Consider an integrable random vector η ∈ E

n with distribution Q.
(a) If η is absolutely continuous with probability density pη, then η ∈ SDi if and only if

(2.4) pη(x) = x
−(n+2)
i pη(κi(x)) for almost all x ∈ E

n ;

equivalently, the density pξ of ξ = log η satisfies

(2.5) pξ(x) = e−xipξ(Kix) for almost all x ∈ R
n .

(b) If η is discrete, then η ∈ SDi if and only if Q(η = κi(x)) = xiQ(η = x) for each atom
x of η.

Proof. (a) Condition (iii) of Theorem 2.4 can be written in integral form as∫
R
n
+

f(x)pη(x) dx =

∫
R
n
+

f(κi(y))yipη(y) dy =

∫
R
n
+

f(x)
1

xn+2
i

pη(κi(x)) dx ,
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where the last equality is obtained by changing variables x = κi(y) and noticing that κi(κi(x))
= x. Consider the function f(x) = �x∈[a1,b1]×···×[an,bn] for any parameters a1, . . . , an, b1, . . . , bn
∈ R. Differentiating both sides with respect to b1, . . . , bn we get (2.4) almost everywhere.
For the converse, write the right-hand side of (iii) as an integral, refer to (2.4), and change
variables. The equivalence between (2.4) and (2.5) can be seen by the classical density trans-
formation.

(b) In the discrete case the necessity relies on writing Theorem 2.4(iii) for f(x) = �x=x∗ ,
where x∗ is any atom of Q. The sufficiency follows from writing the expected payoff fb(u0, u)
as the sum over the atoms of Q.

Now we give a result about the marginal distribution of ηi for the random vector η being
self-dual with respect to this numeraire.

Lemma 2.9. If η ∈ SDi, then ηi is a self-dual random variable.

Proof. Choose in Theorem 2.4(ii) vector u with all coordinates being zero apart from u0
and ui. Then Theorem 2.4(ii) reads E(u0 ∨ uiηi) = E(ui ∨ u0ηi) for every u0, ui ≥ 0. This is
exactly the symmetry condition in the one-dimensional version of Theorem 2.4(ii).

3. Jointly self-dual random vectors. Recall that random vector η is called jointly self-
dual if it is self-dual with respect to all numeraires. Since permutations of coordinate 0 and
an arbitrary i ∈ {1, . . . , n} generate by successive applications the transpositions of any two
i, j ∈ {0, 1, . . . , n}, the expected payoff functions fb and fm for jointly self-dual η are invariant
with respect to any permutation of their arguments; e.g.,

(3.1) Efb(u0, u1, . . . , un) = Efb(ul0 , ul1 , . . . , uln)

for each permutation i �→ li. In view of this, Theorem 2.1 implies the following result.

Corollary 3.1. If η is jointly self-dual, then all its components are identically distributed
self-dual random variables with expectation one and η is exchangeable; i.e., its distribution
does not change after any permutation of its coordinates.

It should be noted that the converse statement to Corollary 3.1 does not hold; i.e., the
exchangeability of η does not imply joint self-duality. This is easily seen as a consequence
of the following result, which says that any nontrivial random vector η with independent
coordinates cannot be jointly self-dual.

Theorem 3.2. Assume that n ≥ 2.

(a) If η ∈ SDi and ηi and ηj are independent for some j �= i, then ηi equals 1 almost
surely.

(b) If η is a jointly self-dual random vector with independent coordinates, then all coordi-
nates of η are deterministic and equal 1 almost surely.

Proof. It suffices to prove only (a). By Theorem 2.4(ii), letting ul = 0 for l �= 0, i, j,

E
(
u0 ∨ uiηi ∨ ujηj

)
= E

(
ui ∨ u0ηi ∨ ujηj

)
for all u0, ui, uj ∈ R+. In particular, if ui = 0, then

E(u0 ∨ ujηj) = E(u0ηi ∨ ujηj) for all (u0, uj) ∈ R
2
+ .
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Since ηi is self-dual by Lemma 2.9, the conditioning on ηj yields that E(u0ηi ∨ ujηj) =
E(u0 ∨ ujηiηj). Hence,

E(u0 ∨ ujηj) = E(u0 ∨ ujηiηj) for all (u0, uj) ∈ R
2
+ ,

whence ηj coincides in distribution with ηiηj ; see Theorem 2.1(ii). If ξl = log ηl for l = i, j,
then ξj and ξi + ξj share the same distribution. Therefore, the characteristic function of ξi
identically equals one for some neighborhood of the origin, whence ξi = 0 almost surely.

Remark 3.3 (random vectors sampled from Lévy processes). Assume that ζ1, . . . , ζn are in-
dependent integrable random variables. Consider the vector

η = (ζ1, ζ1ζ2, ζ1ζ2ζ3, . . . , ζ1 · · · ζn) .

This construction is important, since then ξ = log η is a vector whose components form
a random walk. However, η cannot be jointly self-dual as a vector, except in the trivial
deterministic case. Indeed, setting u0, u1, u2 ≥ 0 and u3 = · · · = un = 0, writing the expected
payoff fm conditionally on ζ2, and using the self-duality of ζ1 (which follows from η ∈ SD1),
we see that

E(u0 ∨ u1η1 ∨ u2η2) = E(u0ζ1 ∨ u1 ∨ u2ζ2)
is symmetric in u0, u1, u2 if η is jointly self-dual. Thus, (ζ1, ζ2) is a jointly self-dual vector
with independent components, which is necessarily trivial by Theorem 3.2(b). An extension
of this argument shows that ζ1 = · · · = ζn = 1 almost surely. Therefore, it is not possible to
obtain jointly self-dual random vectors by taking exponentials of the values of a Lévy process
at different time points.

Example 3.4. Let ζ0, ζ1, . . . , ζn be independent and identically distributed self-dual ran-
dom variables (their examples are provided in section 6). Define ηi = ζ0ζi for i = 1, . . . , n.
Conditioning on ζ1, . . . , ζn yields that

E(u0 ∨ u1η1 ∨ · · · ∨ unηn) = E
[
E(u0 ∨ ζ0(u1ζ1 ∨ · · · ∨ unζn)|ζ1, . . . , ζn)

]
= E(u0ζ0 ∨ u1ζ1 ∨ · · · ∨ unζn)

is symmetric in u0, u1, . . . , un; i.e., η = (η1, . . . , ηn) is jointly self-dual. Note that η1, . . . , ηn
are all self-dual random variables but are no longer independent. In particular if the ζ’s are
log-normally distributed with μ = −1

2 and σ = 1, then log η is normally distributed with
mean (−1

2 , . . . ,−1
2 ) and the covariance matrix having diagonal elements 1 and all others 1

2 .
We will return to this situation in Example 4.5.

4. Exponentially self-dual infinitely divisible random vectors. A random vector ξ has an
infinitely divisible distribution if and only if ξ = L1 for a Lévy process (Lt)t≥0; see [34]. In view
of the widespread use of Lévy models for derivative pricing, we aim to characterize infinitely
divisible random vectors ξ = log η for η being self-dual with respect to the ith numeraire or
all numeraires. If η ∈ SDi, then ξ is said to be exponentially self-dual with respect to the ith
numeraire and we write in short ξ ∈ ESDi.

The Euclidean norm ‖ · ‖ is not invariant with respect to the transformation x �→ Kix
defined by (2.2). For simplifying the formulation of the results, we introduce the following
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norm on R
n:

(4.1) |||u|||2 = 1

2
(‖u‖2 + ‖Kiu‖2) , u ∈ R

n ,

where the number i ∈ {1, . . . , n} is fixed in what follows. It is easy to see that ||| · ||| is indeed a
norm, which is equivalent to the Euclidean norm on R

n. Since Ki is self-inverse, |||u||| = |||Kiu|||
for every u ∈ R

n.
We use the following formulation of the Lévy–Khintchine formula (see [34, Chap. 2]) for

the characteristic function of ξ:

ϕQ
ξ (u) = Eeı〈u,ξ〉 = exp

{
ı〈γ, u〉 − 1

2
〈u,Au〉(4.2)

+

∫
Rn

(eı〈u,x〉 − 1− ı〈u, x〉�|||x|||≤1)dν(x)

}
for u ∈ R

n, where A is a symmetric nonnegative definite n × n matrix, γ ∈ R
n is a constant

vector, and ν is a measure on R
n (called the Lévy measure) satisfying ν({0}) = 0 and

(4.3)

∫
Rn

min(‖x‖2, 1)dν(x) <∞ .

Note that the latter condition can be equivalently written in the new norm ||| · |||.
Theorem 4.1. Let η be an integrable random vector under the probability measure Q such

that ξ = log η is infinitely divisible under Q. Then ξ ∈ ESDi if and only if for the generating
triplet (A, ν, γ) the following three conditions hold:

(1) The matrix A = (alj)
n
lj=1 satisfies aij = aji =

1
2 aii for all j = 1, . . . , n, j �= i.

(2) The Lévy measure satisfies

(4.4) dν(x) = e−xidν(Kix) almost everywhere,

meaning that ν(B) =
∫
KiB

exidν(x) for all Borel B.
(3) The ith coordinate of γ satisfies

(4.5) γi =

∫
|||x|||≤1

xi(1− e
1
2
xi) dν(x)− 1

2
aii .

Proof. Since η is positive integrable, 0 < Ee
1
2
ξi <∞, so that the Esscher transform E i of

Q with parameter 1
2 ei and the inverse transform are well defined. According to [33] or [35,

Ex. 7.3], ξ under E i also has an infinitely divisible distribution, so that

ϕEi

ξ (u) = exp

{
ı〈γEi

, u〉 − 1

2
〈u,Au〉+

∫
Rn

(eı〈u,x〉 − 1− ı〈u, x〉�|||x|||≤1)dν
Ei
(x)

}
for a new vector γEi

and Lévy measure νEi
. Note that the matrix A is invariant under the

Esscher transform (see [33] or [35, Ex. 7.3]), as is the case under any absolutely continuous
change of measure; see, e.g., [24].
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By Theorem 2.4(vi), ξ ∈ ESDi if and only if

(4.6) ϕEi

ξ (u) = ϕEi

ξ (K�
i u) for all u ∈ R

n .

Noticing that 〈K�
i u, x〉 = 〈u,Kix〉, changing the variable x to Kix, using the Ki-invariance

of ||| · ||| and the self-inverse property of Ki, the Lévy–Khintchine formula yields that

ϕEi

ξ (K�
i u) = exp

{
ı〈Kiγ

Ei
, u〉 − 1

2
〈u,KiAK

�
i u〉

+

∫
Rn

(eı〈u,x〉 − 1− ı〈u, x〉�|||x|||≤1)dν
Ei
(Kix)

}
.

The uniqueness of the parameters A, νEi
, and γEi

of the Lévy–Khintchine representation for
ϕEi

ξ [34, Thm. 8.1] implies that (4.6) holds if and only if the Lévy measure νEi
is Ki-invariant,

A = KiAK
�
i , and γ

Ei
= Kiγ

Ei
. The condition on γEi

holds if and only if the ith component

of γEi
is 0. A direct computation of matrix products leads to (1).

Since the norm ||| · ||| does not change integrability properties in the Lévy–Khintchine rep-
resentation, it is possible to replicate the proof from [33] to show that the Esscher transform
with parameter −1

2 ei leaves A invariant, while other parts of the Lévy triplet are transformed
as

dν(x) = e−
1
2
xidνE

i
(x) ,

γ = γE
i
+

∫
|||x|||≤1

x(e−
1
2
xi − 1)dνE

i
(x) +A

(
−1

2
ei

)
.

The latter condition is equivalent to (4.5), noticing that the ith component of A(12 ei) is aii/2,

dνEi
(x) = e

1
2
xidν(x), and γEi

has zero as its ith component, while other components are
arbitrary.

Furthermore, for almost all x,

dν(x) = e−
1
2
xidνE

i
(x) = e−xie−

1
2
(−xi)dνE

i
(Kix) = e−xidν(Kix) ,

where again we used the fact that the ith component ofKix is −xi and that νEi
isKi-invariant.

Conversely, the integrability of η ensures the existence of the Esscher transform of Q with
parameter 1

2 ei. By doing this transform and the converse calculations, it is easy to verify that
Theorem 2.4(vi) applies, i.e., η = eξ ∈ SDi.

Since an infinitely divisible random variable ξ is symmetric if and only if γ vanishes and
the Lévy measure is symmetric, the above proof is very short in the univariate case and
immediately yields the corresponding univariate result stated in [19, 12].

The SDi-property of η implies that the ith component of η has expectation one. If this
holds for other components, e.g., if η forms a martingale, this imposes further restrictions on
the coordinates of γ, namely

γj +
1

2
ajj +

∫
Rn

(exj − 1− xj�|||x|||≤1)dν(x) = 0 , j = 1, . . . , n .
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Remark 4.2 (the role of the norm). If we use the Euclidean norm to define the truncation
in (4.2), then this change affects only the value of γ, while A and ν remain the same. If γ‖·‖
denotes the “drift” calculated for the Euclidean norm, then

γ‖·‖ = γ +

∫
Rn

x(�‖x‖≤1 − �|||x|||≤1)dν ,

so that (4.5) transforms into

γ‖·‖i =
∫
Rn

xi
(
�‖x‖≤1 − �|||x|||≤1e

1
2
xi
)
dν(x)− 1

2
aii .

Remark 4.3 (jointly self-dual case). Assume that the conditions of Theorem 4.1 hold for
each i = 1, . . . , n. The first condition implies that A equals up to a constant factor the
matrix having all diagonal elements 1 and the others 1

2 . By applying (4.4) consecutively
to coordinates i �= j and noticing that KiKjKi defines the transposition of the ith and jth
coordinates of n-dimensional vectors, we see that in this case the Lévy measure ν is invariant
under permutations and all components of γ coincide.

Remark 4.4 (finite mean case). Now we also assume that ξ has a finite mean, which is the
case if and only if

∫
‖x‖>1 ‖x‖dν(x) <∞; see [34, Cor. 25.8]. Then we can rewrite (4.2) in the

following form:

(4.7) ϕQ
ξ (u) = exp

{
ı〈μ, u〉 − 1

2
〈u,Au〉 +

∫
Rn

(eı〈u,x〉 − 1− ı〈u, x〉)dν(x)
}

for u ∈ R
n, where μ is the Q-expectation of ξ. Replicating the proof of Theorem 4.1 (or by

adjusting γ and using dν(x) = e−xidν(Kix)) we obtain that ξ ∈ ESDi if and only if conditions
(1) and (2) of Theorem 4.1 hold, while (4.5) is replaced by

(4.8) μi =

∫
Rn

xi(1− e
1
2
xi) dν(x)− 1

2
aii .

Example 4.5 (log-normal distribution, Black–Scholes setting). Assume that η is log-normal
with underlying normal vector ξ = log η, so that

ϕQ
ξ (u) = exp

{
ı〈μ, u〉 − 1

2
〈u,Au〉

}
, u ∈ R

n .

Then η ∈ SDi if and only if the covariance matrix A = (alm)nlm=1 satisfies ali = ail =
1
2 aii for

l = 1, . . . , n, l �= i, and μi = −1
2 aii; see (4.8). For this, it is necessary (but not sufficient) that

the ith component of η be sampled from a Q-martingale.
Finally, η is jointly self-dual if and only if all = σ2 for all l = 1, . . . , n, alm = 1

2 σ
2 for all

l �= m, i.e., for σ > 0 the correlations between the components of ξ are 1
2 , and the mean is

− σ2

2 (1, . . . , 1).
Remark 4.6 (square integrable case and covariance). As a consequence of Example 4.5, for

log-normal η = eξ ∈ SDi the correlations between the ith and other components of ξ are
1
2

√
aii/all (assuming aii, all > 0), while other correlations are not affected. In order to relax
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this correlation structure between the ith and other components, it is useful to introduce a
jump component. For doing that, we assume

∫
‖x‖>1 ‖x‖2dν(x) <∞; i.e., ξ is square integrable.

Then the elements of the covariance matrix of ξ are given by

vlj = alj +

∫
Rn

xlxjdν(x)

(see [34, Ex. 25.12]); i.e., despite the constraints on the Lévy measure given in (4.4) there
are various possibilities for the covariance and correlation structures. Simple examples can be
constructed as in the following remark; see also Remark 5.6 and Example 5.10 (for α = 1).

Remark 4.7 (Lévy measures). Assume that ξ ∈ ESDi is infinitely divisible with the Lévy
measure ν. If ν is finite, then the second condition of Theorem 4.1 means that random vector
ζ distributed according to the normalized ν is itself ESDi. In particular, if ν is absolutely
continuous, its density satisfies (2.5). An immediate example of ν is the Gaussian law with
the mean and positive definite covariance matrix from Example 4.5, so that eζ is log-normally
distributed as in Example 4.5. Since this ν is finite, the non-Gaussian part of ξ corresponds
to the compound Poisson law with Gaussian jumps.

5. Quasi–self-dual vectors. As we have seen, the symmetry properties of random price
changes (interpretation of η in a risk-neutral case) are considered separately from the forward
prices of the assets. In some cases, notably for semistatic hedging of barrier options with
carrying costs (see [9, 12]), the symmetry is imposed on price changes adjusted with carrying
costs a = eλ ∈ R

n, where usually λj = r− qj for the risk-free interest rate r and the dividend
yield qj of the jth asset, j = 1, . . . , n.

In view of applications to derivative pricing, it is natural to assume that all components
of η have expectation one, which is the case if Q is a martingale measure. Then the random
vector

eλ ◦ η = (eλ1η1, . . . , e
λnηn)

cannot be self-dual with respect to the ith numeraire (resp., for all numeraires) unless λi = 0
(resp., all components of λ vanish), since the multiplication by eλ moves the expectation away
from one. One can, however, relate eλ ◦ η to a self-dual random vector by means of a power
transformation.

Definition 5.1. A random vector η ∈ E
n is said to be quasi–self-dual (of order α) if there

exist λ ∈ R
n and α �= 0 such that (eλ ◦ η)α is integrable and self-dual with respect to the ith

numeraire. We then write η ∈ QSDi(λ, α).
If η ∈ QSDi(λ, α), then E(eλiηi)

α = 1 by Lemma 2.9, so that the values of α and λi are
closely related to each other. Later in this section, we discuss this relation for a special case
of quasi–self-dual Lévy models. If useful, λ can also have interpretations other than being the
pure carrying costs, and one can also drop the assumption that η stems from a martingale. If
imposed, the martingale assumption will be mentioned explicitly.

By Theorem 2.4(iii), η ∈ QSDi(λ, α) yields that

(5.1) Ef(eλ ◦ η) = Ef
((
(eλ ◦ η)α) 1

α
)
= E[f(κi(e

λ ◦ η))(aiηi)α] .
Define random vector ζ = λ + ξ, where η = eξ for ξ = (ξ1, . . . , ξn). Then eλ ◦ η = eζ .
If we consider the payoff function as a function of asset prices ST = (ST1, . . . , STn) with
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STj = S0je
ζj for j = 1, . . . , n, then (5.1) can be written as

Ef(ST ) = E

[
f

(
S0i
ST i

(
ST1, . . . , ST (i−1), S0i, ST (i+1), . . . , STn

))(ST i

S0i

)α]
.

Fix an asset number i ∈ {1, . . . , n} and assume now that Q is a probability measure such
that η ∈ QSDi(λ, α). Since η

α is positive integrable, 0 < Ee
α
2
ζi <∞.

Hence, we can define probability measure Ẽ i by
dẼ i
dQ

=
e

α
2
ζi

Ee
α
2
ζi
,

dQ

dẼ i =
e−

α
2
ζi

EẼie
−α

2
ζi
,

i.e., the Esscher transform of Q with parameter α
2 ei and the corresponding inverse transform.

It is obvious that η ∈ QSDi(λ, α) is equivalent to any of the conditions of Theorem 2.4 for
(eλ ◦ η)α = eαζ . The following theorem yields a more direct characterization.

Theorem 5.2. Let ηα be integrable for some α �= 0. Then η ∈ QSDi(λ, α) is equivalent to
one of the following conditions for ζ defined from eζ = eλ ◦ η = eλ+ξ:

(i) For any payoff function f : Rn
+ �→ R+,

(5.2) Ef(eζ) = E[f(eKiζ)eαζi ] .

(ii) The distributions of ζ and Kiζ under Ẽ i coincide.
(iii) For every u ∈ R

n,

ϕẼi

ζ (u) = ϕẼi

ζ (K�
i u)

or, equivalently,

ϕQ
ξ

(
u− α

2
ıei

)
= ϕQ

ξ

(
K�

i u−
α

2
ıei

)
e−ıλi(

∑n
l=1 ul+ui) .

Moreover, if additionally η is integrable, we have that η ∈ QSDi(λ, α) if and only if (5.2) holds
for f being payoffs from basket options with arbitrary strikes and weights of assets.

Note also that all conditions of Theorem 5.2 can be written conditionally on a fixed event
or conditionally on a σ-algebra; cf. Remark 2.7. The joint quasi–self-duality can be achieved
by raising the components of η to different powers.

Proof of Theorem 5.2. For (i) it suffices to note that η is quasi–self-dual if and only if
αζ ∈ ESDi and to refer to (5.1) and Theorem 2.4(iii).

Replace η by eλ ◦ η, E[f(κi(η))ηi] by E[f(κi(e
λ ◦ η))(eλiηi)

α], E i by Ẽ i, ξ by ζ, and 1
2 by

α
2 in the proof of the equivalence (iii)⇔(v) in Theorem 2.4 to see that (i) is equivalent to (ii).

A similar argument yields the equivalence of (ii) and ϕẼi

ζ (u) = ϕẼi

ζ (K�
i u) for all u ∈ R

n as
well as the equivalence of this equation with

(5.3) ϕQ
ζ

(
u− α

2
ıei

)
= ϕQ

ζ

(
K�

i u−
α

2
ıei

)
for all u ∈ R

n. Writing the characteristic functions as Q-expectations and using that ζ = λ+ξ
yields that

E exp
{
ı
〈
u− α

2
ıei, ξ

〉
+ ı
〈
u− α

2
ıei, λ

〉}
= E exp

{
ı
〈
K�

i u−
α

2
ıei, ξ

〉
+ ı
〈
K�

i u−
α

2
ıei, λ

〉}
.
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Dividing by exp{ı〈u− α
2 ıei, λ〉} yields the equivalence of the second statement in (iii) and (5.3).

If (5.2) holds for f being payoffs from basket options with arbitrary strikes and weights of
assets and integrable η = eζ−λ, we first have that Eeαζi = 1 by letting the strike be one and
other weights vanish. Hence, we can define the measure P by

dP

dQ
= eαζi ,

so that

E(u0 + 〈u, eζ〉)+ = E
[
(u0 + 〈u,κi(e

ζ)〉)+eαζi
]
= EP(u0 + 〈u,κi(e

ζ)〉)+
for every (u0, u) ∈ R

n+1; i.e., by Theorem 2.1(i), eζ under Q and κi(e
ζ) under P share the

same distribution. Hence, for every payoff function we have

Ef(eζ) = EPf(κi(e
ζ)) = E[f(κi(e

ζ))eαζi ] ;

i.e., we arrive at (5.2). The other implication is obvious.
We now use Theorem 5.2 to characterize all quasi–self-dual η such that ξ = log η is

infinitely divisible with the Lévy–Khintchine representation (4.2).
Theorem 5.3. Let the random vector ξ = log η be infinitely divisible under Q with the

generating triplet (A, ν, γ) and let ηα be integrable for some α �= 0. Then η ∈ QSDi(λ, α) if
and only if the following three conditions hold:

(1) The matrix A = (alj)
n
lj=1 satisfies aij = aji =

1
2 aii for all j = 1, . . . , n, j �= i.

(2) The Lévy measure satisfies

(5.4) dν(x) = e−αxidν(Kix) almost everywhere,

meaning that ν(B) =
∫
KiB

eαxidν(x) for all Borel B.
(3) The ith coordinate of γ satisfies

(5.5) γi =

∫
|||x|||≤1

xi(1− e
α
2
xi) dν(x)− α

2
aii − λi .

Proof. Denote ζ = λ + ξ. Since 0 < Ee
α
2
ζi < ∞, the Esscher transform Ẽ i of Q with

parameter α
2 ei and the inverse transform are well defined. Therefore, ζ under Ẽ i also has

an infinitely divisible distribution. By using Theorem 5.2(iii) instead of Theorem 2.4(vi) and
replacing E i by Ẽ i, ξ by ζ, and 1

2 by α
2 in the proof of Theorem 4.1, we obtain (1), (2), and

γi =

∫
|||x|||≤1

xi(1− eα
2
xi)dν(x)− α

2
aii

for the generating triplet of ζ under Q. Since ξ = ζ − λ, we need only adjust γi by −λi to
finish the proof of the first implication.

The integrability of ηα implies the existence of the Esscher transform of Q with param-
eter α

2 ei. By doing this transform and the converse calculations, it is easy to verify that
Theorem 5.2(iii) applies, i.e., η = eξ ∈ QSDi(λ, α).
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Note that condition (1) is identical to Theorem 4.1(1). As a consequence of Theorem 4.1(2)
and 5.3(2), we immediately get the following results.

Corollary 5.4. Let the random vector ξ = log η be infinitely divisible under Q with nonvan-
ishing Lévy measure ν. Then η cannot be quasi–self-dual of two different orders with respect
to the same numeraire.

Corollary 5.5. If (ξt)t≥0 is the Lévy process with generating triplet (A, ν, γ) that satisfies
the conditions of Theorem 5.3, then eξt ∈ QSDi(λt, α) for all t ≥ 0.

Proof. It suffices to note that ϕQ
ξt
(u) = (ϕQ

ξ1
(u))t for all t ≥ 0 and to raise the corresponding

identity from Theorem 5.2(iii) into power t.

Remark 5.6 (Lévy measures in the quasi–self-dual case). In order to construct a Lévy mea-
sure ν satisfying (5.4), note that

e
α
2
xidν(x) = e

α
2
(Kix)idν(Kix) ,

meaning that the measure ν0 with density dν0
dν (x) = e

α
2
xi is Ki-invariant. Therefore, in the

background one always needs to have a Ki-invariant Lévy measure.

Since the Lebesgue measure on R
n is Ki-invariant, a simple example of ν0 is provided by

the Lebesgue measure restricted onto BR, where BR = {x : |||x||| ≤ R} is the ball of radius R
in the |||·|||-norm. A further implication of the Ki-invariance property of the Lebesgue measure
on R

n is that the Lebesgue density pν0 of an absolutely continuous Ki-invariant measure ν0
is also Ki-invariant; i.e., pν0(x) = pν0(Kix) for almost every x ∈ R

n. Then (5.4) can be
equivalently written as pν(x) = e−αxipν(Kix). Clearly, condition (4.3) is always satisfied for
a finite ν without an atom at the origin, which then yields the compound Poisson part of ξ
from η = eξ ∈ QSDi(λ, α). The integrability condition on ηα additionally requires that∫

‖x‖>1
eαxje−

α
2
xi dν0(x) <∞ , j = 1, . . . , n ;

see [34, Thm. 25.17].

Remark 5.7 (determining α from the carrying costs in the risk-neutral case). Assume that
Eηj = 1 for all j = 1, . . . , n and η ∈ QSDi(λ, α) with given λ. Since ϕQ

ξ (−ıej) = Eηj = 1, we
see that

(5.6) γj = −
∫
Rn

(exj − 1− xj�|||x|||≤1)dν(x)−
1

2
ajj , j = 1, . . . , n .

If α = 1, then the above condition for j = i yields (4.5) (or (5.5) for α = 1 and λ = 0). Indeed,
it suffices to check that∫

Rn

(1− exi + xie
1
2
xi
�|||x|||≤1) dν(x)

=

∫
{xi<0}

(1− exi + xie
1
2
xi
�|||x|||≤1)e

−xi dν(Kix) +

∫
{xi>0}

(1− exi + xie
1
2
xi
�|||x|||≤1) dν(x)

=

∫
{yi>0}

(eyi − 1− yie
1
2
yi
�|||y|||≤1) dν(y) +

∫
{xi>0}

(1− exi + xie
1
2
xi
�|||x|||≤1) dν(x) = 0 .
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However, for nonvanishing λ we need to combine (5.6) with (5.5) to see that α must satisfy

−
∫
Rn

(exi − 1− xi�|||x|||≤1)dν(x)−
1

2
aii =

∫
|||x|||≤1

xi(1− e
α
2
xi) dν(x)− α

2
aii − λi

or, equivalently,

(5.7) aiiα = aii − 2λi + 2

∫
Rn

(exi − 1− xie
α
2
xi�|||x|||≤1)dν(x) .

It should be noted that in the Lévy process setting from Corollary 5.5 the values of α calculated
for all t ≥ 0 coincide.

Remark 5.8 (finite mean case). Assume that η = eξ ∈ QSDi(λ, α). If, as in Remark 4.4, ξ
has a finite mean, then (5.5) is replaced by

(5.8) μi =

∫
Rn

xi(1− eα
2
xi) dν(x)− α

2
aii − λi ,

where μ is the expectation of ξ. If Q is a martingale measure for ηi, then ϕ
Q
ξ (−ıei) = Eeξi = 1

yields that

(5.9) μi = −
∫
Rn

(exi − 1− xi)dν(x)− 1

2
aii .

Combining (5.8) with (5.9) yields

aiiα = aii − 2λi + 2

∫
Rn

(exi − 1− xieα
2
xi)dν(x)

= aii − 2λi + 2

∫
R

(exi − 1− xie
α
2
xi)dνi(xi) ,(5.10)

where νi is the marginal Lévy measure defined by νi(B) = ν({x ∈ R
n : xi ∈ B}) for Borel

B ⊂ R, 0 /∈ B; see [34, Prop. 11.10].

Compared to (5.7), (5.10) yields a considerable simplification in calculating α. Since νi is
the Lévy measure corresponding to ηi, it is possible to calculate α from only the distribution
of the ith component of η and the corresponding carrying costs λi.

In the purely non-Gaussian case (i.e., if A vanishes) it is useful to write the integral in
(5.10) as its principal value. Recall that the principal value of an integral is defined as

∫
R

−g(x)dν(x) = lim
R→+∞

∫ R

−R
g(x)dν(x) .

Then the principal value of the integral of xie
α
2
xi vanishes, since dνi(xi) = e−

α
2
xidν0i(xi) for

a symmetric measure ν0i, and
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λi =

∫
R

−(exi − 1)dνi(xi) =

∫
R

−(exi − 1)e−
α
2
xidν0i(xi)

=

∫
R

−(e(1−α
2
)xi − e−α

2
xi)dν0i(xi) .

If ν0i has a finite Laplace transform ψ on the real line, then α solves

λi = ψ
(
1− α

2

)
− ψ

(
−α
2

)
.

Example 5.9 (log-normal model with carrying costs). By Corollary 5.4, among all of the log-
infinitely divisible distributions only the log-normal one can be quasi–self-dual of two orders
with respect to the same numeraire. Applying (5.7) for the univariate log-normal case with
aii = σ2 > 0 (and vanishing ν) yields that

α = 1− 2λ

σ2
,

as stated in [9, 12]. Hence, the univariate log-normal distribution in the Black–Scholes setting
is self-dual and quasi–self-dual of order 1 − 2λ

σ2 at the same time. By (5.7), this is also true
for multivariate log-normal models from Example 4.5 being self-dual with respect to the ith
numeraire; i.e., this distribution is at the same time quasi–self-dual of order α = 1 − 2λi/aii
with respect to the same numeraire.

Example 5.10 (determining α for nontrivial Lévy measures). Start with the univariate case
(i.e., n = 1) and choose ν0 from Remark 5.6 to be the centered Gaussian measure with variance
β2 > 0. If normalized to have the total mass one, ν becomes the density of the normal law

with mean − αβ2

2 and variance β2. Solving (5.7) or, equivalently, (5.10) for this particular
measure ν and aii = σ2 > 0 yields that

α =
1

β2σ2

(
2LambertW

(
β2

σ2
exp

{
β2(λ+ 1)

σ2

})
σ2 + β2σ2 − 2β2λ− 2β2

)
,

where LambertW(x) = g(x) is the principal branch of the LambertW function that satisfies
g(x)eg(x) = x for all x. In the purely non-Gaussian case the required power is given by

α = 1− 2

β2
log(1 + λ) .

In the multivariate case, we start with ν0 being the centered Gaussian law having positive
definite covariance matrix B that satisfies Theorem 5.3(1) for some fixed i and define measure
ν with density

dν

dν0
(x) = e−

α
2
xi .

Then (5.4) holds and the ith marginal νi of ν has the density e−
α
2
xi with respect to the ith

marginal of ν0, the latter being the centered Gaussian law with variance β2 = bii > 0. Since
the ith marginal for the normalized ν coincides with the Lévy measure constructed above in
the univariate case, we obtain the same α as in the univariate case with β =

√
bii.
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6. Distributions of self-dual random variables.

6.1. Characterization and examples. In this section, we specialize the results from sec-
tion 2 for self-dual random variables. Denote by F̄ (x) = P(η > x) the tail of the cumulative
distribution function of a positive random variable η and by

F̄I(z) =

∫ z

0
F̄ (t)dt , z ≥ 0 ,

the integrated tail. Note that F̄I(0) = 0 and F̄I(∞) = 1 in the case Eη = 1.
Theorem 6.1. An integrable positive random variable η is self-dual if and only if F̄I(∞) = 1

and

(6.1) zF̄I(z
−1) = F̄I(z) for all z > 0 .

Proof. It is easy to check that

F̄I(z) = Emin(η, z) , z ≥ 0 .

Now apply Theorem 1.2 or Theorem 2.4(iii) to the payoff function f(η) = min(η, z) to see
that

F̄I(z) = Emin(η, z) = E[min(η−1, z)η] = Emin(1, zη) = zF̄I(z
−1) .

In the opposite direction, (6.1) yields that

Emax(η, z) = E[η + z −min(η, z)] = E[1 + zη −min(1, zη)] = Emax(1, zη) ;

i.e., by rescaling we arrive at the univariate case of the self-duality property given in Theorem
2.4(ii).

For η being a positive, integrable, and absolutely continuous random variable with prob-
ability density pη, Theorem 2.8 yields that η is self-dual if and only if

(6.2) pη(x) = x−3 pη(x
−1) for almost all x > 0 .

If ξ = log η, the self-duality of η (i.e., the exponential self-duality of ξ) is equivalent to

pξ(x) = e−x pξ(−x) for almost all x ∈ R; i.e., e
1
2
xpξ(x) is an even function. For instance, the

probability density of the log-normal distribution of mean one satisfies (6.2). It is also satisfied
by mixtures of log-normal densities that appear in the (uncorrelated) Hull–White stochastic
volatility model; see [21, Thm. 3.1]. The self-duality property of stochastic volatility models
is explored in [12, Thm. 3.1].

Example 6.2 (log-normal model). If ST = Fη has the log-normal distribution, the Black–
Scholes formula yields that

(6.3) Emax(Fη, k) = FΦ(d′) + kΦ(d′′) ,

where k, F > 0,

d′ = λ+
1

2λ
log

F

k
, d′′ = λ+

1

2λ
log

k

F
, λ =

1

2
σ
√
T ,
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and Φ is the cumulative distribution function for the standard normal variable. Note that
the conventional Black–Scholes formula is obtained by subtracting k from (6.3) and then
discounting. By looking at the right-hand side of (6.3), it is easy to see that it is symmetric
with respect to F and k; i.e., η is a self-dual random variable.

The right-hand side of (6.3) defines a (symmetric) norm on R
2
+ called the Hüsler–Reiss

norm of x = (k, F ); see [28]. Thus, the derivative given by the maximum of the asset price and
the strike has the price given by the discounted norm of the vector composed of the forward
and the strike. Notably, expression (6.3) appears in the literature on extreme values (see [23])
as the limit distribution of coordinatewise maxima for triangular arrays of bivariate Gaussian
vectors with correlation �(n) that approaches one with rate (1 − �(n)) log n→ λ2 ∈ [0,∞] as
n→∞.

In order to construct further examples of probability density functions pη that satisfy (6.2),
it suffices to define pη(x) for x ≥ 1 and then extend it for x ∈ (0, 1) using (6.2) with a
subsequent normalization to ensure that the total mass is one. Clearly, one has to bear in
mind that Eη = 1 presumes the integrability of xpη(x) (alongside with pη(x) itself) at zero
and infinity.

Example 6.3 (self-dual random variables with heavy tails). The log-normal distribution has
a light tail at infinity. It is possible to construct a self-dual heavy-tailed distribution by setting

(6.4) p(x) =

{
cγx

γ if x ∈ (0, 1] ,

cγx
−(3+γ) if x > 1

for γ > −1, where cγ = (1 + γ)(2 + γ)/(3 + 2γ) normalizes the probability density.

Example 6.4 (discrete self-dual random variable). If η takes values 1
2 , 1, 2 with probabilities

1
3 ,

1
2 ,

1
6 , then Theorem 2.8(b) implies that η is self-dual.

Example 6.5. Consider the �p-norm on R
2, which is clearly symmetric. Evaluating the

�p-norm of (t, 1), we arrive at

(tp + 1)1/p = Emax(t, η) = tP(η ≤ t) +
∫ ∞

t
xpη(x) dx , t > 0 ,

assuming that η is absolutely continuous with density pη. Differentiating with respect to t
yields that

P(η ≤ t) = tp−1(tp + 1)1/p−1 .

The density of η satisfies (6.2).

6.2. Moments of self-dual random variables. It is immediate that all self-dual random
variables have expectation one. Carr and Lee [12, Cor. 2.11] show that

(6.5) Eηn = Eη−n+1 , n ≥ 1 .

In particular, if Eη2 <∞, then

Cov(η−1, η) = 1−Eη−1 = (Eη)2 −Eη2 = −Var(η) .
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Theorem 6.6. Each nontrivial self-dual variable η with a finite third moment has a positive
skewness E(η −Eη)3/(Var(η))3/2.

Proof. In view of (6.5),

E(η −Eη)3 = E(η3 − 3Eη2 + 2)

= E(η3 − 3Eη2 + 2 + 6(η − 1) + η−1 − η2)
= E

[
(η − 1)2(η + η−1 − 2)

]
≥ 0 .

This also shows that the skewness vanishes if and only if η = 1 almost surely.
Remark 6.7 (product of self-dual variables). If η1 and η2 are two independent self-dual ran-

dom variables, then

Emax(k, η1η2) = E[E(max(k, η1η2)|η1)]
= E[E(max(kη2, η1)|η2)] = Emax(kη1η2, 1) ;

i.e., η1η2 is self-dual. By taking successive products, it is possible to construct a sequence of
self-dual random variables whose logarithms build a random walk. Note, however, that the
values of this random walk at different time points are not jointly self-dual; cf. Remark 3.3.

Recall that the exponentially self-dual and infinitely divisible random variable ξ can be
characterized in terms of its generating triplet (σ2, ν, γ) by applying Theorem 4.1. The ob-
tained univariate result corresponds to [19]. If E|ξ|3 <∞, then [14, Prop. 3.13] yields that

E(ξ −Eξ)3 =

∫
R

x3dν(x) =

∫ ∞

0
x3(1− ex)dν(x) .

Thus, the skewness of exponentially self-dual ξ is negative except in the log-normal case, where
it is zero.

6.3. Quasi–self-dual variables and asymmetry corrections. Let ST = S0aη for S0, a > 0
with η being a general positive random variable, so that the forward price is given by F = S0a.
Assume that η is absolutely continuous with nonvanishing density pη and Eη = 1. Then it is
possible to find a function qaη such that

Ef(ST ) = E[f(S0/(aη))qaη(aη)] = E[f(F/(a2η))qaη(aη)]

= E[f((S0)
2/ST )qaη(aη)](6.6)

for each function f : R+ �→ R+. Indeed, it suffices to choose

qaη(x) =
paη(x

−1)

x2paη(x)
=
pST

(x−1S0)

x2pST
(xS0)

.

By choosing x = aη = ST /S0, we arrive at

Ef(ST ) = E

[
f

(
(S0)

2

ST

)(
ST
S0

)−2 pST
((S0)

2/ST )

pST
(ST )

]
.
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Apart from trivial cases, the density pST
of ST depends on T . In view of applications to

semistatic hedging described in [12], it is beneficial if the correcting expression

qSt(x) =
pSt((S0)

2/x)

pSt(x)

at any time t ∈ [0, T ] depends only on x and S0 but not on t. This is the case if η is self-dual
with no carrying costs (then qSt(x) = (x/S0)

3, x > 0, by Theorem 1.2) or quasi–self-dual with
parameters a = eλ and some α �= 0, which is the case if and only if qSt(x) = (x/S0)

2+α, x > 0.
In the latter case (6.6) turns into

Ef(Fη) = E

[
f

(
F

a2η

)
aαηα

]
.

By letting f(x) = (x − k)α+ and noticing that E[(aη)α] = 1 in the quasi–self-dual case, this
implies the following property:

E[(Fη − k)α+] = a−αE[(F − ka2η)α+] = E[ηα] E[(F − kη(E[ηα])−2/α)α+] ,

which can be termed as the power put-call symmetry, since for a = 1 one has E(Fη − k)α+ =
E(F − kη)α+.

7. Barrier options and semistatic hedging.

7.1. Time-dependent framework. Consider a finite horizon model with the asset prices
given by

St = S0 ◦ etλ ◦ ηt = S0 ◦ etλ+ξt = (S01e
tλ1+ξt1 , . . . , S0ne

tλn+ξtn) , t ∈ [0, T ] ,

where λ ∈ R
n represent deterministic carrying costs and all components of (ηt)t∈[0,T ] =

(eξt)t∈[0,T ] are martingales with (ξt)t∈[0,T ] being a Lévy process. Fix i ∈ {1, . . . , n} and assume
that ηt ∈ QSDi(tλ, α) for every t ∈ [0, T ]. The latter condition is satisfied (with α = 1 and
λ = 0) for all exponentially self-dual Lévy models with no carrying costs analyzed in section 4
and for quasi–self-dual Lévy models from section 5 for nonvanishing λ; see Corollary 5.5.

Let τ be a stopping time with values in [0, T ] and let Fτ be the corresponding stopping
σ-algebra. Since (ξt)t∈[0,T ] is a Lévy process, (ξτ , ξT ) and (ξτ , ξτ + ξ′T−τ ) share the same
distribution, where (ξ′t)t∈[0,T ] is an independent copy of the process (ξt)t∈[0,T ]. Hence, (Sτ , ST )

and (Sτ , Sτ ◦ eλ(T−τ)+ξ′T−τ ) also coincide in distribution. Then

E[f(ST )|Fτ ] = E[f(ST )|Sτ ] = E[f(Sτ ◦ eλ(T−τ)+ξ′T−τ )|Sτ ]
= E[f(Sτ ◦ eλ(T−τ)+ξ′T−τ )|Fτ ] ,

where f is any integrable payoff function. The quasi–self-duality of η′T−τ = eξ
′
T−τ with respect

to the ith numeraire adjusted for conditional expectations (see Remark 2.7) yields that

E[f(ST )|Fτ ] = E[f(Sτ ◦ eKi(λ(T−τ)+ξ′T−τ ))e
α(λi(T−τ)+ξ′

(T−τ)i
)|Fτ ] ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIVARIATE PUT-CALL SYMMETRY 419

whence

E[f(ST )|Fτ ](7.1)

= E

[
f

(
ST1Sτi
ST i

, . . . ,
ST (i−1)Sτi

ST i
,
S2
τi

ST i
,
ST (i+1)Sτi

ST i
, . . . ,

STnSτi
ST i

)(
ST i

Sτi

)α

|Fτ

]
;

cf. Remark 2.6. If Sτi = H almost surely for a constant H, then

E[f(ST )|Fτ ](7.2)

= E

[
f

(
ST1H

ST i
, . . . ,

ST (i−1)H

ST i
,
H2

ST i
,
ST (i+1)H

ST i
, . . . ,

STnH

ST i

)(
ST i

H

)α

|Fτ

]
.

Identity (7.1) for α = 1, λ = 0 yields the self-dual case, and in the univariate case n = 1
corresponds to [12, eq. (5.3)]. Classical examples with trivial carrying costs (i.e., λ = 0) are
options on futures or options on shares with dividend yield being equal to the risk-free interest
rate. For the univariate quasi–self-dual case, see [12, Cor. 6.10].

Remark 7.1. Instead of the quasi–self-duality and Lévy properties, it is possible to im-
pose (7.1) for stopping times τ ∈ [0, T ] that might appear in relation to hedging of particular
barrier options.

7.2. Multivariate hedging with a single univariate barrier. Assume a risk-neutral setting
for a price process (St)t∈[0,T ] and fix a barrier level at H > 0 such that S0i �= H with given
i ∈ {1, . . . , n}. For simplicity of notation, define function κ̂i : E

n �→ E
n acting as

κ̂i(ST ,H) =
H

ST i

(
ST1, . . . , ST (i−1),H, ST (i+1), . . . , STn

)
.

Define Ξti to be the (closed) line segment with endpoints S0i and Sti and let

τH = inf{t ≥ 0 : H ∈ Ξti} and χ = �τH≤T ;

cf. [12, sec. 5.2], where a slightly different way to handle the two cases when the initial price
is, respectively, lower and higher than the barrier is used. Furthermore, assume that the
asset price dynamics satisfies (7.1) for the stopping time τ = τH and that SτH i = H almost
surely in the event that {τH ≤ T}. Condition (7.1) is ensured by assuming that the asset
price dynamics follows a Lévy-driven process satisfying the conditions of Theorem 5.3 (for
α = 1, λ = 0, corresponding to the conditions stated in Theorem 4.1 for self-dual cases). The
equality SτH i = H almost surely in the event that {τH ≤ T} is guaranteed by the sample
path continuity of the ith component of (St)t∈[0,T ]. If the ith component of (the Lévy process)
(ξt)t∈[0,T ] is not continuous, the symmetry condition (5.4) on the Lévy measure implies the
presence of jumps of both signs, so it is much more difficult to ensure that SτH = H almost
surely.

Remark 7.2 (applicability and accuracy). In a risk-neutral setting, by applying an indepen-
dent common stochastic clock that is continuous with respect to calendar time, the suggested
hedging strategies are applicable and accurate for independently time-changed self-dual expo-
nential Lévy models without jumps in the ith component. This is seen by means of condition-
ing arguments described in [12, Thms. 4.2 and 5.8, Rem. 4.3]. They are also applicable and
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accurate for quasi–self-dual exponential Lévy models without jumps in the ith component.
For super- or subreplication in the presence of jumps in the ith component, see Example 7.3
and Remark 7.4.

Take any integrable payoff function f and consider an option with payoff χf(ST ), i.e., the
knock-in option with barrier H for the ith asset. In order to replicate this option using only
options that depend on the terminal value ST , consider a European claim on

(7.3) G(ST ) = f(ST )�H∈ΞTi
+

(
ST i

H

)α

f(κ̂i(ST ,H))(�H∈ΞTi
− �STi=H) .

Here one has to bear in mind that this is feasible only if the considered claims are liquid or
can be replicated by liquid instruments. In relation to this, Carr and Laurence [11] mention
that “all major banks stand ready to provide over-the-counter quotes on customized baskets,”
which obviously helps to construct the desired hedges and even to replicate general payoff
functions. Furthermore, there is a fast growing literature about sub- and superreplication of
multiasset instruments; see, e.g., [25] and the references therein.

In the event that {τH > T}, the claim in (7.3) expires worthless as desired. If the barrier
knocks in, we can exchange (7.3) for a claim on f(ST ) at zero cost. To confirm this, define
Ξ̂ti to be the (closed) line segment with endpoints S0i and H

2S−1
ti . Note that H /∈ Ξ̂ti if and

only if H ∈ Ξti \ {Sti}. Hence, in the event that {τH ≤ T}, by (7.2), we have

E[f(ST )|Fτ ] = E[f(ST )�H∈ΞTi
|Fτ ] +E[f(ST )�H/∈ΞTi

|Fτ ]

= E[f(ST )�H∈ΞTi
|Fτ ] +E

[(
ST i

H

)α

f(κ̂i(ST ,H))�H/∈Ξ̂Ti
|Fτ

]
= E[f(ST )�H∈ΞTi

|Fτ ] +E

[(
ST i

H

)α

f(κ̂i(ST ,H))(�H∈ΞTi
− �STi=H)|Fτ

]
.

For simplicity, we assume from now on that ST i has a nonatomic distribution, so that (7.3)
becomes

(7.4) G(ST ) =

(
f(ST ) +

(
ST i

H

)α

f(κ̂i(ST ,H))

)
�H∈ΞTi

.

Consider a general basket call f(ST ) = (
∑n

j=1 ujSTj − k)+. By (7.4), the hedge for the
knock-in basket call with payoff function χf(ST ) is given by the derivative with payoff function⎧⎨⎩

⎛⎝ n∑
j=1

ujSTj − k
⎞⎠

+

+

(
ST i

H

)α−1
⎛⎝uiH −

⎛⎝ k

H
ST i −

n∑
j=1, j �=i

ujSTj

⎞⎠⎞⎠
+

⎫⎬⎭ �H∈ΞTi
,

which depends only on ST .
If (7.1) holds with α = 1, this hedge becomes

(7.5)

⎧⎨⎩
⎛⎝ n∑

j=1

ujSTj − k
⎞⎠

+

+

⎛⎝uiH −
⎛⎝ k

H
ST i −

n∑
j=1, j �=i

ujSTj

⎞⎠⎞⎠
+

⎫⎬⎭ �H∈ΞTi
,
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which is the sum of a basket call and a spread put with the knocking condition depending
only on the ith component ST i at maturity.

In some cases the knocking condition at maturity can be incorporated into the payoff
function. For this, note that we can write all integrable payoff functions in the form

f(ST ) = f0(ST )�ST∈Θ , where Θ = {x : f(x) �= 0} ,
with Θ possibly being R

n
+. For example, the basket call (

∑n
j=1 ujSTj − k)+ can be written as

(
∑n

j=1 ujSTj − k)�∑n
j=1 ujSTj>k. Of course if H /∈ ΞT i would imply that κ̂i(ST ,H) /∈ Θ and

ST /∈ Θ at the same time, then it would be possible to omit �H∈ΞTi
in (7.4), but this is not the

case for standard payoff functions. If H ∈ ΞT i implies that ST /∈ Θ (resp., κ̂i(ST ,H) /∈ Θ),
then the first (second) summand in (7.4) is always zero. If, furthermore, H /∈ ΞT i implies that
κ̂i(ST ,H) /∈ Θ (ST /∈ Θ), then we can omit the first (second) summand in (7.4) and hedge
with the second (first) summand without the knocking condition �H∈ΞTi

; i.e., in (7.5) we can
hedge with a conventional basket option.

Example 7.3. Consider a bivariate price process (St1, St2)t∈[0,T ] in a risk-neutral setting
satisfying (7.1) with α = 1 and i = 1 for the stopping time τ = τH = inf{t : St1 ≤ H} with
barrier H such that 0 < H < S01. First assume again that (St1)t∈[0,T ] cannot jump over H.
For the spread option

f(ST1, ST2) = (aST1 − bST2 − k)+ , a, b > 0 ,

assume additionally that aH ≤ k and define χ = �τH≤T . By using the hedging strategy
described in (7.4) and aH ≤ k, we obtain a hedge for χf(ST1, ST2) by

(aST1 − bST2 − k)+�H∈[ST1,S01] +

(
aH − k

H
ST1 − bST2

)
+

�H∈[ST1,S01]

=

(
aH − k

H
ST1 − bST2

)
+

�H∈[ST1,S01] =

(
aH − k

H
ST1 − bST2

)
+

;

i.e., it is possible to hedge with a basket put. Therefore, the related knock-out option can be
hedged with a long position in the spread call with payoff function f(ST1, ST2) = (aST1 −
bST2− k)+ and a short position in the above hedge. Note that we assumed only that b > 0 so
that the knock-in level can, but need not, be deep out of the money. If (St1)t∈[0,T ] is driven by
a Lévy process such that (St1)t∈[0,T ] can jump over the barrier H, we get a superreplication
in the case of the knock-in option and a more problematic subreplication in the case of the
knock-out option.

Assuming (7.1) for the stopping time τH with α �= 1, where (St1)t∈[0,T ] does not jump over
H, the hedge for the knock-in option has to be modified as(

ST1

H

)α−1(
aH − k

H
ST1 − bST2

)
+

,

while the modification for the knock-out is now obvious. This example can easily be extended
in a higher-dimensional setting as long as all risky assets without a knocking barrier enter the
payoff function with a minus sign.
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Remark 7.4 (jumps and superreplication). Example 7.3 illustrates that in the presence of
jumps in the ith component it is possible that the suggested hedge results in super- or sub-
replications, it is even possible that hedges provide superreplications for small and subreplica-
tions for big jumps, etc. However, similarly to the univariate case (cf. [12, Remark 5.17]), we
can give the following criterion for superreplication. Recall that G is a hedge portfolio given
by (7.3) or (7.4). Suppose that

G̃(SτH ) = E[G(ST )− f(ST )|FτH ] almost surely,

where for up-and-in (down-and-in) options G̃ is some increasing (decreasing) function in the
ith component. Then the hedge superreplicates the knock-in contracts, since G̃(SτH ) ≥
G̃((SτH1, . . . ,H, . . . , SτHn)) = 0. A sufficient condition for Lévy driven models is that the
function G(ST )− f(ST ) itself increases (decreases) in the ith component.

Example 7.5. Consider a bivariate price process in a risk-neutral setting. Assume that
S01 > k > 0 and that (7.1) holds for τ = τk = inf{t : St1 ≤ k}, α = 1, and i = 1, while
(St1)t∈[0,T ] cannot jump over k. Introduce the (possibly negative integrable) payoff function

g(ST1, ST2) = (ST1 − k) + (ST2 ∧ (ST1 − k)) ,

where a ∧ b = min(a, b).

By (7.4), with α = 1 we obtain a hedge for �τk≤T g(ST1, ST2) as{(
(ST1 − k) + (ST2 ∧ (ST1 − k))

)
+
(
(k − ST1) + (ST2 ∧ (k − ST1))

)}
�k∈[ST1,S01] .

Here we can get rid of the indicator function by noticing that the above payoff function can
be written as(

(ST1 − k) + (ST2 ∧ (ST1 − k))
) − (ST1 + ST2 − k)+ + (k + ST2 − ST1)+ .

Furthermore, for the related knock-out option we get a hedge given by a long position in the
basket call with payoff function (ST1 +ST2− k)+ and a short position in the put spread with
payoff function (k − (ST1 − ST2))+.

7.3. Examples of hedging in jointly self-dual cases. In this section we create hedges for
more complex instruments and bivariate models satisfying (7.1) for two different numeraires.

Example 7.6 (options with knocking conditions depending on two assets).Assume that there
is a risk-neutral setting for a price process (St)t∈[0,T ] = (St1, St2)t∈[0,T ], where (7.1) holds
for both assets with α = 1 and the subsequently defined stopping times. Furthermore,
let kx, ky > 0 be constants such that kx < S01, S02 < ky and define the stopping times
τix = inf{t > 0 : Sti ≤ kx}, τiy = inf{t > 0 : Sti ≥ ky} and the corresponding stopping σ-
algebras Fτix , Fτiy , i = 1, 2, as well as the stopping time τ = τ1x ∧ τ2x with the corresponding
stopping σ-algebra Fτ . In order to ensure exact hedges, assume also that the price processes
cannot jump over the barriers kx and ky, respectively. These conditions are satisfied for mod-
els obtained by independent time changes (by a continuous common stochastic clock) applied
to the jointly self-dual models based on Example 4.5.
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Consider the claims

X = (ST1 − ST2 − kx)+�τ=τ1x≤T + (ST2 − ST1 − kx)+�τ1x �=τ=τ2x≤T ,

Y = (ky − ST1 − ST2)+
(
�τ1y≤T<τ2y − �τ2y≤T<τ1y

)
;

i.e., X is a knock-in spread option on the difference between the share which first hits kx and
the other one being knocked in only if at least one share hits kx before T . At maturity, Y is
a long position in a basket put if and only if the first, but not the second, asset price hits the
price level ky and a short position in the same basket put if and only the second, but not the
first, asset hits ky before T .

The claim X can be hedged with a long position in the European basket put with payoff
(kx − ST1 − ST2)+. The claim Y can be hedged by entering a long position in the spread
option with payoff (ST1 − ST2 − ky)+ along with a short position in the spread option with
payoff (ST2 − ST1 − ky)+. To see that, apply identity (7.2) for α = 1, so that

E[(kz − ST1 − ST2)+|Fτ1z ] = E[(ST1 − ST2 − kz)+|Fτ1z ] ,(7.6)

E[(kz − ST1 − ST2)+|Fτ2z ] = E[(ST2 − ST1 − kz)+|Fτ2z ] ,(7.7)

z = x, y, while the value of the European spread option with payoff (ST1 − ST2 − k)+ (resp.,
(ST2 − ST1 − k)+) remains unchanged by applying (7.2) at τ2 (resp., τ1).

As far asX is concerned we have that in the case where {τ > T} neitherX is knocked in nor
is the basket put in the hedge portfolio in the money, since ST1, ST2 > kx. If {τ = τ1x ≤ T},
by (7.6) we can exchange the long position in the hedge portfolio for the needed spread; if
τ1x �= τ = τ2x ≤ T , the same is true due to (7.7).

As far as Y is concerned we have that if {τiy > T}, i = 1, 2, both instruments in the hedging
portfolio are out of the money since ST1, ST2 ≤ ky, i.e., have payoff zero, as does Y . In the
event that we first have {τ1y ≤ T}, we can change the long position in the spread option with
payoff (ST1−ST2−ky)+ in a long position in the basket put with payoff (ky−ST1−ST2)+ while
leaving the short position unchanged. Provided that additionally {τ2y ∈ [τ1y, T ]}, by (7.7),
we can also exchange the short position for the same basket put, so that we can close our
positions as required; otherwise, i.e., {τ2y > T}, the long position in the hedge portfolio yields
a potentially needed payoff of Y , while the short position still matures worthless. In the event
that we first have {τ2y ≤ T}, by (7.7), we can change the short position in the needed basket
put while leaving the long position unchanged. If, furthermore, {τ1y ∈ [τ2y, T ]}, we can again
close our position due to (7.6). Otherwise, unlike the long position, the short position in the
hedge portfolio may be in the money at maturity, but in that case Y at maturity would be a
long position for the hedger with the same payoff.

In the case of nonvanishing carrying costs λ = (λ1, λ2), Theorem 5.3 implies that the
bivariate jointly self-dual Black–Scholes model (see Example 4.5) satisfies (7.1) for two powers
α1 and α2 calculated as in Example 5.9 for the corresponding components. Also in this case
asset prices cannot jump over the barriers; i.e., we can apply (7.2) in the same way to see that
the hedge should theoretically be modified to a long position in the European derivative with
payoff (ST1−ST2− ky)+(k−1

y ST1)
α1−1 along with a short position in the European derivative

with payoff (ST2 − ST1 − ky)+(k−1
y ST2)

α2−1.
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For creating semistatic hedges of barrier spread options with certain knocking conditions,
e.g., claims of the form

Z = (ST1 − ST2 − k)+�St1>St2,∀t∈[0,T ] , k > 0 ,

in equal carrying cost cases the full strength of the joint self-duality is not needed. It suffices
to assume exchangeability being implied by the joint self-duality; see Corollary 3.1 and [29]
for details including model characterizations, weakening of the exchangeability assumption,
and hedges for several related derivatives.

7.4. Semistatic superhedges of basket options. The following superhedges may be quite
expensive for replication purposes. Thus, they seem to be more useful if one would like to
speculate with a basket option and get some additional money by writing a different knock-in
basket option, where the maximum loss should be limited to the initially invested capital.

In what follows we work in the same setting as in section 7.2 with the additional assump-
tions that α = 1 and S0i > H > 0. Define again the stopping time τH = inf{t : Sti ≤ H}
and let FτH be the corresponding σ-algebra. Consider the knock-in basket option with the
following payoff function:

χ

⎛⎝ n∑
j=1

ujSTj − k
⎞⎠

+

, k, ui > 0, uj ∈ R for j = 1, . . . , n , j �= i ,

where χ = �τH≤T . By (7.2), for α = 1 we have

E

⎡⎣⎛⎝ n∑
j=1

ujSTj − k
⎞⎠

+

|FτH

⎤⎦ = E

⎡⎣⎛⎝ n∑
j=1, j �=i

ujSTj − k

H
ST i + uiH

⎞⎠
+

|FτH

⎤⎦ .
Hence, the maximum loss of buying the basket option in the right-hand side of the above
equation and short selling the initial knock-in basket call does not exceed the initial costs of
this strategy.

Note that, in this setting, jumps over the barrier H in Lévy driven models add a further
aspect of superhedging.
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On the Microstructural Hedging Error∗
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Abstract. We consider the issue of hedging a European derivative security in the presence of microstructure
noise. In a market where the efficient price of the asset is driven by a stochastic volatility process,
we assume an agent wants to use a (possibly misspecified) local volatility-type replication strategy.
Focusing on microstructure noise effects, our goal is to evaluate the error between the theoretical, but
practically unfeasible, strategy and its market adapted versions. The microstructural hedging error is
in particular due to transaction price discreteness and endogenous trading times. Thus, we consider
a transaction price model that accommodates such inherent properties of ultrahigh frequency data
with the assumption of a continuous semimartingale efficient price. In this framework, we study two
hedging strategies derived from the local volatility-type hedging strategy: (i) the hedging portfolio
is rebalanced every time that the transaction price moves; (ii) the hedging portfolio is rebalanced
only once the transaction price has varied by more than a selected value. To assess these strategies,
we use an asymptotic approach where the number of rebalancing transactions goes to infinity. For
the first strategy, we show that, because of microstructure noise effects, the hedging error does not
vanish. However, an optimal strategy of the second type enables us to reduce it significantly.

Key words. continuous-time processes, limit theorems for martingales, stable convergence in law, microstruc-
ture noise, discrete hedging, endogenous trading times
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1. Introduction. We consider a market with a risky asset whose efficient price is driven
by a continuous Itô semimartingale. In this context, pricing and hedging strategies are usually
built under the assumption of a “frictionless” market. The fundamental conditions for such a
market can be summarized as follows:

– It is possible to borrow and lend cash at a risk-free interest rate.
– The transaction price is equal to the efficient price, irrespective of the volume of the

transaction and of its sign (buy or sell).
– One can buy or sell instantaneously and continuously.
– There are no transaction costs.
– The asset is perfectly divisible (it is possible to buy or sell any fraction of a share).

Moreover, short selling is authorized.

The failure of one of the preceding conditions makes the problem of hedging a derivative
security more complex. The case of restrictions on short selling is considered in [15], and
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the presence of liquidity costs is studied in [3]. The consequences of transaction costs in
conjunction with discrete-time hedging operations has also been extensively studied; see,
among others, [16], [17], and [19]. In this paper, we are interested in a model where transaction
prices are bound to lie on a tick grid. Thus, we consider a framework where the second of the
preceding assumptions is no more in force and where the third one becomes irrelevant.

It is well admitted that, in term of prices modeling, continuous Itô semimartingales are
natural processes for building low frequency financial strategies. This is no longer true if
one is interested in high frequency strategies. For example, one has to consider specific
characteristics of transaction prices such as irregular temporal spacing and discreteness. The
usual way to model this gap is to consider that the efficient price is contaminated in the high
frequencies by the so-called microstructure noise. This microstructure noise occurs for several
reasons, one of the most obvious being the fact that market prices have to lie on the tick grid,
which in particular means that the observed price process is not continuous but only stepwise
continuous.

Microstructure noise effects have been studied mainly in the perspective of volatility esti-
mation; see, among others, [1], [13], [18], [23], [25], [27], and [28]. In this paper, we explore the
issue of hedging a European derivative security when taking into account the discreteness of
the transaction prices. This has two important consequences. The first one is the impossibility
to buy or sell a share at the efficient price: the microstructure noise leads to a cost (possibly
negative) that cannot be avoided. The second one comes from the fact that the transaction
price changes a finite number of times in a given time period. Therefore, it is reasonable to
assume that one waits for a price change before rebalancing the hedging portfolio.

To treat the problem of measuring the microstructural hedging error, we assume an agent
considers a hedging procedure which is derived from a usual strategy in a frictionless mar-
ket.1 This usual strategy is given by a (possibly misspecified) local volatility-type replicating
portfolio; see, in particular, [5]. The market model we use is the model with uncertainty
zones introduced and discussed in [22]. Indeed, it accommodates the stylized facts of prices
and durations together with a semimartingale efficient price; see [22]. In this model, the mi-
crostructure noise and the durations between price changes are endogenous.2 This enables us
to obtain realistic dynamics for both prices and durations.

We study two hedging strategies, where the usual continuous-time hedging portfolio is in
fact rebalanced at some random trading times: (i) the hedging portfolio is rebalanced every
time that the transaction price moves; (ii) the hedging portfolio is rebalanced only once the
transaction price has varied by more than a selected value. Strategy (i) is, of course, unrealistic
in practice because of the various transaction costs. However, it is important to evaluate the
hedging error in this context in order to assess the maximal cost due to microstructure. In
particular, it will provide us a reference result for comparing with the results of strategy (ii).
Note also that, in some sense, strategy (i) can be seen as an original way to evaluate the
impact on the hedging error of implicit transaction costs linked to bid-ask bounce; see section
3.2. Strategy (ii) is quite intuitive from a practitioner’s point of view. Indeed, rebalancing

1We do not assume that this theoretical strategy exactly replicates the payoff at maturity.
2Usual microstructure noise models mostly consider deterministic, exogenous sampling schemes and rarely

allow for price discreteness; see, for example, [1], [13], [18], [27], and [28].
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the portfolio when the price moves “significantly” is much more natural than a timely based
rebalancing strategy.

We develop an asymptotic approach for studying the hedging error in the spirit of [2] and
[12]. This asymptotic point of view is also used in [6], [9], and [26], whereas L2 measures are
considered in [7], [8], and [11]. We show that, as the number of transactions goes to infinity,
because of the presence of microstructure noise, the hedging error does not vanish for the first
strategy. However, it can be reduced significantly by using a strategy of the second type in
an optimal way.

This paper is organized as follows. In section 2, we recall the construction of the model
with uncertainty zones. The hedging strategies are described in section 3. We state in section
4 the associated theorems on the microstructural hedging error. A numerical study can be
found in section 5, and the proofs are relegated to section 6.

2. Model with uncertainty zones. Here we describe our model for the last traded price,
namely the model with uncertainty zones introduced in [22]. This model accommodates the
stylized facts of prices and durations together with a semimartingale efficient price; see [22].
In order to make the paper self-contained, we repeat the precise description of the model that
can be found in [23] (up to slight modifications relative to our specific problem).

2.1. Description of the model. In an idealistic framework, where the efficient price would
be observed, market participants would trade when the efficient price would cross the tick grid.
In practice, there is some uncertainty about the efficient price value so that market participants
are reluctant to price changes. Hence, there is a modification of the transaction price only if
some buyers and sellers are truly convinced that the efficient price is sufficiently far from the
last traded price. We introduce a parameter η that quantifies the aversion to price changes
(with respect to the tick size) of the market participants and propose a model that takes into
account this aversion.

Let (Xt)t≥0 denote the theoretical, efficient price of the asset. On a rich enough filtered
probability space (Ω, (Ft)t≥0,P), we assume that the logarithm of the efficient price is an
Ft-adapted continuous semimartingale of the form

(2.1) d logXt = atdt+ σt−dWt,

where (Wt)t≥0 is a standard F-Brownian motion, (at)t≥0 is a progressively measurable process
with locally bounded sample paths, and (σt)t≥0 is a positive Ft-adapted process with càdlàg
sample paths.

The tick grid on which transaction prices are bound to lie is defined as {kα; k ∈ N}, with
α the tick size. For k ∈ N and 0 < η < 1, we define the zone Uk by Uk = [0,∞) × (dk, uk),
with

dk = (k + 1/2 − η)α and uk = (k + 1/2 + η)α.

Thus, Uk is a band around the midtick grid value (k + 1/2)α; see Figure 1. Note that, when
η is smaller than 1/2, there is no overlap between the zones.

We assume that the transaction price may jump from price k′α to price kα, with k′ �= k
only once the efficient price has exited down the zone Uk or exited up the zone Uk−1 and
provided that market conditions are favorable for a transaction to occur. In a way, the
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transaction price changes only when the efficient price is close to a new multiple value of α
and market participants want to trade. The zones (Uk)k∈N represent bands inside of which
the efficient price cannot trigger a change of the transaction price. Consequently, they will be
referred to as the uncertainty zones.

More specifically, let us explain the construction of the sequence (τi)i≥0 of the exit times
from the uncertainty zones, which will lead to a change in the transaction price. Let τ0 = 0, and
assume without loss of generality that τ1 is the exit time of (Xt)t≥0 from the set (dk0−1, uk0),

where k0 = X
(α)
0 /α, with X

(α)
0 the value of X0 rounded to the nearest multiple of α. We

introduce a sequence (Li)i≥1 of Fτi-measurable discrete random variables which represent the
absolute value in the number of ticks of the price jump between the ith and the (i + 1)st
transaction leading to a price change. As explained later, the distribution of this variable will
depend on the value of some market quantities at time τi. Then define τi+1 recursively as the

exit time of (Xt)t>τi
from the set (dki−Li

, uki+Li−1), where ki = X
(α)
τi /α, that is,

(2.2)

τi+1 = inf

{
t : t > τi,Xt = X(α)

τi − α
(
Li − 1

2
+ η

)
or Xt = X(α)

τi + α

(
Li − 1

2
+ η

)}
.

In particular, if Xτi = dj for some j ∈ N, τi+1 is the exit time of (Xt)t>τi from the set
(dj−Li , uj+Li−1), and if Xτi = uj for some j ∈ N, τi+1 is the exit time of (Xt)t>τi from the set
(dj−Li+1, uj+Li).

Let P0 be the opening price. We define the last traded price (Pt)t≥0 as the càdlàg piecewise

constant process built from the (τi, Pτi)i≥0, where Pτi = X
(α)
τi . It is, of course, quite unrealistic

to assume that the transaction prices change exactly at the exit times τi. However, it enables
us to simplify some computations. Moreover, under additional assumptions, the results given
in section 4 still hold in the initial model of [23], where delays caused by the reaction times
of market participants and/or by the trading process are allowed.

Note that αLi is the absolute value of the price jump between the ith and the (i + 1)st
transactions with price change and that

(2.3) Pτi = Xτi + sign(Xτi −Xτi−1)(1/2 − η)α = Xτi + sign(Pτi − Pτi−1)(1/2 − η)α.
We eventually explain the conditional distribution of the jump sizes in ticks between con-

secutive transaction prices. We assume that the jump sizes are bounded (which is empirically
not restrictive) and denote by m their maximal value. For k = 1, . . . ,m and t > 0, let

N
(a)
α,t,k =

∑
τi≤t

I{|Xτi−Xτi−1 |=α(k−1+2η)} and N
(c)
α,t,k =

∑
τi≤t

I{|Xτi−Xτi−1 |=αk}

be, respectively, the number of alternations and continuations of k ticks. An alternation
(continuation) of k ticks is a jump of k ticks whose direction is opposite to (the same as)
that of the preceding jump; see Figure 1. Remark that, for small (large) values of η, one will
mainly observe alternations (continuations). The number of price changes in [0, t] is given by

Nα,t =
m∑
k=1

(N
(a)
α,t,k +N

(c)
α,t,k).
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Figure 1. Example of trajectories of the efficient price and of the observed price.

Let (χt)t≥0 be an M -dimensional Ft-adapted process. For simplicity, we assume that the
process χ is a continuous Itô semimartingale with progressively measurable drift with locally
bounded sample paths and a positive Ft-adapted volatility matrix whose elements have càdlàg
sample paths. We define the filtration E as the complete right-continuous filtration generated

by (Xt, χt, N
(a)
α,t,k, N

(c)
α,t,k, k = 1, . . . ,m). We assume that, conditional on Eτi , Li is a discrete

random variable on [[1,m]] satisfying

(2.4) PEτi [Li = k] = pk(χτi), 1 ≤ k ≤ m,

for some positive differentiable with bounded derivative functions pk. In practice, χt may
represent quantities related, for example, to the traded volume, the bid-ask spread, or the bid
and ask depths. For the applications, specific forms for the pk are given in [22].

2.2. Discussion.
• The model with uncertainty zones accommodates the inherent properties of prices, du-

rations, and microstructure noise together with a semimartingale efficient price. In particu-
lar, this model allows for discrete prices, a bid-ask bounce, and an inverse relation between
durations and volatility. Moreover, the usual behaviors of the autocorrelograms and cross-
correlograms of returns and microstructure noise, both in calendar and tick time, are repro-
duced. Eventually, this model leads to jumps in the price of several ticks, the size of the jumps
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being determined by explanatory variables involving, for example, the order book. Mostly,
the model with uncertainty zones is clearly validated on real data. These results are studied
in detail in [22].

• As explained in the previous section, η quantifies the aversion to price changes (with
respect to the tick size) of the market participants. Indeed, η controls the width of the
uncertainty zones. In the tick unit, the larger the η, the farther from the last traded price the
efficient price has to be so that a price change occurs. In some sense, a small η (< 1/2) means
that the tick size appears too large to the market participants and a large η means that the
tick size appears too small.

• There are several other ways to interpret the parameter η, notably from a practitioner’s
perspective. For example, one can think that, in very high frequencies, the order book cannot
“follow” the efficient price and is reluctant to price changes. This reluctancy could be charac-
terized by η. Another possibility is to view η as a measure of the usual price depth explored
by the transaction volumes.

• It is quite easy to estimate the value of η; see [23]. Moreover, it is shown in [22] that
this parameter remains remarkably stable in time for a large number of assets. Finally, all
types of configuration between the tick size, the order of magnitude of the volatility, and the
value of η can be found in the market.

3. Hedging strategies. We consider a European derivative security with expiration date
T and payoff F (XT ), where F is a regular enough payoff function.3 We present in this section
our benchmark frictionless hedging strategy and two strategies adapted to our uncertainty
zone market. We assume in the remainder of this paper that all assets are perfectly divisible
and, without loss of generality, that the riskless borrowing and lending rate is zero.

3.1. Benchmark frictionless hedging strategy. The benchmark frictionless hedging strat-
egy is that of an agent deciding (possibly wrongly) that the volatility of the efficient price at
time t is equal to σ(t,Xt) for a regular enough function σ(t, x). If true, such an assumption on
the volatility enables one to build a self-financing replicating portfolio of stocks and riskless
bonds whose marked-to-model price at time t is of the form C (t,Xt). The function C satisfies

Ċt (t, x) +
1

2
σ2 (t, x) x2C̈xx (t, x) = 0, C (T, x) = F (x) ,

with Ċt (t, x) = ∂C (t, x) /∂t, C̈xx (t, x) = ∂2C (t, x) /∂x2; see [4].

Suppose the agent implements this strategy in a frictionless market. It leads to a bench-
mark frictionless hedging portfolio whose value Πt satisfies

Πt = C (0,X0) +

∫ t

0
Ċx (u,Xu) dXu.

Note that, if the model is misspecified, Πt is different from C (t,Xt); see [5].

3This is a simplifying, slightly incorrect framework since we should consider a payoff F (PT ). However, the
order of magnitude of the difference is clearly negligible in our context.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE MICROSTRUCTURAL HEDGING ERROR 433

Finally, we assume that for some M > 0 there exists a sequence of closed sets Sn ⊂ [0,M ]
such that the function C (t, x) satisfies∣∣∣∣∂γ+βC (t, x)

∂tγ∂xβ

∣∣∣∣ < +∞

for all (t, x) ∈ {[0, T − 1/n)× [1/n,+∞)} ∪ {
[T − 1/n, T ]× {[1/n,+∞)/

◦
Sn}

}
, and

ρn = inf{T − 2/n ≤ t ≤ T,Xt ∈ Sn}
is such that P[ρn > T ]→ 1, with the convention inf{∅} = +∞. Remark that, for example, if
the benchmark frictionless hedging portfolio is built thanks to the Black–Scholes model, the
preceding assumption holds for a European call with strike K taking Sn = [K−1/n,K+1/n].

3.2. Hedging strategies in an uncertainty zone market. We assume the real market is
the uncertainty zone market, where one can buy and sell at the last traded price, irrespective
of the volume of the transaction and of its sign. So, we naturally impose that the times when
the hedging portfolio may be rebalanced are the times where the transaction price moves.4

Thus, we assume that the hedging portfolio can be rebalanced only at the transaction times
τi. Therefore, here the trading strategies are piecewise constant. In this setting, we consider
strategies such that, if τi is a rebalancing time, the number of shares in the risky asset at time
τi is Ċx (τi,Xτi). Such a strategy is feasible under the assumption that η is known so that Xτi

can be computed. This is not a restrictive assumption since η can be easily and accurately
estimated; see [23]. Finally, recall that our model treats discreteness of prices and reproduces
bid-ask bounce. This can be intrinsically connected to implicit transaction costs in the spirit
of [24]. Indeed, assume that in the benchmark hedging strategy the gamma of the derivatives
is positive; then, when the investor faces a series of oscillations of the price, the buy (resp.,
sell) price is systematically higher (resp., lower) than the efficient price; see section 4.2.

In the next section, we consider two hedging strategies: (i) the hedging portfolio is re-
balanced every time that the transaction price moves; (ii) the hedging portfolio is rebalanced
only once the transaction price has varied by more than a selected value.

4. Asymptotic distributions of the microstructural hedging error. In our setting, the
microstructural hedging error is due to the following:

– discrete trading: the hedging portfolio is rebalanced a finite number of times;
– microstructure noise on the price: between two rebalancing times, the variation of the

market price (multiple of the tick size) differs from the variation of the efficient price.
We analyze this microstructure hedging error in two steps. First, we assume that there

is no microstructure noise on the price but that the trading times are endogenous (for all
i, Pτi = Xτi): we expect results more or less similar to those in [2], [12], and [26], where
exogenous trading times are considered. Second, we assume the presence of the endogenous
microstructure noise and discuss the two hedging strategies.

Our asymptotic results use the notion of stable convergence in law that we recall here. Let
Zα be a family of random variables (taking their values in D[0, T ], the space of càdlàg functions

4The agent is supposed to be a price follower, which means that the transaction price never moves because
of its own trading.
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endowed with the Skorokhod topology J1). Let αn be a deterministic sequence tending to zero
as n tends to infinity and I be a sub-σ-field of F . We say that Zαn converges I-stably to Z

as αn tends to zero (Zαn

I−Ls→ Z) if, for every I-measurable bounded real random variable V ,
(V,Zαn) converges in law to (V,Z) as n tends to infinity. This is a slightly stronger mode of
convergence than the weak convergence; see [14] for details and equivalent definitions. Finally,
we say that Zα converges I-stably to Z as α tends to zero if, for any sequence αn tending to

zero, Zαn

I−Ls→ Z.
We are now able to state our main results. Our asymptotics is to consider that the tick

size is going to zero. Even if the tick size is fixed on the markets, in our model it is a natural
way to make the number of rebalancing transactions go to infinity.

4.1. Hedging error without microstructure noise on the price. Let φ (t) = sup{τi : τi <
t}. In the absence of microstructure noise on the price, the hedging error is given by

L
(1)
α,t =

∫ t

0
[Ċx (u,Xu)− Ċx(φ (u) ,Xφ(u))]dXu.

Let ft be the limit in probability of α2Nα,t as α→ 0. We have (see [23])

ft =

∫ t

0
ϕ(χu)σ

2
uX

2
udu,

where

ϕ(χu) =

⎛⎝ m∑
j=1

pj(χu)j(j − 1 + 2η)

⎞⎠−1

.

The inverse of the function f , denoted by θ, is a time change for which the observation times
are asymptotically uniformly distributed on any finite interval. Let ΔXτi = Xτi+1 −Xτi , and
let τit = inf{τi, τi ≥ t} and τit+1 (resp., τit−1) be the first τi after (resp., before) τit . We
introduce the asymptotic conditional fourth moment of the normalized price change at time
t:

μ4 (χt) = lim
α→0

E Eτit [α
−4(ΔXτit

)4]

=

m∑
k=1

k(k − 1 + 2η)(k2 − k + 2ηk + 4η2 − 4η + 1)pk (χt) .

Let I be the filtration generated by the processes X and χ. We have the following result.
Theorem 4.1. As α tends to 0,

(4.1) N
1/2
α,t L

(1)
α,t

I−Ls→ L
(1)
t := f

1/2
t

∫ t

0
c
(1)
fs

dW(1)
fs

in D[0, T ], where W(1) is a Brownian motion defined on an extension of the filtered probability

space (Ω, (Ft)t≥0,P) and independent of all the preceding quantities, and c
(1)
s is such that

(c(1)s )2 =
1

6
C̈2
xx (θs,Xθs)μ4 (χθs) .
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We see that the variance of the hedging error is proportional to the reciprocal of the
number of rebalancing transactions and depends on the local volatility gamma of the derivative
security.

Note that if the hedging portfolio were rebalanced at the exogenous times τi = iα2T , for
i = 1, . . . , nα = α−2, then we would have ft = t, μ4 (Xt) = 3σ4tX

4
t and our asymptotic hedging

error would be equal to those in [2]. We conclude that, although endogenous transaction times
are considered, our result is in agreement with [2] and [12].

4.2. Hedging error with microstructure noise. In the presence of microstructure noise
on the price, the transaction prices differ from the efficient prices. The hedging error is now
given by

L
(2)
α,t =

∫ t

0
Ċx (u,Xu) dXu −

∫ t

0
Ċx(φ (u) ,Xφ(u))dPu.

Let

πa (χt) = lim
α→0

E Eτit [I{ΔXτit
ΔXτit−1<0}] =

m∑
k=1

k

2k − 1 + 2η
pk (χt)

be the asymptotic conditional probability that the next price change at time t is due to an
alternation, and let

μ∗1,a (χt) = lim
α→0

E Eτit [α
−1|ΔXτit

|I{ΔXτit
ΔXτit−1

<0}] =
m∑
k=1

k(k − 1 + 2η)

2k − 1 + 2η
pk (χt)

be the asymptotic conditional expectation of the absolute value of the normalized price change
at time t when the price change is due to an alternation. We have the following result.

Theorem 4.2. As α tends to 0,

L
(2)
α,t

I−Ls→ L
(2)
t :=

∫ t

0
a
(2)
fs

ds+

∫ t

0
b
(2)
fs

dXs +

∫ t

0
c
(2)
fs

dW(2)
fs

in D[0, T ], where W(2) is a Brownian motion defined on an extension of the filtered probability

space (Ω, (Ft)t≥0,P) and independent of all the preceding quantities, and a
(2)
s , b

(2)
s , and c

(2)
s

are such that

a(2)s = −(1− 2η)C̈xx (θs,Xθs)μ
∗
1,a (χθs)ϕ (χθs) ,

b(2)s = (1− 2η)Ċx (θs,Xθs)μ
∗
1,a (χθs)ϕ (χθs) ,

(c(2)s )2 = (1− 2η)2Ċ2
x (θs,Xθs)ϕ (χθs)

(
πa (χθs)ϕ

−1 (χθs)− (μ∗1,a (χθs))
2
)
.

It is worth noticing that the microstructural hedging error process is not renormalized as
in the previous case. It means that the hedging error does not vanish even if the number of
rebalancing transactions goes to infinity and thus is of the same order of magnitude as the
usual tracking error. However, if η = 1/2, the changes of the transaction prices coincide with
the changes of the efficient prices at the exit times of the uncertainty zones (ΔPτi = ΔXτi)
and the error due to the microstructure noise on the price vanishes.
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The first two components of the asymptotic hedging error are quite unusual in this kind
of asymptotic distribution theory. The first term can be interpreted as a bias due to implicit
transaction costs linked to bid-ask bounce. The second one is due to the asymmetry between
alternations and continuations. Indeed, when an alternation occurs, ΔPτi − ΔXτi = (1 −
2η)sign(ΔXτi), while, when a continuation occurs, ΔPτi−ΔXτi = 0. For further developments
on the presence of limiting bias terms, see [20]. Moreover, remark that the quadratic variation
of the asymptotic hedging error is

(1− 2η)2
∫ t

0
Ċ2
x (s,Xs) πa (χs) dfs.

It now depends on the local volatility delta of the derivative security and on the proportion of
alternations. Consequently, the variance of the microstructural hedging error increases with
the position delta and the proportion of alternation in the price. Indeed, compared with the
previous case, one now faces an additional microstructural hedging error of first order.

Finally, recall that the strategy presented in this section is unrealistic in practice. However,
it provides us a reference result for comparing with the results of more realistic strategies,
which we explain in the next section.

4.3. Optimal rebalancing level in the presence of microstructure noise. We now build
strategies where the portfolio is rebalanced when the price moves “significantly.”5 It is proba-
bly more natural than a timely based rebalancing strategy and should reduce the impact of the
microstructure noise. So, we now assume that the hedging portfolio is rebalanced only once
the price has changed by lα ticks. For simplicity, here we assume that m = 1. We will choose
lα such that lα → ∞ and αlα → 0 as α → 0. In this way, hedging errors due, respectively,
to microstructure noise on the price and discrete-time rebalancing will disappear as the tick
goes to zero. Note that it is more or less equivalent to considering that the transaction price
lies on a subgrid with new tick size αlα and that the hedging portfolio is rebalanced as soon
as the transaction price takes a new value on this subgrid.

Let N
(l)
α,t be the number of rebalancing transactions between 0 and t. We define the

sequence (τ
(l)
i )i≥1 recursively by

τ
(l)
i+1 = inf

{
t : t > τ

(l)
i ,Xt = X(α)

τi − α
(
lα − 1

2
+ η

)
or Xt = X(α)

τi + α

(
lα − 1

2
+ η

)}
.

Let f
(l)
t be the limit in probability of (αlα)

2N
(l)
α,t as α→ 0. We have

f
(l)
t =

∫ t

0
σ2uX

2
udu.

Let φ(l) (t) = sup{τ (l)i : τ
(l)
i < t}. The hedging error is given by

L
(3)
α,t =

∫ t

0
Ċx (u,Xu) dXu −

∫ t

0
Ċx(φ

(l) (u) ,Xφ(l)(u))dPu.

5Note that we could also express our results in terms of variation of the local volatility delta in the same
way.
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Let ΔX
τ
(l)
i−1

= X
τ
(l)
i

−X
τ
(l)
i−1

. This error can be decomposed in the following way:

L
(3)
α,t =L

(3,1)
α,t + L

(3,2)
α,t + L

(3,3)
α,t

:=

N
(l)
α,t∑

i=1

∫ τ
(l)
i

τ
(l)
i−1

(
Ċx (u,Xu)− Ċx(τ

(l)
i−1,Xτ

(l)
i−1

)
)
dXu

+

N
(l)
α,t∑

i=1

Ċx(τ
(l)
i−1,Xτ

(l)
i−1

)(ΔX
τ
(l)
i−1

−ΔP
τ
(l)
i−1

)

+

∫ t

τ
(l)

N
(l)
α,t

Ċx (u,Xu) dXu − Ċx(τ
(l)

N
(l)
α,t

,X
τ
(l)

N
(l)
α,t

)(Pt − Pτ
(l)

N
(l)
α,t

).

We have the following result.

Theorem 4.3. As α tends to 0,

(αlα)
−1 L

(3,1)
α,t

I−Ls→ L
(3,1)
t :=

∫ t

0
a
(3,1)

f
(l)
s

ds+

∫ t

0
b
(3,1)

f
(l)
s

dXs +

∫ t

0
c
(3,1)

f
(l)
s

dW(3,1)

f
(l)
s

,

lαL
(3,2)
α,t

I−Ls→ L
(3,2)
t :=

∫ t

0
a
(3,2)

f
(l)
s

ds+

∫ t

0
b
(3,2)

f
(l)
s

dXs +

∫ t

0
c
(3,2)

f
(l)
s

dW(3,2)

f
(l)
s

,(
lα ∨ (αlα)

−1 )L(3,3)
α,t

I−Ls→ 0

in D[0, T ], where W(3,1) and W(3,2) are Brownian motions defined on an extension of the

filtered probability space (Ω, (Ft)t≥0,P) and independent of all the preceding quantities, a
(3,1)
s ,

b
(3,1)
s , and c

(3,1)
s are such that

a(3,1)s = 0, b(3,1)s = 0, (c(3,1)s )2 =
1

6
C̈2
xx (θs,Xθs) ,

and a
(3,2)
s , b

(3,2)
s , and c

(3,2)
s are such that

a(3,2)s = −(1− 2η)C̈xx (θs,Xθs) ,

b(3,2)s =
(1− 2η)

2
Ċx (θs,Xθs) ,

(c(3,2)s )2 =
(1− 2η)2

4
Ċ2
x (θs,Xθs) .

The optimal asymptotic rate for lα results from a trade-off between the variances of the
renormalized asymptotic errors.

Theorem 4.4. Let lα = α−1/2. As α tends to 0,

(Nα,t)
1/4L

(3)
α,t

I−Ls→ L
(3)
t := (f

(l)
t )1/4

(∫ t

0
a
(3)

f
(l)
s

ds+

∫ t

0
b
(3)

f
(l)
s

dXs +

∫ t

0
c
(3)

f
(l)
s

dW(3)

f
(l)
s

)
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in D[0, T ], where W(3) is a Brownian motion defined on an extension of the filtered probability

space (Ω, (Ft)t≥0,P) and independent of all the preceding quantities, and b
(3)
s and c

(3)
s are such

that

a(3)s = −(1− 2η)C̈xx (θs,Xθs) ,

b(3)s =
(1− 2η)

2
Ċx (θs,Xθs) ,

(c(3)s )2 =
(1− 2η)2

4
Ċ2
x (θs,Xθs) +

1

6
C̈2
xx (θs,Xθs) .

This optimal strategy allows one to reduce the hedging error significantly in the presence
of microstructure noise. Interestingly, the quadratic variation of the asymptotic hedging error
now depends both on the delta and on the gamma of the derivative security.

Note that the optimal lα is of the same order of magnitude as the square root of the number
of times where the hedging portfolio is rebalanced and of the same order of magnitude as the
reciprocal of the asymptotic variance of the hedging error. Asymptotically, to decrease the
variance by a factor of 2, one must rebalance four times more often with a target level (αlα)
divided by 2.

5. A numerical study. In this section, we give numerical results about the hedging errors
of a European call with strike K = 100 and maturity T = 1. We consider the following
model for the underlying asset for the trading period. The efficient price is given by the
Black–Scholes dynamics

dXt = σXtdWt, x0 = 100, t ∈ [0, T ],

where σ = 0.01, and we take α = 0.05, η = 0.05, and, for i ≥ 1, Li = 1. These parameters
are chosen to be in agreement with real data; see [22]. Finally, we assume the benchmark
strategy of the agent is the Black–Scholes strategy with σ = 0.01. Here we give statistics
for the number of rebalancings (NR) and the histogram of the hedging error for the different

strategies over 1000 Monte Carlo simulations; see Figure 2. Note that L
(3)
α,T is computed for

price moves of 5 ticks.

Average of NR Standard deviation of NR

Every price move rebalancing 3487 108
5 ticks rebalancing 20.22 3.55

We clearly see that rebalancing the portfolio each time the price changes induces a strong
negative bias in the hedging error. Rebalancing less frequently enables us to significantly
improve the hedging error, which is in agreement with the theoretical results.

6. Proofs. The proofs of our four theorems are based on the methodology for limit theo-
rems in the presence of endogenous observation times developed in [23]. In particular, Lemmas
1, 2, 3, 4, 6, 7, and 11 in [23] hold since they share the same assumptions as in this paper.
The key idea of this methodology is to work in a modified time in which the observation times
are equidistant and to use stability properties of the convergence in law in D[0, T ]. In a first
step, discrete-time processes taking new values at the transaction times are built. This is
done considering that the transaction times are equispaced. Then it is established that the
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Figure 2. Histograms of L
(i)
α,T for i = 1 (in green, error due to discrete trading times), 2 (in red, error due

to discrete trading times and microstructure noise), and 3 (in grey, error in the case of “optimal” rebalancing).

piecewise constant processes stably converge in law by using Theorem IX.7.3 in [14]. In [23],
the required assumptions for this theorem are shown to hold through Lemma 8, 9, 10, 12, and
13. Note that, for our specific results, only Lemmas 10, 12, and 13 have to be modified, the
other ones still being in force (up to obvious modifications). In a second step, a time change
that enables us to come back in calendar time is used (Lemma 15 in [23]).

6.1. Preliminary remarks. In all the proofs, c denotes a positive constant that may
vary from line to line and (αn)n≥0 is a sequence tending to zero. So, we write τi,n for
τi and Li,n for Li. We define En as the complete right-continuous filtration generated by

(Xt, χt, N
(a)
αn,t,k

, N
(c)
αn,t,k

, k = 1, . . . ,m) and the filtration Hn by

Hn
u = Enτ�α−2

n u�,n
.

Moreover, without loss of generality, we consider that the semimartingale χ is a one-dimensional
process of the form

χt = χ0 +

∫ t

0
aχudu+

∫ t

0
σχu−dŴu for t ≤ T,

with Ŵ a Brownian motion on (Ω,F ,P), and we set χt = χT for t > T .

We write F = F1 ⊗ F2. The processes X and χ are measurable with respect to F1, and
F2 is the filtration generated by a Brownian motion W ′, independent of F1. Let Φ denote the
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cumulative distribution function of a standard Gaussian random variable. We define

gt,n = sup{τj,n : τj,n < t},

L′
t =

m∑
k=1

kI

⎧⎨⎩Φ

(
W ′

t −W ′
gt,n√

t− gt,n

)
∈

⎡⎣k−1∑
j=1

pj(χt),
k∑

j=1

pj(χt)

⎞⎠⎫⎬⎭ ,

and Li,n = L′
τi,n , with the usual convention

∑0
j=1 pj(χt) = 0. So defined, for k = 1, . . . ,m, we

have PEn
τi,n

[Lτi,n = k] = pk(χτi,n).

Here we modify the localization procedure and change of probability in [23] slightly. More
precisely, we follow the same lines as in [23], but we consider before the change of probability
the sequence of processes Xn defined on [0, T ] by

Xn
t = Xt∧ρn + 2Mn

∫ t

0
I{T−2/n≤s≤T}∩{ρn=T−2/n}ds.

This process is a continuous Itô semimartingale which coincides with X on [0, ρn] and does

not take values in
◦
Sn for t ∈ [T −1/n, T ]. Hence, without restriction, we can prove the results

under the following supplementary assumption.

Assumption 1. For all t ∈ [0, T ], at = −σ2t−/2 and there exists a constant M > 0 such
that, for all γ ∈ N, β ∈ N, and 0 ≤ γ + β ≤ 3,

| log(Xt)|+ |χt|+ |σt|+ |σχt |+ |aχt |+
∣∣∣∣∂γ+βC (t,Xt)

∂tγ∂xβ

∣∣∣∣ ≤M.

Finally, it is useful to view our price process as a time-changed Brownian motion. For
that purpose, we introduce the process (Zt)t≥0 with an infinite bracket at infinity defined by

Zt = Xt∧T +

∫ t

0
Is>TdWs.

Let

T (s) = inf{t ≥ 0 : 〈Z〉t > s}.

By the Dubins–Schwarz theorem for continuous local martingales (see, for example, [21, The-
orem V.1.6]), there exists an FT (s)-adapted Brownian motion (Bs)s≥0 such that, for t ≥ 0,

B〈Z〉t + x0 = Zt.

Hence, for t ∈ [0, T ], B〈X〉t +x0 = Xt. From now on, we redefine τi,n and Li,n in the same way
as in (2.2) and (2.4) replacing Xt by Zt. For simplicity, from now on we keep the notation X
for Z. We set νi,n = 〈X〉τi,n and Δνi,n = νi+1,n − νi,n.
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6.2. Proofs of Theorem 4.1. The hedging error is given by

L
(1)
αn,t =

Nαn,t∑
i=1

∫ τi,n

τi,n−1

(
Ċx (u,Xu)− Ċx(τi,n−1,Xτi,n−1)

)
dXu

+

∫ t

τNαn,t

(
Ċx (u,Xu)− Ċx(ττNαn,t

,XτNαn,t
)
)
dXu.

Let us define

K
(1)
i (n) = α−1

n

∫ τi,n

τi−1,n

(
Ċx(u,Xu)− Ċx(τi−1,n,Xτi−1,n )

)
dXu

= α−1
n

∫ νi,n

νi−1,n

(
Ċx(T (v), Bv)− Ċx(T (νi−1,n), Bνi−1,n)

)
dBv

and

K(1) (n)u =

�α−2
n u�∑
i=1

K
(1)
i (n) .

The following lemma is intended to replace Lemma 10 in [23].

Lemma 6.1. For ε > 0, as n→∞, we have

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[K
(1)
i (n)2I{|K(1)

i (n)|>ε}]
P→ 0.

Proof. For νi−1,n ≤ v ≤ νi,n, we have

Ċx (T (v) , Bv)− Ċx

(T (νi−1,n) , Bνi−1,n

)
= C̈xt

(T (νi−1,n) , Bνi−1,n

) (T (v)− T (νi−1,n)
)

+ C̈xx

(T (νi−1,n) , Bνi−1,n

) (
Bv −Bνi−1,n

)
+R

(1)
i,n (v)

=
C̈xt

(T (νi−1,n) , Bνi−1,n

)
σ2

(T (νi−1,n) , Bνi−1,n

)
B2

νi−1,n

(v − νi−1,n)

+ C̈xx

(T (νi−1,n) , Bνi−1,n

) (
Bv −Bνi−1,n

)
+R

(2)
i,n (v) ,

where |R(j)
i,n (v) | ≤ c(α2

n + (Δνi−1,n)
2) for j = 1, 2. Itô’s formula gives∫ νi,n

νi−1,n

(Bv −Bνi−1,n)dBv =
1

2
[(ΔBνi−1,n)

2 −Δνi−1,n]

and ∫ νi,n

νi−1,n

(v − νi−1,n) dBv = ΔBνi−1,nΔνi−1,n −
∫ νi,n

νi−1,n

(Bv −Bνi−1,n)dv.
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It follows that

|K(1)
i (n)| ≤ cα−1

n

(
Δνi−1,n + (ΔBνi−1,n)

2
)
+ α−1

n

∣∣∣∣∣
∫ νi,n

νi−1,n

R
(2)
i,n (v) dBv

∣∣∣∣∣ .
By the Bürkholder–Davis–Gundy (BDG) inequality, we get

EHn
α2
n(i−1)

[∣∣∣∣∣
∫ νi,n

νi−1,n

R
(2)
i,n (v) dBv

∣∣∣∣∣
p]
≤ cpEHn

α2
n(i−1)

⎡⎣(∫ νi,n

νi−1,n

(R
(2)
i,n (v))2dv

)p/2
⎤⎦

≤ cEHn
α2
n(i−1)

[(
(α2

n + (Δνi−1,n)
2)2 (Δνi−1,n)

)p/2]
≤ cα3p

n .

And then, for p ≥ 1

EHn
α2
n(i−1)

[|K(1)
i (n)|p] ≤ cαp

n.

Using together the Cauchy–Schwarz and Markov inequalities, we deduce that

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[K
(1)
i (n)2I{|Ki(n)|>ε}] ≤ cε−1α5/2

n ,

and the result follows.
We now define the processes Z and Z(n) by Zu = Xθu and Z(n)u = Zfτ�α−2

n u�,n
. The

following lemma is intended to replace Lemma 12 in [23].
Lemma 6.2. As n→∞, we have

〈K(1)(n), Z(n)〉u P→ 0.

Proof. First note that 〈K1(n), Z(n)〉u is equal to

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[
K

(1)
i (n)ΔBνi−1,n

]
.

By Itô’s formula, we have

αnEHn
α2
n(i−1)

[
K

(1)
i (n)ΔBνi−1,n

]
=

C̈xt

(T (νi−1,n) , Bνi−1,n

)
σ2

(T (νi−1,n) , Bνi−1,n

)
B2

νi−1,n

×EHn
α2
n(i−1)

[
Δνi−1,n(ΔBνi−1,n)

2 −ΔBνi−1,n

∫ νi,n

νi−1,n

(
Bv −Bνi−1,n

)
dv

]

+
1

2
C̈xx

(T (νi−1,n) , Bνi−1,n

)
EHn

α2
n(i−1)

[
(ΔBνi−1,n)

3 −ΔBνi−1,nΔνi−1,n

]
+EHn

α2
n(i−1)

[
ΔBνi−1,n

∫ νi,n

νi−1,n

R
(2)
i,n (v) dBv

]
.
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Using the same arguments as in the proof of Lemma 12 in [23], we deduce that

α−1
n

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[
(ΔBνi−1,n)

3 −ΔBνi−1,nΔνi−1,n

] P→ 0.

Moreover, it is easy to see that∣∣∣∣∣EHn
α2
n(i−1)

[
Δνi−1,n

(
ΔBνi−1,n

)2 −ΔBνi−1,n

∫ νi,n

νi−1,n

(
Bv −Bνi−1,n

)
dv

]∣∣∣∣∣ ≤ cα4
n

and that by the BDG inequality∣∣∣∣∣EHn
α2
n(i−1)

[
ΔBνi−1,n

∫ νi,n

νi−1,n

R
(2)
i,n (v) dBv

]∣∣∣∣∣ ≤ cα4
n.

The result follows.
The following lemma is intended to replace Lemma 13 in [23].
Lemma 6.3. Let

mk = k(k − 1 + 2η)(k2 − k + 2ηk + 4η2 − 4η + 1).

As n→∞, we have

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K
(1)
i (n))2]

P→ 1

6

∫ 〈X〉θu

0
C̈2
xx (T (v) , Bv)

m∑
k=1

mkpk(χT (v))ϕ
(
χT (v)

)
dv.

Proof. First, note that

EHn
α2
n(i−1)

[(K
(1)
i (n))2] = α−2

n EHn
α2
n(i−1)

[∫ νi,n

νi−1,n

(
Ċx(T (v), Bv)− Ċx(T (νi−1,n), Bνi−1,n)

)2
dv

]
.

Then, by Itô’s formula, we have that

EHn
α2
n(i−1)

[∫ νi,n

νi−1,n

(Bv −Bνi−1,n)
2dv

]

is equal to

1

6
EHn

α2
n(i−1)

[(Bνi,n −Bνi−1,n)
4]− 2

3
EHn

α2
n(i−1)

[∫ νi,n

νi−1,n

(
Bv −Bνi−1,n

)3
dBv

]
.

Now consider for t ≥ νi−1,n the martingale

Mt =

∫ t∧νi,n

νi−1,n

(Bv −Bνi−1,n)
3dBv.
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We have

|Mt| ≤ c(α4
n + α2

nΔνi−1,n)

and

EHn
α2
n(i−1)

[Δνi−1,n] ≤ cα2
n.

By the optional sampling theorem and the dominated convergence theorem, we deduce that

EHn
α2
n(i−1)

[Mνi,n ] = 0.

So,

EHn
α2
n(i−1)

[∫ νi,n

νi−1,n

(Bv −Bνi−1,n)
2dv

]
=

1

6
EHn

α2
n(i−1)

[(Bνi,n −Bνi−1,n)
4]

=
1

6
α4
n

m∑
k=1

mkpk(χT (νi−1,n)).

Then

EHn
α2
n(i−1)

[∫ νi,n

νi−1,n

(v − νi−1,n)
2 dv

]
=

1

3
EHn

α2
n(i−1)

[(νi,n − νi−1,n)
3] ≤ cα6

n.

Moreover, ∣∣∣∣∣EHn
α2
n(i−1)

[∫ νi,n

νi−1,n

(v − νi−1,n)
(
Bv −Bνi−1,n

)
dv

]∣∣∣∣∣ ≤ cα5
n.

It follows that

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K
(1)
i (n))2] =

1

6
α2
n

�α−2
n u�∑
i=1

m∑
k=1

C̈2
xx

(T (νi−1,n) , Bνi−1,n

)
mkpk(χT (νi−1,n)) +Rn,

where Rn goes to zero in probability. Using Lemma 3 in [23], we get

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K
(1)
i (n))2]

P→ 1

6

∫ 〈X〉θu

0
C̈2
xx (T (v) , Bv)

m∑
k=1

mkpk(χT (v))ϕ
(
χT (v)

)
dv.

An obvious application of the BDG inequality leads to the following lemma.

Lemma 6.4. As n→∞, we have∫ t

τNαn,t

(
Ċx (u,Xu)− Ċx(τNαn,t ,XτNαn,t

)
)
dXu

P→ 0.

Eventually, the proof of Theorem 4.1 follows from Theorem IX.7.3 in [14] by using the
same arguments as in Lemma 15 in [23].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE MICROSTRUCTURAL HEDGING ERROR 445

6.3. Proof of Theorem 4.2. The hedging error is given by

L
(2)
αn,t =

Nαn,t∑
i=1

∫ τi,n

τi−1,n

(
Ċx(u,Xu)− Ċx(τi−1,n,Xτi−1,n)

)
dXu

+

Nαn,t∑
i=1

Ċx(τi−1,n,Xτi−1,n)(ΔXτi−1,n −ΔPτi−1,n)

+

∫ t

τNαn,t

Ċx(u,Xu)dXu.

It is important to note that

ΔPτi−1,n

ΔXτi−1,n

=
m∑
k=1

(
I{|ΔXτi−1,n |=αnk} +

k

k − 1 + 2η
I{|ΔXτi−1,n |=αn(k−1+2η)}

)
.

Let us define
K

(2)
i (n) = αnK

(1)
i (n) +M

(1)
i (n) ,

where
M

(1)
i (n) = Di,nĊx

(T (νi−1,n) , Bνi−1,n

)
ΔBνi−1,n

and

Di,n =
1− 2η

k − 1 + 2η
I{|ΔBνi−1,n |=αn(k−1+2η)}.

Note that

L
(2)
αn,t =

Nαn,t∑
i=1

K
(2)
i (n) +

∫ t

τNαn,t

Ċx (u,Xu) dXu.

We have the following lemma.
Lemma 6.5. As n→∞, we have

�α−2
n u�∑
i=1

[αnK
(1)
i (n)]

P→ 0.

Proof. The result follows from Theorem 4.1.
An obvious application of Lemma 3 in [23] leads to the following lemma.
Lemma 6.6. As n→∞, we have∫ t

τNαn,t

Ċx (u,Xu) dXu
P→ 0.

Therefore, L
(2)
αn,t has the same limit as

∑Nαn,t

i=1 M
(1)
i (n).

We define the sets of the upward and downward barriers by D = ∪dk and U = ∪uk. We

have that EHn
α2
n(i−1)

[M
(1)
i (n)] is equal to

−αn(1− 2η)Ċx

(T (νi−1,n) , Bνi−1,n

) m∑
k=1

pk(χT (νi−1,n))bk(IBνi−1,n∈U − IBνi−1,n∈D),
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with bk = k(2k − 1 + 2η)−1. We see that M
(1)
i (n) is not conditionally centered. So, a direct

use of the conditional expectation does not enable us to derive the limit. Consequently, we

approximate M
(1)
i (n) by the sum of two centered terms plus a bias term. Let

M
(2)
i (n) = −αn

(1− 2η)

2
Ċx

(T (νi−1,n) , Bνi−1,n

)
(IBνi,n

∈U − IBνi,n
∈D).

We have

EHn
α2
n(i−1)

[M
(2)
i (n)]

= −αn
(1− 2η)

2
Ċx

(T (νi−1,n) , Bνi−1,n

)(
1− 2

m∑
k=1

pk(χT (νi−1,n))bk

)
(IBνi−1,n∈U − IBνi−1,n∈D).

It follows that

�α−2
n u�∑
i=1

(
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

)
= oP (1) +

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[M
(1)
i (n)]

+
(1− 2η)

2
αn

�α−2
n u�−1∑
i=1

(
Ċx(T (νi,n), Bνi,n)− Ċx(T (νi−1,n), Bνi−1,n)

)
(IBνi,n∈U − IBνi,n∈D).

Using the fact that Ċx

(T (νi,n) , Bνi,n

)
is equal to

Ċx

(T (νi−1,n) , Bνi−1,n

)
+

C̈xt

(T (νi−1,n) , Bνi−1,n

)
σ2

(T (νi−1,n) , Bνi−1,n

)
B2

νi−1,n

Δνi−1,n + C̈xx

(T (νi−1,n) , Bνi−1,n

)
ΔBνi−1,n +R

(2)
i,n (νi−1,n)

and that

EHn
α2
n(i−1)

[ΔBνi−1,nIBνi,n∈U ] = −EHn
α2
n(i−1)

[ΔBνi−1,nIBνi,n∈D]

= αn

m∑
k=1

pk(χT (νi−1,n))bk(k − 1 + 2η)

together with Lemma 9 in [10], we deduce that

(1− 2η)

2
αn

�α−2
n u�−1∑
i=1

(
Ċx(T (νi,n), Bνi,n)− Ċx(T (νi−1,n), Bνi−1,n)

)
(IBνi,n

∈U − IBνi,n
∈D)

tends in probability to Lu defined by

Lu = (1− 2η)

∫ 〈X〉θu

0
C̈xx (T (v) , Bv)

m∑
k=1

pk(χT (v))bk(k − 1 + 2η)ϕ
(
χT (v)

)
dv.
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Therefore,
∑�α−2

n u�
i=1 M

(1)
i (n) + Lu is equal to

�α−2
n u�∑
i=1

([
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

]
+

[
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

])
+ oP (1) .

So, we define

K̃
(2)
i (n) =

[
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

]
+

[
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

]
.

Finally L
(2)
αn,t + Lft has the same limit as

∑Nαn,t

i=1 K̃
(2)
i (n) .

The following lemma is intended to replace Lemma 10 in [23].
Lemma 6.7. For ε > 0, as n→∞, we have

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K̃
(2)
i (n))2I{|K̃(2)

i (n)|>ε}]
P→ 0.

Proof. It is easy to see that

|K̃(2)
i (n) | ≤ cαn.

Using together the Cauchy–Schwarz and Markov inequalities, we get

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K̃
(2)
i (n))2I{|K̃(2)

i (n)|>ε}] ≤ cε
−1α5/2

n .

Let

K̃(2) (n)u =

�α−2
n u�∑
i=1

K̃
(2)
i (n) .

The following lemma is intended to replace Lemma 12 in [23].
Lemma 6.8. As n→∞, we have

〈K̃(2)(n), Z(n)〉u P→ (1− 2η)

∫ 〈X〉θu

0
Ċx (T (v) , Bv)

m∑
k=1

pk(χT (v))akϕ
(
χT (v)

)
dv,

where ak = bk (k − 1 + 2η) .
Proof. Note that 〈K̃(2)(n), Z(n)〉u is equal to

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[
K̃

(2)
i (n)ΔBνi−1,n

]
.

We have

EHn
α2
n(i−1)

[
K̃

(2)
i (n)ΔBνi−1,n

]
= EHn

α2
n(i−1)

[
M

(1)
i (n)ΔBνi−1,n

]
+ EHn

α2
n(i−1)

[
M

(2)
i (n)ΔBνi−1,n

]
.
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First,

EHn
α2
n(i−1)

[
M

(1)
i (n)ΔBνi−1,n

]
= Ċx

(T (νi−1,n) , Bνi−1,n

)
EHn

α2
n(i−1)

[
(ΔBνi−1,n)

2Di,n

]
and

EHn
α2
n(i−1)

[
(ΔBνi−1,n)

2Di,n

]
= α2

n(1− 2η)

m∑
k=1

akpk(χT (νi−1,n)).

It follows that

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[
M

(1)
i (n)ΔBνi−1,n

]
P→ (1− 2η)

∫ 〈X〉θu

0
Ċx (T (v) , Bv)

m∑
k=1

pk(χT (v))akϕ
(
χT (v)

)
dv.

Second,

EHn
α2
n(i−1)

[
M

(2)
i (n)ΔBνi−1,n

]
= −αn

(1− 2η)

2
Ċx

(T (νi−1,n) , Bνi−1,n

)
EHn

α2
n(i−1)

[
ΔBνi−1,n(IBνi,n∈U − IBνi,n∈D)

]
= −α2

n(1− 2η)Ċx

(T (νi−1,n) , Bνi−1,n

) m∑
k=1

pk(χT (νi−1,n))ak(IBνi−1,n∈U − IBνi−1,n∈D),

and so, by using the same arguments as in Lemma 12 in [23],

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[
M

(2)
i (n)ΔBνi−1,n

] P→ 0.

The following lemma is intended to replace Lemma 12 in [23].
Lemma 6.9. As n→∞, we have

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K̃
(2)
i (n))2]

P→ (1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bkϕ
(
χT (v)

)
dv.

We have

(K̃
(2)
i (n))2 =

[
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

]2
+

[
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

]2
+2

(
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

)(
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

)
.

(i) We have

EHn
α2
n(i−1)

[(M
(1)
i (n))2] = α2

n(1− 2η)2Ċ2
x

(T (νi−1,n) , Bνi−1,n

) m∑
k=1

pk(χT (νi−1,n))bk
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and

(
EHn

α2
n(i−1)

[M
(1)
i (n)]

)2
= α2

n(1− 2η)2Ċ2
x

(T (νi−1,n) , Bνi−1,n

)(
m∑

k=1

pk(χT (νi−1,n))bk

)2

.

It follows that

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

)2]
P→ (1− 2η)2

∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

m∑
k=1

pk(χT (v))ckϕ
(
χT (v)

)
dv,

with ck = (k − 1 + 2η)(2k − 1 + 2η)−1.
(ii) Note that

EHn
α2
n(i−1)

[(M
(2)
i (n))2] = α2

n

(1− 2η)2

4
Ċ2
x

(T (νi−1,n) , Bνi−1,n

)
and

(
EHn

α2
n(i−1)

[M
(2)
i (n)]

)2
= α2

n

(1− 2η)2

4
Ċ2
x

(T (νi−1,n) , Bνi−1,n

)(
1− 2

m∑
k=1

pk(χT (νi−1,n))bk

)2

.

Consequently,

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

)2]
P→ (1− 2η)2

∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

m∑
k=1

pk(χT (v))ckϕ
(
χT (v)

)
dv.

(iii) We have

EHn
α2
n(i−1)

[M
(1)
i (n)M

(2)
i (n)]

= −αn
(1− 2η)

2
Ċ2
x

(T (νi−1,n) , Bνi−1,n

)
EHn

α2
n(i−1)

[Di,nΔBνi−1,n(IBνi,n∈U − IBνi,n∈D)]

= α2
n

(1− 2η)2

2
Ċ2
x

(T (νi−1,n) , Bνi−1,n

)
×

m∑
k=1

pk(χT (νi−1,n))bk (k − 1 + 2η) (IBνi−1,n∈U − IBνi−1,n∈D)

and

EHn
α2
n(i−1)

[M
(1)
i (n)]EHn

α2
n(i−1)

[M
(2)
i (n)]

= α2
n

(1− 2η)2

2
Ċ2
x

(T (νi−1,n) , Bνi−1,n

) m∑
k=1

pk(χT (νi−1,n))bk

(
1− 2

m∑
k=1

pk(χT (νi−1,n))bk

)
.
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Therefore,

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(
M

(1)
i (n)− EHn

α2
n(i−1)

[M
(1)
i (n)]

)(
M

(2)
i (n)− EHn

α2
n(i−1)

[M
(2)
i (n)]

)]
P→ −(1− 2η)2

2

∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

(
1− 2

m∑
k=1

pk(χT (v))bk

)
ϕ
(
χT (v)

)
dv.

(iv) Finally,

�α−2
n u�∑
i=1

EHn
α2
n(i−1)

[(K̃
(2)
i (n))2]

P→ (1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

m∑
k=1

pk(χT (v))ckϕ
(
χT (v)

)
dv

+(1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

m∑
k=1

pk(χT (v))ckϕ
(
χT (v)

)
dv

− (1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bk

(
1− 2

m∑
k=1

pk(χT (v))bk

)
ϕ
(
χT (v)

)
dv

= (1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))bkϕ
(
χT (v)

)
dv.

We now use the decompositions6 introduced in Theorem IX.7.3 in [14]. By Lemma 8 in
[23],

〈Z(n)〉u P→ 〈Z〉u = 〈X〉θu =

∫ θu

0
X2

vσ
2
vdv =

∫ u

0
ϕ−1 (χθs) ds

=

∫ u

0

m∑
k=1

pk (χθs) k (k − 1 + 2η) ds

= :

∫ u

0
v2sds.

Moreover,

〈K̃(2)(n), Z(n)〉u P→ (1− 2η)

∫ 〈X〉θu

0
Ċx (T (v) , Bv)

m∑
k=1

pk(χT (ν))
k(k − 1 + 2η)

2k − 1 + 2η
ϕ
(
χT (v)

)
dv

=

∫ u

0
(1− 2η)Ċx (θs,Xθs)

m∑
k=1

pk (χθs)
k(k − 1 + 2η)

2k − 1 + 2η
ds =:

∫ u

0
usv

2
sds

6Note that a few typo errors seem to appear in the mentioned version of [14].
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and

〈K̃(2)(n)〉u P→ (1− 2η)2
∫ 〈X〉θu

0
Ċ2
x (T (v) , Bv)

m∑
k=1

pk(χT (v))
k

(2k − 1 + 2η)
ϕ
(
χT (v)

)
dv

=

∫ u

0
(1− 2η)2Ċ2

x (θs,Xθs)

m∑
k=1

pk (χθs) bkds =:

∫ u

0
(u2sv

2
s + w2

s)ds.

It follows that

v2s = ϕ−1 (χθs) ,

u2s = (1− 2η)2Ċ2
x (θs,Xθs)

(
m∑
k=1

pk (χθs)
k(k − 1 + 2η)

2k − 1 + 2η

)2

ϕ2 (χθs) ,

w2
s = (1− 2η)2Ċ2

x (θs,Xθs)ϕ (χθs)

(
m∑
k=1

pk (χθs)
k

(2k − 1 + 2η)
ϕ−1 (χθs)

−
(

m∑
k=1

pk (χθs)
k(k − 1 + 2η)

2k − 1 + 2η

)2
⎞⎠ .

The quantity w2
s is positive since

k − 1 + 2η

2k − 1 + 2η
<

√
k − 1 + 2η

2k − 1 + 2η
< 1,

and, by the Cauchy–Schwarz inequality,(
m∑
k=1

pk (χθs)
k
√
k − 1 + 2η√

2k − 1 + 2η

)2

≤
(

m∑
k=1

pk (χθs)
k

(2k − 1 + 2η)

)(
m∑
k=1

pk (χθs) k(k − 1 + 2η)

)
.

We set b
(2)
s = us and (c

(2)
s )2 = w2

s . The proof of Theorem 4.2 follows from Theorem IX.7.3 in
[14] and by using the same arguments as in Lemma 15 in [23].

6.4. Proof of Theorem 4.3.

First component: L
(3,1)
α,t . Let us recall that

L
(3,1)
αn,t =

N
(l)
αn,t∑
i=1

∫ τ
(l)
i,n

τ
(l)
i−1,n

(
Ċx(u,Xu)− Ċx(τ

(l)
i−1,n,Xτ

(l)
i−1,n

)
)
dXu.

Lemma 6.10. As n→∞, we have

(αnlαn)
2N

(l)
αn,t

P→ 〈X〉t .
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Proof. We have

(αnlαn)
2N

(l)
αn,t = (αnlαn)

2
∑

ν
(l)
i,n≤〈X〉t

1.

The result follows by using the same arguments as those in Lemmas 1, 3, and 4 in [23].

The proof of the stable convergence in law of (αnlαn)
−1 L

(3,1)
αn,t in Theorem 4.3 is proved in

the same way as in Theorem 4.1 by using the previous lemma and by replacing αn by αnlαn

(when needed).

Second component: L
(3,2)
α,t . Recall that

L
(3,2)
αn,t =

N
(l)
αn,t∑
i=1

Ċx(τ
(l)
i−1,n,Xτ

(l)
i−1,n

)(ΔX
τ
(l)
i−1,n

−ΔP
τ
(l)
i−1,n

).

The proof of the stable convergence in law of lαnL
(3,2)
αn,t in Theorem 4.3 is proved by using the

same arguments as in Theorem 4.2 by choosing m = lαn and pm (χt) = 1 for all t.

Third component: L
(3,3)
α,t . Recall that

L
(3,3)
αn,t =

∫ t

τ
(l)

N
(l)
α,t

Ċx (u,Xu) dXu − Ċx

⎛⎝τ (l)
N

(l)
α,t

,X
τ
(l)

N
(l)
α,t

⎞⎠⎛⎝Pt − Pτ
(l)

N
(l)
α,t

⎞⎠ .

The proof of the convergence in probability of
(
lαn ∨ (αnlαn)

−1 )L(3,3)
αn,t results from the fact

that ∣∣∣∣∣∣
⎛⎝Xt −Xτ

(l)

N
(l)
αn,t

⎞⎠−
⎛⎝Pt − Pτ

(l)

N
(l)
αn,t

⎞⎠∣∣∣∣∣∣ ≤ cαn.

6.5. Proof of Theorem 4.4. When lαn = α
−1/2
n , we have lαn = (αnlαn)

−1. So one has to

consider the stable convergence in law of lαn(L
(3,1)
αn,t +L

(3,2)
αn,t ). The proof of Theorem 4.4 follows

by using the same type of arguments as previously. Remark that the quadratic covariation

between L
(3,1)
t and L

(3,2)
t is null.
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Option Pricing in Hilbert Space-Valued Jump-Diffusion Models Using Partial
Integro-Differential Equations∗

Peter Hepperger†

Abstract. Hilbert space-valued jump-diffusion models are employed for various markets and derivatives. Ex-
amples include swaptions, which depend on continuous forward curves, and basket options on stocks.
Usually, no analytical pricing formulas are available for such products. Numerical methods, on the
other hand, suffer from exponentially increasing computational effort with increasing dimension of
the problem, the “curse of dimension.” In this paper, we present an efficient approach using partial
integro-differential equations. The key to this method is a dimension reduction technique based
on a Karhunen–Loève expansion, which is also known as proper orthogonal decomposition. Using
the eigenvectors of a covariance operator, the differential equation is projected to a low-dimensional
problem. Convergence results for the projection are given, and the numerical aspects of the im-
plementation are discussed. An approximate solution is computed using a sparse grid combination
technique and discontinuous Galerkin discretization. The main goal of this article is to combine the
different analytical and numerical techniques needed, presenting a computationally feasible method
for pricing European options. Numerical experiments show the effectiveness of the algorithm.

Key words. Hilbert space-valued stochastic analysis, infinite-dimensional jump diffusion, partial integro-
differential equation, proper orthogonal decomposition, basket options, electricity swaps
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1. Introduction.

Pricing with partial differential equations. The pricing of options written on a single asset by
means of partial differential equations (PDEs) is a well-studied problem. Efficient numerical
solutions have been proposed not only for the classical Black–Scholes setting but also for
Lévy-driven processes (cf., e.g., [24, 12, 13] and the references therein). Due to the jump part,
an additional nonlocal term occurs when using Lévy models. Thus, partial integro-differential
equations (PIDEs) have to be solved instead of plain PDEs.

The pricing problem becomes much more involved when the derivative (e.g., a basket
option) depends on more than one asset. PIDE methods have recently been extended to such
multidimensional settings [28, 36]. The main problem here is the exponentially increasing
computational effort for high-dimensional problems. While this curse of dimension can be
reduced effectively by applying sparse grid discretizations, numerically feasible dimensions
n are still moderate, usually n ≤ 10. On the other hand, real world products often imply
much higher dimensional equations. In fact, derivatives (e.g., swaptions) may even depend on
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a continuum of “assets” and thus be infinite dimensional. This makes dimension reduction
techniques an interesting tool. To motivate the subsequently presented techniques, consider
the following example, which naturally arises in energy markets.

Motivating example: Electricity swaptions. Since the liberalization of many European elec-
tricity markets during the 1990s, producers, consumers, and speculators have traded in elec-
tricity on energy exchanges. The Scandinavian Nordpool, the European Energy Exchange
(EEX) in Germany, and the Amsterdam Power Exchange (APX) are the largest European
trading centers for electricity. Traded products include spot, forward, and futures contracts
and options on these. The most liquidly traded underlyings are contracts of futures type.
These are agreements traded at time t for a constant delivery of 1 MW of electricity over a
certain future period of time [T1, T2], while in return a fixed rate F (t;T1, T2) is paid during
this delivery period. These products are also called electricity swaps. The relation of spot
and forward prices is not clearly defined for electricity due to its nonstorability [3, 4, 6]. This
difficulty can be avoided by directly modeling the forward curve under a risk neutral measure
[1, 20], similar to the Heath–Jarrow–Morton approach for bond markets. For every maturity
u ∈ [T1, T2], let

S(t, u) := lim
v→u

F (t;u, v)

be the corresponding value of the forward curve at time t ≤ u. In practice, the forward
curve is constructed from a discrete set of available market prices [5]. Several authors propose
exponential additive forward curve models of diffusion or jump-diffusion type [7, 20], i.e.,

X(t, u) =

∫ t

0
γ(s, u)ds +

nW∑
k=1

∫ t

0
σk(s, u)dWk(s) +

nJ∑
k=1

∫ t

0

∫
R

ηk(s, u)y M̃k(dy, ds),

S(t, u) = S(0, u) exp (X(t, u)) ,

(1.1)

where Wk are scalar Brownian motions and M̃k are compensated random jump measures, all
of them independent. Assuming a constant interest rate r ≥ 0, a European call option on the
swap F (T ;T1, T2) with strike rate K and maturity T ≤ T1 has the discounted price

V (t) = e−rTE
[
(T2 − T1) (F (T ;T1, T2)−K)+

∣∣∣Ft

]
= e−rT (T2 − T1)E

[(∫ T2

T1

w(u;T1, T2)S(T, u)du −K
)+ ∣∣∣Ft

]

at time t ≤ T , where
w(u;T1, T2) = e−ru

/ ∫ T2

T1

e−rsds

is a deterministic, nonnegative discounting factor. In general, there is no explicit representa-
tion for the probability density of the integral term inside the conditional expectation. This
makes pricing more difficult than in the one-dimensional standard setting. One possible valu-
ation method is to use log-normal approximation formulas [9]. These are fast but sometimes
give poor results in the presence of jumps. Numerical Monte Carlo simulations, on the other
hand, are precise but rather time consuming since they converge slowly. In the present work,
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we will discuss an efficient numerical approximation method which is based on solving Hilbert
space-valued PIDEs and dimension reduction techniques.

Outline of the article. Both basket options and options depending on forward curves can
be viewed as special cases of Hilbert space-valued problems. The main goal of this article is
to present an efficient method for pricing European options on such derivatives. In section 2,
we state the general model and hypotheses for our approach. The corresponding Hilbert
space-valued PIDE for pricing European options is derived in section 2.3. This PIDE can
be approximated with finite-dimensional equations. To this end, we apply Karhunen–Loève
approximation, which is closely related to proper orthogonal decomposition and factor analy-
sis. In section 3, the dimension reduction method is described. We show how to construct an
optimal set of approximating basis functions by solving an eigenvector problem. This basis
set is then used to transform the PIDE, and the main results of this work are presented.
After proving existence and uniqueness, convergence results and error bounds are given for
the solutions of the approximating problems. In section 4, we discuss how to perform the
dimension reduction numerically, using a Galerkin approach and the sparse grid combination
technique. Finally, we apply the pricing method to test problems (a basket option and an
electricity swaption) and demonstrate the efficiency of the method with numerical experiments
in section 5.

2. Hilbert space-valued jump diffusion. We now state the Hilbert space-valued model
used throughout this article. For a definition of stochastic processes and integration in Hilbert
spaces with respect to Brownian motion, see, e.g., [15, 22]. An overview of Poisson random
measures in Hilbert spaces can be found in [17], and the Lévy case is treated in [25]. Infinite-
dimensional stochastic analysis and its applications to interest-rate theory and Heath–Jarrow–
Morton models are presented in [10].

2.1. Exponential additive model. Let D ⊂ R
m and let μD be a measure on D. Then

H := L2(D,μD)

is a separable Hilbert space. For every h ∈ H, we denote the corresponding norm by

‖h‖H :=

√∫
D

[
h(u)

]2
μD(u).

For electricity swaptions, we choose D = [T1, T2], and μD = λD is the Lebesgue measure.
Then H can be interpreted as the space of forward curves on the delivery period D. For
basket options, we choose D to be a finite (though possibly large) index set with n entries,
each index corresponding to one asset. The measure μD is then simply the counting measure,
and the norm ‖·‖H is the Euclidean norm on R

n.

Consider the H-valued exponential-additive stochastic model

X(t) =

∫ t

0
γ(s) ds +

∫ t

0
σ(s) dW (s) +

∫ t

0

∫
H
[η(s)](ξ) M̃ (dξ, ds),

S(t) = S(0) exp (X(t))

(2.1)
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for t ∈ [0, T ], with initial value S(0) ∈ H. Subsequently, we will write f(t, u) := [f(t)](u)
for every f : [0, T ] → H, u ∈ D, and similarly g(t, h) := [g(t)](h) for every g : [0, T ] →
L(H,H), h ∈ H. The exponential function in the model is defined pointwise, i.e., S(t, u) =
S(0, u) exp (X(t, u)) for a.e. u ∈ D. The diffusion part is driven by an H-valued Wiener
process W whose covariance is described by a symmetric, nonnegative definite trace class
operator Q. The driving process M̃ for the jump part is the compensated random measure of
an H-valued compound Poisson process

J(t) =

N(t)∑
i=1

Yi,

which is independent of W . Here, N denotes a Poisson process with intensity λ, and Yi ∼ P Y

(i = 1, 2, . . .) are independent and identically distributed (i.i.d.) on H. The corresponding
Lévy measure is denoted by ν = λP Y . Further, denote by L(H,H) the space of all bounded
linear operators on H and let γ : [0, T ] → H, σ : [0, T ] → L(H,H), and η : [0, T ] → L(H,H)
be deterministic functions. In particular, this model generalizes the electricity swaption model
(1.1) driven by a sum of scalar processes.

The following hypothesis is assumed to hold throughout this article. For an introduction
to time-dependent Bochner spaces, such as L2(0, T ;H), see [16, Chap. 5.9].

Assumption 2.1. Suppose that the second exponential moment of the jump distribution Y
exists:

E[e2‖Y ‖H ] =
∫
H
e2‖ξ‖HP Y (dξ) <∞.

Assume further that ‖η(t)‖L(H,H) ≤ 1 for a.e. t ∈ [0, T ], γ ∈ L2(0, T ;H), and σ ∈ L2(0, T ;
L(H,H)).

Under Assumption 2.1,
(
X(t)

)
t≥0

is an additive process with finite activity and finite
expectation. This simplifies notation, since no truncation of large jumps is needed in the
characteristic function.

Theorem 2.2. The process
(
X(t)

)
t≥0

is square-integrable:

(2.2) sup
0≤t≤T

E
[‖X(t)‖2H

]
<∞.

Proof. The definition of the process
(
X(t)

)
t≥0

yields

E
[‖X(t)‖2H

] ≤ 3E

[∥∥∥∥∫ t

0
γ(s) ds

∥∥∥∥2
H

+

∥∥∥∥∫ t

0
σ(s) dW (s)

∥∥∥∥2
H

+

∥∥∥∥∫ t

0

∫
H
η(s, ξ) M̃ (dξ, ds)

∥∥∥∥2
H

]
.

We now apply three different results to the three integrals on the right-hand side. For the
first one, we use the basic properties of Bochner integrals and Jensen’s inequality to obtain∥∥∥∥∫ t

0
γ(s) ds

∥∥∥∥2
H

≤
∫ t

0
‖γ(s)‖2H ds ≤ ‖γ‖2L2(0,T ;H) .
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By the definition of the integral with respect to H-valued Gaussian processes and the results
from [15, eqs. (4.8) and (4.10)], we have

E

∥∥∥∥∫ t

0
σ(s) dW (s)

∥∥∥∥2
H

≤ (trQ)E

∫ t

0
‖σ(s)‖2L(H,H) ds = (trQ) ‖σ‖2L2(0,T ;L(H,H)) ,

where trQ denotes the trace of the covariance operator ofW . Finally, from Young’s inequality
and [18, Prop. 3.3] we get

E

[∥∥∥∥∫ t

0

∫
H
η(s, ξ) M̃ (dξ, ds)

∥∥∥∥2
H

]
≤ C

∫ t

0

∫
H
‖η(s, ξ)‖2H ν(dξ)ds

≤ CλT
∫
H
‖y‖2H P Y (dy).

Combining the above estimates and employing Assumption 2.1 yields (2.2), since the right-
hand side in each estimate is independent of t.

Theorem 2.3. The characteristic function of X(t) is given by

(2.3) E
[
ei〈X(t),h〉H ] = exp

[
i

〈∫ t

0
γ(s)ds, h

〉
H

− 1

2

〈[∫ t

0
σ(s)Qσ∗(s)ds

]
(h), h

〉
H

+

∫ t

0

∫
H

(
ei〈η(s,ξ),h〉H − 1− i 〈η(s, ξ), h〉H

)
ν(dξ)ds

]
for every h ∈ H, where σ∗(s) is the adjoint operator of σ(s).

Proof. The drift γ is deterministic, and so the first term on the right-hand side of (2.3)
is trivial. Since we have finite second moments by Theorem 2.2, we may apply [22, Thm. 4]
to obtain the characteristic function of the diffusion and jump parts. It remains to verify the
expression for the covariance operator of the diffusion. Applying [15, Prop. 4.13] yields

E

[〈∫ t

0
σ(s)dW (s), h1

〉
H

〈∫ t

0
σ(s)dW (s), h2

〉
H

]
=

〈[∫ t

0
σ(s)Qσ∗(s) ds

]
(h1), h2

〉
H

for every h1, h2 ∈ H. The integral on the right-hand side is a Bochner integral with values in
L(H,H).

2.2. Equivalent exponential Lévy model. As already stated, the main goal of this article
is pricing European options depending on S(T ) = S0 exp

(
X(T )

)
. Since by definition the

payoff of such an option depends only on the value of X at time t = T , the characteristic
function of X(T ) completely determines the price of the product. Therefore, it is possible to
construct a (time homogeneous) Lévy process

(
XL(t)

)
t≥0

which produces the same terminal

distribution and thus the same price (cf. [31, Chap. 11]). We denote the Borel sets on H by
B(H) and the indicator function of a set B ∈ B(H) by χB . The Lévy–Khinchin triplet of the
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Lévy process is given by

AL(h1, h2) =
1

T

〈[∫ T

0
σ(s)Qσ∗(s) ds

]
(h1), h2

〉
H

,(2.4)

γL =
1

T

∫ T

0
γ(t)dt,

νL(B) =
1

T

∫ T

0

∫
H
χB

(
η(t, ξ)

)
ν(dξ) dt for B ∈ B(H),

where AL : H ×H → R is a bilinear covariance operator, γL ∈ H, and νL is a finite activity
Lévy measure on H. Note that the resulting characteristic function of XL at time t = T is
identical to (2.3).

Let I = {1, 2, . . . ,dimH}, if H has finite dimension, or I = N otherwise. In order to
obtain an explicit Lévy representation for X(T ), define

QL :

{
H → H,

h �→ 1
T

[∫ T
0 σ(s)Qσ∗(s) ds

]
(h).

This is a symmetric nonnegative definite operator with finite trace, since, by construction and
by the proof of Theorem 2.2, we have∑

l∈I
〈QLpl, pl〉H =

∑
l∈I

1

T
E

[〈∫ t

0
σ(s)dW (s), pl

〉
H

〈∫ t

0
σ(s)dW (s), pl

〉
H

]

=
1

T
E

∥∥∥∥∫ t

0
σ(s)dW (s)

∥∥∥∥2
H

≤ (trQ) ‖σ‖2L2(0,T ;L(H,H))

for every orthonormal basis (pl)l∈I of H. Consequently, the operator QL is compact by [15,
Prop. C.3] and, in particular, a trace class operator. By [14, Thm. 1.2.1], there is a unique
Gaussian probability measure with mean 0 and covariance operator QL. Moreover, there is a
corresponding QL-Wiener process by [15, Prop. 4.2], which we denote by WL.

In addition, we introduce the H-valued compound Poisson process

JL(t) =

N(t)∑
i=1

YL,i,

where YL,i ∼ P YL are i.i.d. random variables with values in H, and

P YL(YL,i ∈ B) =
1

T

∫ T

0

∫
H
χB

(
ηk(t, ξ)

)
ν(dξ) dt

for every Borel set B ∈ B(H). The random measure corresponding to JL is denoted by ML

and its compensated version by M̃L. Combined, we obtain the Lévy process

XL(t) = Γ t+WL(t) +

∫ t

0

∫
H
ζM̃L(dζ, ds),
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with the same distribution as X at t = T . The last two summands are H-martingales. We
will use this model subsequently in place of (2.1), since it is completely equivalent with respect
to European option pricing.

Due to the existence of second moments (Theorem 2.2), the bounded linear covariance
operator

(2.5) CX :

{
H → H ′ ∼= H,

h �→ E
[〈XL(T )− E[XL(T )], h〉H 〈XL(T )− E[XL(T )], ·〉H

]
is well defined, and E[XL(T )] = ΓT . For notational convenience, define the centered process

ZL(t) := XL(t)− E[XL(t)] = XL(t)− Γt, t ∈ [0, T ].

The following theorem gives a summary of the properties of CX .

Theorem 2.4. The operator CX defined in (2.5) is a symmetric and nonnegative definite
trace class operator (and thus compact).

Proof. Since CX is a covariance operator, it is symmetric and nonnegative definite by
definition. It remains to prove that the trace of CX is finite. To this end, let (pl)l∈I be an
arbitrary orthonormal base of H. Then, by dominated convergence,

tr CX =
∑
l∈I
〈CXpl, pl〉H =

∑
l∈I

E
[
〈ZL(T ), pl〉2H

]
= E

[∑
l∈I
〈ZL(T ), pl〉2H

]
= E

[
‖ZL(T )‖2H

]
<∞

holds. We use [15, Prop. C.3] again to conclude that CX is compact and thus a trace class
operator.

We denote the eigenspace of CX corresponding to eigenvalue 0 by E0(CX). Its orthogonal
complement E0(CX)⊥ is the linear span of all eigenvectors corresponding to positive eigenval-
ues. This is the subspace of H to which the centered process ZL is restricted almost surely,
since

E
[〈ZL(t), h〉2H

]
= 0 for every h ∈ E0(CX) and a.e. t ≥ 0.

Finally, in analogy to the requirement of a nonvanishing volatility in one-dimensional
jump-diffusion models, an assumption on the QL-Wiener process WL is needed.

Assumption 2.5. Assume that the restriction of QL to the subspace E0(CX)⊥ ⊂ H is
positive definite, i.e.,

〈QLh, h〉H > 0 for every h ∈ E0(CX)⊥\{0}.

This means that ZL has a nonvanishing Brownian component for all directions in H, which
are not almost surely orthogonal to the trajectory of the process. This is necessary for the
coercivity property (G̊arding’s inequality) of the PDE which we are going to derive in the
next section.
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2.3. Hilbert space-valued PIDE. We consider a European option depending on the value
of S at time t = T . Since S(T ) is a deterministic function of X(T ), and X(T ) is distributed
like XL(T ) = ΓT + ZL(T ), we may equivalently consider a European option whose payoff G
is a function of ZL. Hence, if z ∈ H is the value of ZL at time t, the value V of the option at
time t ≤ T , discounted to time 0, is described by

(2.6) V (t, z) := e−rTE
[
G(z + ZL(T − t))

]
.

Note that V is a martingale under the risk neutral measure. In this section, an Itô formula
for Hilbert space-valued random variables and the martingale property of V are employed to
derive a PIDE for V .

First, let us recall the definition of derivatives on Hilbert spaces. We denote by DzV (t, z) ∈
L(H,R) and D2

zV (t, z) ∈ L(H,H) continuous linear operators such that

V (t, z + ζ) = V (t, z) + [DzV (t, z)](ζ) +
1

2

〈
[D2

zV (t, z)](ζ), ζ
〉
H
+ o(‖ζ‖2H)

for every ζ ∈ H. It is often convenient to identify D2
zV (t, z) with a bilinear form on H ×H,

setting

[D2
zV (t, z)](ζ1, ζ2) :=

〈
[D2

zV (t, z)](ζ1), ζ2
〉
H
.

The partial derivative with respect to time is denoted with ∂tV (t, z). We assume the following
regularity condition for V , which is, in particular, a prerequisite for Itô’s formula. However,
note that this hypothesis is not necessary for the convergence results in section 3.4.

Assumption 2.6. Suppose that V ∈ C1,2((0, T ) ×H,R) ∩ C([0, T ] ×H,R); i.e., V is con-
tinuously differentiable with respect to t and twice continuously differentiable with respect to
z. Moreover, assume that the operator norms

∥∥D2
zV (t, z)

∥∥, ‖DzV (t, z)‖, and ‖∂tV (t, z)‖ are
bounded.

As a direct consequence of this assumption, V satisfies the Lipschitz condition

|V (t, z) − V (t, z + ζ)| ≤ KV ‖ζ‖H for every ζ ∈ H

with constant KV := sup(s,y)∈[0,T ]×H ‖DzV (s, y)‖. We are now able to calculate the stochastic
dynamics of V using Itô’s formula.

Theorem 2.7. The discounted price V given by (2.6) satisfies

dV (t, ZL(t))

= ∂tV (t, ZL(t−)) dt+ 1

2
tr
([
D2

zV (t, ZL(t−))
]
QL

)
dt

+

∫
H

{
V (t, ZL(t−) + ζ)− V (t, ZL(t−))−

[
DzV (t, ZL(t−))

]
(ζ)
}
νL(dζ) dt

+DzV (t, ZL(t−)) dWL(t) +

∫
H

[
V (t, ZL(t−) + ζ)− V (t, ZL(t−))

]
M̃L(dζ, dt).

(2.7)
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Proof. By Itô’s formula [22, Thm. 3], we obtain

V (t, ZL(t))

= V (0, ZL(0)) +

∫ t

0
∂tV (s, ZL(s−))ds

+
1

2

〈〈∫ ·

0
D2

zV (s, ZL(s−)) dWL(s) ; WL(·)
〉〉

t

+

∫ t

0
DzV (s, ZL(s−)) dZL(s)

+
∑

0≤s≤t

[
V (s, ZL(s−) + ΔZL(s))− V (s, ZL(s−))− [DzV (s, ZL(s−))](ΔZL(s))

]
,

(2.8)

where 〈〈X ; Y 〉〉 denotes the predictable quadratic covariation of 〈X,Y 〉H .
We first calculate the covariation. From [15, Cor. 4.14], we know that

E

〈∫ t2

t1

D2
zV (s, ZL(s−))dWL(s),WL(t2)−WL(t1)

〉
H

=

∫ t2

t1

tr
([
D2

zV (s, ZL(s−))
]
QL

)
ds

for every 0 ≤ t1 ≤ t2. Consequently, by independence of the increments of WL, we get

(2.9)

〈〈∫ ·

0
D2

zV (s, ZL(s−)) dWL(s) ; WL(·)
〉〉

t

=

∫ t

0
tr
([
D2

zV (s, ZL(s−))
]
QL

)
ds.

For the next term in (2.8), we use the dynamics of ZL to obtain∫ t

0
DzV (s, ZL(s−))dZL(s)

=

∫ t

0
DzV (s, ZL(s−))d

[
WL(s) +

∫ s

0

∫
H
ζM̃L(dζ, ds2)

]
=

∫ t

0
DzV (s, ZL(s−)) dWL(s)

+

∫ t

0
DzV (s, ZL(s−)) d

⎡⎣ ∑
0≤s2≤s

ΔZL(s2)−
∫ s

0

∫
H
ζ νL(dζ) ds2

⎤⎦ .
(2.10)

A theorem for interchanging linear operators and Bochner integrals [16, App. E, Thm. 8]
yields

(2.11)

∫ t

0
DzV (s, ZL(s−)) d

[∫ s

0

∫
H
ζ νL(dζ) ds2

]
=

∫ t

0

∫
H

[
DzV (s, ZL(s−))

]
(ζ) νL(dζ) ds.

Plugging (2.9), (2.10), and (2.11) into the Itô dynamics (2.8) finishes the proof.
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In order to get a slightly more explicit form of the trace expression in (2.7), let (pl)l∈I be
an arbitrary orthonormal basis of H. By definition of the trace, this yields

tr
([
D2

zV (t, ZL(t−))
]
QL

)
=
∑
l∈I

[
D2

zV (t, ZL(t−))
](
QLpl, pl

)
.

Theorem 2.8. The discounted price V of a European option with payoff G(ZL(T )) at ma-
turity T satisfies the PIDE

−∂tV (t, z) =
1

2

∑
l∈I

[
D2

zV (t, z)
]
(QLpl, pl)

+

∫
H

{
V (t, z + ζ)− V (t, z) − [DzV (t, z)

]
(ζ)
}
νL(dζ),

(2.12)

with terminal condition
V (T, z) = e−rTG(z),

for a.e. t ∈ (0, T ), z ∈ E0(CX)⊥.
Proof. We employ Theorem 2.7. The penultimate term in (2.7),∫ t

0
DzV (s, ZL(s−)) dWL(s),

is a martingale by [15, Thm. 4.12]. In order to show that the integral with respect to the
compensated Poisson measure is a martingale too, we apply [29, Thm. 3.11]. The prerequisite
for this theorem is a strong integrability condition, which is satisfied due to [29, Thm. 3.12],
since ∫ t

0

∫
H
E
∣∣∣V (s, ZL(s−) + ζ)− V (s, ZL(s−))

∣∣∣ νL(dζ)ds ≤ t ∫
H
KV ‖ζ‖H νL(dζ) <∞.

The remaining integral terms in (2.7) are continuous in t and of finite variation. Conse-
quently, the martingale property of V , together with the fact that continuous martingales of
finite variation are almost surely constant [27, Thm. 27], yields the PIDE.

3. Dimension reduction for the PIDE. The main goal of this section is to introduce
a low-dimensional approximation of the H-valued process XL. To this end, the Karhunen–
Loève expansion of XL(T ) is used, which is in fact identical to proper orthogonal decomposition
(POD). It is also closely related to principal component analysis (which is commonly used for
data analysis) and factor analysis (which uses additional error terms in the decomposition).
All of these methods are based on the construction of a small set of orthogonal basis elements
which can be used to approximate XL in some L2-norm. For an overview of POD methods
in the context of deterministic differential equations, see [21]. An introduction to Karhunen–
Loève expansions of stochastic processes can be found in [23, Chap. 37]. Numerical aspects
of the method and most of the theory needed here are presented in [32]. After deriving the
low-dimensional approximating PIDE, we will show existence and uniqueness of a solution.
Finally, we study convergence of the calculated option prices and give error estimates.
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3.1. Karhunen–Loève approximation for jump diffusion. While principal component
analysis and factor analysis are usually applied to analyze empirical data, we apply the
Karhunen–Loève method directly to our model. The dimension reduction takes place in
the state space of the previously H-valued process. Let us now give a mathematically precise
formulation of what is meant by “approximating XL(T ).”

Definition 3.1. A sequence of orthonormal elements pl ∈ H = L2(D), l ∈ I, is called a
POD basis for XL(T ) if it solves the minimization problem

min
〈pi,pj〉H=δij

E

⎡⎣∥∥∥∥∥XL(T )−
(
E[XL(T )] +

d∑
l=1

pl 〈ZL(T ), pl〉H
)∥∥∥∥∥

2

H

⎤⎦
for every d ∈ I.

In other words, a POD basis is a set of deterministic orthonormal functions such that we
expect the projection of the random vector ZL(T ) = XL(T )−E[XL(T )] ∈ H onto the first d
elements of this basis to be a good approximation.

Remark 3.2. Since we are interested in pricing European options, we include only the value
of XL at time t = T in Definition 3.1. However, we could approximate the whole trajectory
of X as well by using the difference to its projection in the space L2(0, T ;H). This may be
useful for pricing path-dependent derivatives, which we will study separately in future work.

Approximation with a POD basis is equivalent to using the partial sum of the first d
elements of a Karhunen–Loève expansion, which itself is closely connected to the eigenvector
problem of the covariance operator CX defined in (2.5). The following theorem shows that the
eigenvectors of CX are indeed the POD basis we are looking for.

Theorem 3.3. A sequence of orthonormal eigenvectors (pl)l∈I of the operator CX , ordered
by the size of the corresponding eigenvalues μ1 ≥ μ2 ≥ · · · ≥ 0, solves the maximization
problem

max
〈pi,pj〉H=δij

d∑
l=1

〈CXpl, pl〉H

for every d ∈ I. The maximum value is

d∑
l=1

〈CXpl, pl〉H =

d∑
l=1

μl.

Moreover, the eigenvectors are a POD basis in the sense of Definition 3.1, and the expectation
of the projection error is

E

⎡⎣∥∥∥∥∥ZL(T )−
d∑

l=1

pl 〈ZL(T ), pl〉H
∥∥∥∥∥
2

H

⎤⎦ =

dimH∑
l=d+1

μl.

Proof. This is an application of [32, Thm. 2.7 and Prop. 2.8].
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3.2. Projection on d-dimensional subspace. Subsequently, let (pl)l∈I and (μl)l∈I denote
the orthonormal basis and eigenvalues from Theorem 3.3. Further, let

Ud := span{p1, p2, . . . , pd} ⊂ H
be the d-dimensional subspace spanned by the eigenvectors corresponding to the largest eigen-
values. We will assume that d ≤ dim(E0(CX)⊥), i.e., μ1 ≥ · · · ≥ μd > 0, as there is no need
to include eigenvectors of the covariance operator corresponding to eigenvalue 0. Indeed, one
may project the PIDE to E0(CX)⊥ without any error, since the projection of ZL on E0(CX)
is almost surely 0. Define the projection operator

Pd :

{
H → Ud

∼= R
d,

z �→ x :=
∑d

l=1 〈z, pl〉H pl.

We identify Ud with R
d via the isometry

(3.1) ι :

{(
Ud, ‖·‖H

) → (
R
d, ‖·‖),

x �→ (〈x, pl〉H)dl=1 .

In particular, we identify Pdz with the sequence (〈z, pl〉H)dl=1.
We introduce the finite-dimensional approximation

(3.2) Vd(t, x) := e−rTE
[
G(x+ PdZL(T − t))

]
for x ∈ Ud

∼= R
d. We do not assume a finite-dimensional analogue of the regularity assumption

(Assumption 2.6), which is hard to verify in practice. Instead, we impose a simple condition
on the payoff function.

Assumption 3.4. Suppose that the payoff function G is Lipschitz continuous on H with
Lipschitz constant KG.

Remark 3.5. Assumption 3.4 is not necessarily satisfied for payoffs depending on the expo-
nential of ZL(T ), e.g., a plain call option depending on S(T ). However, this can be remedied
easily. In the specific case of a call, we can apply a put-call parity. More generally, every
payoff can be truncated to a bounded domain (e.g., by multiplying with a smooth cutoff
function). A payoff function has finite expectation; hence the error introduced by truncation
is arbitrarily small. Since we have to localize the computational domain for any numerical
calculation anyway (compare section 4.2), Assumption 3.4 is no substantial restriction.

The following theorem shows that Assumption 3.4 is actually enough to recover the reg-
ularity of Vd.

Theorem 3.6. The finite-dimensional approximation Vd : [0, T ] × Ud → R defined in (3.2)
satisfies Vd ∈ C1,2((0, T ) × Ud,R) ∩ C([0, T ] × Ud,R). Moreover, the partial derivatives
∂xiVd(t, x), ∂xi∂xjVd(t, x), and ∂tVd(t, x) are functions of at most linear growth in ‖x‖ for
i, j = 1, . . . , d.

Proof. The first step of the proof is to show the existence of a smooth density for the
random variable PdZL(t) for a.e. t ≥ 0. To achieve this, a fast decay condition for its charac-
teristic function

μ̂t(x) := E
(
ei〈x,PdZL(t)〉

)
∈ C
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is needed. We have

E
[
〈PdWL(t), x1〉Ud

〈PdWL(t), x2〉Ud

]
=

d∑
k,l=1

〈x1, pk〉Ud
〈x2, pl〉Ud

E
[
〈WL(t), pk〉H 〈WL(t), pl〉H

]
= 〈QLx1, x2〉H

for every x1, x2 ∈ Ud. Thus, the covariance operator for the diffusion part of PdZL is given
by PdQLPd. The same arguments as in the proof of Theorem 2.3 yield

μ̂t(x) = exp

(
−1

2
t
〈PdQLx, x

〉
Ud

+

∫ t

0

∫
H

(
e
i〈Pdη(s,ζ),x〉Ud − 1− i 〈Pdη(s, ζ), x〉Ud

)
νL(dζ)ds

)
for every x ∈ Ud. Using Assumptions 2.1 and 2.5, this implies

|μ̂t(x)| ≤ exp

(
−1

2
t 〈PdQLx, x〉H

+

∫ t

0

∫
H

∣∣ei〈Pdη(s,ζ),x〉H − 1− i 〈Pdη(s, ζ), x〉H
∣∣ νL(dζ)ds)

≤ exp

[
t

(
−1

2
C1 ‖x‖2 + C2 ‖x‖+C3

)]
,

with positive constants C1, C2, and C3 depending on d. In particular, we have

lim
‖x‖→∞

‖x‖n μ̂t(x) = 0 for every n ∈ N.

Similarly, we obtain

|∂αx μ̂t(x)| ≤ pα(t, ‖x‖) |μ̂t(x)| and |∂αx ∂tμ̂t(x)| ≤ qα(t, ‖x‖) |μ̂t(x)|

for every multiindex α ∈ N
d
0, where pα and qα are polynomials. Consequently, for every

t ∈ (0, T ), μ̂t and ∂tμ̂t are elements of the Schwartz space

S(Rd) =
{
f ∈ C∞(Rd) : lim

‖x‖→∞
‖x‖n ∂αf(x) = 0 for every α ∈ N

d
0, n ∈ N0

}
.

From [31, Prop. 28.1], we know that PdZL(t) has a density gt ∈ C∞(Rd), given by

gt(y) := (2π)−d

∫
Rd

e−i〈y,x〉μ̂t(x) dx.

Moreover, by the properties of μ̂t and [35, Thm. V.2.8], we obtain gt ∈ S(Rd) and ∂tgt ∈ S(Rd).
Finally, note that Vd can be written as a convolution of the payoff and the density:

Vd(t, x) = e−rT

∫
Rd

G(x+ y)gT−t(y)dy = e−rT

∫
Rd

G(y)gT−t(y − x)dy.
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Due to Assumption 3.4, we have |G(y)| ≤ |G(0)| +KG ‖y‖. Hence, for x ∈ Ud, t ∈ (0, T ), we
may compute

∂αxVd(t, x) = −e−rT

∫
Rd

G(x+ y) ∂αx gT−t(y) dy

and

∂tVd(t, x) = −e−rT

∫
Rd

G(x+ y) ∂tgT−t(y) dy

for every α ∈ N
d
0. This proves continuity of the derivatives. In addition, we obtain

|∂αxVd(t, x)| ≤ e−rT

∫
Rd

|G(y + x)| |∂αx gT−t(y)| dy

≤
∫
Rd

(|G(0)| +KG ‖x‖+KG ‖y‖) |∂αx gT−t(y)| dy

for every α ∈ N
d
0. Similarly,

|∂tVd(t, x)| = e−rT

∣∣∣∣∫
Rd

G(y)∂tgT−t(y − x)dy
∣∣∣∣

≤
∫
Rd

(|G(0)| +KG ‖x‖+KG ‖y‖) |∂tgT−t(y)| dy.

Thus, the growth condition is shown.
It remains to prove that Vd is also continuous for t → T . This is, however, a direct

consequence of the fact that
lim
t→0

E
[‖ZL(t)‖H

]
= 0,

and thus

|Vd(t, x)− Vd(T, x)| ≤ e−rTE
[|G(x+ PdZL(T − t))−G(x)|

]
≤ C E[‖ZL(T − t)‖H

]→ 0 for t→ T.

Theorem 3.7. The function Vd defined in (3.2) is a classical solution of the finite-dimen-
sional PIDE

−∂tVd(t, x) = 1

2

d∑
l=1

[
D2

xVd(t, x)
]
(PdQLpl,Pdpl)

+

∫
H

{
Vd(t, x+ Pdζ)− Vd(t, x)−

[
DxVd(t, x)

]
(Pdζ)

}
νL(dζ),

(3.3)

with terminal condition
Vd(T, x) = V (T, x) = e−rTG(x),

for t ∈ (0, T ), x ∈ Ud.
Proof. The stochastic dynamics of PdZL(t) are given by

d(PdZL(t)) = d(PdWL(t)) +

∫
H
Pdζ M̃L(dζ, ds).
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The process PdWL(t) =
∑d

i=1 〈WL(t), pl〉H pl is a d-dimensional Wiener process with correla-

tion operator PdQLPd. The integral with respect to M̃L can easily be rewritten as an integral
over Ud, since the integrand depends only on the projection Pdζ ∈ Ud.

We apply the finite-dimensional version of Itô’s formula (cf., e.g., [11, Thm. 8.18]) to
Vd(t,PdZL(t)). In contrast to the Hilbert space-valued case, bounded derivatives are not
needed here. The properties of Vd shown in Theorem 3.6 are sufficient. By the same arguments
as in the proof of Theorem 2.7, we obtain the following:

dVd(t,PdZL(t))

= ∂tVd dt+
1

2
tr
([
D2

xVd
]PdQLPd

)
dt

+

∫
H

{
Vd(t,PdZL(t−) + Pdζ)− Vd(t,PdZL(t−))−

[
DxVd

]
(Pdζ)

}
νL(dζ) dt

+DxVd d
(PdWL(t)

)
+

∫
H

[
Vd(t,PdZL(t−) + Pdζ)− Vd(t,PdZL(t−))

]
M̃L(dζ, dt).

Proceeding exactly as in the proof of Theorem 2.8, we obtain (3.3).
The PIDE in Theorem 3.7 is of course nothing more than a projected version of the

PIDE (2.12) for V . The derivatives DxVd(t, x) ∈ L(Rd,R) and D2
xVd(t, x) ∈ L(Rd,Rd) can be

interpreted as a vector and a matrix, respectively. In particular, we have

d∑
l=1

[
D2

xVd(t, x)
]
(PdQLpl,Pdpl) =

d∑
l=1

d∑
i,j=1

∂xi∂xjVd(t, x) 〈PdQLpl, pj〉H 〈Pdpl, pi〉H

=
d∑

i,j=1

〈QLpi, pj〉H ∂xi∂xjVd(t, x).

To simplify notation, we define coefficients

aij :=
1

2
〈QLpi, pj〉H .

The PIDE can thus be written as

−∂tVd(t, x) =
d∑

i,j=1

aij ∂xi∂xjVd(t, x)

+

∫
H

{
Vd(t, x+ Pdζ)− Vd(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xiVd(t, x)

}
νL(dζ).

(3.4)

Moreover, we have the following ellipticity property.
Theorem 3.8. The matrix (aij)

d
i,j=1 is symmetric positive definite.

Proof. This is a direct consequence of Assumption 2.5, since

d∑
i,j=1

yi aij yj =
1

2

〈
QL

d∑
i=1

yipi,

d∑
i=1

yipi

〉
H

for every y ∈ R
d, and ‖∑d

i=1 yipi‖H = ‖y‖ due to the isometry (3.1).
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3.3. Variational formulation and uniqueness. We have already shown that the approxi-
mation Vd(t, x) is a classical solution of the finite-dimensional PIDE (3.4). In this section, we
introduce the corresponding variational formulation in appropriate Hilbert spaces and show
uniqueness of the weak solution. Since the payoff is not necessarily bounded, and thus not
an element of L2(Rd), we use weighted Sobolev spaces instead. Let ρθ be the weight function
with exponential decay defined by

ρθ :

{
R
d → R,

x �→ e−θ
√

1+‖x‖2 ,

with a parameter θ > 0. We define the scalar products

〈ψ,ϕ〉L2,θ :=

∫
Rd

ψ(x)ϕ(x)ρθ(x) dx

and

〈ψ,ϕ〉Hk,θ :=
∑

α∈Nd
0 , |α|≤k

〈∂αψ, ∂αϕ〉L2,θ

for functions ψ,ϕ : Rd → R. The corresponding Hilbert spaces are denoted by L2,θ(Rd) and
Hk,θ(Rd) (cf., e.g., [2, Chap. 3.1]). In particular, we consider the Gelfand triplet

H1,θ(Rd) ↪→ L2,θ(Rd) ↪→ (
H1,θ(Rd)

)′
.

Finally, we define the bilinear form

a(ψ,ϕ) :=

∫
Rd

d∑
i,j=1

aij ∂xiψ(x) ∂xjϕ(x) ρθ(x) dx +

∫
Rd

d∑
i=1

bi(x) ∂xiψ(x)ϕ(x) ρθ(x) dx

−
∫
H

∫
Rd

[
ψ(x+ Pdζ)− ψ(x)−

d∑
i=1

〈ζ, pi〉H ∂xiψ(x)

]
ϕ(x) ρθ(x) dx νL(dζ)

(3.5)

for ψ,ϕ ∈ H1,θ(Rd), where

bi(x) := −
θ
∑d

j=1 aijxj√
1 + ‖x‖2

for i = 1, . . . , d.

The coefficients bi(x) satisfy ∣∣bi(x)∣∣ ≤ θ d max
j=1,...,d

|aij|

and are therefore bounded on Rd.

We can now state a variational form of (3.4).

Theorem 3.9. The function Vd defined in (3.2) satisfies

(3.6) −〈∂tVd(t, ·), ϕ〉L2,θ + a(Vd(t, ·), ϕ) = 0
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for every ϕ ∈ H1,θ(Rd) and a.e. t ∈ (0, T ), with terminal condition

(3.7) Vd(T, x) = G(x).

Proof. We first note that Vd(t, ·) ∈ H2,θ(Rd) and ∂tVd(t, ·) ∈ L2,θ(Rd) hold for every
t ∈ (0, T ) due to Theorem 3.6. Starting with (3.4), partial integration yields

−〈∂tVd(t, x), ϕ〉L2,θ

= −
d∑

i,j=1

aij

∫
Rd

∂xiVd(t, x) ∂xj (ϕρθ)(x) dx

+

∫
H

∫
Rd

[
Vd(t, x+ Pdζ)− Vd(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xiVd(t, x)

]
ϕ(x)ρθ(x) dx νL(dζ).

Using the product rule, we obtain

d∑
j=1

aij∂xj (ϕρθ)(x) =

d∑
j=1

aij∂xjϕ(x) ρθ(x) + ϕ(x)
−θ∑d

j=1 aijxj√
1 + ‖x‖2

ρθ(x).

Theorem 3.10. The bilinear form a defined in (3.5) is continuous and satisfies G̊arding’s
inequality. More precisely, there are constants C > 0, c1 ≥ 0, and c2 > 0 (possibly depending
on d) such that

(3.8) |a(ψ,ϕ)| ≤ C ‖ψ‖H1,θ ‖ϕ‖H1,θ

and

(3.9) a(ψ,ψ) + c1 ‖ψ‖2L2,θ ≥ c2 ‖ψ‖2H1,θ

hold for every ψ,ϕ ∈ H1,θ(Rd).

Proof. First, we show continuity. From the definition of a, we obtain

|a(ψ,ϕ)|

≤
d∑

i,j=1

|aij |
∫
Rd

∣∣∂xiψ(x)
∣∣∣∣∂xjϕ(x)

∣∣ρθ(x) dx+
d∑

i=1

∫
Rd

∣∣bi(x)∣∣∣∣∂xiψ(x)
∣∣∣∣ϕ(x)∣∣ρθ(x) dx

+

∫
H

∫
Rd

∣∣ψ(x+ Pdζ)
∣∣∣∣ϕ(x)∣∣ρθ(x) dx νL(dζ) + ∫

H

∫
Rd

∣∣ψ(x)∣∣∣∣ϕ(x)∣∣ρθ(x) dx νL(dζ)
+

d∑
i=1

∫
H

∫
Rd

∣∣〈ζ, pi〉H ∣∣∣∣∂xiψ(x)
∣∣∣∣ϕ(x)∣∣ρθ(x) dx νL(dζ).
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The Cauchy–Schwarz inequality yields

|a(ψ,ϕ)| ≤ max
i,j=1,...,d

|aij |
d∑

i,j=1

∥∥∂xiψ
∥∥
L2,θ

∥∥∂xjϕ
∥∥
L2,θ

+ max
i=1,...,d

∥∥bi∥∥L∞

d∑
i=1

∥∥∂xiψ
∥∥
L2,θ

∥∥ϕ∥∥
L2,θ + 2

∫
H

∥∥ψ∥∥
L2,θ

∥∥ϕ∥∥
L2,θ νL(dζ)

+

∫
H

d∑
i=1

∣∣〈ζ, pi〉H ∣∣∥∥∂xiψ
∥∥
L2,θ

∥∥ϕ∥∥
L2,θ νL(dζ).

Due to ∫
H
νL(dζ) <∞ and

∫
H
‖ζ‖H νL(dζ) <∞,

this proves (3.8).
For the proof of G̊arding’s inequality, we start with the ellipticity property from Theo-

rem 3.8. For every ζ ∈ R
d,

d∑
i,j=1

aij ζi ζj ≥ c
d∑

i=1

ζ2i

holds, with a constant c > 0. Hence

c

∫
Rd

d∑
i=1

∣∣∂xiψ(x)
∣∣2 ρθ(x) dx ≤ ∫

Rd

d∑
i,j=1

aij ∂xiψ(x)∂xjψ(x) ρθ(x) dx

= a(ψ,ψ) −
∫
Rd

d∑
i=1

bi(x) ∂xiψ(x)ψ(x) ρθ(x) dx

+

∫
H

∫
Rd

[
ψ(x+ Pdζ)− ψ(x)−

d∑
i=1

〈ζ, pi〉H ∂xiψ(x)

]
ψ(x) ρθ(x) dx νL(dζ).

The same calculations as in the proof of continuity above yield

c

d∑
i=1

∥∥∂xiψ
∥∥2
L2,θ ≤ a(ψ,ψ) + C1

d∑
i=1

∥∥∂xiψ
∥∥
L2,θ

∥∥ψ∥∥
L2,θ + C2

∥∥ψ∥∥2
L2,θ

≤ a(ψ,ψ) + C1

(
ε

2

d∑
i=1

∥∥∂xiψ
∥∥2
L2,θ +

d

2ε

∥∥ψ∥∥2
L2,θ

)
+ C2

∥∥ψ∥∥2
L2,θ ,

where we have used Young’s inequality in the last estimate. Choosing ε so small that

C1
ε

2
≤ 1

2
c

and setting

c1 =
1

2
c+

C1d

2ε
+C2 and c2 =

1

2
c

yields (3.9).
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With the following two theorems, we show that Vd is indeed the unique solution of the
PIDE. We start with a lemma requiring stronger regularity hypotheses for G. Afterwards, we
give a result for arbitrary Lipschitz continuous payoffs, including, in particular, call and put
options.

Lemma 3.11. Suppose that G ∈ H2,θ(Rd) has bounded first and second derivatives. Then
Vd is the unique solution of (3.6), with terminal condition (3.7), in the space W(0, T ) defined
by

W(0, T ) :=
{
f : Rd → R : f ∈ L2

(
0, T ; H1,θ), ∂tf ∈ L2

(
0, T ; (H1,θ(Rd))′

)}
.

Proof. The bilinear form a is continuous and satisfies G̊arding’s inequality by Theo-
rem 3.10. Therefore, the PIDE has a unique solution in the space W(0, T ) by [37, Thm. 26.1].
On the other hand, we know from Theorem 3.7 that Vd satisfies (3.6). It remains to prove
that Vd ∈ W(0, T ).

Using the same notation as in the proof of Theorem 3.6, we have

Vd(t, x) = e−rT

∫
Rd

G(x+ y)gT−t(y)dy,

where gT−t ∈ S(Rd) is the density of PdZL(T − t). Consequently,∫
Rd

V 2
d (t, x)ρθ(x) dx ≤

∫
Rd

(∫
Rd

(C1 + C2 ‖x‖+ C3 ‖y‖)gT−t(y) dy

)2

ρθ(x) dx.

Since ∫
Rd

‖x‖i ρθ(x) dx <∞ (i ∈ {1, 2}),
∫
Rd

gT−t(y) dy = 1,

and ∫
Rd

‖y‖ gT−t(y) dy = E
[‖PdZL(T − t)‖

]
<∞

hold for every t ∈ (0, T ), this implies Vd ∈ L2
(
0, T ; L2,θ(Rd)

)
. Moreover, we have

∂αxVd(t, x) = e−rT

∫
Rd

∂αG(x+ y) gT−t(y) dy

for every α ∈ N
d
0, |α| ∈ {1, 2}. Due to the boundedness of the derivatives of G, the following

holds: ∫
Rd

(
∂αxVd(t, x)

)2
ρθ(x) dx ≤ C

∫
Rd

(∫
Rd

gT−t(y) dy

)2

ρθ(x) dx = C

∫
Rd

ρθ(x) dx.

Consequently, Vd ∈ L2
(
0, T ; H2,θ(Rd)

)
. Since Vd satisfies the PIDE (3.4), its time derivative

∂tVd can be expressed in terms of its first and second spatial derivatives. Thus, we also have
∂tVd ∈ L2

(
0, T ; L2,θ(Rd)

)
, and the proof is finished.

Theorem 3.12. Let G satisfy Assumption 3.4. Then Vd is an element of the space W(0, T )
defined in Lemma 3.11 and the unique solution of (3.6) with terminal condition (3.7).
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Proof. The key of the proof is to approximate G with a sequence of smooth functions
to which Lemma 3.11 can be applied. To this end, let (ψn)n∈N ⊂ C∞

0 (Rd) be a sequence of
standard mollifiers with compact support. Define the convolution

Gn(x) :=

∫
Rd

G(x− y)ψn(y)dy ∈ C∞(Rd), x ∈ R
d.

Since G is by assumption Lipschitz, and thus uniformly continuous, the following uniform
approximation property holds by [16, Thm. C.6]:

∀ ε > 0 ∃N ∈ N : |Gn(x)−G(x)| ≤ ε for every n ≥ N, x ∈ R
d.

Moreover, for every ξ ∈ R
d and every multiindex α ∈ N

d
0, we have

|∂αGn(x+ ξ)− ∂αGn(x)| ≤
∫
Rd

|G(x+ ξ − y)−G(x− y)| |∂αψn(y)| dy

≤ KG ‖ξ‖
∫
Rd

|∂αψn(y)| dy.

Thus, in particular, the first and second derivatives of Gn are bounded for every n ∈ N.

Now let

V n
d (t, x) := e−rTE

[
Gn(x+ PdZL(T − t))

]
be the price function associated with payoff Gn. By Lemma 3.11, Vd ∈ W(0, T ) is the unique
solution of (3.4) with terminal condition V n

d (T, x) = Gn(x). Moreover, the PIDE with terminal

valueG(x) also has a unique solution, which we denote by Ṽd ∈ W(0, T ). From [37, Thm. 26.1],
we obtain

(3.10)
∥∥∥V n

d − Ṽd
∥∥∥
L2(0,T ;L2,θ)

≤ C ‖Gn −G‖L2,θ → 0 for n→∞.

On the other hand, by the proof of Lemma 3.11, we have Vd ∈ L2(0, T ; L2,θ) for every
payoff G satisfying Assumption 3.4. Thus, using the notation from the proof of Theorem 3.6,
we get

‖V n
d − Vd‖2L2(0,T ;L2,θ)

= e−rT

∫ T

0

∫
Rd

(∫
Rd

(
G(x+ y)−Gn(x+ y)

)
gT−t(y)dy

)2

ρθ(x) dx dt

≤ e−rT

∫ T

0

∫
Rd

(∫
Rd

|G(x+ y)−Gn(x+ y)| gT−t(y)dy

)2

ρθ(x) dx dt

→ 0 for n→∞.

(3.11)

Combining (3.10) and (3.11), we obtain Vd = Ṽd.
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3.4. Convergence of finite-dimensional approximation. We are interested in the con-
vergence of the finite-dimensional approximation Vd to the true price function V . The fair
price of the option is given by V (0, 0), since we assume the Lévy process ZL starts in 0. In
particular, we are looking for a pointwise convergence result.

Theorem 3.13. Let μ1 ≥ μ2 ≥ · · · ≥ 0 be the eigenvalues of the covariance operator CX
defined in (2.5). Then there exists a constant C > 0 such that

|Vd(0, 0) − V (0, 0)| ≤ C
√√√√dimH∑

l=d+1

μl.

Proof. By definition of V and Vd, we have

|Vd(0, 0) − V (0, 0)| = e−rT
∣∣E[G(ZL(T ))−G(PdZL(T ))

]∣∣
≤ e−rTE

[
KG ‖ZL(T )−PdZL(T )‖H

]
.

Since ‖·‖L1 ≤ C ‖·‖L2 for finite measure spaces, we may apply Theorem 3.3 to obtain

|Vd(0, 0) − V (0, 0)| ≤ C
√
E
[‖ZL(T )− PdZL(T )‖2H

]
= C

√√√√dimH∑
l=d+1

μl.

Depending on the properties of the covariance operator CX , bounds for the decay of the
eigenvalues μl can be found. To this end, we define the kernel

(3.12) K :

{
D ×D → R,

(u, v) �→ E
[
ZL(T, u)ZL(T, v)

]
,

where as before D ⊂ R
n and H = L2(D,μD). Then K is indeed the kernel of the covariance

operator CX , since by Fubini’s theorem∫
D

∫
D
K(u, v)h1(u)μD(du)h2(v)μD(dv) = E

[〈ZL(T ), h1〉H 〈ZL(T ), h2〉H
]

= 〈CXh1, h2〉H
for every h1, h2 ∈ H. Consequently,

CXh1(·) =
∫
D
K(·, v)h1(v)μD(dv).

Moreover, K is an element of L2(D ×D), since∫
D

∫
D
K2(u, v)μD(du)μD(du) ≤

∫
D

∫
D
E
[
ZL(T, u)

2
]
E
[
ZL(T, v)

2
]
μD(du)μD(du)

= E
[‖XL(T )− ΓT‖2H

]2
<∞

by Theorem 2.2. We now give a result for the eigenvalue decay, depending on the properties
of K.
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Theorem 3.14. Let D ⊂ R
m be a bounded Borel set and μD be the Lebesgue measure. If

the kernel K is piecewise Hk ⊗ L2 on D×D for a k ∈ N, then there exists a constant C such
that

μl ≤ C l−
k
d for every l ∈ I.

Moreover, if the kernel K is piecewise analytic, then there are constants C1, C2 such that

μl ≤ C1e
−C2l

1
d for every l ∈ I.

Proof. These results are shown in [32, Props. 2.18 and 2.21].
Remark 3.15. A precise definition of “piecewise Hk ⊗ L2” as used in the hypothesis of

Theorem 3.14 is given in [34, Def. 3.1]. The hypothesis of Theorem 3.14 is fulfilled for the
jump-diffusion model if the drift γ, the volatility σ, the Brownian covariance operator Q, and
the jump-dampening factors η satisfy corresponding piecewise smoothness criteria.

4. Numerical methods. In this section, methods for the numerical solution of the Euro-
pean option pricing problem are described. In particular, the computation of a suitable basis
for the dimension reduction described in the previous section is addressed. Moreover, we give
a short overview of the techniques needed to solve the resulting finite-dimensional PIDE.

4.1. Computation of the POD basis. As we have seen in section 3.1, the construction of
a POD basis for X(T ) can be reduced to the eigenvalue problem

CXpl = μlpl, l ∈ I,
with the covariance operator CX : H → H

′ ∼= H = L2(D,μD) defined in (2.5). In general,
the eigenvectors pl are not known analytically. However, it is possible to compute good
approximations numerically. For finite index sets D (basket options), the solution of the
symmetric eigenvalue problem can be performed by standard methods (e.g., QR-algorithm).
For all subsequent results, we will therefore assume the more complicated setting thatD ⊂ R

m

is a bounded Borel set and μD is the Lebesgue measure. This holds, e.g., for electricity
swaptions (with m = 1). In this case, some further approximation is needed to obtain a finite-
dimensional problem eventually. To this end, we employ a finite element discretization and
solve a projected eigenvalue problem. Convergence results for this technique can be shown
under certain regularity conditions on the covariance kernel K defined in (3.12). The general
theory of Galerkin approximations of Karhunen–Loève expansions is discussed in [32].

Let UΔx ⊂ H = L2(D,μD) be a finite element subspace with discretization parameter Δx.
For l = 1, . . . ,dimUΔx, the Galerkin approximations (μΔx

l , pΔx
l ) ⊂ R × Uh of the eigenpairs

(μl, pl) ⊂ R×H are, by definition, solutions of the following problem:

∀ϕ ∈ UΔx :
〈CXpΔx

l , ϕ
〉
H

=

∫
D

(∫
D
K(u, v)pΔx

l (v)μD(dv)

)
ϕ(u)μD(du)

!
= μΔx

l

〈
pΔx
l , ϕ

〉
H
.

This is equivalent to the eigenvalue problem

(4.1) PΔxCXPΔx p
Δx
l = μΔx

l pΔx
l ,
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where PΔx : H → UΔx is the projection operator onto the finite element subspace. The
operator PΔxCXPΔx is self-adjoint and compact due to the properties of the projection and
Theorem 2.4. The following theorem gives an error bound for the approximation of ZL(T )
obtained with this Galerkin method.

Theorem 4.1. Let the covariance kernel K defined in (3.12) be a piecewise smooth function.
Further, let UΔx ⊂ H be a finite element space of piecewise polynomials of degree q ∈ N, where
Δx denotes the mesh width of the regular triangulation. Finally, let μl be the true eigenvalues
of the covariance operator CX , and let pΔx

i be orthonormal solutions of the projected eigenvalue
problem (4.1). Then there exists a constant C such that

E

⎡⎣∥∥∥∥∥ZL(T )−
d∑

l=1

〈
ZL(T ), p

Δx
l

〉
H
pΔx
l

∥∥∥∥∥
2

H

⎤⎦ ≤ CΔx2q+1 +

dimH∑
l=d+1

μl

holds for every d ≤ dimUΔx.
Proof. The estimate is taken from [32, Prop. 3.3]. The necessary assumption [32, Ass. 3.1]

is satisfied due to the piecewise smoothness of the kernel and [34, Thm. 1.5].
Note that all the results from sections 3.2 and 3.3 are still valid when we use (pΔx

l )dl=1

instead of (pl)
d
l=1 if we replace Assumption 2.5 with the following hypothesis:

(4.2) 〈QLh, h〉H > 0 for every h ∈ span{pΔx
l , l = 1, . . . , d}\{0}.

In this case, we denote the unique solution of the corresponding finite-dimensional PIDE
(projected to span{pΔx

l , l = 1, . . . , d}) by V Δx
d .

Corollary 4.2. Let the hypotheses of Theorem 4.1 and (4.2) hold. Then there exists a con-
stant C > 0 such that

∣∣V Δx
d (0, 0) − V (0, 0)

∣∣ ≤ C
√√√√(Δx)2q+1 +

dimH∑
l=d+1

μl.

Proof. The estimate follows from Theorem 4.1 by exactly the same arguments as in the
proof of Theorem 3.13.

4.2. Numerical PIDE solution. In this subsection, we give an overview of the numerical
methods for solving the finite-dimensional PIDE (3.4). We will not go into details about
convergence results for PIDE solvers but refer to recent literature instead. Finite difference
methods for integro-differential equations are analyzed, e.g., in [12, 30], and finite elements
and wavelet compression techniques are described in [24, 36, 28].

Localization. We consider the PIDE (3.4) whose spatial domain is the whole of Rd. The
first step towards a numerical solution is therefore the localization to a bounded domain. To
this end, we restrict the spatial part of the equation to a d-dimensional cuboid

ΩR := [−R1, R1]× [−R2, R2]× · · · × [−Rd, Rd].

This simple domain can be described by a single vector R = (R1, . . . , Rd) ∈ R
d. The proba-

bilistic interpretation of this truncation is that we price a barrier option whose value is set to 0
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if the process ZL leaves ΩR at any time before maturity. Under polynomial growth conditions
for the payoff function G, one can show that the truncation error decreases exponentially with
‖R‖ (cf., e.g., [36, Thm. 3.3.2]). The error is of course higher if the solution is evaluated closer
to the boundary of ΩR.

Analysis of the dependence of the localization error on the truncation parameter in one-
dimensional problems shows that good results are achieved for R1 greater than a certain
multiple of the standard deviation of the jump-diffusion process at time T (cf., e.g., [11,
Fig. 12.1]). By construction of the POD basis (pl)

d
l=1, we have

〈CXpl, pl〉H = μl for l = 1, . . . , d.

Hence, the eigenvalues μl describe the variance in direction of the POD vectors. This suggests
an adaptive truncation strategy, setting

(4.3) Rl = C
√
μl, l = 1, . . . , d,

with a constant C > 0. This heuristic choice accounts for the decreasing variance in the
coordinate directions (compare Theorem 3.14). It results in smaller domains ΩR (compared
to cubic domains) and allows for more accurate discretization results using the same number
of grid points. We introduce artificial homogeneous Dirichlet boundary conditions and set

V h
d (t, x) = 0 for every t ∈ [0, T ], x ∈ ∂ΩR,

where ∂ΩR is the boundary of the domain.

Discretization. We will solve the PIDE using a vertical method of lines; i.e., we first dis-
cretize the spatial operators and apply some time stepping for ordinary differential equations
afterwards. Since we have already derived the variational formulation of the PIDE in Theo-
rem 3.9, we can directly apply a finite element method to approximate the spatial derivatives
in (3.6). Usually, finite elements have several advantages compared to finite differences. In
particular, they allow for an easy discretization of geometrically complex domains, adaptive
refinement, and higher-order approximations. Moreover, the theory of weak solutions allows
for lower regularity assumptions than the classical differential operator.

However, in the specific setting of option pricing, these arguments are only partly valid.
First, we may choose the shape of our computational domain arbitrarily due to localization.
As described in the previous paragraph, we truncate the domain to a d-dimensional cuboid.
Second, we have already proven that Vd is a smooth classical solution to (3.4). Moreover,
despite the simple shape of the domain, a significant overhead is needed to compute and store
the geometric information about finite elements.

Hence, we apply finite differences for the numerical experiments in section 5. We de-
fine a regular but anisotropic grid Gα on ΩR. The grid is described by a multiindex α =
(α1, . . . , αd) ∈ N

d, and the mesh size in each coordinate is given by hi := 2Ri/2
αi , i = 1, . . . , d.

The grid contains the points

x(β) :=
(−Ri + βihi

)d
i=1
∈ R

d, β ∈ {0, 1, . . . , 2α1} × · · · × {0, 1, . . . , 2αd}.
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The corresponding discretized subspace is denoted by Uh
d ⊂ Ud ⊂ H. The partial derivatives

are approximated by central differences as follows:

∂xiVd(t, x(β)) ≈
1

2hi

[
Vd
(
t, x(β + ei)

)− Vd(t, x(β − ei))],
where ei is the ith canonical unit vector. For the second derivatives, we have

∂xj∂xiVd(t, x(β)) ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

4hihj

[
Vd
(
t, x(β + ei + ej)

) − Vd(t, x(β + ei − ej)
)

− Vd
(
t, x(β − ei + ej)

)
+ Vd

(
t, x(β − ei − ej)

)]
, i �= j,

1
h2
i

[
Vd
(
t, x(β + ei)

)− 2Vd
(
t, x(β)

)
+ Vd

(
t, x(β − ei)

)]
, i = j.

The discretization of the nonlocal integral term will be addressed separately in the next
paragraph.

After applying the finite difference scheme for a sparse grid approximation in space, the
resulting system of ordinary differential equations is solved with an appropriate time stepping
scheme. Since the differential part of the PIDE is of parabolic type, we choose a discontin-
uous Galerkin method of order 1 for this purpose. Details on the topic (in particular, error
estimates) can be found in [33, Chap. 12]. Defining a partition 0 = t0 < · · · < tnT

= T of
[0, T ], we calculate a solution in the space

Sh
d := {v ∈ L2(0, T ;Uh

d ); vχ(tm−1,tm] ∈ Π1(tm−1, tm;Uh
d ), m = 1, . . . , nT },

where Π1(tm−1, tm;Uh
d ) is the space of polynomials of degree at most 1 having values in Uh

d .
This method yields a stable algorithm, allowing for large time steps even in the presence of
convection terms.

Nonlocal integral terms. One of the main difficulties when solving the PIDE is the nonlocal
nature of the integral term. In contrast to differential operators, this term involves the solution
on the whole of Rd. Since we have already introduced artificial zero boundary conditions, the
solution can easily be continued with 0 outside the truncated domain ΩR. However, numerical
quadrature formulas will in general lead to full matrices. This is contradictory to the essential
use of sparse matrices even for problems on relatively low-dimensional spaces. An efficient
way to reduce the number of nonzero matrix entries is by using wavelet compression schemes.
These make use of the fast decline of entries corresponding to wavelet basis functions with
larger distance of their supports. Entries close to 0 are then discarded (cf. the references given
at the beginning of this section).

Wavelets are the method of choice if the jump distributions in the additive model (2.1)
cover large parts of the domain. However, the examples we are going to examine in section 5
are of type (1.1), i.e., Hilbert space-valued jump diffusions with scalar driving processes.
Here, at every time t ∈ [0, T ], jumps are restricted to one-dimensional subspaces, spanned by
ηk(t) ∈ H. If the number of driving jump processes is low, a different approach is feasible,
too. Instead of wavelet compression, direct numerical quadrature (Gauß or Newton–Cotes
methods) can be applied. We will now have a closer look at this specific case.
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Let 0 = t0 < t1 < · · · < tNT
= T , NT ∈ N, be the time discretization grid. It is not

necessary to compute the Lévy measure νL defined in (2.4) explicitly. Instead, we define
measures

νL(tk, tl;B) :=
1

tl − tk

∫ tl

tk

∫
H
χB

(
η(s, ξ)

)
ν(dξ) ds,

νL(t;B) :=

∫
H
χB

(
η(t, ξ)

)
ν(dξ)

for any B ⊂ B(H), 0 ≤ k < l ≤ nT , and t ≥ 0. For each time step [tk, tk+1] in the method of
lines, we use integrals with respect to νL(tk, tk+1; ·), i.e., the equivalent Lévy measure for the
current time interval. We are looking for an approximation of the integral∫

H

[
Vd(t, x+ Pdζ)− Vd(t, x)−

d∑
i=1

〈ζ, pi〉H ∂xiVd(t, x)

]
νL(tk, tk+1; dζ)

=

∫
H
Vd(t, x+ Pdζ)νL(tk, tk+1; dζ)− λVd(t, x)

−
d∑

i=1

∂xiVd(t, x)

∫
H
〈ζ, pi〉H νL(tk, tk+1; dζ).

To reduce the computational effort for the method of lines, the time steps Δt are chosen
rather large. In order to nevertheless achieve sufficient accuracy for the approximation of the
above integrals, additional substeps of each interval [tk, tk+1] are introduced. Let ns ∈ N be
the number of substeps for each major time step. Then we have∫

H
Vd(t, x+ Pdζ)νL(tk, tk+1; dζ)

≈ 1

ns

ns∑
j=1

∫
H
Vd(t, x+ Pdζ) νL

(
tk + j

tk+1 − tk
ns

; dζ

)

=
λ

ns

ns∑
j=1

∫
H
Vd

(
t, x+ Pd

[
η

(
tk + j

tk+1 − tk
ns

, y

)])
P Y (dy)

for 0 ≤ k < nT . Similarly, we obtain∫
H
〈ζ, pi〉H νL(tk, tk+1; dζ) ≈ λ 1

ns

ns∑
j=1

∫
H

〈
η

(
tk + j

tk+1 − tk
ns

, y

)
, pi

〉
H

P Y (dy).

The integrals with respect to P Y can then be approximated with quadrature formulas.
This requires interpolation of the function at quadrature points, which are not necessarily
identical to grid points. Since we have assumed that jumps occur only along a relatively
small subspace of ΩR, only a small number of grid points is involved, and the corresponding
matrices remain sparse. The idea is illustrated in Figure 1 for a single jump process, where
P Y is defined on R and the jumps are given by η(t)y ∈ H.
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Figure 1. Grid points (on full grid) involved in the numerical quadrature of jump term integrals in the time
interval [t1, t2].

Sparse grids. Besides the nonlocality of the integral term, the exponentially increasing
computational complexity with increasing dimension d is the major numerical problem when
solving the PIDE. This curse of dimension can be broken by using sparse grids. A comprehen-
sive overview of this topic can be found in [8]. Figure 2 shows a sparse grid in two-dimensional
space.

In particular, we make use of the so-called combination technique [26]. Thus, we use a
standard PIDE solver on a series of full, regular, but anisotropic grids. Instead of using all
grids Gα with ‖α‖∞ ≤M ∈ N, only grids satisfying

(4.4) M ≤ ‖α‖1 ≤M + d− 1

for some M ∈ N are employed. Denote the approximation of Vd on the grid Gα by Ṽ α
d . An

approximation ṼM
d , corresponding to a sparse grid solution, can then be obtained by linear

combination as follows:

(4.5) Ṽ M
d (x) :=

d∑
k=1

(−1)k+1

(
d− 1

k − 1

) ∑
‖α‖1=M+d−k

Ṽ α
d .

Since artificial zero boundary conditions are applied, grid points on the boundary ∂ΩR do not
have to be included.
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Figure 2. Construction of sparse tensor product (left) and sparse grid without boundary points (right) in R
2.

Because of the anisotropic truncation of the domain introduced in (4.3), an equal number
of refinements in every coordinate would result in finer mesh widths for coordinates which are
in fact the least important ones. This mismatch can be remedied by introducing additional
constraints on the multiindex of grids used. In order to achieve similar mesh widths, we
demand

αi ≤M + ln

(
Ri

R1

)
/ ln(2), i = 1, . . . , d,

which is equivalent to 2αi ≤ 2M Ri
R1

. Since this yields a set of grids different from the one
described by condition (4.4) alone, the corresponding coefficients in (4.5) have to be modified.
For a detailed presentation of how to choose coefficients in anisotropic sparse grids, see [19].

5. Numerical experiments. In this section, we will examine the performance of the pre-
sented option pricing method. To this end, both the dimension reduction and the PIDE
solver have been implemented in C++. The program was applied to test problems which are
described in detail below.

5.1. Test problems.

Basket option. The first test problem we consider is a basket option on six assets. We
use a jump-diffusion model similar to that of [38]. The corresponding Hilbert space is H =
(R6, 〈·, ·〉2), where 〈·, ·〉2 denotes the Euclidean scalar product. The six-dimensional price
process S = (S1, . . . , S6) satisfies the dynamics

dSi(t)

Si(t)
= rdt+ σidWi(t) + η0i d[N0(t)− λ0t] + η1i d[Ni(t)− λit], i = 1, . . . , 6,
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where r = 0.05 is the constant risk-free interest rate. The scalar-valued Brownian motionsWi

are supposed to be correlated with correlation matrix

(ρij)
6
i,j=1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0.8 0.6 0.4 0.2 0
0.8 1 0.8 0.6 0.4 0.2
0.6 0.8 1 0.8 0.6 0.4
0.4 0.6 0.8 1 0.8 0.6
0.2 0.4 0.6 0.8 1 0.8
0 0.2 0.4 0.6 0.8 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

We set the volatilities to σi = 0.2, i = 1, . . . , 6. The processes N0 and Ni are independent
Poisson processes with intensities λ0 = λi = 1, describing jumps common for all assets and
independent jumps for individual assets, respectively. The discounted value of every asset
is thus a martingale under the risk neutral measure. The relative jump heights are set to
η0i = 0.2 and η1i = 0.05. We can write the value of each asset as the exponential of a Lévy
process as follows:

Si(t) = Si(0) exp

{(
r − 1

2
σ2i − η0i λ0 − η1i λ1

)
t+ σiW (t)

+ ln
(
1 + η0i (t)

)
N0(t) + ln

(
1 + η1i (t)

)
Ni(t)

}
, i = 1, . . . , 6.

We choose the initial value Si(0) =
100
6 , i = 1, . . . , 6, and strike

K = 100 · erT = E

[
6∑

i=1

Si(T )

]
.

The discounted price of the basket option with maturity T = 1.0 at time t ≤ T is

V (t) = e−rTE

⎡⎣( 6∑
i=1

Si(T )−K
)+ ∣∣∣Ft

⎤⎦ .
Electricity swaption. The second problem is an instance of the example described in sec-

tion 1, an option on an electricity swap. We use the exponential additive model given in (1.1).
The corresponding Hilbert space is H = L2([T1, T2], λ), where D = [T1, T2] is the delivery
period of the swap and λ is the Lebesgue measure. For the diffusive part of the model, we use
two factors, similar to as in [20]. The volatilities are given by

σ1(s, u) ≡ 0.15, σ2(s, u) = 0.3 e−1.4(u−s).

Moreover, we assume additional normally distributed jumps, which yield a Merton model. For
the jumps, we use a compound Poisson process with intensity λ1 = 12 and jump distribution
Y ∼ N (0.1, 0.1). The additional factor for dampening the jumps is

η1(s, u) = 0.5 − 0.5
u− T1
T2 − T1 .
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Since an electricity swap requires no payment before the delivery period starts, it is a mar-
tingale under the risk neutral measure. Thus, we need the following drift term (compare [11,
Chap. 8.4.1]):

γ(s, u) = −1

2

2∑
i=1

σ2i (s, u)− λ1
∫
R

(eη1(s,u)y − 1− η1(s, u)y)P Y (dy).

The risk-free interest rate is assumed to be constant at r = 0.05. We consider a monthly
swap maturing in one year, i.e., T = T1 = 1, T2 = T1 + 30/365. The initial forward curve at
time t = 0 is S0(u) ≡ 50, u ∈ [T1, T2], and the strike is K = 50. It remains to specify the
discretization of the delivery period [T1, T2]. As we have a continuous forward curve model,
we may use an arbitrary number of discretization points. On energy markets, monthly swaps
on electricity are usually based on daily prices. Thus we will use exactly n = 30 components.
We will further assume that there are 8 delivery hours per day. Setting ui = T1+(i− 1)T2−T1

30
for i = 1, . . . , 30, we obtain

V (t) = e−rT · 8 · 30 · E
⎡⎣( 30∑

i=1

w(ui;T1, T2)S(T, ui)−K
)+ ∣∣∣Ft

⎤⎦
for the discounted price of the swaption, without making any discretization error.

5.2. Results. Since no analytical solutions are available, a large number of Monte Carlo
(MC) simulations were performed for each test problem to obtain a precise solution. All errors
were computed using these MC reference values. In order to make use of the easily parallelized
methods (MC simulation as well as the sparse grid combination technique), the experiments
were run on a Linux workstation with six Opteron processors at 2.7 GHz.

Results for basket option. We first examine the number of POD components needed to
obtain a sufficiently good approximation. The eigenvalues μi of the covariance operator CX
defined in (2.5) are given in Table 1. They exhibit a strong decay, which is not uncommon (also
for real market data). The corresponding explained variability, defined by

∑i
j=1 λj /

∑6
j=1 λj ,

is also shown in the table.

Table 1
Basket option—Eigenvalues and explained variability.

i µi µi/µ1 Expl. var.

1 0.4490 1.0000 0.8096
2 0.0623 0.1389 0.9221
3 0.0177 0.0395 0.9541
4 0.0106 0.0237 0.9732
5 0.0079 0.0177 0.9875
6 0.0069 0.0154 1.0000

The computed POD components are displayed in Figure 3. They resemble those known
from fixed income markets. In particular, the first three basis vectors represent the typical
shift, tilt, and bend. Further components feature higher frequencies.
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Figure 3. Basket—The first four POD basis components.

We now examine the errors of the PIDE method. The “exact” reference solution used
here is the result from 107 MC simulations with a standard deviation of 0.0063 (estimated
from 100 MC series). It turns out that, due to the stable discontinuous Galerkin method,
the mesh size for the time variable has little influence on the PIDE results. Thus we do all
computations with fixed, equidistant time steps of size Δt = 1

10 . The spatial grid, on the other
hand, has considerable impact on the accuracy. Figure 4 displays the (signed) relative error
for different dimensions d of the projected problem. The number N := 2M is the maximal
number of discretization points in one coordinate and is always taken to be a power of 2. Two
effects can be observed here. For each fixed value of N , the method converges to a certain
limit when the dimension of the problem is increased. These limits, in turn, converge to the
exact solution with increasingly fine meshes. Thus, we might accidentally get a very precise
result for a low-dimensional computation on a coarse grid if the two errors (from dimension
and mesh) happen to cancel each other. In practice, both the dimension and the number
of grid points have to be chosen large enough in order to guarantee a precise result. In our
case, d = 4 and N = 28 are sufficient to obtain relative errors below 1%. Approximating the
basket value with a log-normal distribution (Lévy approximation), on the other hand, yields
a relative error of 3.1%.

Finally, we have a look at the computational time needed for the PIDE method. To this
end, we fix N = 29 and plot the error for various dimensions. Figure 5 displays the results;
both y-axes (for time and error) have a logarithmic scale. The error decreases approximately
exponentially with increasing dimension. The computational time, on the other hand, in-
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Figure 4. Basket—Relative error of PIDE method with different meshes.

creases exponentially. Note that the solution of the problem without dimension reduction
takes approximately 2 minutes, even though we use the sparse grid combination technique.
However, the increase of the projected problem dimension d by one increases the computa-
tional effort by only a factor of 4 to 5, despite the fact that we use up to 29 = 512 grid
points in each coordinate. A reasonably precise solution (in practice within the bounds of the
model error) can be computed within a few seconds. While this is slightly faster than the
MC method, it is not an extreme gain. The computational effort might be greatly reduced by
using more sophisticated grids, featuring more grid points around the origin and fewer close
to the boundary of the domain, which we will not consider here.

Results for electricity swaption. In the test case for electricity swaptions, two POD basis
components are already sufficient to explain almost 100% of the volatility, and the sum of the
remaining eigenvalues satisfies

∑∞
i=3 μi ≈ 0. This is of course due to the strong correlation

between the price changes for different maturities u ∈ [T1, T2], which makes the dimension
reduction technique a particularly well suited method for this type of derivative. The forward
curve defined on the delivery interval does not change its shape arbitrarily. The two POD
components accurately describe the possible shape changes in our (rather simple) test setting.
We are thus able to compute accurate prices by solving a two-dimensional PIDE.

Figure 6 displays the relative error and time of the PIDE method for different mesh widths.
As was to be expected, the computational effort increases exponentially in the number of grid
refinements (and thus linear in the total number of grid points). The relative error decreases
exponentially. However, in contrast to the basket option, a very accurate solution can be
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Figure 5. Basket—Relative error and computational time of PIDE method with at most N = 29 grid points
per coordinate.

 0.0001

 0.001

 0.01

 0.1

25 26 27 28 29 210
 0.001

 0.01

 0.1

 1

 10

re
la

tiv
e 

er
ro

r

tim
e 

[s
]

N

error
time

Figure 6. Swaption—Relative error and computational time of PIDE method for dimension d = 2.
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computed for the electricity swaption within a fraction of a second. This is made possible by
the very efficient dimension reduction from n = 30 to d = 2.

A comparison of the PIDE method, MC simulation, and the log-normal approximation is
displayed in Figure 7. The log-normal approximation yields a relative error of 3.5%, which
is by far the largest of all the methods. MC simulation yields very good results for 106 runs
and above. However, with n = 30 it takes considerably longer than in the case of the six-
dimensional basket. The standard deviation after 106 simulations is 0.4667 (estimated from
100 MC series). The PIDE solver is indeed the fastest and most accurate method for this
second test problem.
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Figure 7. Swaption—PIDE solutions (d = 2), MC simulations, and log-normal approximation.

6. Conclusion. In this article, numerical pricing of European options in Hilbert space-
valued jump-diffusion models is discussed. We have presented a feasible approach employing
PIDEs and a dimension reduction method based on Karhunen–Loève expansion. The PIDE
can be projected to an approximating low-dimensional equation by solving an eigenvalue prob-
lem. Existence, uniqueness, and convergence of the approximating solutions have been shown
based on the variational formulation of the PIDE. The numerical solution of the problem
is based on a sparse grid combination method for spatial discretization and a discontinuous
Galerkin time stepping method.

Numerical experiments have been performed for two applications: an electricity swaption
and a basket option. The swaption can be priced very efficiently with the presented algorithm,
which gives more accurate results in less time than MC simulation. For the basket option, the
PIDE method yields comparable performance to MC simulation, depending on the correlation
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of the assets. Using PIDEs, however, should have considerable advantages when pricing path-
dependent options or options driven by infinite activity Lévy models, both topics for future
research. In addition, future work will be concerned with adaptive and graded grids, further
improving the performance of the method.
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thesis, ETH Zürich, Zürich, Switzerland, 2009; available online from http://e-collection.ethbib.ethz.
ch/eserv/eth:41555/eth-41555-02.pdf.

[37] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, UK, 1987.
[38] G. Xu and H. Zheng, Approximate basket options valuation for a jump-diffusion model, Insurance Math.

Econom., 45 (2009), pp. 188–194.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. FINANCIAL MATH. c© 2010 Society for Industrial and Applied Mathematics
Vol. 1, pp. 490–522

Optimal Trade Execution and Absence of Price Manipulations in Limit Order
Book Models∗

Aurélien Alfonsi† and Alexander Schied‡

Abstract. We analyze the existence of price manipulation and optimal trade execution strategies in a model
for an electronic limit order book with nonlinear price impact and exponential resilience. Our main
results show that, under general conditions on the shape function of the limit order book, placing
deterministic trade sizes at trading dates that are homogeneously spaced is optimal within a large
class of adaptive strategies with arbitrary trading dates. This extends results from our earlier work
with A. Fruth. Perhaps even more importantly, our analysis yields as a corollary that our model
does not admit price manipulation strategies. This latter result contrasts the recent findings of
Gatheral [Quant. Finance, to appear], where, in a related but different model, exponential resilience
was found to give rise to price manipulation strategies when price impact is nonlinear.

Key words. liquidity risk, optimal portfolio liquidation, block trade execution, limit order book, market impact
model, price manipulation strategies
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1. Introduction. The problem of optimal trade execution is concerned with the optimal
acquisition or liquidation of large asset positions. In doing so, it is usually beneficial to split
up the large order into a sequence of partial orders, which are then spread over a certain
time horizon, so as to reduce the overall price impact and the trade execution costs. The
optimization problem at hand is thus to find a trading strategy that minimizes a cost criterion
under the constraint of overall order trade execution within a given time frame. There are
several reasons why studying this problem is interesting.

First, liquidity risk is one of the least understood sources of financial risk, and one of its
various aspects is the risk resulting from price impact created by trading large positions. Due
to the nonlinear feedback effects on dynamic trading strategies, market impact risk is probably
also among the most fascinating aspects of liquidity risk for mathematicians. The optimal
trade execution problem allows studying market impact risk in its purest form. Moreover, the
results obtained for this problem can serve as building blocks in a realistic analysis of more
complex problems such as the hedging of derivatives in illiquid markets.
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Second, the mathematical analysis of optimal trade execution strategies can help in the
ongoing search for viable market impact models. As argued by Huberman and Stanzl [14]
and Gatheral [12], any reasonable market impact model should not admit price manipulation
strategies in the sense that there are no “round trips” (i.e., trading strategies with zero balance
in shares) whose expected trading costs are negative. Since every round trip can be regarded
as the execution of a zero-size order, a solution of the optimal trade execution problem also
includes an analysis of price manipulation strategies in the model (at least as a limiting case
when the order size tends to zero).

In recent years, the problem of optimal trade execution was considered for various market
impact models and cost functions by authors such as Bertsimas and Lo [9], Almgren and
Chriss [6, 5], Almgren [4], Obizhaeva and Wang [16], Almgren and Lorenz [7], Schied and
Schöneborn [18], and Schied, Schöneborn, and Tehranchi [19], and by our joint papers with
A. Fruth [1, 2], to mention only a few.

Here we continue our analysis from [1, 2]. Instead of focussing on the two-sided limit
order book model in [2], our emphasis is now on a zero-spread market impact model that is
obtained from the one in [2] by collapsing the bid-ask spread. There are several advantages
to introducing this model. First, it is easier to analyze than the two-sided model, while it
still allows one to transfer results to the two-sided framework;1 see section 2.6. Second, most
other market impact models in the literature, such as those suggested by Almgren and Chriss
[6, 5] or Gatheral [12], do not include a bid-ask spread. Therefore, these models and their
features can be compared much better to our zero-spread model than to the two-sided model.
Third, it is easier to detect model irregularities, such as price manipulation strategies, in the
zero-spread model. In the two-sided model, such irregularities may not emerge on an explicit
level.

In our model, the limit order book consists of a certain distribution of limit ask orders at
prices higher than the current price, while for lower prices there is a continuous distribution
of limit buy orders. We consider a large trader who is placing market orders in this order
book and thereby shifts prices according to the volume of available limit orders. Since the
distribution of limit orders is allowed to be nonuniform, the price impact created by a market
order is typically a nonlinear function of the order size. In reaction to price shocks created
by market orders, there is a subsequent recovery of the price within a certain time span.
That is, the price evolution will exhibit a certain resilience. Thus, the price impact of a
market order will neither be completely instantaneous nor entirely permanent but will decay
exponentially with a time-dependent resilience rate. As in [2], we consider the following two
distinct possibilities for modeling the resilience of the limit order book after a large market
order: the exponential recovery of volume impact, or the exponential recovery of price impact.

This model is quite close to descriptions of price impact on limit order books found in
empirical studies such as Biais, Hillion, and Spatt [10], Potters and Bouchaud [17], Bouchaud
et al. [11], and Weber and Rosenow [20]. In particular, the existence of a strong resilience
effect, which stems from the placement of new limit orders close to the bid-ask spread, seems
to be a well-established fact, although its quantitative features seem to be the subject of an
ongoing discussion.

1This technique was already used in [1, 2].
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While in [2], we considered only strategies whose trades are placed at equidistant times, we
now allow the trading times to be stopping times. This problem description is more natural
than prescribing a priori the dates at which trading may take place. It is also more realistic
than the idealization of trading in continuous time. In addition, the time-inhomogeneous
description allows us to account for time-varying liquidity and thus in particular for the well-
known U-shaped patterns in intraday market parameters; see, e.g., [15].

Optimal trade execution in this extended framework leads to the problem of optimizing
simultaneously over both trading times and sizes. This problem is more complex than the one
considered in [2] and requires new arguments. Nevertheless, our main results show that the
unique optimum is attained by placing the deterministic trade sizes identified in [2] at trading
dates that are homogeneously spaced with respect to the average resilience rate in between
trades.

As a corollary, we show that neither of the two variants of our model admits price manip-
ulation strategies in the sense of Huberman and Stanzl [14] and Gatheral [12], provided that
the shape function of the limit order book belongs to a certain class of functions (which differs
slightly for each variant). This corollary is surprising in view of recent results by Gatheral [12].
There it was shown that, in a closely related but different market impact model, exponential
resilience leads to the existence of price manipulation strategies as soon as price impact is
nonlinear.

This paper is organized as follows. In section 2.1, we introduce our market impact model
with its two variants. The cost optimization problem is explained in section 2.2. In section 2.3,
we state our main results for the case of a block-shaped limit order book, which corresponds
to linear price impact. This special case is much simpler than the case with nonlinear price
impact. We therefore give a self-contained description and proof for this case, so that the
reader can gain a quick intuition on why our results are true. The proofs for the block-
shaped case rely on the results from our earlier paper [1] with A. Fruth and are provided
in section 3.1. The main results for the model variant with reversion of volume impact are
stated in section 2.4. The corresponding proofs are given in section 3.2. The results for the
model variant with reversion of price impact are stated in section 2.5, while proofs are given
in section 3.3. In section 2.6, we explain how our results can be transferred to the case of a
two-sided limit order book model.

2. Setup and main results. In this section, we first introduce the two variants of our
market impact model and formulate the optimization problem. We then state our results for
the particularly simple case of a block-shaped limit order book. Subsequently, we formulate
our theorems for each model variant individually. Finally, we explain how the results for
the models described in section 2.1 can be transferred to the case of a nonvanishing bid-ask
spread.

2.1. Description of the market impact models. The model variants that we consider here
are time-inhomogeneous versions of the zero-spread models introduced in [2, Appendix A].
The general aim is to model the dynamics of a limit order book that is exposed to repeated
market orders by a large trader whose goal is to liquidate a portfolio of X0 shares within a
certain time period [0, T ]. The case X0 > 0 corresponds to a long position and hence to a sell
program, and the case X0 < 0 corresponds to a buy program. Here we neglect the bid-ask
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spread of the limit order book, but in section 2.6 we will explain how our results can be carried
over to limit order book models with nonvanishing bid-ask spread. In these two-sided models,
buy orders impact only the ask side of the limit order book and sell orders affect only the bid
side. Nevertheless, we will see that the optimal strategies are the same as in the zero-spread
models.

When the large trader is inactive, the dynamics of the limit order book are determined by
the actions of noise traders only. We assume that the corresponding unaffected price process S0

is a right-continuous martingale on a given filtered probability space (Ω, (Ft),F ,P) such that
S0
0 is P-a.s. equal to some constant S0. The actual price process S is driven by the dynamics

of S0 and by the response of the limit order book to the market orders of the large traders.
The key to modeling this response is to start by first describing the volume impact process E.
If at time t the trader places a market order of size ξt, where ξt > 0 stands for a buy order
and ξt < 0 for a sell order, the volume impact process jumps from Et to

(1) Et+ := Et + ξt.

When the large trader is inactive in between market orders, E reverts back at a given rate. In
our first model variant, the Model with volume impact reversion, we assume that the volume
impact process reverts on an exponential scale with a deterministic, time-dependent rate
t �→ ρt, called resilience speed. More precisely, we assume that

(2) dEt = −ρtEt dt

while the large investor is not placing buy orders. Equations (1) and (2) completely determine
the dynamics of the volume impact process E in our first model variant.

In the next step, we describe the relation between volume impact and price impact. To
this end, we assume a continuous distribution of bid and ask orders away from the unaffected
price S0

t . This distribution is described by a continuous function f : R→ [0,∞) that satisfies
f(x) > 0 for almost every x, the shape function. Its intuitive meaning is that the number
of shares offered at price S0

t + x is given by f(x) dx. Thus, a volume impact of Et shares
corresponds to a price impact of Dt, which is given implicitly via∫ Dt

0
f(x) dx = Et.

By introducing the antiderivative of f ,

F (y) :=

∫ y

0
f(x) dx, y ∈ R,

the relation between the volume impact process E and the price impact process D can be
expressed as follows:

(3) Et = F (Dt) and Dt = F−1(Et).

Here we have used our assumption that f > 0 a.e. so that F is indeed invertible. Given the
price impact process D, the actual price process S is defined as

(4) St = S0
t +Dt.
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Thus, if at time t the trader places a market order of size ξt, then the price process jumps
from St to

St+ = S0
t +Dt+ = S0

t + F−1(Et + ξt);

see Figure 1. Hence, the price impact Dt+ − Dt will be a nonlinear function of the order
size ξt unless f is constant between Dt and Dt+. The choice of a shape function that is
constant throughout R corresponds to linear market impact and to the zero-spread version
of the block-shaped limit order book model of Obizhaeva and Wang [16]. This zero-spread
version was introduced in [1].

S0
t St St+

Dt+

Dt

f

Figure 1. The price impact of a buy market order of size ξt > 0 is defined by the equation ξt =
∫Dt+

Dt
f(x) dx = F (Dt+)− F (Dt).

Instead of an exponential resilience of the volume impact as described in (2), one can also
assume an exponential reversion of the price impact D. This means that one has to replace (2)
by

(5) dDt = −ρtDt dt

while the large investor is not placing buy orders. The resulting model variant will be called
the Model with price impact reversion. We now summarize the definitions of our two model
variants.

Definition 2.1. The dynamics of the Model with volume impact reversion are described by
(1), (2), (3), and (4). The Model with price impact reversion is defined via (1), (5), (3),
and (4).2

With the reversion of the processes D and E as described in (2) and (5), we model the
well-established empirical fact that order books exhibit a certain resilience as to the price
impact of a large buy market order. That is, after the initial impact the best ask price reverts
back to its previous position; cf. Biais, Hillion, and Spatt [10], Potters and Bouchaud [17],
Bouchaud et al. [11], and Weber and Rosenow [20] for empirical studies.

2These models are referred to as Models 1 and 2, respectively, in [1, 2].
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Note that we assume that the shape function of the limit order book is neither time-
dependent nor subject to additional randomness. This assumption is similar to the assump-
tion of fixed, time-independent impact functions in the models by Bertsimas and Lo [9],
Almgren [4], or Gatheral [12]. It can also be justified at least partially by the observation
that the shapes of empirical limit order books for certain liquid stocks can be relatively stable
over time. More importantly, it was noted in [2] that our optimal strategies are remarkably
robust with respect to changes in the shape function f . One can therefore expect that a
moderate randomization of f will have only relatively small effects on the optimal strategy.
A corresponding analysis will be the subject of future research.

We now introduce three example classes for shape functions that satisfy the assumptions
of our main results.

Example 2.2 (block shape). The simplest example corresponds to a block-shaped limit or-
der book:

(6) f(x) ≡ q for some constant q > 0.

It corresponds to the zero-spread version of the block-shaped limit order book model of
Obizhaeva and Wang [16], which was introduced in [1]. In this case, the price impact function
is linear: F−1(x) = x/q. It follows that the processes D and E are related via Et = qDt, and
so the model variants with volume and price impact reversion coincide. Results and proofs
are particularly easy in this case. We therefore discuss it separately in section 2.3.

Example 2.3 (positive power-law shape). Consider the class of shape functions

(7) f(x) = λ|x|α, where λ, α > 0.

In this case, F (x) = λ
1+α |x|1+α signx, and so F−1(x) = (1+α

λ |x|)1/(1+α) signx. Hence, price
impact follows a power law. The choice α = 1 corresponds to square-root impact, which
is a particularly popular choice and admits certain justifications; see [12]. See also [8] for
empirical results on power-law impact. We will see later that the shape functions from the
class (7) satisfy the assumptions of our main results. Moreover, as was kindly pointed out to
us by Jim Gatheral, our Model with volume impact reversion is equivalent to the Model with
price impact reversion when we replace ρt by ρ̃t :=

ρt
1+α . Indeed, when the large trader is not

active during the interval [t, t+s), volume impact reversion implies that Et+s = e−
∫ t+s
t ρu duEt.

Hence,

Dt+s = F−1(Et+s) = e−
∫ t+s
t ρ̃u duF−1(Et) = e−

∫ t+s
t ρ̃u duDt,

and so D satisfies dDr = −ρ̃rDr dr in [t, t+ s).
Example 2.4 (negative power-law shape). Consider the shape functions of the form

f(x) =

⎧⎪⎨⎪⎩
q

(1 + λ+x)α+
for x > 0,

q

(1− λ−x)α−
for x < 0,

where q and λ± are positive constants and α± ∈ (0, 1]. We will see later that these shape
functions satisfy the assumptions of our main results.
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2.2. The cost optimization problem. We assume that the large trader needs to liquidate
a portfolio of X0 shares until time T and that trading can occur at N+1 trades within the time
interval [0, T ]. An admissible sequence of trading times will be a sequence T = (τ0, . . . , τN )
of stopping times such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T . For such an admissible sequence of
trading times, T , we define a T -admissible trading strategy as a sequence ξ = (ξ0, ξ1, . . . , ξN )
of random variables such that

• X0 +
∑N

n=0 ξn = 0 (i.e., the strategy liquidates the given portfolio X0),
• each ξn is measurable with respect to Fτn , and
• each ξn is bounded from below.

The quantity ξn corresponds to the size of the market order placed at time τn. Note that we
do not a priori require that all ξn have the same sign; i.e., we also allow for an alternation
of buy and sell orders. But we assume that there is some bound on the size of sell orders.
Finally, an admissible strategy is a pair (T , ξ) consisting of an admissible sequence of trading
times T and a T -admissible trading strategy ξ.

Let us now define the costs incurred by an admissible strategy (T , ξ). When at time τn
a buy market order of size ξn > 0 is placed, the trader will purchase f(x) dx shares at price
S0
τn + x, with x ranging from Dτn to Dτn+. Hence, the total cost of the buy market order

amounts to

(8) πτn(ξ) :=

∫ Dτn+

Dτn

(S0
τn + x)f(x) dx = S0

τnξn +

∫ Dτn+

Dτn

xf(x) dx.

Similarly, for a sell market order ξn < 0, the trader will sell f(x) dx shares at price S0
τn + x,

with x ranging from Dτn+ to Dτn . Since the costs of sales should be negative, formula (8) is
also valid in the case of a sell order.

The average cost C(ξ,T ) of an admissible strategy (ξ,T ) is defined as the expected value
of the total costs incurred by the consecutive market orders:

(9) C(ξ,T ) = E

[
N∑

n=0

πτn(ξ)

]
.

The problem at hand is thus to minimize the average cost C(ξ,T ) over all admissible strategies
(ξ,T ). In doing this, we will assume for simplicity throughout this paper that the function F
is unbounded in the sense that

(10) lim
x↑∞

F (x) =∞ and lim
x↓−∞

F (x) = −∞.

That is, we assume that the limit order book has infinite depth. Relaxing this assumption is
possible but would require additional constraints on the order sizes in admissible strategies
and thus complicate the problem description.

In our earlier paper with A. Fruth, [2], we considered the case of a constant resilience
ρ and a fixed, equidistant time spacing Teq = {iT/N | i = 0, . . . , N}. In this setting, we
determined trading strategies that minimize the cost C(ξ,Teq) among all Teq-admissible trading
strategies ξ. Our goal in this paper consists in simultaneously minimizing over trade times
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and sizes. Also, in our present setting of an inhomogeneous resilience function ρt it is natural
to replace the equidistant time spacing by the homogeneous time spacing

T ∗ = (t∗0, . . . , t
∗
N )

defined via ∫ t∗i

t∗i−1

ρs ds =
1

N

∫ T

0
ρs ds, i = 1, . . . , N.

We also define

(11) a∗ := e−
1
N

∫ T
0 ρu du.

Our main result states that, under certain technical assumptions, T ∗ is in fact the unique
optimal time grid for portfolio liquidation with N +1 trades in [0, T ]. In addition, the unique
optimal T ∗-admissible strategies for both model variants, i.e., for the reversion of price or
volume impact, are given by the corresponding trading strategies in [2].

As a corollary to our main results, we are able to show that our models do not admit price
manipulation strategies in the following sense, introduced by Huberman and Stanzl [14] (see
also Gatheral [12]).

Definition 2.5. A round trip is an admissible strategy (ξ,T ) for X0 = 0. A price manipu-
lation strategy is a round trip (ξ,T ) such that C(ξ,T ) < 0.

Our main results also imply that our models do not possess the following model irregularity,
which was introduced and discussed in our joint paper [3] with A. Slynko.

Definition 2.6. A model admits transaction-triggered price manipulation if the expected
execution costs of a sell (buy) program can be decreased by intermediate buy (sell) trades.
More precisely, there is transaction-triggered price manipulation if there exist X0 ∈ R and a
corresponding admissible strategy (ξ,T ) such that

(12) C(ξ,T ) < inf
{
C(ξ,T ) ∣∣ (ξ,T ) is admissible and all trades in ξ have the same sign

}
.

By taking X0 = 0 in Definition 2.6, one sees that standard price manipulation in the sense
of Definition 2.5 can be regarded as a special case of transaction-triggered price manipulation.
It follows that the absence of transaction-triggered price manipulation implies the absence
of standard price manipulation. It is possible, however, to construct models that admit
transaction-triggered price manipulation but not standard price manipulation. This happens,
for instance, if we take a constant shape function f ≡ q and replace exponential resilience by
Gaussian decay of price impact; see [3].

2.3. Main results for the block-shaped limit order book. We first discuss our problem
in the particularly easy case of a block-shaped limit order book in which f(x) = q. In
that case, our two model variants with the respective reversion of price and volume impact
coincide. It follows from the results in [1] that for every admissible sequence of trading times
T = (τ0, . . . , τN ) there is a T -admissible trading strategy that minimizes the cost C(·,T )
among all T -admissible trading strategies. This strategy can even be computed explicitly; see
[1, Theorem 3.1]. In the following theorem, we consider the problem of optimizing jointly over
trading times and sizes.
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Figure 2. Relative gain between the extra liquidity cost of the optimal strategy on the optimal grid T ∗ and
the optimal strategy on the equidistant grid Teq as a function of N when T = 1, 2, and 5 with the resilience
function ρ(t) = 10 + 8 cos(t/2π).

Theorem 2.7. In a block-shaped limit order book, there is a P-a.s. unique optimal strategy
(ξ∗,T ∗) consisting of homogeneous time spacing T ∗ and the deterministic trading strategy ξ∗

defined by

(13) ξ∗0 = ξ∗N =
−X0

2 + (N − 1)(1 − a∗) and ξ∗1 = · · · = ξ∗N−1 = ξ∗0(1− a∗),

where a∗ is as in (11).
While the preceding theorem is a special case of our main results, Theorems 2.11 and 2.17,

it admits a particularly easy proof based on the results in [1]. This proof is given in section 3.1.
Corollary 2.8. In a block-shaped limit order book, there is neither standard nor transaction-

triggered price manipulation.
An obvious extension of our model is to allow the resilience rate ρt to be a progressively

measurable stochastic process. In this case, optimal strategies will look different. However,
the absence of price manipulation remains valid even for this case; see Remark 3.2 at the end
of section 3.1.

Figure 2 gives an illustration of the situation when ρ(t) = a+b cos(t/(2π)), 0 ≤ t ≤ T . For
a > b > 0, the resilience is greater near the opening and the closure of the stock exchange, and
T represents the trade duration in days. We plot here the relative gain, i.e., the quotient of the
respective expected costs, for the optimal strategies corresponding to the optimal time grid T ∗
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and the equidistant time grid Teq. More precisely, we plot the quotient of the respective cost
functions defined in (32).

2.4. Main results for volume impact reversion. In this section, we state our main results
for the Model with volume impact reversion. They hold under the following assumption. Its
first part covers Examples 2.2 and 2.4. Its second part covers the important case of power-law
price impact as introduced in Example 2.3.

Assumption 2.9. In the Model with volume impact reversion, we assume in addition to (10)
that the shape function f satisfies one of the following conditions (a) and (b):

(a) f is nondecreasing on R− and nonincreasing on R+.
(b) f(x) = λ|x|α for constants λ, α > 0.
We start by looking at optimal trading strategies when an admissible sequence of trading

times T = (τ0, . . . , τN ) is fixed. If ξ is a T -admissible trading strategy and it happens that τi =
τi+1, then the corresponding trades, ξi and ξi+1, are executed simultaneously. We therefore
say that two T -admissible trading strategies ξ and ξ are equivalent if ξi + ξi+1 = ξi + ξi+1

P-a.s. on {τi = τi+1}.
Proposition 2.10. Suppose that an admissible sequence of trading times T is given and that

Assumption 2.9 holds. Then there exists a T -admissible trading strategy ξV,T , P-a.s. unique
up to equivalence, that minimizes the cost C(·,T ) among all T -admissible trading strategies.
Moreover, ξV,T �= 0 for X0 �= 0 up to equivalence, and all components of ξV,T have the same
sign. For X0 = 0, all components of ξV,T are zero.

As we will see in the proof of Proposition 2.10, the optimal trading strategy ξV,T can
be implicitly characterized via a certain nonlinear equation. Our main result for the case of
volume impact reversion states, however, that things become much easier when optimizing
simultaneously over trading times and sizes.

Theorem 2.11. Under Assumption 2.9, for every X0 �= 0 there is a P-a.s. unique optimal
strategy (ξV ,T ∗) consisting of homogeneous time spacing T ∗ and deterministic trading strat-
egy ξV that is defined as follows. The initial market order ξV0 is the unique solution of the
equation

(14) F−1
(−X0 −NξV0 (1− a∗)) = F−1(ξV0 )− a∗F−1(a∗ξV0 )

1− a∗ ,

the intermediate orders are given by

(15) ξV1 = · · · = ξVN−1 = ξV0 (1− a∗) ,

and the final order is determined by

ξVN = −X0 − ξV0 − (N − 1)ξV0 (1− a∗) .

Moreover, ξV0 �= 0 and all components of ξV have the same sign. That is, ξV consists only of
nontrivial sell orders for X0 > 0 and only of nontrivial buy orders for X0 < 0.

The preceding results imply the following corollary relating to Definitions 2.5 and 2.6.
Corollary 2.12. Under Assumption 2.9, the Model with volume impact reversion admits

neither standard nor transaction-triggered price manipulation.
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The absence of price manipulation stated in the preceding corollary remains valid even for
the case in which resilience ρt is stochastic; see Remark 3.2 at the end of section 3.1.

Corollary 2.12 shows that, in our Model with volume reversion, exponential resilience of
price impact is well compatible with nonlinear impact governed by a shape function that
satisfies Assumption 2.9. We thus deduce that, at least from a theoretical perspective, expo-
nential resilience of a limit order book is a viable possibility for describing the decay of market
impact. This contrasts Gatheral’s observation [12] that, in a related but different continuous-
time model, exponential decay of price impact gives rise to price manipulation in the sense of
Definition 2.5 as soon as price impact is nonlinear. Given the strong contrasts between the
results in [12] and Corollary 2.12, it is interesting to discuss the relations between the model
in [12] and our model.

Remark 2.13 (relation to Gatheral’s model). In [12], a continuous-time model is introduced,
which is closely related to our model. Formulating a discrete-time variant within our setting
leads to the following definition for the actual price process:

(16) SJG
t = S0

t +
∑
τn<t

h(ξn)ψ(t − τn).

Here h : R→ R is the price impact function, and ψ : R+ → R+ is the decay kernel. The decay
kernel describes the time decay of price impact. If we take ψ(t) = e−ρt for a constant ρ > 0,
(16) takes the form

(17) SJG
t = S0

t +
∑
τn<t

h(ξn)e
−ρ(t−τn).

It was shown in section 4 of [12] that the continuous-time version of (17) admits price manip-
ulation in the sense of Definition 2.5 as soon as the function h is not linear. By approximating
a continuous-time price manipulation strategy with discrete-time strategies, one sees that this
result carries over to the discrete-time framework (17).

When taking a constant resilience speed ρ in our Model with volume impact reversion,
the volume impact process is of the form Et =

∑
τn<t ξne

−ρ(t−τn), and so our price process is
given by

(18) St = S0
t + F−1

(∑
τn<t

ξne
−ρ(t−τn)

)
.

Thus, the difference between the two models is that in (17) the nonlinear price impact function
is applied to each individual trade, while in (18) the price impact is obtained as a nonlinear
function of the volume impact. Therefore, both models are different, and there is no contra-
diction between the results in [12] and Corollary 2.12.

Remark 2.14 (continuous-time limit). Let us briefly discuss the asymptotic behavior of the
optimal strategy when the number N of trades tends to infinity. Since for any N we have
that ξV0 lies strictly between 0 and −X0, we can extract a subsequence that converges to some

ξV,∞0 . One therefore checks that the right-hand side of (14) tends to

h∞V (ξV,∞0 ) := F−1(ξV,∞0 ) +
ξV,∞0

f(F−1(ξV,∞0 ))
.
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Since N(1− a∗)→ ∫ T
0 ρs ds, the left-hand side of (14) converges as well, and so ξV,∞0 must be

a solution y of the equation

F−1

(
−X0 − y

∫ T

0
ρs ds

)
= h∞V (y).

Note that, under our assumptions, h∞V is strictly increasing. Hence, the preceding equation
has a unique solution, which consequently must be the limit of ξV0 as N ↑ ∞. It follows,

moreover, that NξV1 → ξV,∞0

∫ T
0 ρs ds and that

ξVN −→ −X0 − ξV,∞0 − ξV0
∫ T

0
ρs ds =: ξV,∞T .

Thus, the optimal strategy, described in “resilience time” r(t) :=
∫ t
0 ρs ds, consists of an initial

block trade of size ξV,∞0 , continuous buying at constant rate ξV,∞0 during (0, T ), and a final

block trade of size ξV,∞T . Transforming back to standard time leaves the initial and final block
trades unaffected, and continuous buying in (0, T ) now occurs at the time-dependent rate
ρtξ

V,∞
0 .
One can expect that this limiting strategy could be optimal in the following continuous-

time variant of our model, which is similar to the setup in [13]. A strategy is a predictable
process t �→ Xt of bounded total variation, which describes the number of shares in the
portfolio of the trader at time t. Given such a strategy, the process E is defined via E0 = 0
and

(19) dEt = dXt − ρtEt dt,

and D is given by Dt = F (Et). The optimal strategy obtained above then corresponds to

dX∗
t = ξV,∞0 δ0(dt) + ξV,∞0 ρt dt+ ξV,∞T δT (dt).

2.5. Main results for reversion of price impact. In this section, we state our main results
for the Model with reversion of price impact. This case is analytically more complicated than
the Model with volume impact, because the quantity that decays exponentially is no longer a
linear function of the order size. We therefore need a stronger assumption.

Assumption 2.15. In addition to (10), we assume that the shape function f satisfies one
of the following conditions (a) and (b):

(a) f is twice differentiable on R\{0}, nondecreasing on R−, and nonincreasing on R+ and
satisfies

x �→ xf ′(x)/f(x) is nondecreasing on R−, nonincreasing on R+,

and (−1, 0]-valued,(20)

1 + x
f ′(x)
f(x)

+ 2x2
(
f ′(x)
f(x)

)2

− x2 f
′′(x)
f(x)

≥ 0 for all x ≥ 0.(21)

(b) f(x) = λ|x|α for constants λ, α > 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We will see in Example 2.19 that Assumption 2.15(a) is satisfied for the power-law shape
functions from Example 2.4. Also, we know already from Example 2.3 that under Assumption
2.15(b) the Model with reversion of price impact is equivalent to a model with reversion of
volume impact.

We start by looking at optimal trading strategies when an admissible sequence of trading
times T = (τ0, . . . , τN ) is fixed. As in section 2.4, we say that two T -admissible trading
strategies ξ and ξ are equivalent if ξi + ξi+1 = ξi + ξi+1 P-a.s. on {τi = τi+1}.

Proposition 2.16. Suppose that an admissible sequence of trading times T is given and that
Assumption 2.15 holds. Then there exists a T -admissible trading strategy ξP,T , P-a.s. unique
up to equivalence, that minimizes the cost C(·,T ). Moreover, ξP,T �= 0 for X0 �= 0 up to
equivalence, and all components of ξP,T have the same sign. For X0 = 0, all components of
ξP,T are zero.

As in Proposition 2.10, computing the optimal trading strategy ξP,T for an arbitrary
sequence T can be quite complicated. But again the structure becomes much easier when
also optimizing over the sequence of trading times T . To state the corresponding result, let
us recall from (11) the definition of a∗ and let us introduce the function

hP,a∗(x) := x
f(x/a∗)/a∗ − a∗f(x)
f(x/a∗)− a∗f(x) .

We will see in Lemma 3.8(a) that hP,a∗(x) is indeed well defined for all x ∈ R as soon as
Assumption 2.15 is satisfied.

Theorem 2.17. Suppose that that the shape function f satisfies Assumption 2.15. Then for
X0 �= 0 there is a P-a.s. unique optimal strategy (ξP ,T ∗), consisting of homogeneous time
spacing T ∗ and deterministic trading strategy ξP , that is defined as follows. The initial market
order ξP0 is the unique solution of the equation

(22) F−1
(−X0 −N

[
ξP0 − F

(
a∗F−1(ξP0 )

)])
= hP,a∗

(
F−1(ξP0 )

)
,

the intermediate orders are given by

(23) ξP1 = · · · = ξPN−1 = ξP0 − F
(
a∗F−1(ξP0 )

)
,

and the final order is determined by

ξPN = −X0 −NξP0 + (N − 1)F
(
a∗F−1(ξP0 )

)
.

Moreover, ξP0 �= 0 and all components of ξP have the same sign. That is, ξP consists only of
nontrivial sell orders for X0 > 0 and only of nontrivial buy orders for X0 < 0.

Again, the preceding results lead to the following corollary. Its conclusion regarding the
absence of price manipulation remains valid even for the case in which resilience ρt is stochastic;
see Remark 3.2 at the end of section 3.1.

Corollary 2.18. Under Assumption 2.15, the Model with price impact reversion admits nei-
ther standard nor transaction-triggered price manipulation.

We continue this section by showing that the power-law shape functions from Example 2.4
satisfy Assumption 2.15(a).
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Example 2.19 (negative power-law shape). Let us show that the power-law shape functions
from Example 2.4 satisfy Assumption 2.15(a). For checking (20) and (21), we concentrate on
the branch of f on the positive part of the real line. So let us suppose that

f(x) =
q

(1 + λx)α
for x > 0,

with α ∈ [0, 1], q, λ > 0. We have xf ′(x)/f(x) = − αλx
1+λx ∈ (−1, 0], which is nonincreasing

on R+. Moreover, for x ≥ 0, we have

1 + x
f ′(x)
f(x)

+ 2x2
(
f ′(x)
f(x)

)2

− x2 f
′′(x)
f(x)

=
1 + (2− α)λx+ (1− 2α+ α2)(λx)2

(1 + λx)2
≥ 0.

Remark 2.20. With a positive power-law shape, we know from Example 2.3 that the Model
with volume impact reversion ρt is equivalent to the Model with price impact reversion ρ̃t =
ρt/(1 + α). Thus, the strategy defined via (14) and (15) with a∗ is the same as the one

defined by (22) and (23) with ã∗ = (a∗)
1

1+α . This can be checked by a straightforward
calculation.

Remark 2.21. As in Remark 2.14, we can study the asymptotic behavior of the optimal
strategy as the number N of trades tends to infinity. First, one checks that hP,a∗ converges to

h∞P (x) := x

(
1 +

f(x)

f(x) + xf ′(x)

)
and that N(y − F (a∗F−1(y))) tends to F−1(y)f(F−1(y))

∫ T
0 ρs ds. Now suppose that the

equation

F−1

(
−X0 − F−1(y)f(F−1(y))

∫ T

0
ρs ds

)
= h∞P (F−1(y))

has a unique solution that lies strictly between 0 and −X0 and which we will call ξP,∞0 . We

then see as in Remark 2.14 that ξP,∞0 is the limit of ξP0 when N ↑ ∞. Next, NξP1 converges

to F−1(ξP,∞0 )f(F−1(ξP,∞0 ))
∫ T
0 ρs ds and ξPN to

ξP,∞T := −X0 − ξP,∞0 − F−1(ξP,∞0 )f(F−1(ξP,∞0 ))

∫ T

0
ρs ds.

This yields a description of the continuous-time limit in “resilience time” r(t) :=
∫ t
0 ρs ds. Us-

ing a time change as in Remark 2.14, we obtain that the optimal strategy consists of an initial
block order of ξP,∞0 shares at time 0, continuous buying at rate ρtF

−1(ξP,∞0 )f(F−1(ξP,∞0 ))

during (0, T ), and a final block order of ξP,∞T shares at time T . One might guess that this
strategy should be optimal in the continuous-time model in which strategies are predictable
processes t �→ Xt of total bounded variation and the volume impact process satisfies

dEt = dXt − ρtg(Et) dt

for g(x) = f(F−1(x))F−1(x); see also Remark 2.14.
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2.6. Two-sided limit order book models. We now explain how our results can be used
to analyze models for an electronic limit order book with a nonvanishing and dynamic bid-ask
spread. To this end, we focus on a buy program with X0 < 0 (the case of a sell program is
analogous). Therefore, emphasis is on buy orders, and we concentrate first on the upper part
of the limit order book, which consists of shares offered at various ask prices. The lowest ask
price at which shares are offered is called the best ask price. When the large trader is inactive,
the dynamics of the limit order book are determined by the actions of noise traders only. We
assume that the corresponding unaffected best ask price A0 is a right-continuous martingale
on a given filtered probability space (Ω, (Ft),F ,P) and satisfies A0

0 = A0 P-a.s. for some
constant A0. Above the unaffected best ask price A0

t , we assume a continuous distribution for
ask limit orders: the number of shares offered at price A0

t + x with x ≥ 0 is given by f(x) dx,
where f is a given shape function.

The actual best ask price at time t, i.e., the best ask price after taking the price impact
of previous buy orders of the large trader into account, is denoted by At. It lies above the
unaffected best ask price, and the price impact on ask prices caused by the actions of the large
trader is denoted by

DA
t := At −A0

t .

A buy market order of ξt > 0 shares placed by the large trader at time t will consume all the
ask limit orders offered at prices between At and At+ := A0

t +DA
t+, where D

A
t+ is determined

by the condition
∫ DA

t+

DA
t
f(x) dx = ξt. Thus, the process D

A captures only the impact of market

buy orders on the current best ask price. We also define the volume impact on ask orders by
EA

t := F (DA
t ), where again F (x) =

∫ x
0 f(y) dy.

On the bid side of the limit order book, we have an unaffected best bid process, B0
t . All

we assume on its dynamics is B0
t ≤ A0

t at all times t. The distribution of bids below B0
t is

modeled by the restriction of the shape function f to the domain (−∞, 0). In analogy to the
ask part, we introduce the the price impact on bid prices by DB

t := Bt−B0
t . The process D

B

will be nonpositive. A sell market order of ξt < 0 shares placed at time t will consume all the
shares offered at prices between Bt and Bt+ := B0

t + DB
t+, where D

B
t+ is determined by the

condition

ξt = F (DB
t+)− F (DB

t ) =: EB
t+ − EB

t

for EB
s := F (DB

s ). As before, there are now two distinct variants for modeling the reversion
of the volume and price impact processes while the trader is not active. More precisely, we
assume that

dEA
t = −ρtEA

t dt and dEB
t = −ρtEB

t dt for reversion of volume impact,

dDA
t = −ρtDA

t dt and dDB
t = −ρtDB

t dt for reversion of price impact.
(24)

The respective model variants will be called the two-sided limit order book models with rever-
sion of volume or price impact.

Finally, we define the costs of an admissible strategy (T , ξ). We can argue as in section 2.2
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that the costs incurred at time τn should be defined as

(25) πτn(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ DA
τn+

DA
τn

f(x) dx for ξn > 0,

0 for ξn = 0,∫ DB
τn+

DB
τn

f(x) dx for ξn < 0.

The following result compares the costs in the two-sided model to the costs πτn(ξ) defined
in (8).

Proposition 2.22. Suppose that A0 = S0. Then, for any strategy ξ, we have πτn(ξ) ≥ πτn(ξ)
for all n, with equality if all trades in ξ are nonnegative.

The preceding result can be proved by arguments given in [2, section A]. Together with the
observation that there is no transaction-triggered price manipulation in the models introduced
in section 2.1, it provides the key to transferring results on the basic model to the order book
model. We thus have the following corollary.

Corollary 2.23. Suppose that A0 = S0.

(a) Under Assumption 2.9, the strategy (ξV ,T ∗) defined in Theorem 2.11 is the unique
optimal strategy in the two-sided limit order book Model with volume impact reversion.

(b) Under Assumption 2.15, the strategy (ξP ,T ∗) defined in Theorem 2.17 is the unique
optimal strategy in the two-sided limit order book Model with price impact reversion.

3. Proofs. In a first step, note that the average costs introduced in (9) are of the form

C(ξ,T ) = E

[
N∑

n=0

πτn(ξ)

]
= E

[
N∑

n=0

ξnS
0
τn

]
+ E

[
N∑

n=0

∫ Dτn+

Dτn

xf(x) dx

]
.

Due to the martingale property of S0, optional stopping, and the fact that
∑N

n=0 ξn = −X0,
the first expectation on the right-hand side is equal to −X0S0. Next, note that the process D
evolves deterministically once the values of τ0(ω), . . . , τN (ω) and ξ0(ω), . . . , ξN (ω) are given.

Thus, when the functional
∑N

n=0

∫Dτn+

Dτn
xf(x) dx admits a unique deterministic minimizer,

this minimizer must be equal to the unique optimal strategy.

To formulate the resulting deterministic optimization problem, it will be convenient to
work with the quantities

(26) αk :=

∫ τk

τk−1

ρs ds, k = 1, . . . , N,

instead of the τk themselves. The condition 0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T is clearly equivalent
to α := (α1, . . . , αN ) belonging to

A :=

{
α := (α1, . . . , αN ) ∈ R

N
+

∣∣∣ N∑
k=1

αk =

∫ T

0
ρs ds

}
.
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By abuse of notation, we will write

(27) En and Dn instead of Eτn and Dτn

as long as there is no possible confusion. We will also write

(28) En+ = En + ξn and Dn+ = Dn + ξn instead of Eτn+ and Dτn+.

Then

(29)
Ek+1 = e−αk+1Ek+ = e−αk+1(Ek + ξk) for volume impact reversion,

Dk+1 = e−αk+1Dk+ = e−αk+1F−1 (ξk + F (Dk)) for price impact reversion.

With this notation, it follows that there exist two deterministic functions CV , CP : RN+1×
A → R such that

(30)

N∑
n=0

∫ Dn+

Dn

xf(x) dx =

{
CV (ξ,α) in the Model with volume impact reversion,

CP (ξ,α) in the Model with price impact reversion.

We will show in the respective sections 3.2 and 3.3 that, under our assumptions, the functions
CV and CP have unique minima within the set Ξ×A, where

Ξ :=

{
x = (x0, . . . , xN ) ∈ R

N+1
∣∣∣ X0 +

N∑
n=0

xn = 0

}
.

When working with deterministic trading strategies in Ξ rather than with random variables,
we will mainly use Roman letters such as x instead of Greek letters such as ξ. Last, we
introduce the functions

(31) F̃ (x) :=

∫ x

0
zf(z) dz and G = F̃ ◦ F−1.

We conclude this section with the following easy lemma.

Lemma 3.1. For X0 < 0, there is no x ∈ Ξ such that En+ = En+xn ≤ 0 (or, equivalently,
Dn+ ≤ 0) for all n = 0, . . . , N .

Proof. Since the effect of resilience is to drive the extra spread back to zero, we have
En+ ≥ x0 + · · · + xn up to and including the first n at which x0 + · · · + xn > 0. Since
x0 + · · ·+ xN = −X0 > 0, the result follows.

3.1. Proofs for a block-shaped limit order book. In this section, we give quick and
direct proofs for our results in the case of a block-shaped limit order book with f(x) = q. In
this setting, our two model variants coincide; see Example 2.2. As explained in [1], the cost
function in (30) is an increasing affine function of

(32) C(x,α) =
1

2
〈x,M(α)x〉, x ∈ Ξ, α ∈ A,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL TRADE EXECUTION AND ABSENCE OF PRICE MANIPULATIONS 507

where 〈·, ·〉 is the usual Euclidean inner product and M(α) is the positive definite symmetric
matrix with entries

M(α)n,m = exp

(
−
∫ τn∨m

τn∧m

ρu du

)
= exp

(
−
∣∣∣∣∣

n∑
i=1

αi −
m∑
j=1

αj

∣∣∣∣∣
)
, 0 ≤ n,m ≤ N.

Proof of Theorem 2.7. For α belonging to

A∗ :=
{
α ∈ A | αi > 0, i = 1, . . . , N

}
,

the inverse M(α)−1 of the matrix M(α) can be computed explicitly, and the unique optimal
trading strategy for fixed α is

x∗(α) =
−X0

〈1,M(α)−11〉M(α)−11.

By [1, Theorem 3.1], the vector M(α)−11 has only strictly positive components for α ∈ A∗.
It follows that

min
x∈Ξ

C(x,α) = C(x∗(α),α) =
X2

0

2〈1,M(α)−11〉

=
X2

0

2

(
2

1 + e−α1
+

N∑
n=2

1− e−αn

1 + e−αn

)−1

(33)

=
X2

0

2

(
N∑

n=1

2

1 + e−αn
− (N − 1)

)−1

.

Minimizing minx∈Ξ C(x,α) over α ∈ A∗ is thus equivalent to maximizing
∑N

n=1
2

1+e−αn . The

function a �→ 2
1+e−a is strictly concave in a > 0. Hence,

N∑
n=1

2

1 + e−αn
≤ 2N

1 + e−
1
N

∑N
n=1 αn

=
2N

1 + e−
1
N

∫ T
0

ρudu
,

with equality if and only if α = α∗, where α∗ corresponds to homogeneous time spacing T ∗,
i.e.,

(34) α∗
i =

1

N

∫ T

0
ρs ds, i = 1, . . . , N.

Next, C(x,α) is clearly jointly continuous in x ∈ Ξ and α ∈ A, so infx∈Ξ C(x,α) is upper
semicontinuous in α. One thus sees that the minimum cannot be attained at the boundary
of A. Finally, the formula (13) for the optimal trading strategy with homogeneous time
spacing can be found in [1, Remark 3.2] or in [2, Corollary 6.1].

Proof of Corollary 2.8. The result follows immediately from Theorem 2.7.
Remark 3.2 (stochastic resilience). Suppose that the resilience rate ρt is not necessarily

deterministic but can also be a progressively measurable stochastic process. We assume,
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moreover, that ρt is strictly positive and integrable. Then the expected costs of any admissible
strategy (T , ξ) will still be of the form

C(ξ,T ) = E[C(ξ,α) ].

Since C(ξ,α) ≥ 0 for every round trip by Corollary 2.8, the same is true for C(ξ,T ), and
hence there cannot be price manipulation for any round trip, even under stochastic resilience.
The same argument also applies in the contexts of sections 2.4 and 2.5.

3.2. Proofs for reversion of volume impact. We need a few lemmas before we can prove
our main results for reversion of volume impact. For simplicity, we will first prove our results
for X0 < 0. The case for X0 > 0 will then follow by the symmetry of the problem formulation.
The case of round trips with X0 = 0 will be analyzed by a limiting procedure in the proof of
Proposition 2.10.

Lemma 3.3 formulates analytic properties implied by Assumption 2.9. In fact, only these
properties will be needed in the remainder of the proof, and so our results remain valid for all
shape functions f that satisfy the conclusions of Lemma 3.3. The next step in our proof is to
prove existence and uniqueness of optimal strategies. This is done in Lemma 3.6 by exploiting
the fact that, in the Model with volume impact reversion, the cost functional is coercive and
strictly convex. Note, however, that convexity will be lost in the Model with price impact
reversion. The final and most delicate step of the proof is to show that the first-order condition
for optimality yields a nonlinear equation that uniquely determines the optimal strategy. The
recursive formula of Lemma 3.4 is a preliminary step into that direction.

Lemma 3.3. Under Assumption 2.9, the following conclusions hold:

(a) For each a ∈ (0, 1), the function hV,a(y) = F−1(y) − aF−1(ay) is strictly increasing
on R.

(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities

h−1
V,a

(
ν(1− a)) > b · h−1

V,b

(
ν(1− b)),(35)

b · h−1
V,b

(
ν(1− b)) < F (ν).(36)

(c) The function HV : (y, a) ∈ (0,∞)× (0, 1) �→ (F−1(y)−aF−1(ay)
1−a , ay F−1(y)−F−1(ay)

1−a

) ∈ R
2

is one-to-one.

Proof of Lemma 3.3 under Assumption 2.9(a). Assumption 2.9(a) states that f is increas-
ing on R− and decreasing on R+. Part (a) of the assertion thus follows from [2, Remark 2].

For the proof of part (b), let y := h−1
V,a

(
ν(1 − a)). Then y > 0, since hV,a(0) = 0. Note

also that F−1 is convex on R+. Let f̂ be its derivative. Then

ν =
F−1(y)− aF−1(ay)

1− a = F−1(ay) +
F−1(y)− F−1(ay)

1− a
= F−1(ay) +

1

1− a
∫ y

ay
f̂(x) dx < F−1(y) + yf̂(y) =: g(y).

Clearly, g is a strictly increasing function on R+, and so we have y > g−1(ν).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL TRADE EXECUTION AND ABSENCE OF PRICE MANIPULATIONS 509

Next, let z := b · h−1
V,b

(
ν(1− b)). Then,

ν =
F−1(z/b)− bF−1(z)

1− b = F−1(z) +
F−1(z/b)− F−1(z)

1− b
= F−1(z) +

1

1− b
∫ z/b

z
f̂(x) dx ≥ F−1(z) + zf̂(z) = g(z),

since f̂(z) = 1/f(F−1(z)) is nondecreasing for z > 0. Thus, z ≤ g−1(ν) < h−1
V,a

(
ν(1− a)), and

(35) follows. For (36), it now suffices to note that g(z) > F−1(z).
To prove part (c), let a1, a2 ∈ (0, 1) and y1, y2 > 0 and assume that HV (a1, y1) =

HV (a2, y2). Since

F−1(y)− aF−1(ay)

1− a = F−1(y) + a
F−1(y)− F−1(ay)

1− a ,

we get

F−1(y1) + a1
F−1(y1)− F−1(a1y1)

1− a1 = F−1(y2) + a2
F−1(y2)− F−1(a2y2)

1− a2 ,

a1y1
F−1(y1)− F−1(a1y1)

1− a1 = a2y2
F−1(y2)− F−1(a2y2)

1− a2 .(37)

Assume that y1 �= y2, say, y1 > y2 > 0. Multiplying the first identity by y1 and subtracting
the second identity yields

(38) y1
F−1(y1)− F−1(y2)

y1 − y2 =
a2

1− a2
[
F−1(y2)− F−1(a2y2)

]
.

Since (F−1)′(y) = f̂(y) is nondecreasing for y > 0, we obtain that

y1
F−1(y1)− F−1(y2)

y1 − y2 ≥ y1f̂(y2) and
a2

1− a2
[
F−1(y2)− F−1(a2y2)

] ≤ a2y2f̂(y2),
which contradicts the previous equation, since y1 > y2 ≥ a2y2. Therefore, we must have
y1 = y2.

It is therefore sufficient to show that

h̃(a) :=
a

1− a
[
F−1(y)− F−1(ay)

]
, a ∈ ]0, 1[,

is one-to-one for any y > 0. Its derivative is equal to

(39) h̃′(a) =
1

(1− a)2
[
F−1(y)− F−1(ay)

]− ay

1− af̂(ay).

Using again that f̂(y) is nondecreasing for y > 0, we get

F−1(y)− F−1(ay) > (1− a)yf̂(ay)
and in turn h̃′(a) > 0.
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Proof of Lemma 3.3 under Assumption 2.9(b). Assumption 2.9(b) states that f(x) = λ|x|α
for constants λ, α > 0. Thus,

(40) hV,a(y) =

(
1 + α

λ

) 1
1+α (

1− a 2+α
1+α

)|y| 1
1+α sign y,

and so part (a) of the assertion follows.

As for part (b) of the assertion, note that

h−1
V,a

(
ν(1− a)) = λ

1 + α
ν1+α

(
1− a

1− a 2+α
1+α

)1+α

.

Hence, when a goes from 0 to 1, the value of h−1
V,a(ν(1 − a)) decreases from λ

1+αν
1+α to

λ
1+αν

1+α
(
1+α
2+α

)1+α
. Using the shorthand notation γ := 1 + α, the inequality (35) will thus

follow if we can show that

(41) b
1
γ

1− b
1− b 1+γ

γ

<
γ

1 + γ

for 0 < b < 1 and γ > 1. The preceding inequality is equivalent to

1− b < γ

1 + γ
(b−1/γ − b).

But the function on the right-hand side is a strictly convex decreasing function of b whose
derivative at b = 1 is −1. This proves the asserted inequalities and in turn (35). Inequality (36)
is obvious, given our formulas for h−1

V,b

(
ν(1− b)) and F .

To prove (c), we use the same argument as under Assumption 2.9(a). First, let us observe
that Ψ : x ∈ R+ �→ x(x1/(1+α) − 1)/(x − 1) is increasing, which can be easily checked by
derivation. If y1 �= y2, say, z = y1/y2 > 1, we get Ψ(z) = Ψ(a2) from (38), which is not
possible, since z > 1 > a2. Thus y1 = y2, and we get from (37) that Ψ(a1) = Ψ(a2), which
gives a1 = a2.

Let us turn to the calculation of the cost derivatives. With (31), the cost function (30) in
the Model with volume impact reversion can be represented as

(42) CV (x,α) =
N∑

n=0

[
G(En + xn)−G(En)

]
, x ∈ Ξ, α ∈ A,

where

E0 = 0 and En =
n−1∑
i=0

xie
−∑n

k=i+1 αk , 1 ≤ n ≤ N.

Lemma 3.4. For i = 0, . . . , N − 1, we have the following recursive formula:

(43)
∂CV

∂xi
= F−1(Ei + xi)− e−αi+1F−1(Ei+1) + e−αi+1

∂CV

∂xi+1
.
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Moreover, for i = 1, . . . , N ,

(44)
∂CV

∂αi
= Ei

N∑
n=i

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=i+1 αk .

Proof. To prove (43), we first need to calculate ∂En/∂xi. We obtain

∂En

∂xi
= 0 if i ≥ n and

∂En

∂xi
= e−

∑n
k=i+1 αk if i < n.

Using the fact that G′ = F−1, we therefore get

∂CV

∂xi
= F−1(Ei + xi) +

N∑
n=i+1

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=i+1 αk

= F−1(Ei + xi)− e−αi+1F−1(Ei+1)

+ e−αi+1

(
F−1(Ei+1 + xi+1) +

N∑
n=i+2

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=i+2 αk

)
,

which yields (43).
For the proof of (44), we first have to compute ∂En/∂αi. We obtain

∂En

∂αi
= 0 if i > n and

∂En

∂αi
= −

i−1∑
m=0

xme
−∑n

k=m+1 αk for i ≤ n.

From here, we get

∂CV

∂αi
= −

N∑
n=i

[
F−1(En + xn)− F−1(En)

] i−1∑
m=0

xme
−∑n

k=m+1 αk

= Ei

N∑
n=i

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=i+1 αk ,

which is (44).

Remark 3.5. A consequence of this lemma is that homogeneous time spacing α∗ and op-
timal strategy ξV given in [2] yield a critical point for the minimization in (x,α). Indeed, we

then have Ei = a∗ξV0 for any i, and therefore ∂CV

∂αi
does not depend on i.

Lemma 3.6. For each α ∈ A, the function CV (·,α) has a minimizer x∗(α) ∈ Ξ, which is
unique up to equivalence.

Proof. First, note that we may assume without loss of generality that α ∈ A∗ = {α ∈ A |
αi > 0, i = 1, . . . , N}. Indeed, if αi = 0, we can merge the trades xi−1 and xi into a single
one and reduce N to N − 1.

We next extend the arguments in [2, Lemma B.1] to prove the existence of a unique
minimizer of CV (·,α) in Ξ.
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Using the convention
∑n

k=n+1 αk := 0, we obtain by rearranging the sum in (42) that

CV (x,α) = G

(
N∑
i=0

xie
−∑N

k=i+1 αk

)
−G(0)

+
N−1∑
n=0

[
G

(
n∑

i=0

xie
−∑n

k=i+1 αk

)
−G

(
e−αn+1

n∑
i=0

xie
−∑n

k=i+1 αk

)]
.

Let us define the linear map T : RN+1 → R
N+1 via

(Tx)n =
n∑

i=0

xie
−∑n

k=i+1 αk , n = 0, . . . , N.

We can thus write

(45) CV (x,α) = G
(
(Tx)N

)−G(0) + N−1∑
n=0

[
G
(
(Tx)n

)−G(e−αn+1(Tx)n
)]
.

First, note that G is strictly convex, since G′ = F−1 is strictly increasing. Second, for
a ∈ (0, 1), the function x → G(x) − G(ax) is also strictly convex, because its derivative is
equal to the strictly increasing function hV,a in Lemma 3.3. And third, T is one-to-one. Hence,
CV (·,α) is strictly convex in is first argument, and there can be at most one minimizer.

To show the existence of a minimizer, note that G′ = F−1 is increasing with F−1(0) = 0,
and hence G(y)−G(ay) ≥ (1− a)|y| · |F−1(ay)|. Therefore, (45) yields

CV (x,α) ≥ G((Tx)N)−G(0)
+

N−1∑
n=0

(1− e−αn+1) · ∣∣F−1
(
e−αn+1(Tx)n

)∣∣ · ∣∣(Tx)n∣∣.
Hence,

CV (x,α) ≥ Λ
(|Tx|∞)−G(0),

where | · |∞ is the �∞-norm on R
N+1 and Λ is the function

Λ(y) := G(y) ∧G(−y) ∧ min
n=0,...,N−1

{
|y| · (1− an+1)

(∣∣F−1(an+1 · y)
∣∣ ∧ ∣∣F−1(−an+1 · y)

∣∣)},
where an+1 := e−αn+1 . Since F is unbounded, both G(y) and |F−1(y)| tend to +∞ for
|y| → ∞, and the fact that T is one-to-one implies that Λ

(|Tx|∞) → +∞ for |x| → ∞.
Note also that by assumption αn > 0 for each n. Hence, CV (·,α) must attain its minimum
on Ξ.

We are now in a position to prove the main results for the Model with reversion of volume
impact.

Proof of Proposition 2.10. The result for X0 < 0 will follow if we can show that the
minimizer in Lemma 3.6 consists only of strictly positive components. Here we may assume
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without loss of generality that the admissible sequence of trading times is strictly increasing,
or equivalently that α ∈ A∗, for otherwise we can simply merge two trades occurring at the
same time into a single trade.

If x is the minimizer of CV (·,α) on Ξ, then there must be a Lagrange multiplier ν such
that x is a critical point of y �→ CV (y,α)− ν∑N

i=0 yi. Hence, (43) yields that

(46) ν(1− ai+1) = F−1(Ei + xi)− ai+1F
−1(Ei+1) = hV,ai+1(Ei + xi), i = 0, . . . , N − 1,

where ai+1 = e−αi+1 and hV,a is as in Lemma 3.3. For the final trade, we have

(47) ν = F−1(EN + xN ).

Since hV,a(0) = 0 = F−1(0) and both hV,a and F−1 are strictly increasing, we conclude that
E0 + x0, . . . , EN + xN all have the same sign as ν. Thus, ν > 0 by Lemma 3.1. Next,
(46) implies that Ei + xi = h−1

V,ai+1
(ν(1 − ai+1)) and hence Ei+1 = ai+1h

−1
V,ai+1

(ν(1 − ai+1)).

Using (46) once again yields

x0 = h−1
V,a1

(ν(1−a1)) and xi = h−1
V,ai+1

(ν(1−ai+1))−aih−1
V,ai

(ν(1−ai)), i = 1, . . . , N−1.
The inequality (35) thus gives xi > 0 for i = 0, . . . , N − 1. As for the final trade, (47) gives
xN = F (ν)− aNh−1

V,aN
(ν(1− aN )), which is strictly positive by (36).

Now we consider the case X0 = 0. Suppose that (x,α) is a round trip such that
CV (x,α) ≤ 0. Again we can assume without loss of generality that α ∈ A∗. Then

CV (x,α) = lim
ε↓0

CV (x+ ε1,α).

But CV (x + ε1,α) > 0 for each ε > 0, due to our previous results. Hence, we must have
CV (x,α) = 0. The strict convexity of CV (·,α), established in the proof of Lemma 3.6, implies
that there can be at most one minimizer of CV (·,α) in the class of round trips. Since we
clearly have CV (0,α) = 0, we must conclude that x = 0.

Proof of Theorem 2.11. We will show that for X0 < 0 the admissible strategy (ξV ,α∗),
defined via (14), (15), and (34), is the unique minimizer of CV on Ξ × A. The first step is
to show the existence of a minimizer. To this end, note that Proposition 2.10 allows us to
restrict the minimization of CV to Ξ+ ×A, where Ξ+ = {x ∈ Ξ | xi ≥ 0, i = 0, . . . , N}. The
set Ξ+×A is in fact the product of two compact simplices, and so the continuity of CV yields
the existence of a global minimizer, which lies in Ξ+ ×A.

We next argue that any minimizer must belong to the relative interior of Ξ+ × A. To
this end, suppose that x ∈ Ξ+ and α ∈ A are given such that αi = 0 for some i. We then
define α := (α0, . . . , αi−1, αi+1/2, αi+1/2, αi+2, . . . , αN ) and x := (x0, . . . , xi−2, xi−1 + xi, 0,
xi+1, . . . , xN ) and observe that CV (x,α) = CV (x,α). But Proposition 2.10 implies that
x cannot be optimal for α, since xi = 0. In particular, (x,α) cannot be optimal. Thus, the
α-component of any minimizer must lie in the relative interior of A. Finally, for α in the
relative interior of A, Proposition 2.10 states that x∗(α) belongs to the relative interior of Ξ+.

Now suppose that (x,α) is a minimizer of CV . Due to the preceding step, there must
be Lagrange multipliers ν and λ such that (x,α) is a critical point of (y,β) �→ CV (y,β) −
ν
∑N

i=0 yi − λ
∑N

j=1 βj . The identity (43) thus again yields

(48) ν(1− e−αi+1) = F−1(Ei + xi)− e−αi+1F−1(Ei+1), i = 0, . . . , N − 1,
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and

(49) ν = F−1(EN + xN ).

Using the same argument as in the proof of Proposition 2.10, we have ν > 0. Note that this
can also be obtained by writing

−X0 =

N∑
i=0

xi = F (ν) +

N∑
i=1

(1− ai)h−1
1,ai

(ν(1 − ai)).

Indeed, the right-hand side is strictly increasing in ν (F and the functions h−1
1,ai

are strictly
increasing) and vanishes for ν = 0, so ν > 0.

Next, (44) gives

(50) λ = Ej

N∑
n=j

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=j+1 αk , j = 1, . . . , N.

We now rewrite the sum in (50) as follows:

N∑
n=j

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=j+1 αk

= −F−1(Ej)

+
[
F−1(Ej + xj)− F−1(Ej+1)e

−αj+1
]
+ · · ·

+
[
F−1(EN−1 + xN−1)− F−1(EN )e−αN

]
e−

∑N−1
k=j+1 αk

+ F−1(EN + xN )e−
∑N

k=j+1 αk .

Plugging in (48) and (49), simplifications occur and we get

N∑
n=j

[
F−1(En + xn)− F−1(En)

]
e−

∑n
k=j+1 αk = ν − F−1(Ej).

Plugging this back into (50) yields λ = (ν − F−1(Ej))Ej for j = 1, . . . , N . Solving this
equation together with (48) for ν and λ implies that necessarily

ν =
F−1(Ei−1 + xi−1)− e−αiF−1(e−αi(Ei−1 + xi−1))

1− e−αi
,

λ = e−αi(Ei−1 + xi−1)
F−1(Ei−1 + xi−1)− F−1(e−αi(Ei−1 + xi−1))

1− e−αi

for i = 1, . . . , N . Lemma 3.3(c) thus implies that

α1 = · · · = αN and x0 = E1 + x1 = · · · = EN−1 + xN−1.
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This gives α = α∗. Moreover, (15) holds, since xi = (1− a∗)x0 for i = 1, . . . , N − 1. We also
get Ei = a∗x0 for i = 1, . . . , N . Note next that xN = −X0 − x0 − (N − 1)(1 − a∗)x0, and
therefore EN + xN = −X0 −N(1− a∗)x0. Equation (14) now follows from the fact that

F−1(−X0 −N(1− a∗)) = F−1(EN + xN ) =
∂CV

∂xN
(x,α) = ν =

F−1(x0)− a∗F−1(a∗x0)
1− a∗ .

This concludes the proof of the theorem.
Proof of Corollary 2.12. The result follows immediately from Theorem 2.11.

3.3. Proofs for reversion of price impact. The general strategy of the proof is similar to
the one in section 3.2, although there are also some differences. We start with two lemmas on
properties of the functions satisfying Assumption 2.15. Their conclusions are more important
than Assumption 2.15 itself, as the validity of the conclusions of Lemmas 3.7 and 3.8 will
imply the validity of Theorem 2.17.

Lemma 3.9 provides recursive identities for the gradient of our cost functional. These
identities are needed to derive equations for critical points of the constraint optimization
problem. The existence of such critical points is guaranteed by Lemma 3.11. Uniqueness,
however, must be proved by another method as in section 3.2, because the cost functional is
no longer convex for price impact reversion.

Again, it will be enough to prove our results for X0 < 0. The case for X0 > 0 will then
follow by the symmetry of the problem formulation. The case of round trips with X0 = 0 will
be analyzed by a limiting procedure.

Lemma 3.7. Under Assumption 2.15, the following conclusions hold:
(a) x �→ xf(x) is increasing on R (or, equivalently, F̃ is convex).
(b) For all a ∈ (0, 1), x �→ af(ax)/f(x) is nondecreasing on R+ and nonincreasing on R−

and takes values in (0, 1).

(c) For all x > 0, (0, 1) � a �−→ 1−a2f(ax)/f(x)
1−af(ax)/f(x) is increasing.

(d) For all x > 0, (0, 1) � a �−→ a−1 1−a2f(x)/f(x/a)
1−af(x)/f(x/a) is decreasing.

Proof of Lemma 3.7 under Assumption 2.15(a). (a) The derivative is positive, since
xf ′(x)/f(x) > −1 by Assumption 2.15(a).

(b) Since x �→ xf(x) is increasing, af(ax)/f(x) = [axf(ax)]/[xf(x)] ∈ (0, 1). The deriva-
tive of x �→ af(ax)/f(x) is equal to [a2f ′(ax)f(x)− af(ax)f ′(x)]/f(x)2. It is nonnegative on
R+ and nonpositive on R− if and only if

af ′(ax)
f(ax)

≥ f ′(x)
f(x)

for x ≥ 0 and
af ′(ax)
f(ax)

≤ f ′(x)
f(x)

for x ≤ 0.

These conditions hold as a direct consequence of (20).
(c) For a fixed x ≥ 0, we set ψ(a) = af(ax)/f(x), which takes values in (0, 1). We need

to show that
d

da

1− aψ(a)
1− ψ(a) =

(1− a)ψ′(a)− ψ(a)(1 − ψ(a))
(1− ψ(a))2 > 0.

This condition holds if and only if

ψ′(a)
ψ(a)

>
1− ψ(a)
1− a .
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It is thus sufficient to show that ψ′/ψ is nonincreasing, since then we would have

1− ψ(a) <
∫ 1

a

ψ′(u)
ψ(u)

du ≤ (1− a)ψ
′(a)
ψ(a)

.

This leads to requiring ψψ′′ − (ψ′)2 ≤ 0, which in turn leads to the following condition:

1 + (ax)2
(
f ′(ax)
f(ax)

)2

− (ax)2
f ′′(ax)
f(ax)

≥ 0 for a ∈ (0, 1).

The latter condition is ensured by assumption (21), since xf ′(x)/f(x) ∈ (−1, 0] and thus(
xf ′(x)
f(x)

)2

+
xf ′(x)
f(x)

< 0.

(d) We fix x > 0 and let ψ̃(a) := af(x)/f(x/a). We need to show that

d

da
a−1 1− aψ̃(a)

1− ψ̃(a) =
ψ̃(a)− 1 + aψ̃′(a)(1− a)

a2(1− ψ̃(a))2 < 0.

This condition holds if and only if

aψ̃′(a) <
1− ψ̃(a)
1− a .

Hence, it is enough to show that a �→ aψ̃′(a) is nondecreasing, because then we would have

1− ψ̃(a) >
∫ 1

a
uψ̃′(u) du ≥ (1− a)aψ̃′(a).

Some calculations lead to

d

da
aψ̃′(a) =

1

f(x/a)

(
1 +

x

a

f ′(x/a)
f(x/a)

+ 2

(
x

a

f ′(x/a)
f(x/a)

)2

−
(x
a

)2 f ′′(x/a)
f(x/a)

)
,

which is nonnegative by assumption (21).
Proof of Lemma 3.7 under Assumption 2.15(b). Points (a) and (b) are trivial. To check

(c) and (d), we have to show that

a ∈ (0, 1), a �→ 1− a2+α

1− a1+α
, and a �→ a− a2+α

1− a2+α
= 1− 1− a

1− a2+α

are increasing. It is, however, easy to check by derivation that a �→ 1−aγ

1−aβ
is increasing on (0, 1)

when 0 < β < γ, which gives the result.
Lemma 3.8. Under Assumption 2.15, the following conclusions hold:
(a) For each a ∈ (0, 1), the function hP,a(x) = xf(x/a)/a−af(x)

f(x/a)−af(x) is well defined for x ∈ R

and is strictly increasing.
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(b) For all a, b ∈ (0, 1) and ν > 0, we have the inequalities

h−1
P,a(ν)/a > h−1

P,b(ν) and h−1
P,b(ν) < ν.

(c) The function HP : (x, a) ∈ (0,∞)× (0, 1) �→ (
xf(x/a)/a−af(x)

f(x/a)−af(x) ,−x2f(x)f(x/a)(1/a−1)
f(x/a)−af(x)

)
is

one-to-one.
Proof. (a) First, let us observe that the denominator of hP,a is positive, since x �→ xf(x)

is increasing by Lemma 3.7(a). We have

(51) hP,a(x) = x

(
1 +

a−1 − 1

1− af(x)/f(x/a)
)
.

Again by Lemma 3.7, the fraction is positive and, as a function of x, nondecreasing on R+

and nonincreasing R−, which gives the result.
(b) It is clear from (51) that hP,a(x) > x for x > 0, and therefore h−1

P,a(x) < x. Let us

now consider a, b ∈ (0, 1), ν > 0 and set x′ = h−1
P,a(ν)/a, x = h−1

P,b(ν). Then both x and x′ are
positive, and we need to show that x′ > x. It follows that

ν = x′
f(x′)− a2f(ax′)
f(x′)− af(ax′) = x

f(x/b)/b− bf(x)
f(x/b)− bf(x) .

Let us suppose by way of contradiction that x′ ≤ x. Then, using Lemma 3.7(b) and the fact
that u ∈ [0, 1) �→ (1− au)/(1 − u) is increasing, we get

1− a2f(ax)/f(x)
1− af(ax)/f(x) ≥

1− a2f(ax′)/f(x′)
1− af(ax′)/f(x′) ≥ b

−1 1− b2f(x)/f(x/b)
1− bf(x)/f(x/b) .

Again by Lemma 3.7, the left-hand side is increasing with respect to a and the right-hand
side is decreasing with respect to b. Moreover, both have the same limit,

2 + xf ′(x)/f(x)
1 + xf ′(x)/f(x)

,

when a ↑ 1 and b ↑ 1, which leads to a contradiction.
(c) Let (a1, y1), (a2, y2) ∈ (0, 1) × (0,∞) be such that HP (a1, y1) = HP (a2, y2). By (51),

we then have

(52)

{
y1(1 + γ1) = y2(1 + γ2),

y21f(y1)γ1 = y22f(y2)γ2,
where γi :=

(a−1
i − 1)f(yi/ai)

f(yi/ai)− aif(yi) for i = 1, 2.

Let us assume, for example, that γ2 ≤ γ1 and set η = γ2/γ1 ∈ (0, 1]. Eliminating y1 in (52)
yields

φ(η) :=

(
1 + ηγ1
1 + γ1

)2

f

(
y2

1 + ηγ1
1 + γ1

)
− ηf(y2) = 0.

Since x �→ xf(x) is increasing by Lemma 3.7(a), we have

η ∈ (0, 1), φ(η) <
1− η
1 + γ1

f(y2) < 0.
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Thus, η = 1 is the only zero of φ(η). We may thus conclude that γ1 = γ2 and in turn that
y1 = y2. Finally, the equality γ1 = γ2 leads to a1 = a2 due to Lemma 3.7(d), since

1 + γi = a−1
i

1− a2i f(yi)/f(yi/ai)
1− aif(yi)/f(yi/ai) .

In the Model with price impact reversion, we need to minimize the following cost func-
tional:

(53) CP (x0, . . . , xn,α) =
N∑

n=0

G(F (Dn) + xn)−G(F (Dn)),

where D0 = 0 and Dn = e−αnF−1(xn−1 +F (Dn−1)) for 1 ≤ n ≤ N . By f̂(x) = 1/f(F−1(x)),
we again denote the derivative of F−1.

Lemma 3.9. We have the following recursive formula for i = 0, . . . , N − 1:

(54)
∂CP

∂xi
= F−1

(
F (Di) + xi

)
+ e−αi+1f(Di+1)f̂

(
xi + F (Di)

) [ ∂CP

∂xi+1
−Di+1

]
.

Moreover, for j = 1, . . . , N ,

(55)
∂CP

∂αj
= −Djf(Dj)

(
∂CP

∂xj
−Dj

)
.

Proof. We have D1 = e−α1F−1(x0) and Dn = e−αnF−1(xn−1 + F (Dn−1)) for 1 ≤ n ≤ N .
Thus, we obtain the following recursive relations between the derivatives of Dn with respect
to xi:

∂Dn

∂xi
= 0 for i ≥ n, ∂Dn

∂xn−1
= e−αn f̂(xn−1 + F (Dn−1)),

∂Dn

∂xi
= e−αi+1f(Di+1)f̂(xi + F (Di))

∂Dn

∂xi+1
for 1 ≤ i ≤ n− 1.

Thus, by (53),

∂CP

∂xi
= F−1(xi + F (Di)) +

N∑
n=i+1

f(Dn)
[
F−1(xn + F (Dn))−Dn

]∂Dn

∂xi

= F−1(xi + F (Di)) + e−αi+1f(Di+1)f̂
(
xi + F (Di)

)[
F−1(xi+1 + F (Di+1))−Di+1

]
+ e−αi+1f(Di+1)f̂

(
xi + F (Di)

) N∑
n=i+2

f(Dn)
[
F−1(xn + F (Dn))−Dn

] ∂Dn

∂xi+1
.

(56)

By (56), the sum in the preceding line satisfies

N∑
n=i+2

f(Dn)
[
F−1(xn + F (Dn))−Dn

] ∂Dn

∂xi+1
=

∂CP

∂xi+1
− F−1(xi+1 + F (Di+1)).
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Hence,

∂CP

∂xi
= F−1(xi + F (Di)) + e−αi+1f(Di+1)f̂(xi + F (Di))

[
∂CP

∂xi+1
−Di+1

]
,

which is formula (54).
As to (55), we again use the recursive scheme at the beginning of this proof to obtain

formulas for the derivatives of Dn with respect to αj :

∂Dn

∂αj
= 0 for j > n,

∂Dn

∂αn
= −Dn,

∂Dn

∂αj
= −Djf(Dj)

∂Dn

∂xj
for 1 ≤ j ≤ n− 1.

We therefore obtain from (53)

∂CP

∂αi
=

N∑
n=i

f(Dn)
[
F−1(xn + F (Dn))−Dn

]∂Dn

∂αi

= −Dif(Di)[F
−1(xi + F (Di))−Di]

−
N∑

n=i+1

f(Dn)Dif(Di)
[
F−1(xn + F (Dn))−Dn

]∂Dn

∂xi

= −Dif(Di)

(
F−1(xi + F (Di))−Di +

∂CP

∂xi
− F−1(xi + F (Di))

)
= −Dif(Di)

(
∂CP

∂xi
−Di

)
.

Remark 3.10. A consequence of this lemma is that the optimal strategy given by [2] on the
homogeneous time spacing grid T ∗ is a critical point for the minimization in (x,α). Indeed,

we then have Di = a∗F−1(ξP0 ) for any i, and therefore ∂CP

∂αi
does not depend on i.

Lemma 3.11. Assume that α ∈ A∗. Then CP (x,α) → ∞ as |x| → ∞ under Assump-
tion 2.15.

Proof. Equation (53) yields

CP (x,α)

=
N∑

n=0

F̃
(
F−1(F (Dn) + xn)

)− F̃ (Dn)

=

N−1∑
n=0

[
F̃
(
F−1(F (Dn) + xn)

)− F̃ (e−αn+1F−1(F (Dn) + xn)
)]

+ F̃
(
F−1(F (DN ) + xN )

)
.

Let a = maxi=1,...,N e
−αi < 1. Since x �→ xf(x) is increasing on R, we have for x ∈ R, a ∈ [0, a]

F̃ (x)− F̃ (ax) =
∫ x

ax
yf(y) dy ≥

∫ x

ax
yf(y) dy ≥ a(1− a)x2f(ax) =: H(x).
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520 AURÉLIEN ALFONSI AND ALEXANDER SCHIED

Defining T2(x) =
(
x0, x1 + F−1(D1), . . . , xN + F−1(DN )

)
, we thus get

CP (x,α) ≥ H(|T2(x)|∞).

From (20), x �→ xf(x) is increasing, and therefore H(x)→ +∞ as |x| → +∞. It is therefore
sufficient to have T2(x) → +∞ for |x| → +∞. To this end, let (xk) be a sequence such that
the sequence (T2(x

k)) is bounded. We will show that (xk) then must also be bounded. It
is clear that the first coordinate xk0 is bounded. Therefore, F−1(Dk

1 ) is also bounded, which
in turn implies that the second coordinate of (T2(x

k)) is bounded. We then get that (xk1) is
bounded. An easy induction on coordinates thus gives the desired result.

We are now in position to prove the main results for the Model with price impact reversion.
Proof of Proposition 2.16. Let us first assume X0 < 0. We can assume without loss of

generality that α ∈ A∗, for otherwise we can simply merge two trades occurring at the same
time into a single trade. If x is the minimizer of CP (·,α) on Ξ, then there must be a Lagrange
multiplier ν such that x is a critical point of y �→ CP (y,α) − ν∑N

i=0 yi. Hence, (54) yields
that

ν = hP,ai+1(Di+1), i = 0, . . . , N − 1,

where ai+1 = e−αi+1 and hP,a is defined as in Lemma 3.8. Since Di+1 = ai+1F
−1(xi+F (Di)),

we get with Lemma 3.8 that

x0 = F (h−1
P,a1

(ν)/a1), xi = F (h−1
P,ai+1

(ν)/ai+1)− F (h−1
P,ai

(ν)), i = 1, . . . , N − 1.

For the last trade, we also get that ν = F−1(xN + F (DN )) and xN = F (ν) − F (h−1
P,aN

(ν)).
Therefore, summing all the trades, we get

(57) −X0 = F (ν) +

N∑
i=1

[
F (h−1

P,ai
(ν)/ai)− F (h−1

P,ai
(ν))

]
.

Now let us observe that F is increasing on R, and, for any a ∈ (0, 1), y �→ F (y/a) − F (y)
is increasing (its derivative is positive by Lemma 3.7(a)). Besides, F and h−1

P,a are increasing
for any a ∈ (0, 1), and therefore ν is uniquely determined by the above equation. We have,
moreover, ν > 0 because the left-hand side vanishes when ν is equal to 0. This proves
that there is a unique critical point, which then is necessarily the global minimum of CP by
Lemma 3.11.

Next, xi > 0 for i = 0, . . . , N , due to Lemma 3.7 and the fact that F is increasing.
Finally, we consider the case X0 = 0. As in the proof of Proposition 2.10, we can show

that a round trip such that CP (x,α) ≤ 0 necessarily satisfies CP (x,α) = 0. Moreover, for
α ∈ A∗, we see looking at the proof of Proposition 2.16 that (0, . . . , 0) is the only critical
point when X0 = 0 since we necessarily have ν = 0 by (57). Therefore, it is also the unique
minimum of CP by Lemma 3.11.

Proof of Theorem 2.17. The existence of a minimizer (ξP ,α∗) and the fact that it belongs
to Ξ+ ×A∗ follow exactly as in the proof of Theorem 2.11.

Now suppose that (x,α) is a minimizer of CP for X0 < 0. Due to the preceding step,
there must be Lagrange multipliers ν, λ ∈ R such that (x,α) is a critical point of (y,β) �→
CP (y,β)− ν∑N

i=0 yi − λ
∑N

j=1 βj .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL TRADE EXECUTION AND ABSENCE OF PRICE MANIPULATIONS 521

From (54), we easily obtain that for i = 1, . . . , N

ν =
e−αif(Di)

f(eαiDi)
[ν −Di] + eαiDi

and ν = F−1(xN + F (DN )) for the last trade. We then deduce from (55) that

ν = Di
eαif(eαiDi)− e−αif(Di)

f(eαiDi)− e−αif(Di)
,

λ = −D2
i f(Di)

(eαi − 1)f(eαiDi)

f(eαiDi)− e−αif(Di)
,

i.e., (ν, λ) = HP (Di, ai), with ai = e−αi . As in the proof of Proposition 2.16, we get (57),
which (by our standing assumption X0 < 0) ensures ν > 0 and in turnDi > 0 for i = 1, . . . , N .
Due to Lemma 3.8, HP is one-to-one on (0,∞) × (0, 1), and therefore α1 = · · · = αN and
D1 = · · · = DN . Then D1 = a∗F−1(x0). Since Di+1 = a∗F−1(xi + F (Di)), we get xi =
x0 − F (Di) = x0 − F (a∗F−1(x0)), and therefore xN = −X0 −Nx0 + (N − 1)F (a∗F−1(x0)).
Combining this with ν = F−1(xN + F (DN )), we get

F−1
(−X0 −N [x0 − F (a∗F−1(x0))]

)
= hP,a∗(F

−1(x0)).

We refer the reader to [2, Lemma C.3] for the existence, uniqueness, and positivity of the
solution x0 of this equation. It follows that there is a unique critical point of CP on Ξ+×A∗,
which is necessarily the global minimum.

Proof of Corollary 2.18. The result follows immediately from Proposition 2.16 and Theo-
rem 2.17.

4. Conclusion. We have introduced two variants of a market impact model in which price
impact is a nonlinear function of volume impact and in which either volume or price impact
reverts on an exponential scale. In both model variants, there are unique optimal strategies
for the liquidation or acquisition of asset positions when optimality is defined in terms of the
minimization of the expected liquidation costs. Existence and structure of these strategies
allow us to conclude that our market impact model admits neither price manipulation in the
sense of Huberman and Stanzl [14] nor transaction-triggered price manipulation in the sense
of Alfonsi, Schied, and Slynko [3].

Our optimal execution strategies turn out to be deterministic, because we are minimizing
the expected execution costs. As argued by Almgren and Chriss [6, 5], trade execution strate-
gies used in practice should also take volatility risk into account, which may lead to adaptive
strategies. We refer the reader to [19, 18]. For future research, it would also be interesting to
allow certain model parameters to be random.

Acknowledgment. The authors thank Jim Gatheral for discussions.
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Abstract. In the spirit of [T. Björk et al., Finance Stoch., 1 (1997), pp. 141–174], we investigate term structure
models driven by Wiener processes and Poisson measures with forward curve dependent volatilities.
This includes a full existence and uniqueness proof for the corresponding Heath–Jarrow–Morton-
type term structure equation. Furthermore, we characterize positivity preserving models by means
of the characteristic coefficients. A key role in our investigation is played by the method of the
moving frame, which allows us to transform term structure equations to time-dependent SDEs.
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1. Introduction. Interest rate theory deals with zero-coupon bonds, which are subject
to a stochastic evolution due to daily trading of related products like coupon bearing bonds,
swaps, caps, floors, swaptions, etc. Zero-coupon bonds, which are financial assets paying the
holder one unit of cash at maturity time T , are conceptually important products, since one can
easily write all other products as derivatives on them. We always assume default-free bonds;
i.e., there are no counterparty risks in the considered markets. The Heath–Jarrow–Morton
(HJM) methodology takes the bond market on the whole as today’s aggregation of information
on interest rates, and one tries to model future flows of information by a stochastic evolution
equation on the set of possible scenarios of bond prices. For the set of possible scenarios of
bond prices, the forward rate proved to be a flexible and useful parametrization, since it maps
possible states of the bond market to open subsets of (Hilbert) spaces of forward rate curves.
Under some regularity assumptions, the price of a zero-coupon bond at t ≤ T can be written
as

P (t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
,

where f(t, T ) is the forward rate for date T . We usually assume the forward rate to be
continuous in maturity time T . The classical continuous framework for the evolution of the
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forward rates goes back to Heath, Jarrow, and Morton [23]. They assume that, for every date
T , the forward rates f(t, T ) follow an Itô process of the form

df(t, T ) = α(t, T )dt +
d∑

j=1

σj(t, T )dW j
t , t ∈ [0, T ],(1.1)

where W = (W 1, . . . ,W d) is a standard Brownian motion in R
d.

There are several reasons for generalizing the HJM framework (1.1) by introducing jumps.
Namely, this allows us to model the impact of unexpected news about the economy, such as
interventions by central banks, credit events, or (natural) disasters. Indeed, there is strong
statistical evidence in the finance literature that empirical features of the data cannot be
captured by continuous models. We also mention that for the particular case of deterministic
integrands α and σ in (1.1), as it is for the Vasiček model, the log returns for discounted zero-
coupon bonds are normally distributed, which, however, is not true for empirically observed
log returns; see the discussion in [37, Chap. 5].

Björk et al. (see [3, 4]), Eberlein et al. (see [15, 14, 10, 12, 13, 11]), and others (see [38,
26, 24]) thus proposed replacing the classical Brownian motion W in (1.1) by a more general
driving noise, also taking into account the occurrence of jumps. Carmona and Tehranchi [6]
proposed models based on infinite dimensional Wiener processes; see also [16]. In the spirit
of Björk et al. [3] and Carmona and Tehranchi [6], we focus on term structure models of the
type

df(t, T ) = α(t, T )dt+ σ(t, T )dWt +

∫
E
γ(t, x, T )(μ(dt, dx) − F (dx)dt),(1.2)

where W denotes a (possibly infinite dimensional) Wiener process and, in addition, μ is a
homogeneous Poisson random measure on R+ × E with compensator dt ⊗ F (dx), where E
denotes the mark space.

In what follows, it will be convenient to switch to the alternative parametrization

rt(ξ) := f(t, t+ ξ), ξ ≥ 0,

which is due to Musiela [32]. Then, we may regard (rt)t≥0 as one stochastic process with
values in H, that is,

r : Ω× R+ → H,

where H denotes a Hilbert space of forward curves h : R+ → R to be specified later. Recall
that we always assume that forward rate curves are continuous. Denoting by (St)t≥0 the shift
semigroup on H, that is, Sth = h(t+ ·), (1.2) becomes in integrated form

(1.3)

rt(ξ) = Sth0(ξ) +

∫ t

0
St−sα(s, s + ξ)ds+

∫ t

0
St−sσ(s, s+ ξ)dWs

+

∫ t

0

∫
E
St−sγ(s, x, s + ξ)(μ(ds, dx) − F (dx)ds), t ≥ 0,
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where h0 ∈ H denotes the initial forward curve and St−s operates on the functions ξ �→
α(s, s+ ξ), ξ �→ σ(s, s + ξ), and ξ �→ γ(s, x, s+ ξ).

From a financial modeling point of view, one would rather consider drift and volatilities
to be functions of the prevailing forward curve, that is,

α : H → H,

σj : H → H for all j,

γ : H × E → H.

For example, the volatilities could be of the form σj(h) = φj(�1(h), . . . , �p(h)) for some p ∈ N

with φj : R
p → H and �i : H → R. We may think of �i(h) =

1
ξi

∫ ξi
0 h(η)dη (benchmark yields)

or �i(h) = h(ξi) (benchmark forward rates).
The implied bond market

P (t, T ) = exp

(
−
∫ T−t

0
rt(ξ)dξ

)
(1.4)

is free of arbitrage if we can find an equivalent (local) martingale measure Q ∼ P such that
the discounted bond prices

exp

(
−
∫ t

0
rs(0)ds

)
P (t, T ), t ∈ [0, T ],(1.5)

are local Q-martingales for all maturities T . In what follows, we will directly specify the
HJM equation under a martingale measure. More precisely, we will assume that the drift
α = αHJM : H → H is given by

αHJM(h) :=
∑
j

σj(h)Σj(h)−
∫
E
γ(h, x)

(
eΓ(h,x) − 1

)
F (dx)(1.6)

for all h ∈ H, where we have set

Σj(h)(ξ) :=

∫ ξ

0
σj(h)(η)dη for all j,(1.7)

Γ(h, x)(ξ) := −
∫ ξ

0
γ(h, x)(η)dη.(1.8)

According to [3] (if the Brownian motion is infinite dimensional; see also [16]), condition (1.6)
guarantees that the discounted zero-coupon bond prices (1.5) are local martingales for all
maturities T , whence the bond market (1.4) is free of arbitrage. In the classical situation,
where the model is driven by a finite dimensional standard Brownian motion, (1.6) is the
well-known HJM drift condition derived in [23].

Our requirements lead to the forward rates (rt)t≥0 in (1.3) being a solution of the stochastic
equation

(1.9)

rt = Sth0 +

∫ t

0
St−sαHJM(rs)ds +

∫ t

0
St−sσ(rs)dWs

+

∫ t

0

∫
E
St−sγ(rs−, x)(μ(ds, dx) − F (dx)ds), t ≥ 0,
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and it raises the question of whether this equation possesses a solution. To our knowledge,
there has not yet been an explicit proof for the existence of a solution to the Poisson measure
driven equation (1.9). We thus provide such a proof in our paper; see Theorem 3.2. For term
structure models driven by a Brownian motion, the existence proof has been provided in [16]
and for the Lévy case in [19]. We also refer the reader to the related papers [35] and [28].

In the spirit of [8] and [36], an H-valued stochastic process (rt)t≥0 satisfying (1.9) is a
so-called mild solution for the (semilinear) SPDE{

drt = ( d
dξ rt + αHJM(rt))dt+ σ(rt)dWt +

∫
E γ(rt−, x)(μ(dt, dx) − F (dx)dt),

r0 = h0,
(1.10)

where d
dξ becomes the infinitesimal generator of the strongly continuous semigroup of shifts

(St)t≥0.
As in [20], we understand SPDEs as time-dependent transformations of time-dependent

SDEs with infinite dimensional state space. More precisely, on an enlarged space H of forward
curves h : R → R, which are indexed by the whole real line, equipped with the strongly
continuous group (Ut)t∈R of shifts, we solve the SDE⎧⎪⎨⎪⎩

dft = U−t�αHJM(πUtft)dt+ U−t�σ(πUtft)dWt

+
∫
E U−t�γ(πUtft−, x)(μ(dt, dx) − F (dx)dt),

f0 = �h0,

(1.11)

where � : H → H is an isometric embedding and π : H → H is the orthogonal projection on
H, and afterwards we transform the solution process (ft)t≥0 by rt := πUtft in order to obtain
a mild solution for (1.10). Notice that (1.11) corresponds just to the original HJM dynamics
in (1.2), where, of course, the forward rate ft(T ) has no economic interpretation for T < t.
Thus, we will henceforth refer to (1.11) as the HJM equation.

We emphasize that knowledge about the HJM equation (1.11) is not necessary in order
to deduce existence and uniqueness for the forward curve evolution (1.10). The only thing we
require in order to apply the existence result from [20] is that we can embed the space H of
forward curves into a larger Hilbert space H on which the shift semigroup extends to a group.
The point of the “method of the moving frame” from [20] is to transform an SPDE into a
time-dependent SDE on H, but we do not need the particular structure of this extension.

Our existence result of this paper generalizes that for pure diffusion models from [16] and
for term structure models driven by Lévy processes from [19] (we also mention the papers
[35] and [28] concerning Lévy term structure models); see Corollary 3.3. As described above,
in order to establish the proof we apply a result from [20], which contains existence and
uniqueness results for general SPDEs on Hilbert spaces. Other references for SPDEs on
Hilbert spaces are [1] and [29]. Since the HJM drift term αHJM is of the particular form (1.6),
we have to work out sufficient conditions which permit an application of this existence result.

In practice, we are interested in term structure models producing positive forward curves,
since negative forward rates are very rarely observed. After establishing the existence issue, we
shall therefore focus on positivity preserving term structure models and give a characterization
of such models. The HJM equation (1.11) on the enlarged function space will be the key for
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analyzing positivity of forward curves. Indeed, the “method of the moving frame” (see [20])
allows us to use standard stochastic analysis (see [25]) for our investigations. It will turn out
that the conditions

σj(h)(ξ) = 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ and all j,

h+ γ(h, x) ∈ P for all h ∈ P and F -almost all x ∈ E,
γ(h, x)(ξ) = 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ and F -almost all x ∈ E,

where P denotes the convex cone of all nonnegative forward curves and ∂Pξ is the “edge”
consisting of all nonnegative forward curves h with h(ξ) = 0, are necessary and sufficient for
the positivity preserving property; see Theorem 4.13. For this purpose, we provide a general
positivity preserving result (see Theorem 4.11), which is of independent interest and can also
be applied to other function spaces. Positivity results for the diffusion case have been worked
out in [27] and [30]. In particular, we would like to mention the important and beautiful work
[34], where, through an application of a general support theorem, positivity is proved. We
shall also apply this general argument for our purposes.

The remainder of this text is organized as follows. In section 2 we introduce the space
Hβ of forward curves. Using this space, we prove in section 3, under appropriate regular-
ity assumptions, the existence of a unique solution for the Heath–Jarrow–Morton–Musiela
(HJMM) equation (1.10). The positivity issue of term structure models is treated in section
4. There, we first show the necessary conditions with a general semimartingale argument.
The sufficient conditions are proved to hold true by switching on the jumps “slowly”. This
allows for a reduction to results from [34]. For the sake of lucidity, we postpone the proofs of
some auxiliary results to the appendix.

2. The space of forward curves. In this section, we introduce the space of forward curves
on which we will solve the HJMM equation (1.10) in section 3.

We fix an arbitrary constant β > 0. Let Hβ be the space of all absolutely continuous
functions h : R+ → R such that

‖h‖β :=

(
|h(0)|2 +

∫
R+

|h′(ξ)|2eβξdξ
)1/2

<∞.

Let (St)t≥0 be the shift semigroup on Hβ defined by Sth := h(t+ ·) for t ∈ R+.
Since forward curves should flatten for large times to maturity ξ, the choice of Hβ is

reasonable from an economic point of view.
Moreover, let Hβ be the space of all absolutely continuous functions h : R→ R such that

‖h‖β :=

(
|h(0)|2 +

∫
R

|h′(ξ)|2eβ|ξ|dξ
)1/2

<∞.

Let (Ut)t∈R be the shift group on Hβ defined by Uth := h(t+ ·) for t ∈ R.
The linear operator � : Hβ → Hβ defined by

�(h)(ξ) :=

{
h(0), ξ < 0,

h(ξ), ξ ≥ 0,
h ∈ Hβ,
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is an isometric embedding with adjoint operator π := �∗ : Hβ → Hβ given by π(h) = h|R+ ,
h ∈ Hβ .

Theorem 2.1. Let β > 0 be arbitrary.

1. The space (Hβ , ‖ · ‖β) is a separable Hilbert space.
2. For each ξ ∈ R+, the point evaluation h �→ h(ξ) : Hβ → R is a continuous linear

functional.
3. (St)t≥0 is a C0-semigroup on Hβ with infinitesimal generator d

dξ : D( d
dξ ) ⊂ Hβ → Hβ,

d
dξh = h′, and domain

D( d
dξ ) = {h ∈ Hβ |h′ ∈ Hβ}.

4. Each h ∈ Hβ is continuous and bounded, and the limit h(∞) := limξ→∞ h(ξ) exists.
5. H0

β := {h ∈ Hβ |h(∞) = 0} is a closed subspace of Hβ.
6. There are universal constants C1, C2, C3, C4 > 0, depending only on β, such that for

all h ∈ Hβ we have the estimates

‖h′‖L1(R+) ≤ C1‖h‖β ,(2.1)

‖h‖L∞(R+) ≤ C2‖h‖β ,(2.2)

‖h− h(∞)‖L1(R+) ≤ C3‖h‖β ,(2.3)

‖(h − h(∞))4eβ•‖L1(R+) ≤ C4‖h‖4β .(2.4)

7. For each β′ > β, we have Hβ′ ⊂ Hβ and the relation

‖h‖β ≤ ‖h‖β′ , h ∈ Hβ′ ,(2.5)

and there is a universal constant C5 > 0, depending only on β and β′, such that for
all h ∈ Hβ′ we have the estimate

‖(h − h(∞))2eβ•‖L1(R+) ≤ C5‖h‖2β′ .(2.6)

8. The space (Hβ , ‖·‖β) is a separable Hilbert space, (Ut)t∈R is a C0-group on Hβ , and, for
each ξ ∈ R, the point evaluation h �→ h(ξ), Hβ → R is a continuous linear functional.

9. The diagram

Hβ
Ut−−−−→ Hβ�⏐⏐�

⏐⏐�π

Hβ
St−−−−→ Hβ

commutes for every t ∈ R+, that is,

πUt� = St for all t ∈ R+.(2.7)

Proof. See the appendix.
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3. Existence of term structure models driven by Wiener processes and Poisson mea-
sures. In this section, we establish existence and uniqueness of the HJMM equation (1.10)
with diffusive and jump components on the Hilbert spaces introduced in the previous section.

Let 0 < β < β′ be arbitrary real numbers. We denote by Hβ and Hβ′ the Hilbert spaces
of the previous section, equipped with the strongly continuous semigroup (St)t≥0 of shifts,
which has the infinitesimal generator d

dξ .
In what follows, (Ω,F, (Ft)t≥0,P) denotes a filtered probability space satisfying the usual

conditions.
Let U be another separable Hilbert space, and let Q ∈ L(U) be a compact, self-adjoint,

strictly positive linear operator. Then there exist an orthonormal basis {ej} of U and a
bounded sequence λj of strictly positive real numbers such that

Qu =
∑
j

λj〈u, ej〉ej , u ∈ U ;

namely, the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding to λj ;
see, e.g., [41, Thm. VI.3.2].

The space U0 := Q1/2(U), equipped with the inner product

〈u, v〉U0 := 〈Q−1/2u,Q−1/2v〉U ,

is another separable Hilbert space and {√λjej} is an orthonormal basis.
Let W be a Q-Wiener process [8, pp. 86–87]. We assume that tr(Q) =

∑
j λj < ∞.

Otherwise, which is the case if W is a cylindrical Wiener process, there always exists a
separable Hilbert space U1 ⊃ U on which W has a realization as a finite trace class Wiener
process; see [8, Chap. 4.3].

We denote by L0
2(Hβ) := L2(U0,Hβ) the space of Hilbert–Schmidt operators from U0 into

Hβ, which, endowed with the Hilbert–Schmidt norm

‖Φ‖L0
2(Hβ)

:=

√∑
j

λj‖Φej‖2, Φ ∈ L0
2(Hβ),

itself is a separable Hilbert space.
According to [8, Prop. 4.1], the sequence of stochastic processes {βj} defined as βj :=

1√
λj
〈W, ej〉 is a sequence of real-valued independent (Ft)-Brownian motions and we have the

expansion

W =
∑
j

√
λjβ

jej,(3.1)

where the series is convergent in the space M2(U) of U -valued square-integrable martingales.
Let Φ : Ω× R+ → L0

2(Hβ) be an integrable process; i.e., Φ is predictable and satisfies

P

(∫ T

0
‖Φt‖2L0

2(Hβ)
dt <∞

)
= 1 for all T ∈ R+.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Setting Φj :=
√
λjΦej for each j, we have∫ t

0
ΦsdWs =

∑
j

∫ t

0
Φj
sdβ

j
s , t ∈ R+,(3.2)

where the convergence is uniform on compact time intervals in probability; see [8, Thm. 4.3].
Let (E,E) be a measurable space which we assume to be a Blackwell space (see [9, 22]).

We remark that every Polish space with its Borel σ-field is a Blackwell space.
Furthermore, let μ be a homogeneous Poisson random measure on R+ × E; see [25, Def.

II.1.20]. Then its compensator is of the form dt ⊗ F (dx), where F is a σ-finite measure on
(E,E).

Let measurable vector fields σ : Hβ → L0
2(H

0
β) and γ : Hβ × E → H0

β′ be given, where

the subspace H0
β is as defined in Theorem 2.1. For each j, we define σj : Hβ → H0

β as

σj(h) :=
√
λjσ(h)ej . We shall now focus on the HJMM equation (1.10).

Assumption 3.1. We assume there exists a measurable function Φ : E → R+ satisfying

|Γ(h, x)(ξ)| ≤ Φ(x), h ∈ Hβ, x ∈ E, and ξ ∈ R+,(3.3)

a constant L > 0 such that

‖σ(h1)− σ(h2)‖L0
2(Hβ)

≤ L‖h1 − h2‖β ,(3.4) (∫
E
eΦ(x)‖γ(h1, x)− γ(h2, x)‖2β′F (dx)

)1/2

≤ L‖h1 − h2‖β(3.5)

for all h1, h2 ∈ Hβ, and a constant M > 0 such that

‖σ(h)‖L0
2(Hβ)

≤M,(3.6) ∫
E
eΦ(x)(‖γ(h, x)‖2β′ ∨ ‖γ(h, x)‖4β′ )F (dx) ≤M(3.7)

for all h ∈ Hβ. Furthermore, we assume that for each h ∈ Hβ the map

α2(h) := −
∫
E
γ(h, x)

(
eΓ(h,x) − 1

)
F (dx)(3.8)

is absolutely continuous with weak derivative

(3.9)
d

dξ
α2(h) =

∫
E
γ(h, x)2eΓ(h,x)F (dx)−

∫
E

d

dξ
γ(h, x)

(
eΓ(h,x) − 1

)
F (dx).

Remark 3.2. The proof of Proposition 3.1 gives rise to the following remarks concerning
conditions (3.8), (3.9) from Assumption 3.1.

• For each h ∈ Hβ, the map α2(h) is well defined (that is, for every ξ ∈ R+ the
integral in (3.8) exists) and continuous (but not necessarily absolutely continuous)
with α2(h)(0) = 0 and limξ→∞ α2(h)(ξ) = 0.

• If α2(h) is absolutely continuous for some h ∈ Hβ, then we have α2(h) ∈ H0
β.
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• For Lévy-driven term structure models, we can verify conditions (3.8) and (3.9) di-
rectly; see Corollary 3.3.

• Let h ∈ Hβ be such that γ(h, x) ∈ C1(R+) for all x ∈ E. Suppose for each ξ ∈ R+

there exist δ = δ(h, ξ) > 0 and C = C(h, ξ) > 0 such that∣∣∣∣ ddηγ(h, x)(η)
∣∣∣∣ ≤ C‖γ(h, x)‖β′ for all x ∈ E and η ∈ (ξ − δ, ξ + δ) ∩R+.

Then, we even have α2(h) ∈ C1(R+) with derivative (3.9).
Proposition 3.1. Suppose Assumption 3.1 is fulfilled. Then we have αHJM(Hβ) ⊂ H0

β and
there is a constant K > 0 such that

‖αHJM(h1)− αHJM(h2)‖β ≤ K‖h1 − h2‖β(3.10)

for all h1, h2 ∈ Hβ.
Proof. Note that αHJM = α1 + α2, where

α1(h) :=
∑
j

σj(h)Σj(h), h ∈ Hβ,

and α2 is given by (3.8). By [16, Cor. 5.1.2], we have σj(h)Σj(h) ∈ H0
β, h ∈ Hβ for all j. For

an arbitrary h ∈ Hβ, we obtain, by using [16, Cor. 5.1.2] again,∑
j

‖σj(h)Σj(h)‖β ≤
√

3(C2
3 + 2C4)

∑
j

‖σj(h)‖2β =
√

3(C2
3 + 2C4)‖σ(h)‖2L0

2(Hβ)
,

and hence we deduce that α1(Hβ) ⊂ H0
β.

Let h ∈ Hβ be arbitrary. For all x ∈ E and ξ ∈ R+, we have by (2.2) and (2.5)

|γ(h, x)(ξ)| ≤ C2‖γ(h, x)‖β ≤ C2‖γ(h, x)‖β′ ,(3.11)

and for all x ∈ E and ξ ∈ R+ we have by (3.3), (2.3), and (2.5)

|eΓ(h,x)(ξ) − 1| ≤ eΦ(x)|Γ(h, x)(ξ)| ≤ eΦ(x)‖γ(h, x)‖L1(R+) ≤ C3e
Φ(x)‖γ(h, x)‖β′ .(3.12)

Estimates (3.11), (3.12), and (3.7) show that limξ→∞ α2(h)(ξ) = 0. From (3.3), (3.11), (3.7),
and (2.6), it follows that∫

R+

(∫
E
γ(h, x)(ξ)2eΓ(h,x)(ξ)F (dx)

)2

eβξdξ

≤ C2
2M

∫
R+

(∫
E
γ(h, x)(ξ)2eΓ(h,x)(ξ)F (dx)

)
eβξdξ

≤ C2
2M

∫
E
eΦ(x)

∫
R+

γ(h, x)(ξ)2eβξdξF (dx)

≤ C2
2MC5

∫
E
eΦ(x)‖γ(h, x)‖2β′F (dx) ≤ C2

2M
2C5.
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We obtain by (3.12), Hölder’s inequality, (3.7), and (2.5)∫
R+

(∫
E

d

dξ
γ(h, x)(ξ)

(
eΓ(h,x)(ξ) − 1

)
F (dx)

)2

eβξdξ

≤ C2
3

∫
R+

(∫
E

∣∣∣∣ ddξ γ(h, x)(ξ)
∣∣∣∣e 1

2
Φ(x)e

1
2
Φ(x)‖γ(h, x)‖β′F (dx)

)2

eβξdξ

≤ C2
3M

∫
E
eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h, x)(ξ)
∣∣∣∣2eβξdξF (dx)

≤ C2
3M

∫
E
eΦ(x)‖γ(h, x)‖2β′F (dx) ≤ C2

3M
2.

In view of (3.9), we conclude that α2(Hβ) ⊂ H0
β, and hence αHJM(Hβ) ⊂ H0

β.
Let h1, h2 ∈ Hβ be arbitrary. By [16, Cor. 5.1.2], Hölder’s inequality, (3.4), and (3.6), we

have

‖α1(h1)− α1(h2)‖β
≤
√

3(C2
3 + 2C4)

∑
j

(‖σj(h1)‖β + ‖σj(h2)‖β)‖σj(h1)− σj(h2)‖β

≤
√

3(C2
3 + 2C4)

√∑
j

(‖σj(h1)‖β + ‖σj(h2)‖β)2
√∑

j

‖σj(h1)− σj(h2)‖2β

≤
√

6(C2
3 + 2C4)(‖σ(h1)‖L0

2(Hβ)
+ ‖σ(h2)‖L0

2(Hβ)
)‖σ(h1)− σ(h2)‖L0

2(Hβ)

≤ 2ML
√

6(C2
3 + 2C4)‖h1 − h2‖β .

Furthermore, by (3.9),

‖α2(h1)− α2(h2)‖2β ≤ 4(I1 + I2 + I3 + I4),

where we have put

I1 :=

∫
R+

(∫
E
γ(h1, x)(ξ)

2
(
eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)

)
F (dx)

)2

eβξdξ,

I2 :=

∫
R+

(∫
E
eΓ(h2,x)(ξ)(γ(h1, x)(ξ)

2 − γ(h2, x)(ξ)2)F (dx)
)2

eβξdξ,

I3 :=

∫
R+

(∫
E

d

dξ
γ(h1, x)(ξ)

(
eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)

)
F (dx)

)2

eβξdξ,

I4 :=

∫
R+

(∫
E

(
eΓ(h2,x)(ξ) − 1

)( d

dξ
γ(h1, x)(ξ) − d

dξ
γ(h2, x)(ξ)

)
F (dx)

)2

eβξdξ.

We get for all x ∈ E and ξ ∈ R+ by (3.3), (2.3), and (2.5)

(3.13)
|eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)| ≤ eΦ(x)|Γ(h1, x)(ξ)− Γ(h2, x)(ξ)|
≤ eΦ(x)‖γ(h1, x)− γ(h2, x)‖L1(R+) ≤ C3e

Φ(x)‖γ(h1, x)− γ(h2, x)‖β′ .
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Relations (3.13), Hölder’s inequality, (3.5), (2.4), (2.5), and (3.7) give us

I1 ≤ C2
3

∫
R+

(∫
E
γ(h1, x)(ξ)

2e
1
2
Φ(x)e

1
2
Φ(x)‖γ(h1, x)− γ(h2, x)‖β′F (dx)

)2

eβξdξ

≤ C2
3L

2‖h1 − h2‖2β
∫
E
eΦ(x)

∫
R+

γ(h1, x)(ξ)
4eβξdξF (dx)

≤ C2
3L

2C4‖h1 − h2‖2β
∫
E
eΦ(x)‖γ(h1, x)‖4β′F (dx) ≤ C2

3L
2C4M‖h1 − h2‖2β .

For every ξ ∈ R+, we obtain by (3.11) and (3.7)

(3.14)

∫
E
eΦ(x)(γ(h1, x)(ξ) + γ(h2, x)(ξ))

2F (dx)

≤ 2

∫
E
eΦ(x)(γ(h1, x)(ξ)

2 + γ(h2, x)(ξ)
2)F (dx)

≤ 2C2
2

(∫
E
eΦ(x)‖γ(h1, x)‖2β′F (dx) +

∫
E
eΦ(x)‖γ(h2, x)‖2β′F (dx)

)
≤ 4C2

2M.

Using (3.3), Hölder’s inequality, (3.14), (2.6), and (3.5), we get

I2 ≤
∫
R+

(∫
E
(γ(h1, x)(ξ) + γ(h2, x)(ξ))e

1
2
Φ(x)

× e 1
2
Φ(x)(γ(h1, x)(ξ) − γ(h2, x)(ξ))F (dx)

)2

eβξdξ

≤ 4C2
2M

∫
E
eΦ(x)

∫
R+

(γ(h1, x)(ξ)− γ(h2, x)(ξ))2eβξdξF (dx)

≤ 4C2
2MC5

∫
E
eΦ(x)‖γ(h1, x)(ξ)− γ(h2, x)(ξ)‖2β′F (dx)

≤ 4C2
2MC5L

2‖h1 − h2‖2β.

Using (3.13), Hölder’s inequality, (3.5), (2.5), and (3.7) gives us

I3 ≤ C2
3

∫
R+

(∫
E

∣∣∣∣ ddξ γ(h1, x)(ξ)
∣∣∣∣e 1

2
Φ(x)e

1
2
Φ(x)‖γ(h1, x)− γ(h2, x)‖β′F (dx)

)2

× eβξdξ

≤ C2
3L

2‖h1 − h2‖2β
∫
E
eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h1, x)(ξ)
∣∣∣∣2eβξdξF (dx)

≤ C2
3L

2‖h1 − h2‖2β
∫
E
eΦ(x)‖γ(h1, x)‖2β′F (dx) ≤ C2

3L
2M‖h1 − h2‖2β .
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We obtain by (3.12), Hölder’s inequality, (3.7), (2.5), and (3.5)

I4 ≤ C2
3

∫
R+

(∫
E
‖γ(h2, x)‖β′e

1
2
Φ(x)e

1
2
Φ(x)

∣∣∣∣ ddξ γ(h1, x)(ξ)− d

dξ
γ(h2, x)(ξ)

∣∣∣∣F (dx))2

× eβξdξ

≤ C2
3M

∫
E
eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h1, x)(ξ)− d

dξ
γ(h2, x)(ξ)

∣∣∣∣2eβξdξF (dx)
≤ C2

3M

∫
E
eΦ(x)‖γ(h1, x)− γ(h2, x)‖2β′F (dx) ≤ C2

3ML2‖h1 − h2‖2β.

Summing up, we deduce that there is a constant K > 0 such that (3.10) is satisfied for all
h1, h2 ∈ Hβ.

Theorem 3.2. Suppose Assumption 3.1 is fulfilled. Then, for each initial curve h0 ∈
L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-square continuous Hβ-valued
solution (ft)t≥0 for the HJM equation (1.11) with f0 = �h0 satisfying

E

[
sup

t∈[0,T ]
‖ft‖2β

]
<∞ for all T ∈ R+,(3.15)

and there exists a unique adapted, càdlàg, mean-square continuous mild and weak Hβ-valued
solution (rt)t≥0 for the HJMM equation (1.10) with r0 = h0 satisfying

E

[
sup

t∈[0,T ]
‖rt‖2β

]
<∞ for all T ∈ R+,(3.16)

which is given by rt := πUtft, t ≥ 0. Moreover, the implied bond market (1.4) is free of
arbitrage.

Proof. By virtue of Theorem 2.1, Proposition 3.1, (3.4), (3.5), (3.7), and (2.5), all assump-
tions from [20, Cor. 10.9] are fulfilled, which therefore applies and establishes the claimed
existence and uniqueness result.

For all h ∈ Hβ, x ∈ E, and ξ ∈ R+, we have by (3.3), (2.3), and (2.5)

(3.17)
|eΓ(h,x)(ξ) − 1− Γ(h, x)(ξ)| ≤ 1

2
eΦ(x)Γ(h, x)(ξ)2

≤ 1

2
eΦ(x)‖γ(h, x)‖2L1(R+) ≤

C2
3

2
eΦ(x)‖γ(h, x)‖2β′ .

Integrating (1.6), we obtain, by using [16, Lemma 4.3.2], (3.17), and (3.7),∫ •

0
αHJM(h)(η)dη =

1

2

∑
j

Σj(h)2 +

∫
E

(
eΓ(h,x) − 1− Γ(h, x)

)
F (dx)

for all h ∈ Hβ. Combining [3, Prop. 5.3] and [16, Lemma 4.3.3] (the latter result is required
only if W is infinite dimensional), the probability measure P is a local martingale measure,
and hence the bond market (1.4) is free of arbitrage.
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The case of Lévy-driven HJMM models is now a special case. We assume that the mark
space is E = R

e for some positive integer e ∈ N, equipped with its Borel σ-algebra E = B(Re).
The measure F is given by

F (B) :=
e∑

k=1

∫
R

�B(xek)Fk(dx), B ∈ B(Re),(3.18)

where F1, . . . , Fe are Lévy measures on (R,B(R)) satisfying

Fk({0}) = 0, k = 1, . . . , e,(3.19) ∫
R

(|x|2 ∧ 1)Fk(dx) <∞, k = 1, . . . , e,(3.20)

and where the (ek)k=1,...,e denote the unit vectors in R
e. Note that definition (3.18) implies∫

Re

g(x)F (dx) =
e∑

k=1

∫
R

g(xek)Fk(dx)(3.21)

for any nonnegative measurable function g : Re → R. In particular, the support of F is
contained in

⋃e
k=1 span{ek}, the union of the coordinate axes in R

e. For each k = 1, . . . , e, let
δk : Hβ → H0

β′ be a vector field. We define γ : Hβ × R
e → H0

β′ as

γ(h, x) :=
e∑

k=1

δk(h)xk.(3.22)

Then, (1.10) corresponds to the situation where the term structure model is driven by several
real-valued, independent Lévy processes with Lévy measures Fk. For all h ∈ Hβ and ξ ∈ R+,
we set

Δk(h)(ξ) := −
∫ ξ

0
δk(h)(η)dη, k = 1, . . . , e.

Assumption 3.3. We assume there exist constants N, ε > 0 such that for all k = 1, . . . , e
we have ∫

{|x|>1}
ezxFk(dx) <∞, z ∈ [−(1 + ε)N, (1 + ε)N ],(3.23)

|Δk(h)(ξ)| ≤ N, h ∈ Hβ, ξ ∈ R+,(3.24)

a constant L > 0 such that (3.4) and

‖δk(h1)− δk(h2)‖β′ ≤ L‖h1 − h2‖β , k = 1, . . . , e,(3.25)

are satisfied for all h1, h2 ∈ Hβ, and a constant M > 0 such that (3.6) and

‖δk(h)‖β′ ≤M, k = 1, . . . , e,(3.26)
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are satisfied for all h ∈ Hβ.
Now, we obtain the statement of [19, Thm. 4.6] as a corollary.
Corollary 3.3. Suppose Assumption 3.3 is fulfilled. Then, for each initial curve h0 ∈

L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-square continuous Hβ-valued
solution (ft)t≥0 for the HJM equation (1.11) with f0 = �h0 satisfying (3.15), and there exists
a unique adapted, càdlàg, mean-square continuous mild and weak Hβ-valued solution (rt)t≥0

for the HJMM equation (1.10) with r0 = h0 satisfying (3.16), which is given by rt := πUtft,
t ≥ 0. Moreover, the implied bond market (1.4) is free of arbitrage.

Proof. Using (3.24), the measurable function Φ : Re → R+ defined as

Φ(x) := N

e∑
k=1

|xk|, x ∈ R
e,

satisfies (3.3). For each k = 1, . . . , e and every m ∈ N with m ≥ 2, we have∫
R

|x|me|zx|Fk(dx) <∞, z ∈ (−(1 + ε)N, (1 + ε)N).(3.27)

Indeed, let z ∈ (−(1 + ε)N, (1 + ε)N) be arbitrary. There exists η ∈ (0, ε) such that |z| ≤
(1 + η)N . By (3.20), (3.23), and the basic inequality xm ≤ m!ex for x ≥ 0, we obtain∫

R

|x|me|zx|Fk(dx) ≤
∫
R

|x|me(1+η)N |x|Fk(dx)

≤ 2

∫
{|x|≤ ln 2

(1+η)N
}
|x|mFk(dx) +

m!

((ε− η)N)m

∫
{|x|> ln 2

(1+η)N
}
e(1+ε)N |x|Fk(dx) <∞,

proving (3.27). Taking into account (3.21), (3.27), relations (3.25), (3.26) imply (3.5), (3.7).
Furthermore, (3.27), the elementary inequalities

|ex − 1− x| ≤ 1

2
x2e|x|, x ∈ R,

|ex − 1| ≤ |x|e|x|, x ∈ R,

and Lebesgue’s theorem show that the cumulant generating functions

Ψk(z) =

∫
R

(ezx − 1− zx)Fk(dx), k = 1, . . . , e,

belong to class C∞ on the open interval (−(1 + ε)N, (1 + ε)N) with derivatives

Ψ′
k(z) =

∫
R

x(ezx − 1)Fk(dx),

Ψ
(m)
k (z) =

∫
R

xmezxFk(dx), m ≥ 2.

Therefore, and because of (3.21), we can, for an arbitrary h ∈ Hβ, write α2(h), which is
defined in (3.8), as

α2(h) = −
e∑

k=1

δk(h)Ψ′
k

(
−
∫ •

0
δk(η)dη

)
.
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Hence, α2(h) is absolutely continuous with weak derivative (3.9). Consequently, Assumption
3.1 is fulfilled and Theorem 3.2 applies.

Note that the boundedness assumptions (3.6), (3.7) for Theorem 3.2 (resp., (3.6), (3.26)
for Corollary 3.3) cannot be weakened substantially. For example, for arbitrage-free term
structure models driven by a single Brownian motion, it was shown in [31, sect. 4.7] that
for the simple case of proportional volatility, that is, σ(h) = σ0h for some constant σ0 > 0,
solutions necessarily explode. We mention, however, that [35, sect. 6] contains some existence
results for Lévy term structure models with linear volatility.

4. Positivity preserving term structure models driven by Wiener processes and Poisson
measures. In applications, we are often interested in term structure models producing positive
forward curves. In this section, we characterize HJMM forward curve evolutions of the type
(1.10), which preserve positivity, by means of the characteristics of the SPDE. In the case
of short rate models, this can be characterized by the positivity of the short rate, a one-
dimensional Markov process. In case of an infinite-factor evolution, as described by a generic
HJMM equation (see, for instance, [2]), this problem is much more delicate. Indeed, one has to
find conditions such that a Markov process defined by the HJMM equation (on a Hilbert space
of forward rate curves) stays in a “small” set of curves, namely the convex cone of positive
curves bounded by a nonsmooth set. Our strategy to solve this problem is the following:
First, we show by general semimartingale methods necessary conditions for positivity. These
necessary conditions are basically described by the fact that the Itô drift is inward pointing
and that the volatilities are parallel at the boundary of the set of nonnegative functions.
Taking those conditions, we can also prove that the Stratonovich drift is inward pointing,
since parallel volatilities produce parallel Stratonovich corrections (a fact which is not true
for general closed convex sets but holds true for the set of nonnegative functions P ). Then,
we reduce the sufficiency proof to two steps: First, we essentially apply results from [34] in
order to solve the pure diffusion case, and then we “slowly” switch on the jumps to see the
general result.

Let Hβ be the space of forward curves introduced in section 2 for some fixed β > 0. We
introduce the half-spaces

H+
ξ := {h ∈ Hβ |h(ξ) ≥ 0}, ξ ∈ R+,

and define the closed, convex cone

P :=
⋂

ξ∈R+

H+
ξ

consisting of all nonnegative forward curves from Hβ. In what follows, we shall use that, by
the continuity of the functions from Hβ, we can write P as

P =
⋂

ξ∈(0,∞)

H+
ξ .

Furthermore, we define the edges

∂Pξ := {h ∈ P |h(ξ) = 0}, ξ ∈ (0,∞).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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First, we consider the positivity problem for general forward curve evolutions, where the HJM
drift condition (1.6) is not necessarily satisfied, and afterwards we apply our results to the
arbitrage-free situation.

We emphasize that, in what follows, we assume the existence of solutions. Sufficient
conditions for existence and uniqueness are provided in [20] (we also mention the related
articles [1] and [29]) for general SPDEs and in the previous section 3 for the HJMM term
structure equation (1.10).

As in the previous section, we work on the space Hβ of forward curves from section 2 for
some β > 0. At first glance, it looks reasonable to treat the positivity problem by working
with weak solutions on Hβ. However, this is unfeasible, because the point evaluations at
ξ ∈ (0,∞), i.e., a linear functional ζ ∈ Hβ such that h(ξ) = 〈ζ, h〉 for all h ∈ Hβ, never belong
to the domain D(( d

dξ )
∗) of the adjoint operator. Indeed, a well-known mollifying technique

shows that for each ξ ∈ (0,∞) the linear functional h �→ h′(ξ) : D( d
dξ )→ R is unbounded.

Therefore, treating the positivity problem with weak solutions does not bring an immediate
advantage; hence we shall work with mild solutions on Hβ.

Let measurable vector fields α : Hβ → Hβ, σ : Hβ → L0
2(Hβ), and γ : Hβ × E → Hβ be

given. Currently, we do not assume that the drift term α is given by the HJM drift condition
(1.6). For each j, we define σj : Hβ → Hβ as σj(h) :=

√
λjσ(h)ej . We assume that for each

h0 ∈ P the HJM equation⎧⎪⎨⎪⎩
dft = U−t�α(πUtft)dt+ U−t�σ(πUtft)dWt

+
∫
E U−t�γ(πUtft−, x)(μ(dt, dx) − F (dx)dt),

f0 = �h0

(4.1)

has at least one Hβ-valued solution (ft)t≥0. Then, because of (2.7), the transformation rt :=
πUtft, t ≥ 0, is a mild Hβ-valued solution of the HJMM equation{

drt = ( d
dξ rt + α(rt))dt+ σ(rt)dWt +

∫
E γ(rt−, x)(μ(dt, dx) − F (dx)dt),

r0 = h0.
(4.2)

Definition 4.1. The HJMM equation (4.2) is said to be positivity preserving if for all h0 ∈
L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 there exists a solution (ft)t≥0 of (4.1) with f0 = �h0 such
that P(

⋂
t∈R+
{rt ∈ P}) = 1, where rt := πUtft, t ≥ 0.

Remark 4.1. Note that the seemingly weaker condition P(rt ∈ P ) = 1 for all t ∈ R+

is equivalent to the condition of the previous definition due to the càdlàg property of the
trajectories.

Definition 4.2. The HJMM equation (4.2) is said to be locally positivity preserving if for all
h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 there exists a solution (ft)t≥0 of (4.1) with f0 = �h0
and a strictly positive stopping time τ such that P(

⋂
t∈R+
{rt∧τ ∈ P}) = 1, where rt := πUtft,

t ≥ 0.
Lemma 4.3. Let h0 ∈ P be arbitrary, and let (ft)t≥0 be a solution for (4.1) with f0 = �h0.

Set rt := πUtft, t ≥ 0. The following two statements are equivalent:
1. We have P(

⋂
t∈R+
{rt ∈ P}) = 1.

2. We have P(
⋂

t∈[0,T ]{ft(T ) ≥ 0}) = 1 for all T ∈ (0,∞).
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Proof. The claim follows, because the processes (rt)t≥0 and (ft(T ))t∈[0,T ] for an arbitrary
T ∈ (0,∞) are càdlàg and because the functions from Hβ are continuous.

Assumption 4.2. We assume that the vector fields α : Hβ → Hβ and σ : Hβ → L0
2(Hβ) are

continuous and that h �→ ∫
B γ(h, x)F (dx) is continuous on Hβ for all B ∈ E with F (B) <∞.

Remark 4.3. Notice that, by Hölder’s inequality, Assumption 4.2 is implied by Assump-
tions 4.6 and 4.7 and therefore in particular by Assumption 3.1.

Proposition 4.4. Suppose Assumption 4.2 is fulfilled. If (4.2) is positivity preserving, then
we have ∫

E
γ(h, x)(ξ)F (dx) <∞ for all ξ ∈ (0,∞), h ∈ ∂Pξ,(4.3)

α(h)(ξ) −
∫
E
γ(h, x)(ξ)F (dx) ≥ 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ,(4.4)

σj(h)(ξ) = 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ and all j,(4.5)

h+ γ(h, x) ∈ P for all h ∈ P and F -almost all x ∈ E.(4.6)

Remark 4.4. Observe that condition (4.6) implies

γ(h, x)(ξ) ≥ 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ and F -almost all x ∈ E.(4.7)

Therefore, condition (4.3) is equivalent to∫
E
|γ(h, x)(ξ)|F (dx) <∞ for all ξ ∈ (0,∞), h ∈ ∂Pξ .

Consequently, conditions (4.3) and (4.4) can be unified to∫
E
|γ(h, x)(ξ)|F (dx) ≤ α(h)(ξ)

for all ξ ∈ (0,∞) and h ∈ ∂Pξ .
Proof. Let h0 ∈ P be arbitrary, and let (ft)t≥0 be a solution for (4.1) with f0 = �h0 such

that P(
⋂

t∈R+
{rt ∈ P}) = 1, where rt := πUtft, t ≥ 0. By Lemma 4.3, for each T ∈ (0,∞)

and every stopping time τ ≤ T we have

P(fτ (T ) ≥ 0) = 1.(4.8)

Let φ ∈ U ′
0 be a linear functional such that φj := φej �= 0 for only finitely many j, and let

ψ : E → R be a measurable function of the form ψ = c�B with c > −1 and B ∈ E satisfying
F (B) <∞. Let Z be the Doléans–Dade exponential

Zt = E

(∑
j

φjβj +

∫ •

0

∫
E
ψ(x)(μ(ds, dx) − F (dx)ds)

)
t

, t ≥ 0.

By [25, Thm. I.4.61], the process Z is a solution of

Zt = 1 +
∑
j

φj
∫ t

0
Zsdβ

j
s +

∫ t

0

∫
E
Zs−ψ(x)(μ(ds, dx) − F (dx)ds), t ≥ 0,
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and, since ψ > −1, the process Z is a strictly positive local martingale. There exists a strictly
positive stopping time τ1 such that Zτ1 is a martingale. Due to the method of the moving
frame (see [20]), we can use standard stochastic analysis to proceed further. For an arbitrary
T ∈ (0,∞), integration by parts yields (see [25, Thm. I.4.52])

(4.9)

ft(T )Zt =

∫ t

0
fs−(T )dZs +

∫ t

0
Zs−dfs(T ) + 〈f(T )c, Zc〉t

+
∑
s≤t

Δfs(T )ΔZs, t ≥ 0.

Taking into account the dynamics

(4.10)

ft(T ) = �h0(T ) +

∫ t

0
U−s�α(πUsfs)(T )ds +

∑
j

∫ t

0
U−s�σ

j(πUsfs)(T )dβ
j
s

+

∫ t

0

∫
E
U−s�γ(πUsfs−, x)(T )(μ(ds, dx) − F (dx)ds), t ≥ 0,

we have

〈f(T )c, Zc〉t =
∑
j

φj
∫ t

0
ZsU−s�σ

j(πUsfs)(T )ds, t ≥ 0,(4.11)

∑
s≤t

Δfs(T )ΔZs =

∫ t

0

∫
E
Zs−ψ(x)U−s�γ(πUsfs−, x)(T )μ(ds, dx), t ≥ 0.(4.12)

Incorporating (4.10), (4.11), and (4.12) into (4.9), we obtain

(4.13)

ft(T )Zt =Mt +

∫ t

0
Zs−

(
U−s�α(πUsfs−)(T ) +

∑
j

φjU−s�σ
j(πUsfs−)(T )

+

∫
E
ψ(x)U−s�γ(πUsfs−, x)(T )F (dx)

)
ds, t ≥ 0,

where M is a local martingale with M0 = 0. There exists a strictly positive stopping time τ2
such that M τ2 is a martingale.

By Assumption 4.2, there exist a strictly positive stopping time τ3 and a constant α̃ > 0
such that

|U−(t∧τ3)�α(πUt∧τ3f(t∧τ3)−)(T )| ≤ α̃, t ≥ 0.

Let B := {x ∈ E : h0+γ(h0, x) /∈ P}. In order to prove (4.6), it suffices, since F is σ-finite, to
show that F (B ∩C) = 0 for all C ∈ E with F (C) <∞. Suppose, on the contrary, there exists
C ∈ E with F (C) <∞ such that F (B ∩C) > 0. By the continuity of the functions from Hβ,
there exists T ∈ (0,∞) such that F (BT ∩C) > 0, where BT := {x ∈ E : h0(T )+γ(h0, x)(T ) <
0}. We obtain∫

BT∩C
γ(h0, x)(T )F (dx) ≤

∫
BT∩C

(h0(T ) + γ(h0, x)(T ))F (dx) < 0.
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By Assumption 4.2 and the left continuity of the process f−, there exist η > 0 and a strictly
positive stopping time τ4 ≤ T such that∫

BT∩C
U−(t∧τ4)�γ(πU(t∧τ4)f(t∧τ4)−, x)(T )F (dx) ≤ −η, t ≥ 0.

Let φ := 0, ψ := α̃+1
η �BT∩C , and τ :=

∧4
i=1 τi. Taking expectation in (4.13), we obtain

E[fτ (T )Zτ ] < 0, implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This yields (4.6).
From now on, we assume that h0 ∈ ∂PT for an arbitrary T ∈ (0,∞).
Suppose that σj(h0)(T ) �= 0 for some j. By the continuity of σ (see Assumption 4.2),

there exist η > 0 and a strictly positive stopping time τ4 ≤ T such that

|U−(t∧τ4)�σ
j(πUt∧τ4f(t∧τ4)−)(T )| ≥ η, t ≥ 0.

Let φ ∈ U ′
0 be the linear functional given by φj = −sign(σj(h0)(T )) α̃+1

η , and φk = 0 for k �= j.

Furthermore, let ψ := 0 and τ :=
∧4

i=1 τi. Taking expectation in (4.13) yields E[fτ (T )Zτ ] < 0,
implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This proves (4.5).

Now suppose
∫
E γ(h0, x)(T )F (dx) = ∞. Using Assumption 4.2, relation (4.7), and the

σ-finiteness of F , there exist B ∈ E with F (B) < ∞ and a strictly positive stopping time
τ4 ≤ T such that

−1

2

∫
B
U−(t∧τ4)�γ(πUt∧τ4f(t∧τ4)−, x)(T )F (dx) ≤ −(α̃+ 1), t ≥ 0.

Let φ := 0, ψ := −1
2�B , and τ :=

∧4
i=1 τi. Taking expectation in (4.13), we obtain E[fτ (T )Zτ ] <

0, implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This yields (4.3).
Since F is σ-finite, there exists a sequence (Bn)n∈N ⊂ E with Bn ↑ E and F (Bn) < ∞,

n ∈ N. Next, we show for all n ∈ N the relation

α(h0)(T ) +

∫
E
ψn(x)γ(h0, x)(T )F (dx) ≥ 0,(4.14)

where ψn := −(1 − 1
n)�Bn . Suppose, on the contrary, that (4.14) is not satisfied for some

n ∈ N. Using Assumption 4.2, there exist η > 0 and a strictly positive stopping time τ4 ≤ T
such that

U−(t∧τ4)�α(πUtf(t∧τ4)−)(T )

+

∫
E
ψn(x)U−(t∧τ4)�γ(πUt∧τ4f(t∧τ4)−, x)(T )F (dx) ≤ −η, t ≥ 0.

Let φ := 0 and τ :=
∧4

i=1 τi. Taking expectation in (4.13), we obtain E[fτ (T )Zτ ] < 0, implying
P(fτ (T ) < 0) > 0, which contradicts (4.8). This yields (4.14). By (4.14), (4.3), and Lebesgue’s
theorem, we get (4.4).

Remark 4.5. The Cox–Ingersoll–Ross (CIR) model [7] is celebrated for its feature of pro-
ducing nonnegative interest rates. At this point, it is worth pointing out that the Hull–
White extension of the CIR model (HWCIR) is not positivity preserving. Indeed, in Musiela
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parametrization its term structure dynamics are given by{
drt = ( d

dξ rt + αHJM(rt))dt+ σ(rt)dWt,

r0 = h0,

where W is a one-dimensional Wiener process and the vector fields αHJM, σ : Hβ → H0
β are

defined as

αHJM(h) := ρ2|h(0)|λΛ, h ∈ Hβ,

σ(h) := ρ
√
|h(0)|λ, h ∈ Hβ,

where ρ > 0 is a constant, h �→ h(0) : Hβ → R denotes the evaluation of the short rate,
and λ ∈ H0

β is a function with λ(x) > 0 for all x ≥ 0 such that Λ =
∫ •
0 λ(η)dη satisfies a

certain Riccati equation; see [21, sect. 6.2] for more details. Note that Assumption 4.2 is
satisfied, because the vector fields αHJM, σ : Hβ → H0

β are continuous, but condition (4.5)
from Proposition 4.4 does not hold, because σ depends only on the current state of the short
rate. Hence, the HWCIR model cannot be positivity preserving.

Indeed, we can also verify this directly as follows. According to [21, sect. 6.2], for any
initial curve h0 ∈ Hβ the short rate Rt = rt(0), t ≥ 0, has the dynamics{

dRt = (b(t)− c|Rt|)dt+ ρ
√|Rt|dWt,

R0 = h0(0)
(4.15)

for some constant c ∈ R and a time-dependent function b = b(h0) : R+ → R. Due to [40], for
each starting point h0(0) ∈ R the SDE (4.15) has a unique strong solution, and, according to
[18], this solution is nonnegative if and only if h0(0) ≥ 0 and b(t) ≥ 0 for all t ∈ R+. By [17,
Prop. 5.2], the forward rates are given by

f(t, T ) =

∫ T

t
b(s)λ(T − s)ds+ λ(T − t)Rt,

which implies for the initial forward curve

h0(T ) =

∫ T

0
b(s)λ(T − s)ds+ λ(T )h0(0), T ≥ 0.

Having in mind that λ(t) > 0 for all t ≥ 0, we see that for certain nonnegative initial curves
h0 ∈ P the function b can also reach negative values, which yields negative short rates. For
example, take an initial curve h0 ∈ P with h0(0) > 0 and h0(T ) = 0 for some T > 0.

We shall now present sufficient conditions for positivity preserving term structure models.
In what follows, we will require the following linear growth and Lipschitz conditions.

Assumption 4.6. We assume that
∫
E ‖γ(0, x)‖2βF (dx) < ∞ and that there is a constant

K > 0 such that (∫
E
‖γ(h1, x)− γ(h2, x)‖2βF (dx)

)1/2

≤ K‖h1 − h2‖β
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for all h1, h2 ∈ Hβ.

Assumption 4.7. We assume there is a constant L > 0 such that

‖α(h1)− α(h2)‖β ≤ L‖h1 − h2‖β,
‖σ(h1)− σ(h2)‖L0

2(Hβ)
≤ L‖h1 − h2‖β

for all h1, h2 ∈ Hβ.

This ensures existence and uniqueness of solutions by [20, Cor. 10.9].

Lemma 4.5. Suppose Assumptions 4.6 and 4.7 are fulfilled, and suppose for each h0 ∈ P we
have P(

⋂
t∈R+
{rt ∈ P}) = 1, where (rt)t≥0 denotes the mild solution for (4.2) with r0 = h0.

Then, the HJMM equation (4.2) is positivity preserving.

Proof. Let h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 be arbitrary. There exists a sequence
(hn)n∈N ⊂ L2(Ω,F0,P;Hβ) such that hn → h0 in L

2(Ω,F0,P;Hβ) and such that for each n ∈ N

we have P(hn ∈ P ) = 1 and hn has only a finite number of values. By assumption, we have
P(
⋂

t∈R+
{rnt ∈ P}) = 1 for all n ∈ N. Applying [20, Prop. 9.1] yields

E

[
sup

t∈[0,T ]
‖rt − rnt ‖2β

]
→ 0 for all T ∈ R+,

showing that P(
⋂

t∈R+
{rt ∈ P}) = 1.

In view of Lemma 4.7, we prepare an auxiliary result, which is proved in the appendix.

Lemma 4.6. Let τ be a bounded stopping time. We define the new filtration (F̃t)t≥0 by
F̃t := Fτ+t, the new U -valued process W̃ by W̃t :=Wτ+t −Wτ , and the new random measure
μ̃ on R+ × E by μ̃(ω;B) := μ(ω;Bτ(ω)), B ∈ B(R+)⊗ E, where

Bτ := {(t+ τ, x) ∈ R+ × E : (t, x) ∈ B}.

Then, W̃ is a Q-Wiener process with respect to (F̃t)t≥0 and μ̃ is a homogeneous Poisson ran-
dom measure on R+×E with respect to (F̃t)t≥0 having the compensator dt⊗F (dx). Moreover,
we have the expansion

W̃ =
∑
j

√
λj β̃

jej,(4.16)

where β̃j defined as β̃jt := βjτ+t − βjτ is a sequence of real-valued independent (F̃t)-Brownian

motions. Furthermore, if (rt)t≥0 is a weak solution for (4.2), then the (F̃t)-adapted process
(r̃t)t≥0 defined by r̃t := rτ+t is a weak solution for{

dr̃t = ( d
dξ r̃t + α(r̃t))dt+ σ(r̃t)dW̃t +

∫
E γ(r̃t−, x)(μ̃(dt, dx)− F (dx)dt),

r̃0 = rτ .
(4.17)

Proof. See the appendix.

Lemma 4.7. Suppose Assumptions 4.6 and 4.7 are fulfilled. If (4.2) is locally positivity
preserving and we have (4.6), then (4.2) is positivity preserving.
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Proof. Let h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 be arbitrary. Moreover, let (rt)t≥0

be the mild solution for (4.2) with r0 = h0. We define the stopping time

τ0 := inf{t ≥ 0 : rt /∈ P}.(4.18)

By the closedness of P and (4.6), we have rτ0 ∈ P almost surely on {τ0 <∞}. We claim that
P(τ0 =∞) = 1. Assume, on the contrary, that

P(τ0 < N) > 0(4.19)

for some N ∈ N. Let τ be the bounded stopping time τ := τ0∧N . We define the new filtration
(F̃t)t≥0, the new Q-Wiener process W̃ , and the new Poisson random measure μ̃ as in Lemma
4.6. Note that rτ ∈ L2(Ω, F̃0,P;Hβ), because, by (3.16), we have

E[‖rτ‖2β] ≤ E

[
sup

t∈[0,N ]
‖rt‖2β

]
<∞.

By Lemma 4.6, the (F̃t)-adapted process r̃t := rτ+t is the unique mild solution for (4.17).
Since (4.2) is locally positivity preserving and P(rτ ∈ P ) = 1, there exists a strictly positive
stopping time τ1 such that P(

⋂
t∈R+

r̃t∧τ1 ∈ P ) = 1. Since {τ0 < N} ⊂ {τ0 = τ}, we obtain

rτ0+t ∈ P almost surely on [0, τ1] ∩ {τ0 < N},

which is a contradiction because of (4.19) and definition (4.18) of τ0. Consequently, we have
P(τ0 =∞) = 1, whence (4.2) is positivity preserving.

Assumption 4.8. We assume that σ ∈ C2(Hβ;L
0
2(Hβ)), and that the vector field

h �→
∑
j

Dσj(h)σj(h)(4.20)

is globally Lipschitz on Hβ.
Remark 4.9. Note that Assumption 4.8 is satisfied if σ ∈ C2

b (Hβ;L
0
2(Hβ)) and the series

(4.20) converges for every h ∈ Hβ.
Lemma 4.8. Suppose Assumption 4.8 and relation (4.5) are fulfilled. Then we have(∑

j

Dσj(h)σj(h)

)
(ξ) = 0 for all ξ ∈ (0,∞), h ∈ ∂Pξ.

Proof. Let ξ ∈ (0,∞) be arbitrary. It suffices to show
(
Dσj(h)σj(h)

)
(ξ) = 0 for all

h ∈ ∂Pξ and all j. Therefore, let j be fixed and denote σ = σj . By assumption for all
h ≥ 0 with h(ξ) = 0, we have that σ(h)(ξ) = 0. In other words, the volatility vector field
σ is parallel to the boundary at boundary elements of P . We denote the local flow of the
Lipschitz vector field σ by Fl, which is defined on a small time interval ]− ε, ε[ around time 0
and a small neighborhood of each element h ∈ P . We first state that the flow Fl leaves the
set P invariant, i.e., Flt(h) ≥ 0 if h ≥ 0, by convexity and closedness of the cone of positive
functions due to [39]. Indeed, P is a closed and convex cone, whose supporting hyperplanes l
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(a linear functional l is called a supporting hyperplane of P at h if l(P ) ≥ 0 and l(h) = 0) are
given by appropriate positive measures μ on R+ via

l(h) =

∫
R+

h(ξ)μ(dξ),

whence condition (4) from [39] is fulfilled due to (4.5). Next we show that even more holds:
the solution Flt(h) evaluated at ξ vanishes if h(ξ) = 0, which we show directly. Indeed, let
us additionally fix h ∈ ∂Pξ , i.e., h ≥ 0 and h(ξ) = 0. Looking now at the Picard–Lindelöf
approximation scheme

c(n+1)(t) = h+

∫ t

0
σ(c(n)(s))ds

with c(n)(0) = h and c(0)(s) = h for s, t ∈]− ε, ε[ and n ≥ 0, we see by induction that under
our assumptions

c(n)(t)(ξ) = 0

for all n ≥ 0 and t ∈] − ε, ε[ for the given fixed element h. Consequently—as n → ∞—we
obtain that Flt(h)(ξ) = 0, which is the limit of c(n)(t). Therefore,

(Dσ(h)σ(h))(ξ) =
d

ds
|s=0σ(Fls(h))(ξ) = 0,

since Flt(h) ≥ 0 by invariance and Flt(h)(ξ) = 0 by the previous consideration lead to
σ(Flt(h))(ξ) = 0 for t ∈]− ε, ε[. Notice that we did not need the global Lipschitz property of
the Stratonovich correction for the proof of this lemma.

Before we show sufficiency for the HJMM equation (4.2) with jumps, we consider the pure
diffusion case. Notice that, due to Lemma 4.8, the condition (4.4) is in fact equivalent to the
very same condition formulated with the Stratonovich drift σ0, defined in (4.21), instead of
α, since the Stratonovich correction vanishes at the boundary of P .

In order to treat the pure diffusion case, we apply [34], which, by using the support
theorem provided in [33], offers a general characterization of stochastic invariance of closed
sets for SPDEs.

Other results for positivity preserving SPDEs, where, in contrast to our framework, the
state space is an L2-space, can be found in [27] and [30]. The results from [30] have been used
in [35] in order to derive some positivity results for Lévy term structure models on L2-spaces.

Proposition 4.9. Suppose Assumptions 4.7 and 4.8 are fulfilled and γ ≡ 0. If conditions
(4.4) and (4.5) are satisfied, then (4.2) is positivity preserving.

Proof. In view of Lemma 4.5, it suffices to show that for all h0 ∈ P we have P(
⋂

t∈R+
{rt ∈

P}) = 1, where (rt)t≥0 denotes the mild solution for (4.2) with r0 = h0. Moreover, we may
assume that the vector fields α, σ and

h �→ σ0(h) := α(h) − 1

2

∑
j

Dσj(h)σj(h)(4.21)

are bounded in order to apply Nakayama’s beautiful support theorem from [34]. Indeed, for
n ∈ N we choose a bump function ψn ∈ C∞(Hβ; [0, 1]) such that ψn ≡ 1 on Bn(0) and
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supp(ψn) ⊂ Bn+1(0) and define the vector fields

αn(h) := ψn(h)α(h), h ∈ Hβ,

σn(h) := ψn(h)σ(h), h ∈ Hβ.

These vector fields and

h �→ σ0n(h) := αn(h)− 1

2

∑
j

Dσjn(h)σ
j
n(h)

are bounded by the Lipschitz continuity of α, σ, and σ0, and Assumptions 4.7 and 4.8 as well
as conditions (4.4) and (4.5) are again satisfied.

Now, we show that the semigroup Nagumo condition (3) from [33, Prop. 1.1] is fulfilled
due to conditions (4.4) and (4.5). Introducing the distance dP (h) from P as the minimal
distance of h ∈ Hβ from P , we can formulate Nagumo’s condition as

lim inf
t↓0

1

t
dP (Sth+ tσ0(h) + tσ(h)u) = 0(4.22)

for all u ∈ U0 and h ∈ P . Now fix h ∈ P and u ∈ U0 and introduce the abbreviation
σ̃ = σ0 + σ(·)u; then we obviously have

‖Sth+ tσ0(h) + tσ(h)u − St Flσ̃t (h)‖β = t

∥∥∥∥σ̃(h)− StFlσ̃t (h)− ht

∥∥∥∥
β

, t > 0,

which means that

lim
t↓0

1

t
‖Sth+ tσ0(h) + tσ(h)u − St Flσ̃t (h)‖β = 0.

Hence, Nagumo’s condition (4.22) can equivalently be formulated as

lim inf
t↓0

1

t
dP (St Fl

σ
t (h)) = 0(4.23)

for the particular choice of u ∈ U0 and h ∈ P , since the shortest distance projector onto P
is a Lipschitz continuous map. Due to conditions (4.4), (4.5) and Lemma 4.8, the semiflow
Flσ̃ leaves P invariant by [39], the semigroup (St)t≥0 certainly, too, and therefore we have
dP (St Fl

σ̃
t (h)) = 0, t ≥ 0, whence Nagumo’s condition (4.23) is more than satisfied.

Finally, the next result states the sufficient conditions under which we can conclude that
(4.2) is positivity preserving.

Proposition 4.10. Suppose Assumptions 4.6, 4.7, and 4.8 and conditions (4.3)–(4.6) are
fulfilled. Then, (4.2) is positivity preserving.

Proof. Since the measure F is σ-finite, there exists a sequence (Bn)n∈N ⊂ E with Bn ↑ E
and F (Bn) < ∞ for all n ∈ N. Let h0 ∈ L2(Ω,F0,P;Hβ) be arbitrary. Relations (4.4), (4.7),
(4.5), Proposition 4.9, and (4.6) together with the closedness of P yield that, for each n ∈ N,
the mild solution (rnt )t≥0 of the SPDE⎧⎨⎩

drnt = ( d
dξ r

n
t + α(rnt )−

∫
Bn
γ(rnt , x)F (dx))dt + σ(rnt )dWt

+
∫
Bn
γ(rnt−, x)μ(dt, dx),

rn0 = h0

(4.24)
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satisfies P(
⋂

t∈R+
rnt∧τ ∈ P ) = 1, where τ denotes the strictly positive stopping time

τ := inf{t ≥ 0 : μ([0, t] ×Bn) = 1}.
By virtue of Lemma 4.7, for each n ∈ N (4.24) is positivity preserving. According to [20,
Prop. 9.1], we have

E

[
sup

t∈[0,T ]
‖rt − rnt ‖2β

]
→ 0 for all T ∈ R+,

proving that (4.2) is positivity preserving.
Theorem 4.11. Suppose Assumptions 4.6, 4.7, and 4.8 are fulfilled. Then, for each initial

curve h0 ∈ L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-square continuous Hβ-
valued solution (ft)t≥0 for the HJM equation (4.1) with f0 = �h0 satisfying (3.15), and there
exists a unique adapted, càdlàg, mean-square continuous mild and weak Hβ-valued solution
(rt)t≥0 for the HJMM equation (4.2) with r0 = h0 satisfying (3.16), which is given by rt :=
πUtft, t ≥ 0. Moreover, (4.2) is positivity preserving if and only if we have (4.3)–(4.6).

Proof. The statement follows from [20, Cor. 10.9], Proposition 4.4 (see also Remark 4.3),
and Proposition 4.10.

Remark 4.10. Note that Theorem 4.11 is also valid on other state spaces. The only
requirements are that the Hilbert space H consists of real-valued, continuous functions, on
which the point evaluations are continuous linear functionals, and that the shift semigroup
extends to a strongly continuous group on a larger Hilbert space H.

Remark 4.11. For the particular situation where (4.2) has no jumps, Theorem 4.11 corre-
sponds to the statement of [30, Thm. 3], where positivity on weighted L2-spaces is investi-
gated. Since point evaluations are discontinuous functionals on L2-spaces, the conditions in
[30] are formulated by taking other appropriate linear functionals.

We shall now consider the arbitrage-free situation. Let α = αHJM : Hβ → Hβ in (4.2) be
defined according to the HJM drift condition (1.6).

Proposition 4.12. Conditions (4.3)–(4.6) are satisfied if and only if we have (4.5), (4.6),
and

γ(h, x)(ξ) = 0, ξ ∈ (0,∞), h ∈ ∂Pξ, and F -almost all x ∈ E.(4.25)

Proof. Provided (4.5), (4.6) are fulfilled, conditions (4.3), (4.4) are satisfied if and only if
we have (4.3) and

−
∫
E
γ(h, x)(ξ)eΓ(h,x)(ξ)F (dx) ≥ 0, ξ ∈ (0,∞), h ∈ ∂Pξ ,(4.26)

because the drift α is given by (1.6). By (4.7), relations (4.3), (4.26) are fulfilled if and only
if we have (4.25).

Now let, as in section 3, measurable vector fields σ : Hβ → L0
2(H

0
β) and γ : Hβ×E → H0

β′
be given, where β′ > β is a real number.

Theorem 4.13. Suppose Assumptions 3.1 and 4.8 are fulfilled. Then, the statement of
Theorem 3.2 is valid, and, in addition, the HJMM equation (1.10) is positivity preserving if
and only if we have (4.5), (4.6), and (4.25).
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Proof. The statement follows from Theorem 3.2, Theorem 4.11, and Proposition 4.12.
Finally, let us consider the Lévy case treated at the end of section 3. In this framework,

the following statement is valid.
Proposition 4.14. Conditions (4.5), (4.6), and (4.25) are satisfied if and only if we have

(4.5) and

h+ δk(h)x ∈ P, h ∈ P, k = 1, . . . , e, and Fk-almost all x ∈ R,(4.27)

δk(h)(ξ) = 0, ξ ∈ (0,∞), h ∈ ∂Pξ, and all k = 1, . . . , e with Fk(R) > 0.(4.28)

Proof. The claim follows from definition (3.18) of F and definition (3.22) of γ.
Corollary 4.15. Suppose Assumption 3.3 and 4.8 are fulfilled. Then, the statement of Corol-

lary 3.3 is valid, and, in addition, the HJMM equation (1.10) is positivity preserving if and
only if we have (4.5), (4.27), and (4.28).

Proof. The assertion follows from Theorem 4.13 and Proposition 4.14.
Our above results on arbitrage-free, positivity preserving term structure models apply in

particular for local state dependent volatilities. The following two results are obvious.
Proposition 4.16. Suppose for each j there exists σ̃j : R+ × R→ R, and suppose there are

γ̃ : R+ × R× E → R and φ : R+ → (0,∞) such that

σj(h)(ξ) = φ(‖h‖β)σ̃j(ξ, h(ξ)), (h, ξ) ∈ Hβ ×R+, for all j,

γ(h, x)(ξ) = φ(‖h‖β)γ̃(ξ, h(ξ), x), (h, x, ξ) ∈ Hβ × E × R+.

Then, conditions (4.5), (4.6), and (4.25) are fulfilled if and only if

σ̃j(ξ, 0) = 0, ξ ∈ (0,∞), for all j,(4.29)

y + zγ̃(ξ, y, x) ≥ 0, ξ ∈ (0,∞), y ∈ R+, z ∈ φ(R+),(4.30)

and F -almost all x ∈ E,
γ̃(ξ, 0, x) = 0, ξ ∈ (0,∞) and F -almost all x ∈ E.(4.31)

Lévy term structure models with local state dependent volatilities have been studied in
[35] and [28]. In the framework of Proposition 4.14, we obtain the following result.

Proposition 4.17. Suppose for each j there is σ̃j : R+×R→ R, for all k = 1, . . . , e there is
δ̃k : R+ × R→ R, and there exists φ : R+ → (0,∞) such that

σj(h)(ξ) = φ(‖h‖β)σ̃j(ξ, h(ξ)), (h, ξ) ∈ Hβ × R+, for all j,

δk(h)(ξ) = φ(‖h‖β)δ̃k(ξ, h(ξ)), (h, ξ) ∈ Hβ × R+, k = 1, . . . , e.

Then, conditions (4.5), (4.27), and (4.28) are fulfilled if and only if we have (4.29) and

y + zxδ̃k(ξ, y) ≥ 0, ξ ∈ (0,∞), y ∈ R+, z ∈ φ(R+), k = 1, . . . , e,(4.32)

and Fk-almost all x ∈ R,

δ̃k(ξ, 0) = 0, ξ ∈ (0,∞) and all k = 1, . . . , e with Fk(R) > 0.(4.33)
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Section 5 in [35] contains some positivity results for Lévy-driven term structure models on
weighted L2-spaces. Using Proposition 4.17, we can derive the analogous statements of [35,
Thm. 4] on our Hβ-spaces.

Remark 4.12. For local state dependent volatilities, we can establish sufficient conditions on
the mappings σ̃j , γ̃, φ (resp., σ̃j, δ̃k, φ) such that Assumptions 3.1 and 4.8 (resp., Assumptions
3.3 and 4.8) are fulfilled, which allows us to combine Theorem 4.13 and Proposition 4.16 (resp.,
Corollary 4.15 and Proposition 4.17). We obtain such sufficient conditions by modifying the
conditions from [16, Prop. 5.4.1] in an appropriate manner.

Appendix. Attached proofs. In this appendix, we gather the proofs of results which we
have postponed for the sake of lucidity.

Proof of Theorem 2.1. Note that Hβ is the space Hw from [16, sect. 5.1] with weight
function w(ξ) = eβξ, ξ ∈ R+. Hence, the first six statements follow from [16, Thm. 5.1.1,
Cor. 5.1.1].

For each β′ > β, the observation∫
R+

|h′(ξ)|2eβξdξ ≤
∫
R+

|h′(ξ)|2eβ′ξdξ, h ∈ Hβ′ ,

shows that Hβ′ ⊂ Hβ and (2.5). For an arbitrary h ∈ Hβ′ , we have, by Hölder’s inequality,∫
R+

|h(ξ)− h(∞)|2eβξdξ =
∫
R+

(∫ ∞

ξ
h′(η)e

1
2
β′ηe−

1
2
β′ηdη

)2

eβξdξ

≤
∫
R+

(∫
R+

|h′(η)|2eβ′ηdη

)(∫ ∞

ξ
e−β′ηdη

)
eβξdξ ≤ 1

β′(β′ − β)‖h‖
2
β′ .

Choosing C5 :=
1

β′(β′−β) proves (2.6).

It is clear that ‖ · ‖β is a norm on Hβ. First, we prove that there is a constant K1 > 0
such that

‖h′‖L1(R) ≤ K1‖h‖β , h ∈ Hβ .(A.1)

Setting K1 :=
√

2
β , this is established by Hölder’s inequality:

(A.2)

∫
R

|h′(ξ)|dξ =
∫
R

|h′(ξ)|e 1
2
β|ξ|e−

1
2
β|ξ|dξ

≤
(∫

R

|h′(ξ)|2eβ|ξ|dξ
)1/2(∫

R

e−β|ξ|dξ
)1/2

=

√
2

β

(∫
R

|h′(ξ)|2eβ|ξ|dξ
)1/2

.

As a consequence of (A.1), for each h ∈ Hβ the limits h(∞) := limξ→∞ h(ξ) and h(−∞) :=
limξ→−∞ h(ξ) exist. This allows us to define the new norm

|h|β :=

(
|h(−∞)|2 +

∫
R

|h′(ξ)|2eβ|ξ|dξ
)1/2

, h ∈ Hβ.
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From (A.2), we also deduce that

‖h′‖L1(R) ≤ K1|h|β , h ∈ Hβ.(A.3)

Setting K2 := 1 +K1, from (A.1) and (A.3) it follows that

‖h‖L∞(R) ≤ K2‖h‖β ,(A.4)

‖h‖L∞(R) ≤ K2|h|β(A.5)

for all h ∈ Hβ . Estimate (A.4) shows that, for each ξ ∈ R, the point evaluation h �→ h(ξ),
Hβ → R is a continuous linear functional.

Using (A.4) and (A.5), we conclude that

1

(1 +K2
2 )

1
2

‖h‖β ≤ |h|β ≤ (1 +K2
2 )

1
2‖h‖β , h ∈ Hβ ,

which shows that ‖ · ‖β and | · |β are equivalent norms on Hβ.

Consider the separable Hilbert space R×L2(R) equipped with the norm (| · |2+‖·‖2L2(R))
1
2 .

Then, the linear operator T : (Hβ , | · |β)→ R× L2(R) given by

Th := (h(−∞), h′e
1
2
β|·|), h ∈ Hβ ,

is an isometric isomorphism with inverse

(T−1(u, g))(x) = u+

∫ x

−∞
g(η)e−

1
2
β|η|dη, (u, g) ∈ R× L2(R).

Since ‖ · ‖β and | · |β are equivalent, (Hβ , ‖ · ‖β) is a separable Hilbert space.
Next, we claim that

D0 := {g ∈ Hβ | g′ ∈ Hβ}
is dense in Hβ. Indeed, C∞

c (R) is dense in L2(R); see [5, Cor. IV.23]. Fix h ∈ Hβ and

let (gn)n∈N ⊂ C∞
c (R) be an approximating sequence of h′e

1
2
β|·| in L2(R). Then, we have

hn := T−1(h(−∞), gn) ∈ D0 for all n ∈ N and hn → h in Hβ .
For each t ∈ R and h ∈ Hβ, the function Uth is again absolutely continuous. We claim

that there exists a constant K3 > 0 such that

‖Uth‖2β ≤ (K3 + eβ|t|)‖h‖2β , (t, h) ∈ R×Hβ .(A.6)

Indeed, using (A.4) we obtain

‖Uth‖2β = |h(t)|2 +
∫ ∞

0
|h′(ξ + t)|2eβξdξ +

∫ 0

−∞
|h′(ξ + t)|2e−βξdξ

= |h(t)|2 + e−βt

∫ ∞

t
|h′(ξ)|2eβξdξ + eβt

∫ t

−∞
|h′(ξ)|2e−βξdξ

≤ (K2
2 + 1 + eβ|t|)‖h‖2β , h ∈ Hβ.
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Setting K3 := 1 + K2
2 , this establishes (A.6). Hence, we have Uth ∈ Hβ for all t ∈ R and

h ∈ Hβ and Ut ∈ L(Hβ), t ∈ R.
It remains to show strong continuity of the group (Ut)t∈R. Using the observation

h(ξ + t)− h(ξ) = t

∫ 1

0
h′(ξ + st)ds, (ξ, t, h) ∈ R× R×Hβ ,

and (A.6), we obtain for each g ∈ D0 the convergence

‖Utg − g‖2β = |g(t)− g(0)|2 +
∫
R

|g′(ξ + t)− g′(ξ)|2eβ|ξ|dξ

≤ |g(t)− g(0)|2 + t2
∫ 1

0

∫
R

|g′′(ξ + st)|2eβ|ξ|dξds

≤ |g(t)− g(0)|2 + t2
∫ 1

0
‖Ustg

′‖2βds

≤ |g(t)− g(0)|2 + t2‖g′‖2β
∫ 1

0
(K3 + eβs|t|)ds

= |g(t)− g(0)|2 +
(
K3t

2 +
|t|
β
(eβ|t| − 1)

)
‖g′‖2β → 0 as t→ 0.

Hence, (Ut)t∈R is strongly continuous on D0. But for any h ∈ Hβ and ε > 0 there exists
g ∈ D0 with ‖h− g‖β < ε

4
√

K3+eβ
. Combining this with (A.6) yields

‖Uth− h‖β ≤ ‖Ut(h− g)‖β + ‖Utg − g‖β + ‖g − h‖β
<
√
K3 + eβ|t|

ε

4
√
K3 + eβ

+ ‖Utg − g‖β +
ε

4
√
K3 + eβ

< ε

for t ∈ R small enough. We conclude that (Ut)t∈R is a C0-group on Hβ.
Finally, relation (2.7) follows from the definitions of � and π.
Proof of Lemma 4.6. Note that W̃ is a continuous (F̃t)-adapted process with W̃0 = 0, and

μ̃ is an integer-valued random measure on R+ ×E.
We fix an arbitrary u ∈ U . The process

Mt :=
exp(i〈u,Wt〉)

E[exp(i〈u,Wt〉)] , t ≥ 0,

is a complex-valued martingale, because for all s, t ∈ R+ with s < t the random variable Wt−
Ws and the σ-algebra Fs are independent. The martingale (Mt)t≥0 admits the representation

Mt = exp

(
i〈u,Wt〉+ t

2
〈Qu, u〉

)
, t ≥ 0.

According to the optional stopping theorem, the process (Mt+τ )t≥0 is a nowhere vanishing
complex (F̃t)-martingale. Thus, for s, t ∈ R+ with s < t we obtain

E

[
Mt+τ

Ms+τ
| F̃s

]
= 1.
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552 DAMIR FILIPOVIĆ, STEFAN TAPPE, AND JOSEF TEICHMANN

For each C ∈ F̃s, we get

E[�C exp(i〈u, W̃t − W̃s〉)] = P(C) exp

(
− t− s

2
〈Qu, u〉

)
.

Hence, the random variable W̃t− W̃s and the σ-algebra F̃s are independent, and W̃t− W̃s has
a Gaussian distribution with covariance operator (t− s)Q. The expansion (4.16) follows from
(3.1).

Now we fix v ∈ R and B ∈ E with F (B) <∞. The process

Nt :=
exp(ivμ([0, t] ×B))

E[exp(ivμ([0, t] ×B))]
, t ≥ 0,

is a complex-valued martingale, because for all s, t ∈ R+ with s < t the random variable
μ((s, t] × B) and the σ-algebra Fs are independent. By [25, Thm. II.4.8], the martingale
(Nt)t≥0 admits the representation

Nt = exp
(
ivμ([0, t] ×B)− (eiv − 1)F (B)t

)
, t ≥ 0.

According to the optional stopping theorem, the process (Nt+τ )t≥0 is a nowhere vanishing
complex (F̃t)-martingale. Thus, for s, t ∈ R+ with s < t we obtain

E

[
Nt+τ

Ns+τ
| F̃s

]
= 1.

For each C ∈ F̃s, we get

E[�C exp(ivμ̃((s, t]×B))] = P(C) exp
(
(eiv − 1)F (B)(t− s)

)
.

Hence, the random variable μ̃((s, t]×B) and the σ-algebra F̃s are independent, and μ̃((s, t]×B)
has a Poisson distribution with mean (t− s)F (B).

Next, we claim that ∫ τ+t

τ
ΦsdWs =

∫ t

0
Φτ+sdW̃s(A.7)

for every predictable process Φ : Ω× R+ → L0
2(Hβ) satisfying

P

(∫ t

0
‖Φs‖2L0

2(Hβ)
ds <∞

)
= 1

for all t ∈ R+, and∫ τ+t

τ
Ψ(s, x)(μ(ds, dx) − F (dx)ds) =

∫ t

0
Ψ(τ + s, x)(μ̃(ds, dx) − F (dx)ds)(A.8)
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for every predictable process Ψ : Ω× R+ × E → Hβ satisfying

P

(∫ t

0

∫
E
‖Ψ(s, x)‖2βF (dx)ds <∞

)
= 1

for all t ∈ R+. If Φ, Ψ are elementary and τ is a simple stopping time, then (A.7), (A.8) hold
by inspection. The general case follows by localization.

If (rt)t≥0 is a weak solution to (4.2), for every ζ ∈ D(( d
dξ )

∗) relations (A.7), (A.8) yield

〈ζ, rτ+t〉 = 〈ζ, rτ 〉+
∫ τ+t

τ

(〈(
d

dξ

)∗
ζ, rs

〉
+ 〈ζ, α(rs)〉

)
ds+

∫ τ+t

τ
〈ζ, σ(rs)〉dWs

+

∫ τ+t

τ

∫
E
〈ζ, γ(rs−, x)〉(μ(ds, dx) − F (dx)ds)

= 〈ζ, rτ 〉+
∫ t

0

(〈(
d

dξ

)∗
ζ, rτ+s

〉
+ 〈ζ, α(rτ+s)〉

)
ds+

∫ t

0
〈ζ, σ(rτ+s)〉dW̃s

+

∫ t

0

∫
E
〈ζ, γ(r(τ+s)−, x)〉(μ̃(ds, dx) − F (dx)ds).

Hence, (r̃t)t≥0 is a weak solution for (4.17).
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[10] E. Eberlein, J. Jacod, and S. Raible, Lévy term structure models: No-arbitrage and completeness,
Finance Stoch., 9 (2005), pp. 67–88.
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model, J. Comput. Finance, 9 (2006), pp. 99–125.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Default Intensities Implied by CDO Spreads:
Inversion Formula and Model Calibration∗
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Abstract. We propose a simple computational method for constructing an arbitrage-free collateralized debt
obligation (CDO) pricing model which matches a prespecified set of CDO tranche spreads. The
key ingredient of the method is an inversion formula for computing the aggregate default rate in a
portfolio, as a function of the number of defaults, from its expected tranche notionals. This formula
can be seen as an analogue of the Dupire formula for portfolio credit derivatives. Together with a
quadratic programming method for recovering expected tranche notionals from CDO spreads, our
inversion formula leads to an efficient nonparametric method for calibrating CDO pricing models.
Contrarily to the base correlation method, our method yields an arbitrage-free model. Comparing
this approach to other calibration methods, we find that model-dependent quantities such as the
forward starting tranche spreads and jump-to-default ratios are quite sensitive to the calibration
method used, even within the same model class. On the other hand, comparing the local intensity
functions implied by different credit portfolio models reveals that apparently different models, such
as the static Student-t copula models and the reduced-form affine jump-diffusion models, lead to
similar marginal loss distributions and tranche spreads.

Key words. portfolio credit derivatives, collateralized debt obligation, inverse problem, effective intensity,
default intensity, expected tranche notionals, Dupire formula, quadratic programming, calibration,
tranche, Duffie–Gârleanu model, Student-t copula, Herbertsson model
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The inadequacy of widely used static factor models, such as the Gaussian copula model
and its various extensions, for pricing and hedging portfolio credit derivatives, as emphasized
by the recent turmoil in credit derivatives markets, has led to the development of various
dynamic models for portfolio credit risk.

One of the main obstacles in implementing and using these dynamic models has been the
availability of efficient calibration algorithms. Once models are calibrated to market data, they
can be compared in terms of pricing and hedging performance. Previous studies on dynamic
models have mostly been based on black-box optimization procedures applied to nonconvex
least squares minimization problems. The lack of convexity entails that the convergence
and stability of these methods are not guaranteed, casting doubts on the reproducibility of
calibration results and their stability.

Recovering implied default rates from market data is by nature an ill-posed problem.
Although the actual default rate (intensity) may depend on the past market history, it has
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been argued [6, 7, 21] that the information contained in collateralized debt obligation (CDO)
tranche spreads can be used at best to recover the local intensity function, defined as the con-
ditional expectation of the portfolio default intensity given the loss level. The local intensity
function is analogous to the local volatility function introduced by Dupire [10] for equity de-
rivatives. It summarizes all information available from CDO tranche spreads on the marginal
loss distributions of the portfolio and provides a common basis to compare different models.

Herbertsson [13] and Lopatin and Misirpashaev [18] have used parametric methods to
recover local intensity functions from CDO data. Laurent, Cousin, and Fermanian [15] propose
an implied tree method for reconstructing the local intensity function. Reformulating the
calibration of default intensity as a stochastic control problem, Cont and Minca [6] proposed
a stable nonparametric approach based on relative entropy minimization for recovering the
local intensity function.

We propose in this paper an alternative, and simpler, approach based on an analytical
inversion formula for the local intensity function, which is analogous to the Dupire formula
in diffusion models [10]. This formula allows us to compute the local intensity function of a
portfolio from its expected tranche notionals. This yields a simple computational method for
constructing an arbitrage-free CDO pricing model which matches a prespecified set of tranche
spreads.

Together with a quadratic programming method for recovering expected tranche notionals
from CDO spreads, our inversion formula leads to an efficient nonparametric method for
calibrating CDO pricing models. In a first step, we extract the expected tranche notionals
from the CDO spreads by solving a quadratic minimization problem under linear constraints.
Next, the default intensity is computed from the expected tranche notionals using the inversion
formula. Unlike the calibration methods introduced in [6, 13], our method requires only
relatively simple mathematical techniques.

Comparing this approach to other calibration methods using iTraxx Europe index CDO
spreads, we find that model-dependent quantities such as the forward starting tranche spreads
and jump-to-default ratios are quite sensitive to the calibration method used, even within the
same model class. On the other hand, comparing the local intensity functions implied by dif-
ferent credit portfolio models reveals that apparently different models, such as static Student-t
copula models and reduced-form affine jump-diffusion models, lead to similar marginal loss
distributions and tranche spreads.

Figure 1 gives an overview of this paper, and the details are structured as follows. Sec-
tion 1 derives our main results concerning the existence and expression of the local intensity
function given the expected tranche notionals. Section 2 proposes a nonparametric method
to recover the local intensity function from the CDO market data. Section 3 compares this
calibration method with the parametric approach introduced by Herbertsson [13] and the en-
tropy minimization algorithm proposed by Cont and Minca [6]. Section 4 compares the local
intensities implied by various credit portfolio loss models. Section 5 summarizes our main
findings and discusses some implications. Proofs are presented in Appendix A.

1. An inversion formula for the local intensity function. In this section, we first introduce
the notions of effective intensity, local intensity function, and expected tranche notionals.
Then, we present two theorems that are related to the inversion formula of the local intensity
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Figure 1. Application of the inversion formula to recover the local intensity function.

function. Those theorems are the key results for computing the local intensity function implied
by a credit portfolio loss model or the expected tranche notionals obtained from the market
data.

1.1. Local intensity function. We model credit events using as filtered probability space
(Ω,F , (Ft)t∈[0,T ∗],Q), where Ω is the set of market scenarios, the filtration (Ft)t∈[0,T ∗] rep-
resents the flow of information up to a terminal date T ∗, and Q is a probability measure
representing the market pricing rule (pricing measure).

Consider an equally weighted credit portfolio (index) consisting of n names. Our main
interest is the aggregate portfolio loss due to defaults, modeled as

(1) Lt = δNt,

where (Nt) is a point process representing the number of defaults and δ is the loss at each
default, assumed to be constant. Without loss of generality, we set N0 = 0 and assume that
the timing of default events is independent of the interest rates. We assume the existence of
a (risk-neutral) default intensity.

Assumption 1. The point process (Nt) admits an intensity: there exists a nonnegative
Ft-predictable process (λt) such that, for all t ∈ [0, T ∗],∫ t

0
λsds <∞ Q-a.s.

The portfolio default intensity can be seen as the conditional probability per unit time of
the next default:

λt = lim
Δt→0

1

Δt
Q(Nt−+Δt −Nt− = 1|Ft−).
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It is characterized by the fact that, for any nonnegative Ft-predictable process (Ct),

EQ

[∫ T ∗

0
CsdNs

]
= EQ

[∫ T ∗

0
Csλsds

]
.

In general, (λt) can be path dependent; i.e., it may depend on the entire market history.
However, as shown in [6, 7], one can construct a Markovian pricing model whose marginal
distributions mimic those of (Lt). The intensity (λefft ) of this Markovian projection is called
the effective default intensity [6].

Definition 1 (local intensity function). Consider a loss process satisfying Assumption 1 with

∀t ∈ (0, T ∗], EQ[λt|F0] <∞.
The local intensity function a : (0, T ∗]× {0, 1, . . . , n} �→ R+ at time 0 is defined as

(2) a(t, i) := EQ[λt|Nt− = i,F0].

If Q(Nt− = i|F0) = 0, we set a(t, i) = 0 by convention.
We call λefft := a(t,Nt−) the effective intensity of the loss process: it is the best estimate

for the default intensity given the portfolio loss level. a(t, i) may also be viewed as a forward
default rate for the portfolio given that i defaults have occurred in the portfolio [21]. Similarly
to the local volatility function in diffusion models [10], the local intensity function summarizes
all the necessary information to price non-path-dependent portfolio credit derivatives: for any
point process (Nt) that satisfies Assumption 1, there exists a Markovian point process (Ñt)
with transition rate a(t, Ñt−) such that (Nt) and (Ñt) have the same marginal distributions at
all dates t ∈ [0, T ∗] [7]. Moreover, given the local intensity function, the marginal distribution
can be computed by solving the forward Kolmogorov equations [21].

Given that the information content of market prices can be summarized in the local
intensity function, various calibration methods have been proposed in the recent literature
for recovering the local intensity function from CDO tranche spreads. Examples include
parametric methods introduced by Herbertsson [13] and Lopatin and Misirpashaev [18] and a
nonparametric entropy minimization algorithm proposed by Cont and Minca [6]. In section 2,
we will introduce a novel nonparametric calibration method which makes use of the inversion
formula that will be shown later in this section.

As the local intensity function can be defined for a wide range of credit portfolio loss
processes, it provides a common basis to compare models defined in different manners. We
will further study this aspect in section 4.

1.2. Expected tranche notionals. Consider the equity tranche of a synthetic CDO with
detachment point K. The expected remaining notional value of this equity tranche at time
T > t is equal to

Pt(T,K) := EQ[(K − LT )
+|Ft].

We follow the notation in [7] and call this quantity the expected tranche notional with ma-
turity T and strike K. For simplicity, we will fix the observation time at 0 in the remainder
of the paper and drop the subscript t in the notation of the expected tranche notionals. Ex-
pected tranche notionals verify the following static arbitrage constraints (a proof is given in
Appendix A).
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Property 1 (static arbitrage constraints).
(a) P (T,K) ≥ 0,
(b) P (T, 0) = 0,
(c) P (0,K) = K,
(d) K �→ P (T,K) is convex,
(e) P (T2,K1)− P (T1,K1) ≥ P (T2,K2)− P (T1,K2) for any T1 ≤ T2, K1 ≤ K2,
(f) K �→ P (T,K) is continuous and piecewise linear on [(i− 1)δ, iδ], i = 1, . . . , n.
Cont and Savescu [7] show that the expected tranche notionals can be computed directly

from the local intensity function by solving a system of forward differential equations: for
T ∈ (0, T ∗], i = 1, . . . , n,

∂TP (T, iδ) = −a(T, 0)P (T, δ) −
i−1∑
k=1

a(T, k)∇2
KP (T, (k − 1)δ),(3)

with initial condition P (0, iδ) = iδ,

where ∇K is the forward difference operator in strike:

∇KF (T, iδ) := F (T, (i+ 1)δ) − F (T, iδ)
for any function F : [0, T ∗] × {iδ : i = 0, . . . , n − 1} �→ R. In fact, the forward equations (3)
are a result of the forward Kolmogorov equations with the identities

(4) Q(LT = iδ|F0) =

⎧⎪⎨⎪⎩
P (T, δ)

δ
, i = 0,

∇2
KP (T, (i− 1)δ)

δ
, i = 1, . . . , n− 1.

1.3. Inversion formula and Markovian projection. To compute the local intensity func-
tion implied by a credit portfolio loss model, Theorem 1 shows that we can first compute the
expected tranche notionals under the model assumption and then convert them into a local
intensity function using an inversion formula. This approach avoids computing the conditional
expectation of the default intensity (λt), which can be a difficult task.

Theorem 1 (inversion formula). Consider a portfolio loss process Lt = δNt, where the point
process (Nt) verifies Assumption 1 and

∀T ∈ (0, T ∗], EQ[λT |F0] <∞.
The local intensity function (2) is given by

(5) a(T, i) = EQ[λT |NT− = i,F0] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∂TP (T, δ)
P (T, δ)

, i = 0,

−∇K∂TP (T, iδ)

∇2
KP (T, (i− 1)δ)

, i = 1, . . . , n− 1,

0, i = n,

for all T ∈ (0, T ∗], where P (T, iδ) = EQ[(iδ − LT )
+|F0] is the expected tranche notional.
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The proof is given in Appendix A.
In a practical situation, the default intensity (λt) is unobservable, but, if sufficiently many

tranche spreads are quoted, expected tranche notionals can be recovered from market data.
We will present a nonparametric method to recover the expected tranche notionals from
the tranche spreads in section 2. Given such a set of values of expected tranche notionals,
Theorem 2 shows that we can construct a Markovian loss process with an intensity in the form
of (5) consistent with these values. This result, which is analogous to the Dupire formula for
local volatility [10], is particularly useful when we want to recover a local intensity function
from either the market data or a model that does not satisfy Assumption 1, such as the static
factor models.

Theorem 2 (the local intensity function that is implied by expected tranche notionals). We
let {P (T, iδ)}T∈[0,T ∗ ],i=0,...,n be a (complete) set of expected tranche notionals verifying Prop-
erty 1 and define the function a : (0, T ∗]× {0, 1, . . . , n} by

(6) a(T, i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∂TP (T, δ)
P (T, δ)

, i = 0,

−∇K∂TP (T, iδ)

∇2
KP (T, (i − 1)δ)

, i = 1, . . . , n − 1,

0, i = n,

for all T ∈ (0, T ∗]. If a(., .) is bounded, there exists a Markovian point process (Mt) with
intensity γt = a(t,Mt−) defined on some probability space (Ω0,G, (Gt),Q0) such that

∀T ∈ [0, T ∗], ∀i ∈ {0, . . . , n}, P (T, iδ) = EQ0 [(iδ − δMT )
+|G0].

If in addition

(7) ∇K∂TP (T, iδ) < 0,

the intensity function a(T, i) is strictly positive for all i < n.
Proof. Property 1 entails that the function a(., .) defined in the theorem is nonnegative.

Consider a standard Poisson process (Nt) constructed on a probability space (Ω0,G, (Gt),P).
Denote by τ1 < τ2 < · · · the jump times of (Nt) and set Mt = Nt∧τn . (Gt) is the filtration
generated by (Mt). Now define the nonnegative predictable process

γt := a(t,Mt−).

Since the function a(., .) is assumed to be bounded, we know that for all t ∈ [0, T ∗]∫ t

0
γsds <∞ P-a.s.

We now apply the change of measure theorem for point processes [3, Chap. VI, sect. 2,
Thm. T3] and define a new probability measure Q0 by

dQ0

dP

∣∣∣
Gt

= exp

(∫ t

0
(1− γs)ds

) ∏
τj<t

γτj .
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Under Q0, (Mt) is a Markovian point process with intensity (γt).
As shown in [7], the function u(T, i) = EQ0 [(iδ − δMT )

+|G0] is a solution of (3). On the
other hand, substituting {a(T, i)}T∈[0,T ∗ ],i=0,...,n into the forward equations (3) shows that
the expected tranche notionals {P (T, iδ)}T∈[0,T ∗ ],i=0,...,n solve (3). The boundedness of a(., .)
entails that the linear system of ODEs (3) has a unique solution, so

P (T, iδ) = EQ0 [(iδ − δMT )
+|G0]

for all T ∈ [0, T ∗], i = 0, . . . , n.
Finally, under (7), the positivity of a(T, i) is immediate from (6).
Formula (5) is analogous to the Dupire formula [10], which expresses the local volatility

as a function of the call prices:

σ2(T,K) =
2

K2

∂TC(T,K)

∂2KC(T,K)
, T ≥ 0, K ≥ 0,

where C(T,K) is the call price with maturity T and strike K. In the diffusion framework,
asset prices take values in [0,∞), which leads to a marginal probability density defined on
[0,∞). This explains why a continuum of call prices in both strike and maturity is required
to recover the local volatility function. On the other hand, since we model the portfolio loss
as a point process with finite state space (iδ)i=0,...,n, we require only a set of expected tranche
notionals with n strikes equal to the possible loss levels to recover the local intensity function.

Schönbucher [21] shows a similar formula expressed in terms of the marginal distribution:

(8) a(T, i) =
−∑i

k=0 ∂TQ(LT = iδ|F0)

Q(LT = iδ|F0)
, i = 0, . . . , n− 1, T ∈ (0, T ∗].

However, formula (5) appears to have an important advantage over (8). As we will discuss in
section 2, the value of a CDO tranche can be expressed as a linear combination of a small set
of expected tranche notionals. In this case, recovering the expected tranche notionals from
the CDO market data can be achieved efficiently and the results can be used to compute the
local intensity function using formula (5). However, this procedure will become more difficult
if we consider the marginal distribution because we need the marginal distribution at all loss
levels to express the CDO mark-to-market values.

2. Nonparametric estimation of the local intensity function. We now present a non-
parametric method for recovering the local intensity function from CDO tranche spreads.
The idea is to first extract the expected tranche notionals from the CDO market data using a
nonparametric approach and then compute the local intensity function by using formula (5),
based on the results in Theorem 2.

We briefly recall the structure of index CDO tranches and their relationship with the
expected tranche notionals [5] and introduce a quadratic programming method to recover
expected tranche notionals from the CDO market data. Subsequently, we will outline the
calibration algorithm for the local intensity function. We show that, unlike our proposed
method, which yields an arbitrage-free pricing model, base-correlation interpolation does not
guarantee the absence of arbitrage.
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2.1. CDOs and expected tranche notionals. Consider a CDO tranche defined by an
interval [a, b], 0 ≤ a < b ≤ 1. a and b are called, respectively, the attachment and detachment
points of the tranche and expressed in percentage of the total notional value. A synthetic CDO
tranche swap is a bilateral contract in which the protection seller agrees to pay all portfolio
loss within the interval [a, b] in exchange for a periodic spread s[a,b] on the remaining notional
value and an upfront payment U [a,b] on the initial notional value b− a.

Assume that the tranche is incepted at time 0 and that the spread s[a,b] and the upfront
payment U [a,b] are given such that the mark-to-market value of the tranche is equal to zero.
Then, we have1

U [a,b](b− a) =
m∑
j=1

D(0, tj) [P (tj , a)− P (tj, b)− P (tj−1, a) + P (tj−1, b)]

− s[a,b]
∑
tj>0

D(0, tj)(tj − tj−1) [P (tj , b)− P (tj, a)] ,(9)

where D(0, tj) is the discount factor from time tj to 0, and 0 = t0 < t1 < · · · < tm are the
payment times, where the last payment time tm corresponds to the expiration time. Notice
that equality (9) is linear in the expected tranche notionals with strikes equal to the attachment
and detachment points and maturities equal to the payment times.

2.2. Recovering expected tranche notionals via quadratic programming. Assume that
at time 0 we observe the spreads and upfront payments of CDO tranches [κi−1, κi] for
i = 1, . . . , I. Without loss of generality, we assume I ≤ n2 and denote the payment times
0 = t0 < t1 < · · · < tm with expiration time tm.3

Our goal is to recover a local intensity function from the CDO market data using the
results in Theorem 2. For computational purposes, we approximate the derivatives in formula
(5) by finite differences and therefore consider expected tranche notionals with maturities
on a discrete time grid. In particular, we focus on the set of expected tranche notionals
{P (tj , iδ)}j=0,...,m;i=1,...,n, which is represented in vector form:

p = [P (t0, δ), . . . , P (t0, n δ), . . . , P (tm, δ), . . . , P (tm, n δ)]
T ∈ R

n(m+1).

By definition, {P (tj , iδ)}j=0,...,m;i=1,...,n has to satisfy Property 1. In order to apply The-
orem 2, the function defined by (5) has to be bounded, which means that the denominator
of formula (5) has to be strictly positive. Moreover, we impose additional condition (7) to
ensure that the local intensity function is strictly positive. Taking all constraints into account,
{P (tj , iδ)}j=0,...,m;i=1,...,n must verify the following conditions.

Condition 1.
(a) P (tj, δ) > 0, j = 1, . . . ,m;
(b) ∇2

KP (tj, (i − 1)δ) > 0, j = 1, . . . ,m, i = 1, . . . , n− 1;

1Expression (9) is slightly different for the most senior tranche. See Appendix B for details.
2It is natural to assume that the number of tranches I is fewer than the number of names n in the reference

portfolio.
3Our formulation can be easily extended to CDO tranches with multiple expirations, but it will not be

further discussed in this paper.
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(c) ∇KP (tj−1, iδ) > ∇KP (tj , iδ), j = 1, . . . ,m, i = 0, . . . , n− 1.

Since the relations in Condition 1 are linear in the expected tranche notionals, they can
be written in matrix form (see Appendix B):

(10) Bp < 0,

where B is a 2nm× n(m+ 1) matrix.

In order to be consistent with the CDO market data, the expected tranche notionals
must satisfy (9) for each tranche. Although (9) may involve expected tranche notionals with
strikes not equal to the multiples of δ (because attachment and detachment points may not
be multiples of δ), Property 1(f) shows that we can always compute an expected tranche
notional by linearly interpolating its neighbors which have strikes equal to the multiples of δ.
Therefore, we can express (9) in terms of {P (tj , iδ)}j=0,...,m;i=1,...,n. Writing this in matrix
form (see Appendix B), we have

(11) Ap = b,

where b ∈ R
I , A is an I × n(m + 1) matrix, and both depend on the CDO market data

and the discount factors. Thus, calibrating a set of expected tranche notionals that satisfies
Condition 1 and is consistent with the CDO data is equivalent to finding a solution of the
linear system (10)–(11). However, this system has either no or infinitely many solutions.

Proposition 1. Given the CDO market data, there are either no or infinitely many sets of
expected tranche notionals with maturities t0 < · · · < tm and strikes δ < · · · < nδ which satisfy
(10)–(11).

In order to pinpoint a unique set of expected tranche notionals, we consider a con-
vex optimization problem under constraints (10)–(11). Considering a convex function f :

R
n(m+1)
+ �→ R, we calibrate the expected tranche notionals by solving

(12) min
p

f(p) subject to Ap = b, Bp ≤ −e.

Here, we replace the strict inequalities in (10) by inequalities with an error vector e > 0 that
can be chosen arbitrarily. In fact, if (10)–(11) has a solution, then we can always pick e
such that (12) is feasible. If there exists a set of expected tranche notionals p that satisfies
Condition 1 and is consistent with the CDO market data, solving (12) gives us a unique
solution. In particular, we propose as selection criterion

(13) f(p) =
m∑
j=0

n∑
i=1

wij

(
P (tj , iδ) − P̃ (tj, iδ)

)2
,

where (wij)j=0,...,m−1;i=1,...,n−1 are weights, and {P̃ (tj , iδ)}j=0,...,m;i=1,...,n−1 is a reference set
of expected tranche notionals. Using this objective function, we can impose a “prior” view
by choosing the reference expected tranche notionals; e.g., the reference expected tranche
notionals can be computed from a particular credit model. Furthermore, (12) reduces to a
quadratic programming problem which can be solved efficiently [2, 22].
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2.3. Numerical issues. Notice that CDO tranche payments are typically made every quar-
ter. In this case, the expected tranche notionals {P (tj , iδ)}j=0,...,m;i=1,...,n obtained by solving
(12) are sparsely spaced in maturity. In order to obtain a finer set of expected tranche no-
tionals, a simple method is to linearly interpolate {P (tj , iδ)}j=0,...,m;i=1,...,n across maturities.
This guarantees that the finer set will also satisfy Condition 1. However, this method will
give extremely large values to the local intensity function for short maturities and may lead
to computational instability. The reason is the following.

Assume we want to compute the expected tranche notionals {P (Tj , iδ)}j=0,...,q;i=1,...,n on
the finer time grid (Tj)j=0,...,q, which includes the payment times (tj)j=0,...,m. For i > 0, we
compute P (T1, iδ) and P (T2, iδ), where T1 < T2 < t1 by linearly interpolating the values
P (t0, iδ) and P (t1, iδ). Then, the local intensity function computed from (5) is equal to

a(T1, i) =
(−∇KP (T2, iδ) +∇KP (T1, iδ)) /(T2 − T1)

∇2
KP (T1, (i− 1)δ)

,

where we approximate the partial derivatives by finite differences. Since we compute P (T2, iδ)
and P (T1, iδ) by linear interpolation, the numerator of a(T1, i) is strictly positive and has the
same value for any T1 < T2 < t1. On the other hand, if T1 is close to 0, the denominator
∇2

KP (T1, (i−1)δ) is also close to 0 becauseK �→ P (0,K) is linear. Therefore, a(T1, i) becomes
extremely large when T1 is small.

To overcome this problem, we propose the following method.

Algorithm 1. Maturity interpolation of expected tranche notionals.

1. Construct an arbitrage-free set {P (tj , iδ)}j=0,...,m;i=0,...,n of expected tranche notionals
by solving (12).

2. Fix an integer r such that n ≤ r < q and 0 = T0 < T1 < · · · < Tr < t1. Arbitrarily
set a positive but sufficiently small value for the local intensity function at times
(Tj)j=0,...,r−1 such that ∇KP (Tr, iδ) > ∇KP (t1, iδ) for all i.

3. Compute the expected tranche notionals for maturities (Tj)j=0,...,r using forward
equations (3). Note that the set of expected tranche notionals at the maturity Tr,
{P (Tr, iδ)}i=0,...,n, automatically satisfies the strict convexity constraint in Condition
1(b).

4. Linearly interpolate expected tranche notionals in maturity starting from maturity Tr.

Since the linear interpolation starts from maturity Tr and {P (Tr, iδ)}i=0,...,n satisfies the
strict convexity constraint in Condition 1(b), the denominator in the local intensity function
formula (5) is strictly positive at maturity Tr. Therefore, having extremely large values for
the local intensity function at short maturities is avoided.

Remark 1. The purpose of Algorithm 1 is to compute the expected tranche notionals on a
finer time grid but not to build a complete set of expected tranche notionals. In particular, if
T �→ P (T, iδ) is piecewise linear, it will no longer be differentiable at certain points. If one is
interested in recovering a complete set of expected tranche notionals and applying Theorem 2,
all necessary conditions must be verified carefully.

2.4. Calibration algorithm for the local intensity function. The above considerations
lead to the following algorithm for computing a local intensity function from a discrete set of
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CDO tranche spreads:

Algorithm 2. Quadratic programming calibration for the local intensity function.

1. Compute matrices A and b in (11) according to the CDO market data and matrix B
in (10) according to Condition 1 (see Appendix B).

2. Solve quadratic programming problem (12) with objective function (13) and obtain a
set of expected tranche notionals which is consistent with the CDO market data.

3. Apply Algorithm 1 to obtain expected tranche notionals on a finer time grid if desired.
4. Convert the calibrated expected tranche notionals into a local intensity function using

formula (5).

2.5. Arbitrage opportunities when using base-correlation interpolation. To price non-
standard CDO tranches, or equivalently expected tranche notionals, it is common to use the
base-correlation interpolation method under the Gaussian copula framework. For example, if
we want to price tranches [5%, 6%] and [6%, 7%] of the iTraxx investment grade (IG) portfo-
lio, we first calibrate the one-factor Gaussian copula model [17] to the standard tranches and
obtain the base correlations [16] at the standard strikes 3%, 6%, 9%, 12%, and 22%. Then, we
interpolate the base correlations for other strikes, say 5% and 7% in this example. After that,
we compute the expected tranche notionals at strikes 5% and 7% using the two different base
correlations obtained by interpolation and price the corresponding CDO tranches. However,
we show that this method does not guarantee absence of arbitrage.

Figure 2 shows the base correlations of the one-factor Gaussian copula model calibrated
to the iTraxx data in Table 2. By linearly interpolating the base correlations, we compute
the upfront payments of nonstandard tranches [5%, 6%] and [6%, 7%] with a fixed periodic
spread 100 bps in Table 1. At first glance, we can see that the upfront payment of the more
senior tranche [6%, 7%] is larger than the upfront payment of tranche [5%, 6%]. To show that
it leads to an arbitrage opportunity, we take the following positions:

• we buy protection on tranche [5%, 6%];
• we sell protection on tranche [6%, 7%].

At inception time t0, the cash flow of our positions is equal to the difference of the upfront
payments:

(879.3 bps − 819.5 bps)(1%) = 0.598 bps,

which is strictly positive.
At payment time tj , the net premium received from our positions, Prem(tj), is equal to

Prem(tj) = 100 bps(tj − tj−1)
[
(7% − Ltj )

+ − (6% − Ltj )
+
]

− 100 bps(tj − tj−1)
[
(6% − Ltj )

+ − (5% − Ltj )
+
]

= 100bps(tj − tj−1)
[
(5% − Ltj )

+ − 2(6% − Ltj )
+ + (7% − Ltj )

+
]
,

which is positive, due to the fact that K �→ (K − L)+ is a convex function. Therefore, the
value of the premium leg at expiration time tm is positive and equal to

value of premium leg at expiration =
m∑
j=1

D(tj, tm)−1 Prem(tj) ≥ 0,
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Figure 2. Base correlations of one-factor Gaussian copula model. Data: 5Y iTraxx Europe IG S9 on 25
March 2008.

Table 1
Upfront payments of 5-year iTraxx IG CDO tranches with 100 bps periodic spread. Pricing method: one-

factor Gaussian copula model with linearly interpolated base correlations.

Tranche 5% - 6% 6% - 7%

Upfront payment 819.5 bps 879.3 bps

where D(tj , tm) is the risk-free zero coupon bond price at time tj with maturity tm.

On the other hand, at payment time tj , the net default payment received from the posi-
tions, Def(tj), is equal to

Def(tj) =
[
(5%− Ltj )

+ − 2(6% − Ltj )
+ + (7% − Ltj )

+
]

− [(5%− Ltj−1)
+ − 2(6% − Ltj−1)

+ + (7% − Ltj−1)
+
]
,

and the value of the default leg at expiration time tm is equal to

value of default leg at expiration =

m∑
j=1

D(tj , tm)−1Def(tj).

In section A.4, we show that the value of the default leg is also positive. Therefore, our total
payoff (sum of premium leg and default leg) at expiration is positive. Recall that at the
inception of the tranches at time t0 we received a strictly positive cash flow. As a result, our
trading strategy shows an arbitrage opportunity.

In contrast to our method in Algorithm 2, this example illustrates that interpolation of
base correlation can result in arbitrage opportunities.

3. Application to iTraxx tranches. In this section, we illustrate the calibration method
introduced in section 2 by using the iTraxx data. We refer to this calibration method as the
quadratic programming method (QP). The weights in the objective function (13) are chosen
to be proportional to the reference expected tranche notionals which are computed from a
flat local intensity function equal to 1. In addition, we compare our results to two alternative
calibration methods:
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• A parametric method.
Herbertsson [13] specifies the local intensity function in the parametric form

(14) a(t, i) = (n− i)
i∑

k=0

bk,

where the parameters b0, . . . , bn are constants. This model states that the local inten-
sity function is constant except when defaults occur. There is no sign restriction on bk
as long as the local intensity function remains nonnegative. To recover the parameters
from the CDO spreads, we minimize the sum across observed tranches of squared dif-
ferences between model and market CDO spreads using a gradient-based algorithm.
Note that this objective function is not convex; hence the gradient-based algorithm
may not necessarily yield a global minimum, and the minimum need not be unique.

• Entropy minimization algorithm.
Cont and Minca [6] introduced a nonparametric method for recovering the local in-
tensity function as the solution of a relative entropy minimization problem

inf
Q∈Λ

E
Q0

[
dQ

dQ0
ln

(
dQ

dQ0

)]
subject to calibration constraints (9). Q0 denotes the law of a prior Markovian point
process, and Λ is the set of laws of Markovian point processes, equivalent to Q0. To
implement this algorithm, we choose as prior measure the law of a standard Poisson
process stopped at n.

These three methods are applied to the 5-year iTraxx Europe IG Index CDO tranche spreads
on 20 September 2006 and 25 March 2008, a portfolio consisting of 125 names. The recovery
rate is assumed to be R = 40%. Table 2 shows the result of the calibration.

Table 2
Calibrated CDO tranche spreads of 5Y iTraxx Europe IG Series 6 on 20 September 2006 and Series 9 on

25 March 2008. Quotes are given in bps, except for equity tranches, which are quoted as upfront in percentage
with 500 bps periodic coupons.

0% - 3% 3% - 6% 6% - 9% 9% - 12% 12% - 22% 22% - 100%

20-Sep-06
Market bid 11.8% 53.8 14.0 5.8 2.1 0.8
Market ask 12.0% 55.3 15.5 6.8 2.9 1.3

QP 11.9% 54.6 14.8 6.3 2.5 1.0
Parametric 11.9% 54.5 14.8 6.3 2.5 1.1
Entropy min 11.9% 54.5 14.8 6.3 2.5 1.1

25-Mar-08
Market bid 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask 39.7% 466.6 290.2 189.4 110.7 46.9

QP 38.4% 451.9 279.0 181.1 103.2 44.3
Parametric 38.7% 454.1 280.2 181.9 104.1 44.8
Entropy min 38.6% 453.3 279.5 181.2 103.4 44.6
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Figure 3. Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using the quadratic
programming method (Algorithm 2) Left: S6 on 20 September 2006. Right: S9 on 25 March 2008.
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Figure 4. Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using the parametric
model [13]. Left: S6 on 20 September 2006. Right: S9 on 25 March 2008.
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Figure 5. Local intensity functions implied from 5Y iTraxx Europe IG tranche spreads using the nonpara-
metric entropy minimization method [6]. Left: S6 on 20 September 2006. Right: S9 on 25 March 2008.

3.1. Local intensity functions. Figures 3 to 5 show local intensity functions implied from
iTraxx CDO spreads using the three different approaches presented above on two different
dates: 20 September 2006 and 25 March 2008. These local intensity functions exhibit qualita-
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tively similar features, but the value they imply for the default intensity can be quite different.
Also, for each calibration method, we observe that the general shape of the local intensity
function calibrated to the 2006 dataset is similar to the one calibrated to the 2008 dataset.

For the quadratic programming method (Figure 3), we observe that, at any fixed time, the
local intensity functions stay at a low level when the number of defaults is small but sharply
increases around 5 defaults: this sharp increase signals the onset of contagion. After that, the
local intensity functions stay almost flat at a high level when the number of defaults is larger
than 5. The term structure is relatively flat in all examples.

The parametric approach (Figure 4) yields, by construction, smoother local intensity func-
tions. When the loss is large, unlike the local intensity functions obtained via quadratic pro-
gramming, the parametric local intensity functions decrease gradually towards zero as the
number of defaults increases. Interestingly, this feature is also observed in the local intensity
functions obtained with the nonparametric entropy minimization algorithm (Figure 5), but
the decrease is much faster for short times than in the parametric model. Furthermore, the
maximum attained value of the local intensity function obtained via the entropy minimiza-
tion algorithm is substantially lower than by both the parametric and quadratic programming
methods.

3.2. Stability analysis. A crucial property of a calibration method is its stability with
respect to the inputs. To examine the stability of the various calibration methods considered
above, we apply a 1% proportional shift to all CDO market spreads, recalibrate the local
intensity function to the shifted CDO spreads, and measure the magnitude of the changes
using the Frobenius norm: ⎛⎝ n∑

i=0

q∑
j=0

|a(Tj , i)− â(Tj , i)|2
⎞⎠1/2

,

where {a(Tj , i)} and {â(Tj , i)} are, respectively, the local intensity functions calibrated to the
original and perturbed CDO tranche spreads. The smaller the value of this norm, the more
stable is the method. From Table 3, we observe that the entropy minimization algorithm is
substantially more stable than the other two methods with respect to a change in the inputs,
while the parametric approach is the most unstable one among the three. This result is in
line with findings in similar studies using equity derivatives [8].

Table 3
Frobenius norm of the changes in the local intensity function with respect to 1% proportional increase in

the CDO spreads. Data: 5Y iTraxx Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

QP Parametric Entropy min

20-Sep-06 56.2 32116.2 2.0× 10−2

25-Mar-08 673.2 728.3 2.0× 10−1

3.3. Marginal distributions and expected losses. Figure 6 shows the marginal distribu-
tion of the default process on 25 March 2008. We see that the marginal distributions are
similar across the three calibration methods at year 1 but have more significant differences
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Figure 6. Marginal distribution at year 1 and year 4, truncated up to 20 defaults. Data: 5Y iTraxx Europe
IG S9 on 25 March 2008.
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Figure 7. Term structure of the differences in the expected loss E(LT ) − E(LT−0.25). Data: 5Y iTraxx
Europe IG S9 on 25 March 2008.

for longer times at year 4. This suggests that pricing non-path-dependent credit derivatives
is more sensitive to the choice of the calibration method used to recover the local intensity
function for longer maturities.

Another important quantity that we study is the expected portfolio loss. Figure 7 shows
the differences of the expected losses on a quarterly basis, i.e., E(LT )−E(LT−0.25). Observe
that the differences in the expected losses are almost flat for all calibration methods when the
time is less than 2 years. When time increases, the difference of the expected loss computed
from the parametric method increases gradually. On the other hand, the other two calibration
methods give similar differences of the expected loss along time, except a sharp increase at
year 5 for the quadratic programming method.

3.4. Forward starting tranche spreads. Forward starting tranches provide protection
against tranche losses in a prespecified future period [t, T ]. The distinguishing feature is that
defaults occurring prior to the starting date do not affect the subordination of the tranche.
In particular, a forward tranche with attachment-detachment interval [a, b] can be valued as
the forward value of a tranche with adjusted interval [a′, b′], where a′ = min(1, a + Lt) and
b′ = min(1, b+Lt). This dependence of the payoff on the loss makes the forward tranche path
dependent.

Table 4 shows the spreads of forward starting tranches which start in year 1 and mature
3 years later. As we can see, the forward tranche spreads are significantly different across the
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Table 4
Spreads of forward starting tranches which start in year 1 and mature 3 years later. Data: 5Y iTraxx

Europe IG S6 on 20 September 2006 and S9 on 25 March 2008.

20 September 2006 25 March 2008
QP Parametric Entropy min QP Parametric Entropy min

0% - 3% 12.05 12.25 14.26 53.46 36.92 65.92
3% - 6% 2.72 17.89 33.62 93.79 290.65 482.23
6% - 9% 2.46 3.18 7.46 92.46 142.25 236.22
9% - 12% 2.21 0.79 4.14 91.45 63.45 170.80
12% - 22% 1.59 0.36 4.03 89.36 34.49 165.59
22% - 100% 0.03 0.15 0.69 37.99 13.38 27.60

Table 5
Model uncertainty ratio of the forward starting tranche spreads.

0% - 3% 3% - 6% 6% - 9% 9% - 12% 12% - 22% 22% - 100%

20-Sep-06 17% 171% 115% 141% 184% 226%
25-Mar-08 56% 134% 92% 99% 136% 93%

calibration methods. Table 5 shows the model uncertainty ratio [4], which is defined as

model uncertainty ratio =
smax − smin

save
,

where smax, smin, and save are the maximum, minimum, and average forward spreads, re-
spectively, across the calibration methods. Notice that the ratio is larger than 90% for all
tranches except for the equity tranche. This reveals a serious problem because, even if we
price exotic credit derivatives in the same modeling framework (local intensity framework in
this case), there is substantial uncertainty in pricing exotic credit derivatives due to the choice
of calibration method.

3.5. Jump-to-default ratios. In the local intensity framework, the market is complete
and the self-financing strategy to replicate the payoff of a CDO tranche involves trading the
underlying index default swap. The corresponding hedge ratio, which is known as the jump-
to-default ratio, is defined by

v[a,b](t,Nt + 1)− v[a,b](t,Nt)

vindex(t,Nt + 1)− vindex(t,Nt)
,

where v[a,b](t,m) and vindex(t,m) denote the mark-to-market values per unit notional of
tranche [a, b] and the index default swap, respectively, conditional on m defaults occurring by
time t. More details on this subject can be found in [5, 15].

Table 6 shows the jump-to-default ratios computed from the local intensities in section 3.1.
Interestingly, we observe that the jump-to-default ratios generated by the quadratic program-
ming and the entropy minimization methods are quite similar. However, substantial differences
are observed when comparing to the parametric method. This implies that uncertainty due
to the choice of the calibration method not only affects the pricing of credit derivatives, as we
have shown in section 3.4, but may also have a large impact on hedging strategies for portfolio
credit derivatives [5].
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Table 6
Jump-to-default ratios computed from the calibrated local intensity functions. Data: 5Y iTraxx Europe IG

S6 on 20 September 2006 and S9 on 25 March 2008.

20 September 2006 25 March 2008
QP Parametric Entropy min QP Parametric Entropy min

0% - 3% 6.29 20.97 6.32 1.03 3.62 1.60
3% - 6% 2.12 5.16 3.51 1.69 3.31 2.33
6% - 9% 1.63 2.00 2.23 1.68 2.65 2.15
9% - 12% 1.52 1.02 1.72 1.68 2.08 1.97
12% - 22% 1.47 0.48 1.39 1.68 1.48 1.76
22% - 100% 0.67 0.22 0.61 0.81 0.66 0.75

4. Local intensity function implied by credit portfolio loss models. Market practice has
been to calibrate credit portfolio models to market observations of index spreads and index
tranche spreads and use the resulting parameters to price nonstandard or illiquid products.
As observed in section 3, even in a local intensity model, the marginal distributions for the
portfolio loss generated by the model can vary substantially depending on the calibration
methods. This raises the question of whether there is also a substantial difference of loss
distributions across different models when these models are calibrated to the same market
data.

We compare the local intensity functions implied by six different models: Herbertsson
model [13], bivariate spread-loss model [1], shot-noise model [12], one-factor Gaussian copula
model [17], one-factor Student-t copula model [14], and bottom-up affine jump-diffusion model
[9, 19, 11]. The first three are top-down models, which means that the portfolio default
intensity is directly specified. The one-factor Gaussian and Student-t copula models are
bottom-up static factor models, and the affine jump-diffusion model is a dynamic bottom-up
model.

All models are calibrated to the iTraxx Europe IG Series 9 CDO data on 25 March
2008. Table 7 shows the calibration results. The Gaussian and Student-t copula models are
calibrated using the base-correlation method [16]. Except for the shot-noise model and the
affine jump-diffusion model, all models yield tranche spreads well within the bid-ask intervals.

Table 7
Calibration of different models to 5Y iTraxx Europe IG Series 9 tranche spreads on 25 March 2008. Quotes

are given in bps, except for equity tranches, which are quoted as upfront in percent with 500 bps periodic coupons.

0% - 3% 3% - 6% 6% - 9% 9% - 12% 12% - 22% 22% - 100%

25-Mar-08
Market bid 37.7% 441.6 270.2 174.4 97.4 42.8
Market ask 39.7% 466.6 290.2 189.4 110.7 46.9

Bivariate spread-loss model 38.7% 454.1 280.2 181.9 104.1 44.8
Shot-noise 43.8% 463.5 219.5 159.9 128.0 40.7

Gaussian copula 38.7% 454.1 280.2 181.9 104.1 43.3
Student-t copula 38.7% 454.1 280.2 181.9 104.1 44.9

Affine jump-diffusion 48.2% 493.0 244.8 186.5 154.4 37.2

In order to compute the local intensity functions, we first compute the expected tranche
notionals for each model. For the dynamic models, we apply Theorem 1 and convert the
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Figure 8. Local intensity functions implied by credit portfolio loss models. Data: 5Y iTraxx Europe IG S9
on 25 March 2008.

expected tranche notionals into local intensity functions based on formula (5). For the copula
models, we compute the implied portfolio default intensity using Theorem 2: the local intensity
function is computed using (6). The local intensity functions are shown in Figure 8.

4.1. Herbertsson model. In section 3, we have presented the parametric model intro-
duced by Herbertsson [13], in which the portfolio default intensity has the functional form
(14). Since the portfolio default intensity depends only on the credit portfolio loss level, this
is one of the “simplest” models in the sense that the effective default intensity (λefft ) is the
same as the portfolio default intensity (λt). It can serve as a benchmark to compare with
other models.

4.2. Bivariate spread-loss model. Arnsdorff and Halperin [1] introduce the bivariate
spread-loss model in which the portfolio default intensity depends not only on the loss process
but also on a mean-reverting diffusion process (Yt) which generates spread volatility. The
portfolio default intensity is given by

λt = Yt F (Nt),
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Figure 9. Change of the local intensity function implied by the bivariate spread-loss model with respect to
a small increase of the risk factor value Y0 at time 0.

where F is called the contagion function. The factor (Yt) generates spread volatility between
default dates and follows

d lnYt = κ (b− lnYt) dt+ σdWt,

where (Wt) is a standard Brownian motion.

From Figure 8, we observe that the local intensity functions obtained from the bivariate
spread-loss model and Herbertsson’s parametric model are similar. The reasons is that Arns-
dorff and Halperin parameterize the contagion function F in the same way as Herbertsson
specifies the local intensity function.

Another interesting feature to investigate is how the local intensity function changes with
respect to the initial value of the risk factor Y0. In Figure 9, we show the time evolution of the
difference of the local intensity function a(t, i) calibrated with two different risk factors Y0. We
represent only this difference for i = 0 and i = 5 and observe that a change in the risk factor
will mostly affect the local intensity function at short times. This observation is consistent
with the fact that, since the risk factor is specified as mean reverting, it will revert back to
its average in the long run and give similar local intensity functions for longer times.

4.3. Shot-noise model. In order to better capture the possibility of extreme events, Gas-
par and Schmidt [12] propose the shot-noise model in which the portfolio default intensity has
the form

λt = ηt + Jt,

where (ηt) is a continuous affine process

dηt = κ(b− ηt)dt+ σ
√
ηtdWt

with (Wt) a standard Brownian motion, and (Jt) is a non-Gaussian Ornstein–Uhlenbeck pro-
cess which represents the shot-noise:

Jt =
∑
τi≤t

Yie
−α(t−τi),

where τi, i = 1, 2, . . . , are the jump times of a Poisson process and Yi, i = 1, 2, . . . , are
independent and identically distributed variables independent of the τi. We assume here
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that Yi has an exponential distribution. Under this setting, they provide a semianalytical
expression for the local intensity function:

(15) a(T, k) =

∂k

∂θk

∣∣∣
θ=−1

∂
∂T

1
θS(θ, T )

∂k

∂θk

∣∣∣
θ=−1

S(θ, T )
,

where S(θ, T ) is the Laplace transform of the cumulative portfolio default intensity

S(θ, T ) = EQ

[
eθ

∫ T
0 λsds

∣∣∣F0

]
, θ < 0,

which has a closed-form expression (see Appendix C). However, formula (15) is of little use
for computing the local intensity function for a typical credit portfolio which consists of more
than 100 names because we have to (numerically) differentiate S(θ, T ) with respect to θ more
than 100 times, which yields an unstable result. This example illustrates the difficulty of
computing the local intensity function, even with a semianalytical formula. On the other
hand, we can easily overcome this problem by using the inversion formula (5).

In Figure 8, we see that the local intensity function implied by the shot-noise model first
increases sharply when the number of defaults is small and then slowly increases when the
number of defaults gets larger. This is consistent with the argument given by Gaspar and
Schmidt [12]: since the default intensity (λt) is not observed, the loss level (Lt) is used as
a statistic to estimate the default intensity. If the loss increases, it is more likely that the
default intensity is high. Therefore, it leads to an increasing local intensity function in the
loss level.

4.4. Gaussian and Student-t copula models. Because of its tractability, the one-factor
Gaussian copula model has been the financial industry benchmark despite some well-known
drawbacks. The Student-t copula model, which embeds the Gaussian copula model as a limit
when the degree of freedom goes to infinity, is widely used as well. More precisely, given a
family of marginal default time distributions (Fi, i = 1, . . . , n), the joint distribution of the
default times τi is modeled by first defining latent factors

Xi = S
(
ρZ0 +

√
1− ρ2Zi

)
, with S =

⎧⎨⎩
1 for Gaussian copula,√
ν

V
for Student-t copula,

where Z0, Zi ∼ N (0, 1), V ∼ χ2
ν are independent variables, and then defining the default times

by
τi = F−1

i (FXi(Xi)),

where FXi(.) denotes the distribution of Xi. We refer readers to [14] for details.
To study the local intensity function implied by these two bottom-up models, we first

calibrate them using the base-correlation method [16]. Then, we study the local intensity
function corresponding to different base correlations. Notice that these two models are static,
which means that there is no default intensity defined in this framework: we are in effect
representing the expected tranche notionals in these models in terms of an equivalent local
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intensity function, which then enables us to compare these static models with the dynamic
models presented above.

Figure 8 shows the local intensity functions implied by the two copula models with base
correlations corresponding to tranche [6%, 9%]. Observe that the main difference between the
two local intensity functions is that for the Gaussian copula model there is a sharp increase
for short times when the number of defaults is larger than 100. Other than that, both local
intensity functions appear to have a smooth dome shape. This relatively restricted form of
local intensity function can explain why a single correlation cannot fit the full set of CDO
tranche spreads and why we usually observe a base-correlation skew. Also, since the Student-t
copula embeds the Gaussian copula as a limit, it is not surprising that the local intensity
functions implied by the two models are similar in general shape. This also suggests that the
additional degree of freedom in the Student-t copula is still not able to generate a flexible
enough local intensity function to match the full set of CDO market data.

4.5. Affine jump-diffusion model. Many “bottom-up” reduced form models [9, 11, 19, 20]
based on diffusive or jump-diffusion dynamics for default intensities have been proposed for
pricing portfolio credit derivatives. Most of these models are built in the “doubly stochastic”
framework by specifying the default intensities for each name in the portfolio. A prominent
example, which lends itself to implementation, is the model proposed by Duffie and Gârleanu
[9], where the default intensities follow correlated affine jump-diffusion processes. We consider
the extension of this model considered in Mortensen [19] here. The default intensity for name i
is represented as

λi,t = Xi
t + aiX

0
t ,

where a1, . . . , an are parameters, and (Xi
t), i = 0, . . . , n, are independent affine jump diffusions

with

dXi
t = κi(bi −Xi

t)dt+ σi

√
Xi

tdW
i
t + dJ i

t ,

where (W i
t ), i = 0, . . . , n, are independent Brownian motions and (J i

t ), i = 0, . . . , n, are in-
dependent compound Poisson processes with exponentially distributed jumps. This general
specification is theoretically appealing, but the calibration to 125 individual credit default
swap spreads and six tranche spreads of a CDO involves the solution to a nonlinear opti-
mization problem in dimension 881: 125 factor loadings, 126 initial risk factor values, and
630 parameters for the risk factor dynamics. Eckner [11] proposes a parsimonious version of
this model, which we will adopt here.

Interestingly, Figure 8 shows that the local intensity function implied by the affine jump-
diffusion model [11] is similar to the one implied by the one-factor Student-t copula model.
This is a surprising result because the two modeling frameworks are fundamentally different:
one is dynamic, while the other one is static.

5. Conclusion. We have proposed a simple and efficient calibration method for recovering
the default intensity of a portfolio from CDO spreads. Our method is based on two ingredients:
a nonparametric method based on quadratic programming for recovering expected tranche
notionals from CDO spreads, and an inversion formula for computing the local intensity
function from the expected tranche notionals. This method is shown to be much more stable,
with respect to changes in inputs, than the commonly used nonlinear least squares method
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based on parametric models (see, e.g., [13]). Contrarily to the base-correlation method, our
method yields an arbitrage-free model.

Comparing our calibration algorithm to a parametric calibration method [13] and to a
nonparametric entropy minimization method [6] using iTraxx Europe index CDO spreads,
we observe that these different calibration methods lead to quite different values of default
intensity while maintaining a good match to the observations: this illustrates clearly the ill-
posedness of the calibration problem. We also find that model-dependent quantities such as
forward starting tranche spreads and jump-to-default ratios are quite sensitive to the calibra-
tion method used, even within the same model class.

On the other hand, comparing the local intensity functions implied by different credit port-
folio models reveals that apparently different models, such as static Student-t copula models
and reduced-form affine jump-diffusion models, lead to similar marginal loss distributions and
tranche spreads. Thus, market prices alone are insufficient to discriminate between these
model classes.

These results emphasize the importance of model uncertainty when addressing the pricing
and hedging of portfolio credit derivatives and call for more research in this direction.

Appendix A. Proofs.

A.1. Proof of Property 1. Properties 1(a)–(c) are immediate results from the definition.
Since the payoff function (K − LT )

+ is convex in K and taking expectation of the payoff
function preserves convexity, Property 1(d) holds. Since (Lt) is an increasing process, we
know that for T1 ≤ T2, K1 ≤ K2

(K1 − LT2)
+ − (K1 − LT1)

+ ≥ (K2 − LT2)
+ − (K2 − LT1)

+.

Taking the expectation on both sides, we obtain Property 1(e).
For Property 1(f), consider K ∈ [(i− 1)δ, iδ] for any i ∈ {1, . . . , n} and T ∈ [0, T ∗]. From

the definition of P (T,K), we have

(16) P (T,K) = EQ[(K − LT )
+|F0] =

i−1∑
k=0

(K − kδ)Q(LT = kδ|F0),

which shows immediately that K �→ P (T,K) is linear on [(i− 1)δ, iδ] and that K �→ P (T,K)
is a continuous function.

A.2. Proof of Theorem 1. Since EQ[λT |F0] < ∞ for all T ∈ (0, T ∗], the local intensity
function defined by (2) satisfies a(T, i) <∞ for all T and i. Therefore the forward equations
(3) hold and have the solution P (T, iδ) = EQ[(iδ−LT )

+|F0]. By rewriting (3) in matrix form
for T ∈ (0, T ∗], we have

(17) P′ = −Ma,

where P′ = [∂TP (T, δ), . . . , ∂TP (T, nδ)]
T, a = [a(T, 0), . . . , a(T, n− 1)]T, and M is an n-by-n

lower triangular matrix with entries

M(i, 1) = P (T, δ),

M(i, j) = ∇2
KP (T, (j − 2)δ), j = 2, . . . , i,
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for i = 1, . . . , n and M(i, j) = 0 otherwise. From (4), we know that

M(i, 1) = δQ(NT = 0|F0),

M(i, j) = δQ(NT = j − 1|F0), j = 2, . . . , i,

for i = 1, . . . , n. Let K ⊆ {0, . . . , n− 1} be the set of integers k such that Q(NT = k|F0) = 0.
We know that the (k + 1)st column of M is equal to zero for all k ∈ K, and this implies that
∂TP (T, kδ) = ∂TP (T, (k − 1)δ). Moreover, in order to respect the convention given in the
definition of the local intensity function (2), for all k ∈ K, we have a(T, k) = 0.

Now, let M̃ be the (n − |K|) × (n − |K|) matrix resulting from the elimination of the

(k+1)st row and column in M for all k ∈ K. M̃ is a lower triangular matrix with M̃(i, j) > 0
for all i and j ≤ i, and therefore it is invertible. Since, for all k ∈ K, we have set a(T, k) = 0
and noticed that ∂TP (T, kδ) = ∂TP (T, (k − 1)δ), we can rewrite the linear system (17) as

(18) P̃′ = −M̃ã,

where P̃′ and ã are (n−|K|)-vectors which result from the elimination of the (k+1)st entries

of P′ and a, respectively, for all k ∈ K. Multiplying both sides of (18) by M̃−1, we have

(19) ã = −M̃−1P̃′.

Therefore, the local intensity function a(., .) is uniquely determined by the set of expected
tranche notionals via (19). By the Gaussian elimination method, it is easy to check that (19)
is equivalent to expression (5). Therefore, the local intensity function must have the form
given in (5).

A.3. Proof of Proposition 1. Assume there exists a vector p ∈ R
n(m+1) that satisfies

(10)–(11). Using the fact that rank(A) ≤ I < n(m + 1), we know from the rank-nullity
theorem that there exists a nonzero y ∈ R

n(m+1) such that

Ay = 0.

Then, we choose the smallest μ0 < 0 and largest μ1 > 0 such that

B(p+ μ0y) ≤ 0, B(p+ μ1y) ≤ 0.

Then, for any μ ∈ (μ0, μ1), we have

B(p+ μy) < 0.

Therefore, the vector p+ μy also satisfies constraints (10)–(11) for all μ ∈ (μ0, μ1); i.e., there
are infinitely many solutions for the system (10)–(11).

A.4. Existence of arbitrage in the base-correlation model. To show that the total default
payments received from our trading strategy in section 2.5 are positive, we consider different
scenarios at the last payment time, or equivalently the expiration time, tm.
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• For Ltm−1 ≤ 5%, we would have received only a default payment at the expiration
time tm. Then, we have

value of default leg at expiration

= (5%− Ltm)
+ − 2(6% − Ltm)

+ + (7% − Ltm)+

− (5%− Ltm−1)
+ + 2(6% − Ltm−1)

+ − (7% − Ltm−1)
+

=

⎧⎪⎪⎨⎪⎪⎩
0 if Ltm ≤ 5%,
Ltm − 5% if 5% < Ltm ≤ 6%,
7%− Ltm if 6% < Ltm ≤ 7%,
0 if 7% < Ltm

≥ 0.

• For 5% < Ltm−1 ≤ 6%, we would have received a certain number of default payments
before time tm from tranche [5%, 6%]. Taking the reinvestment of those received
payments at a risk-free rate into account, we know that the total value of the received
payments at time tm is greater than Ltm−1 − 5%. Then, we have

value of default leg at expiration

≥ (Ltm−1 − 5%)

− 2(6% − Ltm)
+ + (7% − Ltm)

+

+ 2(6% − Ltm−1)
+ − (7%− Ltm−1)

+

=

⎧⎨⎩
Ltm − 5% if Ltm ≤ 6%,
7%− Ltm if 6% < Ltm ≤ 7%,
0 if 7% < Ltm

≥ 0.

• For 6% < Ltm−1 ≤ 7%, we would have
– received default payments from tranche [5%, 6%] before time tm, with value

greater than 1% at time tm,
– paid default payments for tranche [6%, 7%] before time tm, with value greater

than Ltm−1 − 6% at time tm.
Since we would have received all default payments from tranche [5%, 6%] before paying
any default payments for tranche [6%, 7%], the difference in timing of the reinvestment
tells us that the total net value of default payments received before time tm is greater
than 7%− Ltm−1 . Then, we have

value of default leg at expiration

≥ (7%− Ltm−1) + (7% − Ltm)
+ − (7%− Ltm−1)

+

= (7%− Ltm)
+ ≥ 0.

• For 7% < Ltm−1 , all possible default payments would have been made before time tm,
and we would have
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– received default payments from tranche [5%, 6%], with value greater than 1% at
time tm,

– paid default payments for tranche [6%, 7%], with value greater than 1% at time tm.
Again, since we would have received all default payments from tranche [5%, 6%] be-
fore paying any default payments for tranche [6%, 7%], the total net value of default
payments received before time tm is greater than 0.

Therefore, the value of the default leg at expiration is positive.

Appendix B. Matrix representation of constraints. Recall that we write the expected
tranche notionals in vector form:

p = [P (t0, δ), . . . , P (t0, n δ), . . . , P (tm, δ), . . . , P (tm, n δ)]
T ∈ R

n(m+1).

Since t0 = 0 and N0 = 0, we must have P (t0, iδ) = iδ for all i.

B.1. Pricing constraints. Assume that there are I CDO tranches [κi−1, κi], i = 1, . . . , I,
written on the reference portfolio with κ0 = 0 and κI = 1. Denoting 0 = t0 < t1 < · · · < tm
the payment dates of the CDO tranches, we can rewrite (9) for each tranche and obtain the
following linear pricing constraints:

• For each of the mezzanine tranches [κi−1, κi], i = 2, . . . , I−1, without upfront payment,
we have

0 =

m∑
j=1

D(0, tj)[(1 + s[κi−1,κi]Δtj)P (tj , κi)− (1 + s[κi−1,κi]Δtj)P (tj , κi−1)

− P (tj−1, κi) + P (tj−1, κi−1)]

= D(0, t1)P (t0, κi−1)−D(0, t1)P (t0, κi)

−
m−1∑
j=1

[D(0, tj)(1 + s[κi−1,κi]Δtj)−D(0, tj+1)]P (tj , κi−1)

+

m−1∑
j=1

[D(0, tj)(1 + s[κi−1,κi]Δtj)−D(0, tj+1)]P (tj , κi)

−D(0, tm)(1 + s[κi−1,κi]Δtm)P (tm, κi−1) +D(0, tm)(1 + s[κi−1,κi]Δtm)P (tm, κi),

where Δtj = tj − tj−1.
• For the most senior tranche [κI−1, κI ] with κI−1 < nδ, each default in the portfolio

will reduce the notional value by 1
n − δ. In this case, the expected remaining notional

value of tranche [κI−1, κI ] at payment time tj is equal to

EQ

[
(1− Ltj )− (κI−1 − Ltj )

+ −
(
1

n
− δ
)
Ntj

]
= EQ

[(
1− Ntj

n

)
− (κI−1 − Ltj

)+]
=

1

nδ
P (tj , nδ)− P (tj , κI−1).
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Taking this into account, we have a slightly different equality for the most senior
tranche:

0 = D(0, t1)P (t0, κI−1)−D(0, t1)P (t0, nδ)

−
m−1∑
j=1

[D(0, tj)(1 + s[κI−1,κI ]Δtj)−D(0, tj+1)]P (tj , κI−1)

+

m−1∑
j=1

[
D(0, tj)

(
1 +

s[κI−1,κI ]Δtj
nδ

)
−D(0, tj+1)

]
P (tj , nδ)

−D(0, tm)(1 + s[κI−1,κI ]Δtm)P (tm, κI−1) +D(0, tm)

(
1 +

s[κI−1,κI ]Δtm
nδ

)
P (tm, nδ).

• For the equity tranche [κ0, κ1] with an upfront payment U [κ0,κ1], we have

−U [κ0,κ1] κ1 = −D(0, t1)P (t0, κ1)

+

m−1∑
j=1

[D(0, tj)(1 + s[κ0,κ1]Δtj)−D(0, tj+1)]P (tj , κ1)

+D(0, tm)(1 + s[κ0,κ1]Δtm)P (tm, κ1).

One may notice that the attachment/detachment points (κi)i=1,...,I of the CDO tranches are
not necessary multiples of δ; i.e., the existence of k such that κi = k δ is not guaranteed.
Nonetheless, Property 1 gives us the piecewise linearity of P (T, .) on each (iδ, (i + 1)δ), and
therefore we can write

pκ = A1 p,

where

pκ = [P (t0, κ1), . . . , P (t0, κI−1), P (t0, nδ), . . . , P (tm, κ1), . . . , P (tm, κI−1), P (tm, nδ)]
T ∈ R

I(m+1),

and matrix A1 is a linear interpolation operator equal to

A1 =

⎡⎢⎣ Ã1

. . .

Ã1

⎤⎥⎦
I(m+1)×n(m+1)

,

where the nonzero entries of Ã1 ∈ R
I×n are

Ã1

(
i,
⌊
κi
δ

⌋)
= −κi

δ +
(⌊

κi
δ

⌋
+ 1
)
, i = 1, . . . , I − 1,

Ã1

(
i,
⌊
κi
δ

⌋
+ 1
)
= κi

δ −
⌊
κi
δ

⌋
, i = 1, . . . , I − 1,

Ã1(I, n) = 1.

Then, since each pricing constraint is linear in pκ and the transformation from p to pκ is
linear as well, it is easy to see that

A2A1 p = b,
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where

b =
[
−U [κ0,κ1] κ1 0 · · · 0

]T ∈ R
I ,

and the nonzero entries of A2 ∈ R
I×I(m+1) are

A2(1, 1) = −D(0, t1),

A2(1, I j + 1) = D(0, tj)(1 + s[κ0,κ1]Δtj)−D(0, tj+1), j = 1, . . . ,m− 1,

A2(1, I m+ 1) = D(0, tm)(1 + s[κ0,κ1]Δtm);

for i = 2, . . . , I − 1,

A2(i, i − 1) = D(0, t1),

A2(i, i) = −D(0, t1),

A2(i, I j + i− 1) = −D(0, tj)(1 + s[κi−1,κi]Δtj) +D(0, tj+1), j = 1, . . . ,m− 1,

A2(i, I j + i) = D(0, tj)(1 + s[κi−1,κi]Δtj)−D(0, tj+1), j = 1, . . . ,m− 1,

A2(i, I m+ i− 1) = −D(0, tm)(1 + s[κi−1,κi]Δtm),

A2(i, I m+ i) = D(0, tm)(1 + s[κi−1,κi]Δtm),

and

A2(I, I − 1) = D(0, t1),

A2(I, I) = −D(0, t1),

A2(I, I j + I − 1) = −D(0, tj)(1 + s[κI−1,κI ]Δtj) +D(0, tj+1), j = 1, . . . ,m− 1,

A2(I, I j + I) = D(0, tj)

(
1 +

s[κI−1,κI ]Δtj
nδ

)
−D(0, tj+1), j = 1, . . . ,m− 1,

A2(I, I (m+ 1)− 1) = −D(0, tm)(1 + s[κI−1,κI ]Δtm),

A2(I, I (m+ 1)) = D(0, tm)
(
1 + s[κI−1,κI ]Δtm

nδ

)
.

B.2. Relations in Condition 1. The strict positivity constraints in Condition 1(a) can be
written as

B0p < 0,

where

B0 =

⎡⎢⎢⎢⎢⎢⎣
0 · · · 0 −1 0 · · · · · · · · · · · · · · · 0
0 · · · 0 0 · · · 0 −1 0 · · · · · · · · · · · · 0
...

...
...

...
...

...
...

...
0 0 0 · · · · · · · · · −1 0 · · · · · · 0
0 · · · 0 0 · · · · · · · · · · · · −1 0 · · ·

⎤⎥⎥⎥⎥⎥⎦
m×n(m+1)

.

And the strict convexity constraints in Condition 1(b) can be written as

B1p < 0,
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where

B1 =

⎡⎢⎣ 0 · · · 0 B̃1
...

...
. . .

0 · · · 0 B̃1

⎤⎥⎦
(n−1)m×n(m+1)

,

B̃1 =

⎡⎢⎢⎢⎣
2 −1 0 · · ·
−1 2 −1 0 · · ·

. . .
. . .

. . .
. . .

0 −1 2 −1

⎤⎥⎥⎥⎦
(n−1)×n

.

Finally, Condition 1(c) can be written as

B2B3p < 0,

where

B2 =

⎡⎢⎣ B̃2

. . .

B̃2

⎤⎥⎦
nm×nm

, with B̃2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0

−1 1
. . .

0 −1 . . .
. . .

. . .
. . . 0

0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
n×n

,

and

B3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 1 0 · · · 0 · · · 0 · · · 0 0 · · · 0

0 −1 . . . 0 0 1
. . . 0 · · · · · · · · ·

. . .
. . . · · · ...

. . .
. . .

...
...

. . .
. . .

...
...

... · · · ... −1 0
... 1 0

0 · · · 0 0 · · · 0 · · · 0 · · · 0 −1 0 · · · 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
nm×n(m+1)

.

In summary, we can represent all strict inequality constraints conditions in matrix form:

Bp < 0,

where

B =

⎡⎣ B0

B1

B2B3

⎤⎦
2nm×n(m+1)

.

Appendix C. Laplace transform of cumulative portfolio default intensity for shot-noise
model. Recall that the portfolio default intensity for the shot-noise model is equal to

λt = ηt + Jt,
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where (ηt) and (Jt) are independent. Therefore,

S(θ, T ) = EQ

[
eθ

∫ T
0 λtdt

∣∣∣F0

]
= EQ

[
eθ

∫ T
0 ηtdt

∣∣∣F0

]
EQ

[
eθ

∫ T
0 Jtdt

∣∣∣F0

]
.

Since (ηt) is an affine process, we have

EQ

[
eθ

∫ T
0

ηtdt
∣∣∣F0

]
= eA(θ,T )+B(θ,T )η0 ,

where

A(θ, T ) = −2κb

σ2
ln

(
c+ de−γT

c+ d

)
+
κbT

c
, B(θ, T ) =

1− e−γt

c+ de−γT

with
γ =
√
κ2 − 2σ2θ, c = (κ+ γ)/2θ, d = (−κ+ γ)/2θ.

Since (Jt) is an Ornstein–Uhlenbeck process, we know that

EQ

[
eθ

∫ T
0

Jtdt
∣∣∣F0

]
= eC(θ,T )+D(θ,T )J0 ,

where

C(θ, T ) = l

(∫ T

0
ψ

(
θ

α
(1− eα(s−T ))

)
ds− T

)
, D(θ, T ) =

θ

α
(1− e−αT )

with ψ(u) := EQ[euY1 ] being the Laplace transform of Y1 and l being the intensity of the
underlying Poisson process. If Y1 is exponentially distributed with mean μ, then

C(θ, T ) =
lμ

1− θμ
[
θT − 1

μ
ln
(
1− θμ(1− e−αT )

)]
.
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Path-Dependence of Leveraged ETF Returns∗

Marco Avellaneda† and Stanley Zhang†

Abstract. It is well known that leveraged exchange-traded funds (LETFs) do not reproduce the corresponding
multiple of index returns over extended (quarterly or annual) investment horizons. For instance,
in 2008 and early 2009, most LETFs underperformed the corresponding static strategies. In this
paper, we study this phenomenon in detail. We give an exact formula linking the return of a
leveraged fund with the corresponding multiple of the return of the unleveraged fund and its realized
variance. This formula is tested empirically over quarterly horizons for 56 leveraged funds (44
double-leveraged and 12 triple-leveraged) using daily prices since January 2008 or since inception,
according to the fund considered. The results indicate excellent agreement between the formula
and the empirical data. The study also shows that leveraged funds can be used to replicate the
returns of the underlying index, provided we use a dynamic rebalancing strategy. Empirically, we
find that rebalancing frequencies required to achieve this goal are moderate—on the order of one
week between rebalancings. Nevertheless, this need for dynamic rebalancing leads to the conclusion
that LETFs as currently designed may be unsuitable for buy-and-hold investors.

Key words. ETFs, leveraged ETFs, volatility

AMS subject classifications. 62-07, 62P-20
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1. Introduction. Leveraged exchange-traded funds (LETFs) are relative newcomers to
the world of exchange-traded funds (ETFs).1 An LETF tracks the value of an index, a basket
of stocks, or another ETF, with the additional feature that it uses leverage. For instance,
the ProShares Ultra Financial ETF (UYG) offers double exposure to the Dow Jones U.S.
Financials index. To achieve this, the manager invests two dollars in a basket of stocks
tracking the index per each dollar of UYG’s net asset value, borrowing an additional dollar.
This is an example of a long LETF. Short LETFs, such as the ProShares UltraShort Financial
ETF (SKF), offer a negative multiple of the return of the underlying ETF. In this case, the
manager sells short a basket of stocks tracking the Dow Jones U.S. Financials index (or
equivalent securities) to achieve a short exposure in the index of two dollars per each dollar
of NAV (β = −2). In both cases, the fund’s holdings are rebalanced daily.2

∗Received by the editors June 2, 2009; accepted for publication (in revised form) April 22, 2010; published
electronically July 8, 2010.

http://www.siam.org/journals/sifin/1/76080.html
†Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 and Finance Concepts,

490 Madison Avenue, New York, NY, 10022 (avellane@cims.nyu.edu, stanley@nyu.edu).
1To our knowledge, the first issuer of leveraged ETFs was Rydex in late 2006.
2The description of the hedging mechanism given here is not intended to be exact, but rather to illustrate

the general approach used by ETF managers to achieve the targeted leveraged long and short exposures. For
instance, managers can trade the stocks that compose the ETFs or indices, or enter into total-return swaps to
synthetically replicate the returns of the index that they track. The fact that the returns are adjusted daily
is important for our discussion. Recently Direxion Funds, an LETF manager, has announced the launch of
products with monthly rebalancing.
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It has been empirically established that if we consider investments over extended periods of
time (e.g, three months, one year, or more), there are significant discrepancies between LETF
returns and the returns of the corresponding leveraged buy-and-hold portfolios composed of
index ETFs and cash [7]. Since early 2008, the quarterly performance of LETFs over any
period of 60 business days has been inferior to the performance of the corresponding static
leveraged portfolios for many leveraged/unleveraged pairs tracking the same index. There are
a few periods where LETFs actually outperform, so this is not just a one-sided effect.

For example, a portfolio consisting of two dollars invested in I-Shares Dow Jones U.S.
Financial Sector ETF (IYF) and short one dollar can be compared with an investment of one
dollar in UYG. Figures 1 and 2 compare the returns of UYG and a twice-leveraged buy-and-
hold strategy with IYF, considering all 60-day periods (overlapping) since February 2, 2008.
For convenience, we present returns in arithmetic and logarithmic scales. Figures 3 and 4
display the same data for SKF and IYF.

Figure 1. 60-day returns for UYG versus leveraged 60-day return of IYF. (X = 2Ret.(IY F );Y =
Ret.(UY G)). We considered all 60-day periods (overlapping) between February 2, 2008 and March 3, 2009.
The concentrated cloud of points near the 45-degree line corresponds to 60-day returns prior to to September
2008, when volatility was relatively low. The remaining points correspond to periods when IYF was much more
volatile.

Observing Figures 1 and 3, we see that the returns of the LETFs have predominantly
underperformed the static leveraged strategy. This is particularly the case in periods when
returns are moderate and volatility is high. LETFs outperform the static leveraged strategy
only when returns are large and volatility is small. Another observation is that the historical
underperformance is more pronounced for the short LETF (SKF).

These charts can be partially explained by the mismatch between the quarterly investment
horizon and the daily rebalancing frequency; yet there are several points that deserve attention.

First, we notice that, due to the daily rebalancing of LETFs, the geometric (continuously
compounded) relation

log ret.(LETF) ≈ β log ret.(ETF)
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Figure 2. Same as in Figure 1, but returns are logarithmic, i.e., X = 2 ln(IY Ft/IY Ft−60), Y =
ln(UY Gt/UY Gt−60).

Figure 3. Overlapping 60-day returns of SKF compared with the leveraged returns of the underlying ETF,
overlapping, between February 2, 2008 and March 3, 2009. (X = −2Ret.(IY F );Y = Ret.(SKF ).)

is more appropriate than the arithmetic (simply compounded) relation

ret.(LETF) ≈ β ret.(ETF), β = ±2.

This explains the apparent alignment of the data points once we pass to logarithmic returns
in Figures 2 and 4.

Second, we notice that the data points do not fall on the 45-degree line; they lie for the
most part below it. This effect is due to volatility. It can be explained by the fact that
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Figure 4. Comparison of logarithmic returns of SKF with the corresponding log-returns of IYF. X =
−2ln(IY Ft/IY Ft−60);Y = ln(SKFt/SKFt−60).

the LETF manager must necessarily “buy high and sell low” in order to enforce the target
leverage requirement. Therefore, frequent rebalancing will lead to underperformance for the
LETF relative to a static leveraged portfolio. The underperformance will be larger in periods
when volatility is high, because daily rebalancing in a more volatile environment leads to more
round-trip transactions, all other things being equal.

Thus, we find that holders of LETFs have an inherent exposure to the realized volatility
of the underlying index, or to the volatility of the LETF itself. This effect is quantified using a
simple model in section 2. We derive an exact formula for the return of an LETF as a function
of its expense ratio, the applicable rate of interest, and the return and realized variance of an
unleveraged ETF tracking the same index (the “underlying ETF,” for short). In particular,
we show that the holder of an LETF has a negative exposure to the realized variance of the
underlying ETF. Since the expense ratio and the funding costs can be determined in advance
with reasonable accuracy, the main factor that affects LETF returns is the realized variance.
In section 3, we empirically validate the formula on a set of 56 LETFs with double and
triple leverage, using all the data since their inception. The empirical study suggests that the
proposed formula is very accurate.3

In the last section, we show that it is possible to use LETFs to replicate a predefined
multiple of the underlying ETF returns, provided that we use dynamic hedging strategies.
Specifically, in order to achieve a specified multiple of the return of the underlying index or
ETF using LETFs, we must adjust the portfolio holdings in the LETF dynamically, according

3Interestingly, similar considerations about volatility exposure apply to a class of over-the-counter (OTC)
products known as Constant Proportion Portfolio Insurance (CPPI). These products are typically embedded
in structured notes and other derivatives marketed by insurance companies and banks (see, for instance, Black
and Perold [3] and Betrand and Prigent [2]). Although not directly relevant to this study, the parallel between
the behavior of listed LETFs and OTC products may be of independent interest.
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to the amount of variance realized up to the hedging time by the index, as well as the level
of the index. We derive a formula for the dynamic hedge-ratio, which is closely related to the
model for LETFs, and we validate it empirically on the historical data for 44 double-leveraged
LETFs. This last point, dynamic hedging, provides an interesting connection between LETFs
and options.

After completing this paper, we found out that analogous results were obtained indepen-
dently in a note issued by Barclays Global Investors [4], which contains a formula similar to
(10) without including finance and expense ratios. To the best of our knowledge, the empirical
testing of the formula over a broad universe of existing LETFs and the application to dynamic
hedging using LETFs are new.

2. Modeling LETF returns. We denote the spot price of the underlying ETF by St, the
price of the LETF by Lt, and leverage ratio by β. For instance, a double-leveraged long ETF
will correspond to β = 2, whereas a double-leveraged short ETF corresponds to β = −2.

2.1. Discrete-time model. Assume a model where there are N trading days, and denote
by RS

i and RL
i , i = 1, 2, . . . , N , the one-day returns for the underlying ETF and the LETF,

respectively. The LETF provides a pro forma daily exposure of β dollars of the underlying
security per dollar under management.4 Accordingly, there is a simple link between RS

i and
RL

i . If the LETF is bullish (β > 1), then

(1) RL
i = βRS

i − βrΔt− fΔt+ rΔt = βRS
i − ((β − 1)r + f)Δt,

where r is the reference interest rate (for instance, 3-month LIBOR), f is the expense ratio
of the LETF, and Δt = 1/252 represents one trading day.

If the LETF is bearish (β ≤ −1), the same equation holds with a small modification,
namely,

(2) RL
i = βRS

i − β(r − λt)Δt− fΔt+ rΔt = βRS
i − ((β − 1)r + f − βλi)Δt,

where λiΔt represents the cost of borrowing the components of the underlying index or the
underlying ETF on day i. By definition, this cost is the difference between the reference
interest rate and the “short rate” applied to cash proceeds from short sales of the underlying
ETF. If the ETF, or the stocks that it holds, are widely available for lending, the short rate
will be approximately equal to the reference rate and the borrowing costs are negligible.5

Let t be a period of time (in years) covering several days (t = NΔ). Compounding the
returns of the LETF, we have

(3) Lt = L0

N∏
i=1

(
1 +RL

i

)
.

4In the sense that this does not account for the costs of financing positions and management fees.
5We emphasize the cost of borrowing, since we are interested in LETFs which track financial indices. The

latter have often been hard-to-borrow since July 2008. Moreover, broad market ETFs such as SPY have also
been sporadically hard-to-borrow in the last quarter of 2008; see Avellaneda and Lipkin [1].
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Substituting the value of RL
t into (1) or (2) (according to the sign of β), we obtain a relation

between the prices of the LETF and the underlying asset. In fact, we show in the appendix
that, under mild assumptions, we have

(4)
Lt

L0
≈
(
St
S0

)β

exp

{
β − β2

2
Vt + βHt + ((1− β)r − f) t

}
,

where

(5) Vt =
N∑
i=1

(
RS

i −RS
)2

with RS =
1

N

N∑
i=1

RS
i ,

i.e., Vt is the realized variance of the price over the time-interval of interest, and where

(6) Ht =

N∑
i=1

λiΔt

represents the accumulated cost of borrowing the underlying stocks or ETF. This cost is
obtained by subtracting the average applicable short rate from the reference interest rate each
day and accumulating this difference over the period of interest. In addition to these two
factors, formula (4) also shows the dependence on the funding rate and the expense ratio of
the underlying ETF. The symbol “ ≈ ” in (4) means that the difference is small in relation to
the daily volatility of the ETF or LETF. In the following section, we exhibit an exact relation,
under the idealized assumptions that the price of the underlying ETF follows an Ito process
and that rebalancing is done continuously.

2.2. Continuous-time model. To clarify the sense in which (4) holds, it is convenient to
derive a similar formula assuming that the underlying ETF price follows an Ito process. To
wit, we assume that St satisfies the stochastic differential equation

(7)
dSt
St

= σtdWt + μtdt,

where Wt is a standard Wiener process and σt, μt are, respectively, the instantaneous price
volatility and drift. The latter processes are assumed to be random and nonanticipative with
respect to Wt.

6

Mimicking (1) and (2), we observe that if the LETF is bullish, the model for the return
of the leveraged fund is now

(8)
dLt

Lt
= β

dSt
St
− ((β − 1)r + f)dt.

If the LETF is bearish, the corresponding equation is

(9)
dLt

Lt
= β

dSt
St
− ((β − 1)r − βλt + f)dt,

6They are not assumed to be deterministic functions or constants.
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where λt represents the cost of borrowing the underlying ETF or the stocks that make up the
ETF. In the appendix, we show that the following formula holds:

(10)
Lt

L0
=

(
St
S0

)β

exp

{
((1− β)r − f) t+ β

∫ t

0
λsds+

(β − β2)
2

∫ t

0
σ2sds

}
,

where we assume implicitly that λt = 0 if β > 0.
Formulas (4) and (10) convey essentially the same information if we define

Vt =

∫ t

0
σ2sds and Ht =

∫ t

0
λsds.

The only difference is that (4) is an approximation which is valid for Δt� 1, whereas (10) is
exact if the ETF price follows an Ito process. These equations show that the relation between
the values of an LETF and its underlying ETF depends on
• the funding rate,
• the expense ratio for the LETF,
• the cost of borrowing shares in the case of short LETFs,
• the convexity (power law) associated with the leverage ratio β, and
• the realized variance of the underlying ETF.

The first two items require no explanation. The third follows from the fact that the manager of
a bearish LETF may incur additional financing costs to maintain short positions if components
of the underlying ETF or the ETF itself are hard-to-borrow. The last two items are more
interesting: (i) due to daily rebalancing of the beta of the LETF, we find that the prices of an
LETF and a nonleveraged ETF are related by a power law with power β, and (ii) the realized
variance of the underlying ETF plays a significant role in determining the LETF returns.

The dependence on the realized variance might seem surprising at first. It turns out that
the holder of an LETF has negative exposure to the realized variance of the underlying asset.
This holds regardless of the sign of β. For instance, if the investor holds a double-long LETF,
the term corresponding to to the realized variance in formula (10) is

−(22 − 2)

2

∫ t

0
σ2s = −

∫ t

0
σ2s .

In the case of a doubly bearish fund, the corresponding term is

−((−2)2 − (−2))
2

∫ t

0
σ2s = −3

∫ t

0
σ2s .

We note, in particular, that the dependence on the realized variance is stronger in the case of
the double-short LETF.

3. Empirical validation. To validate the formula in (10), we consider 56 LETFs which
currently trade in the U.S. markets. Of these, we consider 44 LETFs issued by ProShares,
consisting 22 Ultra Long and 22 UltraShort ETFs.7 Table 1 gives a list of the Proshares

7For information about ProShares, see http://www.proshares.com.
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LETFs, their tickers, together with the corresponding sectors and their ETFs. We consider
the evolution of the 44 LETFs from January 2, 2008 to March 20, 2009, a period of 308
business days.

We also consider 12 triple-leveraged ETFs issued by Direxion Funds.8 Direxion’s LETFs
were issued later than the ProShares funds, in November 2008; they provide a shorter historical
record to test our formula. Nevertheless, we include the 3X Direxion funds for the sake of
completeness and also because they have triple leverage (Table 2).

Table 1
Double-leveraged ETFs considered in the study. ETFs and the corresponding ProShares Ultra Long and

UltraShort LETFs.

Underlying Proshares Ultra Proshares UltraShort Index/sector

ETF (β = 2) (β = −2)

QQQQ QLD QID Nasdaq 100
DIA DDM DXD Dow 30
SPY SSO SDS S&P500 Index
IJH MVV MZZ S&P MidCap 400
IJR SAA SDD S&P Small Cap 600
IWM UWM TWM Russell 2000
IWD UVG SJF Russell 1000
IWF UKF SFK Russell 1000 Growth
IWS UVU SJL Russell MidCap Value
IWP UKW SDK Russell MidCap Growth
IWN UVT SJH Russell 2000 Value
IWO UKK SKK Russell 2000 Growth
IYM UYM SMN Basic materials
IYK UGE SZK Consumer goods
IYC UCC SCC Consumer services
IYF UYG SKF Financials
IYH RXL RXD Health care
IYJ UXI SIJ Industrials
IYE DIG DUG Oil & gas
IYR URE SRS Real estate
IYW ROM REW Technology
IDU UPW SDP Utilities

Table 2
Triple-leveraged ETFs considered in the study. ETFs and corresponding Direxion 3X LETFs.

Underlying Direxion 3X bull Direxion 3X bear Index/sector

ETF or index (β = 3) (β = −3)

IWB BGU BGZ Russell 1000
IWM TNA TZA Russell 2000

RIFIN.X FAS FAZ Russell 1000 Financial Serv.
RIENG.X ERX ERY Russell 1000 Energy

EFA DZK DPK MSCI EAFE Index
EEM EDC EDZ MSCI Emerging Markets

8See http://www.direxionfunds.com.
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We define the tracking error

(11) ε(t) =
Lt

L0
−
(
St
S0

)β

exp

{
β − β2

2
Vt + βHt + ((1− β)r − f) t

}
,

where Vt is the accumulated variance, Ht is the accumulated borrowing costs (in excess of the
reference interest rate), r is the interest rate, and f is the management fee for the underlying
ETF. The instantaneous volatility is modeled as the standard deviation of the returns of the
underlying ETF sampled over a period of 5 days preceding each trading date:

(12) σ̂2s =
1

5

5∑
i=1

(R
(S)
(s/Δt)−i)

2 −
(
1

5

5∑
i=1

R
(S)
(t/Δt)−i

)2

, 0 ≤ s ≤ t.

For the interest rates and expense ratio, we use the 3-month LIBOR rate published by the
Federal Reserve Bank (H.15 Report) and the expense ratio for the Proshares LETFs published
in the prospectus. In all cases, we set λt = 0; i.e., we do not take into account stock-borrowing
costs explicitly.

The empirical results for ProShares are summarized in Tables 3 and 4.

In the case of long LETFs, we find that the average of the tracking error ε(t) over the
simulation period is typically less than 100 basis points. The standard deviation is also on
the order of 100 basis points, with a few slightly higher observations. This suggests that the
formula (10), using the model for stochastic volatility in (12), gives a reliable model for the
relation between the LETFs and the underlying ETFs across time.

In the case of short ETFs, we also assume that λt = 0 but expect a slightly higher tracking
error, particularly between July and November of 2008, when restrictions for short selling in
U.S. stocks were put in place. We observe higher levels for the mean and the standard deviation
of the tracking error and some significant departures from the exact formula during the period
of October and November of 2008, especially in Financials, which we attribute to short selling
constraints. The tracking errors for the Direxion triple-leveraged ETFs have higher standard
deviations, which is not surprising given that they have higher leverage (Tables 5 and 6). We
note, in particular, that the errors for FAS and FAZ are the largest, which is consistent with
the fact that they track financial stocks.

The conclusion of the empirical analysis is that the formula (10) explains well the behavior
of the price of LETFs and the deviations between LETF returns and the returns of the
underlying ETFs.

4. Consequences for buy-and-hold investors.

4.1. Comparison with buy-and-hold: Break-even levels. Formula (10) suggests that an
investor who is long an LETF has a “time-decay” associated with the realized variance of
the underlying ETF. In other words, if the price of the underlying ETF does not change
significantly over the investment horizon, but the realized volatility is large, the investor in
the LETF will underperform the corresponding leveraged return on the underlying ETF. On
the contrary, if the underlying ETF makes a sufficiently large move in either direction, the
investor will outperform the underlying ETF.
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Table 3
Double-leveraged Ultra Long ETFs. Average tracking error (11) and standard deviation obtained by apply-

ing formula (10) to the Proshares long LETFs from January 2, 2008 to March 20, 2009. Notice that that the
average tracking error is for the most part below 100bps and the standard deviation is comparable. In particu-
lar, the standard deviation is inferior to the daily volatility of these assets, which often exceeds 100 basis points
as well. This suggests that formula (10) gives the correct relation between the NAV of the LETFs and their
underlying ETFs.

Underlying Tracking error Standard deviation Leveraged

ETF (average, %) (%) ETF

QQQQ 0.04 0.47 QLD
DIA 0.00 0.78 DDM
SPY -0.06 0.40 SSO
IJH -0.06 0.38 MVV
IJR 1.26 0.71 SAA
IWM 1.26 0.88 UWM
IWD 1.00 0.98 UVG
IWF 0.50 0.59 UKF
IWS -0.33 1.20 UVU
IWP -0.02 0.61 UKW
IWN 2.15 1.29 UVT
IWO 0.50 0.74 UKK
IYM 1.44 1.21 UYM
IYK 1.20 0.75 UGE
IYC 1.56 1.04 UCC
IYF -0.22 0.74 UYG
IYH 0.40 0.42 RXL
IYJ 1.05 0.74 UXI
IYE -0.73 1.71 DIG
IYR 1.64 1.86 URE
IYW 0.51 0.55 ROM
IDU 0.25 0.55 UPW

Consider an investor who buys one dollar of an LETF and simultaneously shorts β dollars
of the underlying ETF (where shorting a negative amount means buying). For simplicity, we
assume that the interest rate, fees, and borrowing costs are zero.

If we use (10), the equity in the investor’s account will be equal to

(13) E(t) =

(
St
S0

)β

e−
(β2−β)

2
Vt − β St

S0
− (1− β),

including the cash credit or debit from the initial transaction. To be concrete, we consider
the case of a double-long and a double-short separately. Setting Y = E(t) and X = St

S0
, we

obtain

Y = e−VtX2 − 2X + 1, β = 2,

Y = e−3Vt
1

X2
+ 2X − 3, β = −2.(14)

In the case of the double-long ETFs, the equity behaves like a parabola in X = St/S0 with
a curvature tending to zero exponentially as a function of the realized variance. The investor
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Table 4
Double-leveraged Ultra Short ETFs. Same as in Table 3, for double-short LETFs. Notice that the tracking

error is relatively small, but there are a few funds where the tracking error is superior to 200 basis points. We
attribute these errors to the fact that May ETFs, particularly in the Financial and Energy sectors, and the
stocks in their holdings were hard-to-borrow from July to November 2008.

Underlying Tracking error Standard deviation Leveraged

ETF (average, %) (%) ETF

QQQQ 0.22 0.80 QID
DIA -2.01 3.24 DXD
SPY -1.40 2.66 SDS
IJH 0.69 0.64 MZZ
IJR -0.55 0.86 SDD
IWM 0.94 0.91 TWM
IWD 0.32 1.40 SJF
IWF -0.30 1.34 SFK
IWS -2.06 3.03 SJL
IWP 0.93 0.92 SDK
IWN -2.21 1.80 SJH
IWO -0.19 0.79 SKK
IYM 1.82 0.99 SMN
IYK -0.76 1.98 SZK
IYC 0.79 0.92 SCC
IYF 3.30 3.03 SKF
IYH 1.04 0.91 RXD
IYJ 0.32 0.74 SIJ
IYE 0.43 3.09 DUG
IYR 2.00 2.07 SRS
IYW 0.01 0.80 REW
IDU 1.75 1.06 SDP

Table 5
Triple-Leveraged bullish ETFs. Average tracking errors and standard deviations for triple-leveraged long

ETFs analyzed here, since their inception in November 2008.

Underlying Tracking error Standard deviation 3X bullish

ETF/index (average, %) (%) LETF

IWB 0.44 0.55 BGU
IWM 0.81 0.75 TNA

RIFIN.X 3.67 2.08 FAS
RIENG.X 2.57 0.70 ERX

EFA 1.26 2.32 DZK
EEM 1.41 1.21 EDC

is therefore long convexity (Gamma, in options parlance) and short variance; hence he incurs
time-decay (Theta). In the case of double-shorts, the profile is also a convex curve, which
has convexity concentrated mostly for X � 1, and a much faster time-decay. From (14), we
find that the break-even levels of X, Vt needed for achieving a positive return by time t are
as follows.
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Table 6
Triple-Leveraged bearish ETFs. Average tracking errors and standard deviations for triple-leveraged short

ETFs analyzed here, since their inception in November 2008. Notice again that the errors for financials and
energy are slightly higher than the rest.

Underlying Tracking error Standard deviation 3X bearish

ETF/index average, %) (%) LETF

IWB -0.08 0.64 BGZ
IWM 0.65 0.76 TZA

RIFIN.X -1.63 4.04 FAZ
RIENG.X -1.41 1.01 ERY

EFA -1.54 1.86 DPK
EEM 0.49 1.43 EDZ

• Double-long LETF:

X > X+ = eVt

(
1 +

√
1− e−Vt

)
,

X < X− = eVt

(
1−

√
1− e−Vt

)
.

• Double-short LETF:

X+,X− are the positive roots of the cubic equation

2X3 − 3X2 + e−3Vt = 0.(15)

A similar analysis can be made for triple-leveraged ETFs. The main observation is that,
regardless of whether the LETFs are long or short, they underperform the static leveraged
strategy unless the returns of the underlying ETFs overcome the above volatility-dependent
break-even levels. These levels are further away from the initial level as the realized variance
increases.

4.2. Targeting investment returns using dynamic strategies with LETFs. A strong
motivation for using LETFs is to take advantage of leverage when gaining exposure to an
index.9 In this section we observe that it is possible to achieve a predetermined target return
for the underlying ETF (e.g., IYF) using a dynamic strategy with LETFs (UYG or SKF).

Suppose that an agent is long n shares of the underlying ETF and short Δ shares of the
corresponding β-leveraged ETF. The one-period return of this portfolio is

dΠ = ndS −ΔdL

= nS
dS

S
−ΔL

dL

L

= nS
dS

S
−ΔLβ

dS

S
+ (carry terms).(16)

9For investors subject to Regulation T margin requirements, the maximum allowed leverage for equities is
2. The use of a double-leveraged ETF would produce, accordingly, a leverage of 4 vis à vis the reference index.
However, effective December 1, 2009, FINRA has introduced new margin requirements on LETFs to avoid such
overleveraging by retail investors [9].
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It follows that the choice of Δ = nS
L should give a portfolio without market risk. Based on

this observation, consider an investor with an initial endowment of Π0 dollars and a dynamic
strategy which invests

δt = Π0
1

β

St
S0

dollars in the LETF with multiplier β. For simplicity, we assume λ = f = 0. Let us denote
the value of his position at time t by Πt. The change in value of this position across time,
funded at the rate r, satisfies

dΠt = rΠtdt+ δt
dLt

Lt
− rδtdt(17)

= rΠtdt+ δt

(
β
dSt
St

+ (1− β)rdt
)
− rδtdt

= rΠtdt+Π0
1

β

St
S0

(
β
dSt
St

+ (1− β)rdt
)
− rδtdt

= rΠtdt+Π0
dSt
S0

+Π0
1

β

St
S0
rdt−Π0

St
S0
rdt−Π0

1

β

St
S0
rdt

= rΠtdt+Π0
dSt
S0
−Π0

St
S0
rdt.(18)

Integrating this stochastic differential equation from t = 0 to t = T , the reader can verify that
(18) implies that

(19)
ΠT

Π0
=
ST
S0

for all T .
Accordingly, the agent can “replicate” the returns of the underlying stock over any ma-

turity by dynamic hedging with LETFs, with essentially 1
|β| of the capital required to do the

same trade in the underlying ETF.
However, in order to achieve his target return over an extended investment period using

LETFs, the investor needs to rebalance his portfolio according to his Delta exposure. Because
of this, dynamic replication with LETFs may not be suitable for many retail investors. On
the other hand, this analysis will be useful to active traders, investment advisors, or issuers
who manage LETFs with longer investment horizons, since we have shown that the latter can
be “replicated” dynamically with LETFs which are rebalanced daily.

In Tables 7 and 8 we demonstrate the effectiveness of this dynamic replication method
using different rebalancing techniques. We consider dynamic hedging in which we rebalance
if the total Delta exceeds a band of 1%, 2%, 5%, and 10%, and also hedging with fixed time-
steps of 1, 2, 5, or 15 business days. Table 9 indicates the expected number of days between
rebalancing for strategies that are price-dependent. The results indicate that rebalancing when
the Delta exposure exceeds 5% of notional give reasonable tracking errors. The corresponding
average intervals between rebalancings can be large, which means that, in practice, one can
achieve reasonable tracking errors without necessarily rebalancing the Delta daily or even
weekly.
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Table 7
Average tracking error, in % of notional, for the dynamic replication of 6-month returns using double-long

LETFs with m = β. The first four columns correspond to rebalancing when the Delta reaches the edge of a
band of ±x% around zero. The last four columns correspond to rebalancing at fixed time intervals. The data
used to generate this table corresponds, for each ETF, to all overlapping 6-month returns in the year 2008.

ETF 1 % 2 % 5 % 10 % 1 day 2 day 5 day 15 day

QQQQ -0.29 -0.71 -1.05 -1.62 -0.56 -0.96 -1.45 -1.74
DIA -0.99 -0.99 -1.37 -1.45 -0.47 -0.59 -0.84 -0.99
SPY -0.97 -0.92 -1.19 -1.47 -0.92 -1.17 -1.55 -1.77
IJH -0.39 -0.37 -0.79 -0.99 -0.53 -0.75 -1.05 -1.09
IJR -0.56 -0.57 -1.07 -2.68 -0.66 -0.90 -1.44 -1.70
IWM 0.37 0.22 -0.49 -1.44 0.47 0.03 -0.70 -0.93
IWD -0.03 -0.35 -0.30 -0.64 0.00 -0.15 -0.57 -0.79
IWF -0.15 -0.25 -0.54 -1.08 -0.12 -0.37 -0.68 -0.81
IWS 0.87 0.22 0.81 0.14 0.69 0.71 0.54 0.24
IWP -0.16 -0.14 -0.54 -1.41 -0.36 -0.40 -0.82 -0.89
IWN 0.94 0.40 0.56 -0.03 -0.91 0.86 0.36 0.14
IWO 0.23 0.03 -1.00 -1.63 -0.05 -0.44 -1.15 -1.45
IYM -0.39 -0.51 -0.89 -2.35 -0.24 -0.67 -1.54 -1.91
IYK 0.24 0.13 -0.16 -0.06 0.37 0.34 0.10 0.04
IYC 0.58 0.57 -0.13 -0.76 0.71 0.70 0.04 -0.21
IYF -0.36 -0.62 0.01 -0.54 -0.30 -0.35 -1.28 -2.17
IYH 0.22 -0.10 -0.14 0.27 0.30 0.19 0.03 0.07
IYJ 0.12 -0.09 -0.36 -0.92 0.14 -0.04 -0.30 -0.61
IYE -1.44 -2.02 -1.90 -1.76 -1.19 -1.82 -2.21 -2.07
IYR -0.43 0.58 -0.80 -0.95 -0.61 0.55 -0.74 -1.48
IYW -0.50 -0.46 -1.67 -1.39 -0.37 -0.85 -1.41 -1.76
IDU 0.75 0.45 0.73 0.11 0.83 0.78 0.46 0.52

5. Conclusion. This study presents a formula for the value of an LETF in terms of the
value of the underlying index or ETF. The formula is validated empirically using end-of-
day data on 56 LETFs, of which 44 are double-leveraged and 12 are triple leveraged. This
formula validates the fact that on log-scale LETFs will underperform the nominal returns
by a contribution that is primarily due to the realized volatility of the underlying ETF. The
formula also takes into account financing costs and shows that for short ETFs, the cost of
borrowing the underlying stock may play a role as well, as observed in [1].

We also demonstrate that LETFs can be used for hedging and replicating unleveraged
ETFs, provided that traders engage in dynamic hedging. In this case, the hedge-ratio depends
on the realized accumulated variance as well as on the level of the LETF at any point in time.
The path-dependence of leveraged ETFs makes them interesting for the professional investor,
since they are linked to the realized variance and the financing costs. However, they may
not be suitable for buy-and-hold investors who aim at replicating a particular index taking
advantage of the leveraged provided, for the reasons explained above.

Addendum, October 27, 2009. Very recently, regulators have issued notices concerning the
suitability of LETFs for buy-and-hold investors which are consistent with our findings. These
include a Regulatory Notice by the Financial Instrument Regulatory Authority [8] and an
alert by the U.S. Securities and Exchange Commission (July 2009). Also, a major issuer of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

600 MARCO AVELLANEDA AND STANLEY ZHANG

Table 8
Standard deviation of tracking error (%) for dynamic replication of 6-month returns using double-long

LETFs.

ETF 1 % 2 % 5 % 10 % 1 day 2 day 5 day 15 day

QQQQ 0.75 0.77 0.80 1.20 0.75 0.76 0.84 0.93
DIA 0.35 0.37 0.41 0.36 0.36 0.39 0.47 0.43
SPY 0.27 0.32 0.39 0.69 0.27 0.30 0.39 0.45
IJH 0.48 0.49 0.56 1.19 0.47 0.48 0.62 0.65
IJR 1.19 1.21 1.33 1.39 1.20 1.29 1.22 1.17
IWM 0.66 0.67 0.71 1.60 0.67 0.75 0.71 0.74
IWD 1.38 1.38 1.40 1.52 1.38 1.43 1.41 1.49
IWF 0.93 0.94 1.07 1.21 0.95 0.99 0.94 0.99
IWS 2.05 2.05 2.08 2.29 2.05 2.01 2.07 2.09
IWP 0.83 0.82 0.93 1.24 0.83 0.91 0.84 0.91
IWN 1.71 1.70 1.76 2.09 1.72 1.70 1.80 1.82
IWO 0.80 0.80 0.91 1.32 0.79 0.99 0.84 1.00
IYM 1.05 1.07 1.15 1.24 1.07 1.20 1.29 1.59
IYK 0.57 0.57 0.63 0.67 0.56 0.63 0.61 0.63
IYC 0.80 0.78 0.83 0.95 0.80 0.98 0.91 1.03
IYF 1.12 1.18 1.12 1.88 1.10 1.21 2.01 1.49
IYH 0.56 0.55 0.58 0.73 0.56 0.55 0.57 0.62
IYJ 0.71 0.75 0.82 0.84 0.70 0.70 0.79 0.87
IYE 0.64 0.66 0.77 1.26 0.64 0.65 1.02 1.49
IYR 1.47 1.47 1.62 2.08 1.47 1.60 1.88 1.83
IYW 1.45 1.45 1.59 2.05 1.45 1.39 1.49 1.42
IDU 0.53 0.52 0.54 0.72 0.51 0.53 0.54 0.60

LETFs recently issued a paper addressing such concerns [5].

Appendix.

A.1. Discrete-time model (equation (4)). Set ai = (β − 1)r + f + βλi, where λi is the
cost of borrowing the underlying asset on day i (λi is zero if β > 0.) We assume that

RS
i = ξi

√
Δt+ μΔt,

where Δt = 1/252 and ξi, i = 1, 2, . . . , is a stationary process such that ξi has mean equal to
zero and finite absolute moments of order 3. This assumption is consistent with many models
of equity returns. Notice that we do not assume that successive returns are uncorrelated.

From (1), (2), and (3), we find using Taylor expansion that

ln

(
Lt

L0

)
=
∑
i

ln
(
1 +RL

i

)
=
∑
i

ln
(
1 + βRS

i − aiΔt
)

=
∑
i

(
βRS

i − aiΔt−
β2

2
(RS

i )
2

)
+
∑
i

(O(|RS
i |3) +O(|RS

i |Δt)).(20)
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Table 9
Average number of business days between portfolio rebalancing for the 6-month dynamic hedging strategy:

The effect of changing the Delta band. Each column shows the average number of days between rebalancing the
portfolio, assuming different Delta-bandwidth for portfolio rebalancing. For instance, the column with heading
of 1% corresponds to a strategy that rebalances the portfolio each time the net delta exposure exceeds 1% of the
notional amount. The expected number of days between rebalancing increases as the bandwidth increases.

ETF 1 % 2 % 5 % 10 %

QQQQ 2.03 4.14 24 60
DIA 2.50 5.22 30 120
SPY 2.73 5.22 40 NR
IJH 2.26 4.62 24 NR
IJR 2.03 4.29 20 NR
IWM 1.85 4.62 30 NR
IWD 2.18 5.00 30 120
IWF 2.26 5.00 30 NR
IWS 2.26 6.67 17 NR
IWP 1.85 4.14 30 NR
IWN 2.26 4.62 24 NR
IWO 1.85 4.00 20 60
IYM 1.74 3.08 9 40
IYK 3.16 8.57 30 120
IYC 1.90 3.87 30 NR
IYF 1.45 2.93 9 30
IYH 2.79 10.91 30 120
IYJ 2.35 4.80 17 NR
IYE 1.79 3.43 12 40
IYR 1.62 3.16 17 30
IYW 2.00 3.53 40 NR
IDU 2.67 6.32 20 120

By the same token, we have

βln

(
St
S0

)
= β

∑
i

ln
(
1 +RS

i

)
= β

∑
i

(
RS

i −
1

2
(RS

i )
2

)
+
∑
t

O((RS
i )

3).(21)

Subtracting (22) from (21), we find that

ln

(
Lt

L0

)
− βln

(
St
S0

)
= −

∑
i

(
aiΔt+

β2 − β
2

(RS
i )

2

)
+
∑
i

(O(|RS
i |3) +O(|RS

i |Δt))

= −
∑
i

(
aiΔt+

β2 − β
2

((RS
i )

2 − μ2(Δt)2)
)

+
∑
i

(O(|RS
i |3) +O(|RS

i |Δt) +O((Δt)2))

= −
∑
i

aiΔt− β2 − β
2

Vt +
∑
i

(O(|RS
i |3) +O(|RS

i |Δt) +O((Δt)2)).(22)
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We show that the remainder in this last equation is negligible. In fact, we have∑
i

|RS
i |3 =

∑
i

|ξi|3(Δt)3/2

=

⎛⎝
∑
i
|ξi|3

N

⎞⎠ t
√
Δt

≈ E(|ξ31 |) t
√
Δt(23)

and, similarly, ∑
i

|RS
i |Δt =

∑
i

|ξi|(Δt)3/2

=

⎛⎝
∑
i
|ξi|
N

⎞⎠ t
√
Δt

≈ E(|ξ1|) t
√
Δt.(24)

Therefore, the contribution of the last sum in (23) is bounded by the first three moments of
ξ1, multiplied by the investment horizon, t, and by

√
Δt. This means that if we neglect the

last terms, for investment horizons of less than 1 year, the error is on the order of the standard
deviation of the daily returns of the underlying ETF, which is negligible.

A.2. Continuous-time model (equation (10)). The above reasoning is exact for Itô pro-
cesses, because it corresponds to Δt → 0. To be precise, we consider (7), (8), and (9) and
apply Itô’s lemma to obtain

dlnSt =
dSt
St
− σ2t

2
dt(25)

dlnLt = β
dSt
St
− β2σ2t

2
dt+ ((β − 1)r + f + βλi)dt (λi = 0 if β > 0).(26)

Multiplying (26) by β and subtracting it from (27), we obtain

(27) dlnLt − βdlnSt = −(β2 − β)σ2t
2

dt+ ((β − 1)r + f + βλi)dt,

which implies (10).
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tween LETFs and over-the-counter CPPI products, as well as for pointing out a simplified
proof of the dynamic replication scheme of section 4.2.
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Dual Valuation and Hedging of Bermudan Options∗

L. C. G. Rogers†

Abstract. Some years ago, a different characterization of the value of a Bermudan option was discovered
which can be thought of as the viewpoint of the seller of the option, in contrast to the conventional
characterization which took the viewpoint of the buyer. Since then, there has been a lot of interest
in finding numerical methods which exploit this dual characterization. This paper presents a pure
dual algorithm for pricing and hedging Bermudan options.
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1. Introduction. This paper derives an algorithm for valuing and hedging a Bermudan1

option from a “pure dual” standpoint. Apart from various changes of names, pricing a Bermu-
dan option is the same as solving an optimal stopping problem, which is arguably the simplest
possible stochastic optimal control problem. For as long as derivatives have been priced within
the Black–Scholes paradigm, the traditional value-function approach, and the associated Bell-
man equations, have been widely used in the attempt to price Bermudan options; the whole
area has been a mathematical playground because of the scarcity of closed-form solutions and
the consequent need for approximations, estimates, and asymptotics to come up with prices.

During the last century, the value-function approach was, in effect, the only method
available, but in recent years another quite different “dual” approach has been discovered; see
Rogers [3] and Haugh and Kogan [2]. The main result is that if the reward process2 is denoted
Z, then the value Y ∗

0 of the optimal stopping problem can be alternatively expressed as

(1.1) Y ∗
0 = sup

τ∈T
E[Zτ ] = min

M∈M0

E
[

sup
0≤t≤T

(Zt −Mt)
]
,

where T is the set of stopping times bounded by T , the time horizon for the problem, andM0

is the set of uniformly integrable martingales vanishing at zero. The minimum is attained, by
the martingale M∗ of the Doob–Meyer decomposition of the Snell envelope process of Z, and
in that case

(1.2) sup
0≤t≤T

(Zt −M∗
t ) = Y ∗

0 almost surely.

∗Received by the editors September 25, 2009; accepted for publication (in revised form) May 1, 2010; published
electronically July 15, 2010.

http://www.siam.org/journals/sifin/1/77219.html
†Statistical Laboratory, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK (L.C.G.Rogers@

statslab.cam.ac.uk).
1 While we shall discuss only discrete-time problems in this paper, the methodology could be applied to

the pricing of American options after discretizing the time.
2 Some minor regularity condition needs to be imposed on Z; it is sufficient that sup0≤t≤T |Zt| ∈ Lp for

some p > 1.
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The traditional approach via the value function and the Bellman equations takes the
viewpoint of the buyer of the option, who seeks to choose the best stopping time at which to
exercise; the first expression for Y ∗

0 in (1.1) embodies this. The dual approach is the solution
of the problem from the viewpoint of the seller of the option, who seeks a hedging martingale
Y ∗
0 +Mt, whose value at all times will be at least the value of the reward process; and the

result (1.2) shows that for the perfect choice of M =M∗ this does indeed happen.
Since the dual approach was discovered, there have been various attempts to apply it in

practice, with mixed success; choosing a good martingale is at least as difficult as choosing a
good stopping time! The early paper of Andersen and Broadie [1] uses a numerical approxi-
mation to the value function to suggest a good martingale to use and in this way obtains quite
tight bounds on both sides for a number of test examples. However, at a conceptual level,
it has been an outstanding issue to derive a “pure” dual method which solves the optimal
stopping problem without the need to calculate a value function using only the dual charac-
terization of (1.1). Let us amplify the distinction. Pure primal methods are well understood;
indeed, virtually all solutions of the optimal stopping problem (and all solutions prior to the
discovery of the dual characterization in the early 21st century) are of this type. There are
hybrid methods, such as that of Andersen and Broadie, but where is the pure dual method?
It is the purpose of this short note to demonstrate how the solution may be derived by purely
dual methods akin to the backward recursion of dynamic programming. The key observation,
which is obvious from (1.1), is that the value of the optimal stopping problem is left unaltered
if Z is replaced by Z −M , where M ∈ M0.

2. The algorithm. In this section, we specify the algorithm by which the given Bermudan
option is to be hedged. We are given a reward process (Zt)t=0,...,T adapted to the filtration
(Ft)t=0,...,T , and the aim is to find some martingale M ∈ M0 such that (1.1) holds. If (1.1)
holds, then by the earlier result of [3], [2] we also have (1.2). The construction is based on
two very simple observations:

1. The value of the stopping problem for Z is the same as the value of the stopping
problem for Z +N , where N is any martingale inM0.

2. Adding a constant to Z adds a constant to the value.
The proof of the following result shows how to solve the problem recursively, by con-

structing a sequence of martingales which do an ever better job of hedging. The idea is that
the pathwise maximum must become a constant random variable (see (1.2)); while it is not
obvious how we shall achieve this in one go, we can easily see how to ensure that the final
value of Z is a constant—by subtracting a martingale which is equal to ZT at time T . The
inductive proof constructs martingales which are constant on some interval [T − k, T ] for ever
bigger k.

Proposition 1. There exist a sequence of constants aj and a sequence of martingales N (j) ∈
M0, j = 1, . . . , T + 1, such that

(2.1) max
T−j<i≤T

Z
(j)
i = aj,

where

(2.2) Z
(j)
t ≡ Zt −N (j)

t .
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Proof. The proof proceeds by induction on j. To start the induction, we consider the
martingale

M
(1)
t = Et[ZT ]

and set
N

(1)
t =M

(1)
t − E[M

(1)
T ],

which is clearly inM0 and equally clearly achieves (2.1) for j = 1, with a1 = E[M
(1)
T ] = E[ZT ].

Now suppose that (2.1) is true for j ≤ k, and consider the nonnegative martingale

(2.3) M
(k+1)
t = Et[ {Z(k)

T−k − ak}+ ].

This martingale is constant in [T − k, T ]; we shall subtract it from Z(k) to form the process

Z̃
(k)
t ≡ Z(k)

t −M (k+1)
t . Two cases then need to be considered.

1. If Z
(k)
T−k > ak, then we have Z̃

(k)
T−k = ak, and Z̃

(k)
t ≤ Z(k)

t for all t > T −k, sinceM (k+1)

is nonnegative. Thus

max
T−k≤t≤T

Z̃
(k)
t = ak.

2. If Z
(k)
T−k ≤ ak, then M (k+1) is zero in [T − k, T ], and by the inductive hypothesis

max
T−k≤t≤T

Z̃
(k)
t = max

T−k<t≤T
Z

(k)
t = ak.

Either way, the conclusion is the same, namely, that

(2.4) max
T−k≤t≤T

Z̃
(k)
t = ak.

We now define

N (k+1) = N (k) +M (k+1) − E[M
(k+1)
T ],(2.5)

ak+1 = ak + E[M
(k+1)
T ],(2.6)

so that

Z
(k+1)
t ≡ Zt −N (k+1)

t

= Z̃
(k)
t + E[M

(k+1)
T ]

satisfies (2.1), taking j = k + 1.
Remarks. (i) Applying the proposition in the case j = T + 1, we learn that

(2.7) max
0≤i≤T

Z
(T+1)
i ≡ max

0≤i≤T

{
Zi −N (T+1)

i

}
= aT+1.

Hence the value of the optimal stopping problem with reward process Z(T+1) is equal to aT+1,
and by the first observation, this is actually the value of the optimal stopping problem for the
original reward process Z.
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(ii) The recursive construction generates an increasing sequence a1 ≤ a2 ≤ · · · ≤ aT+1,
increasing the value of the problem as well as the hedging martingale.

(iii) Observe that by adding (2.5) and (2.6) we learn that

(2.8) N (k) + ak =

k∑
i=1

M (i).

From (2.3) and (2.2) we deduce that

M
(k+1)
t = Et[ {Z(k)

T−k − ak}+ ]

= Et[ {ZT−k −N (k)
T−k − ak}+ ]

= Et

⎡⎣ {ZT−k −
k∑

i=1

M
(i)
T−k

}+
⎤⎦ ,

and taking t = T − k leads to the conclusion

(2.9) M
(k+1)
T−k =

{
ZT−k −

k∑
i=1

M
(i)
T−k

}+

.

The statement and proof of Proposition 1 is “pure dual”; there is no mention of the value
of the stopping problem; we talked only about the hedging martingales M (k). To tie things
together, we shall now show how the constructs from the proof of Proposition 1 relate to the
more familiar value process of the optimal stopping problem,

(2.10) Y ∗
t ≡ sup

τ∈T ,τ≥t
Et[Zτ ].

As is well known, Y ∗ is the Snell envelope process of the reward process Z, and Y ∗
t is inter-

preted as the best that can be done if by time t the process has not been stopped.

Proposition 2. For all k = 0, 1, . . . , T we have

(2.11)
k+1∑
i=1

M
(i)
T−k = Y ∗

T−k.

Proof. The proof is by induction on k. Clearly the statement is true if k = 0, for both
sides of (2.11) are equal to ZT . Suppose now that the statement is true for all k < n, and
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consider

n+1∑
i=1

M
(i)
T−n =M

(n+1)
T−n +

n∑
i=1

M
(i)
T−n

=M
(n+1)
T−n + ET−n[Y

∗
T−n+1] by inductive hypothesis

=

{
ZT−n −

n∑
i=1

M
(i)
T−n

}+

+ ET−n[Y
∗
T−n+1] using (2.9)

= {ZT−n − ET−n[Y
∗
T−n+1]}+ + ET−n[Y

∗
T−n+1] by inductive hypothesis

= max
{
ZT−n, ET−n[Y

∗
T−n+1]

}
= Y ∗

T−n,

as required.
Remarks. (i) From (2.6) and Proposition 2 we see that ak = E[Y ∗

T−k+1], which explains
why the sequence ak is increasing and why aT+1 is the value of the problem.

(ii) If we restrict our attention to problems where there is some underlying Markovian
structure, it is not hard to see that the martingales M (k) constructed are characterized3 as

M
(k+1)
T−k = ϕk(XT−k) for all k = 0, 1, . . . , T . In trying to use (2.9) to determine the functions

ϕk recursively, we are faced with the two steps, conditional expectation and pointwise maxi-
mization, which are central to the standard dynamic programming approach. Thus it seems
unlikely that in problems with Markovian structure the pure dual approach presented here
will generate numerical methodologies that differ significantly from existing methodologies for
such examples.
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Asymptotic Formulas with Error Estimates for Call Pricing Functions and the
Implied Volatility at Extreme Strikes∗
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Abstract. In this paper, we obtain asymptotic formulas with error estimates for the implied volatility associated
with a European call pricing function. We show that these formulas imply Lee’s moment formulas
for the implied volatility and the tail-wing formulas due to Benaim and Friz. In addition, we analyze
Pareto-type tails of stock price distributions in uncorrelated Hull–White, Stein–Stein, and Heston
models and find asymptotic formulas with error estimates for call pricing functions in these models.

Key words. call and put pricing functions, implied volatility, asymptotic formulas, Pareto-type distributions,
regularly varying functions
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1. Introduction. In this paper, we study the asymptotic behavior of the implied volatility
K �→ I(K) associated with a European type call pricing function K �→ C(K). Here the symbol
K stands for the strike price, and it is assumed that the expiry T is fixed. One of the main
results obtained in the present paper is the following asymptotic formula:

(1) I(K) =

√
2√
T

[√
logK + log

1

C(K)
−

√
log

1

C(K)

]
+O

((
log

1

C(K)

)− 1
2

log log
1

C(K)

)

as K →∞. A similar formula holds for K near zero:

(2) I(K) =

√
2√
T

[√
log

1

P (K)
−

√
log

1

P (K)
− log

1

K

]
+O

((
log

K

P (K)

)− 1
2

log log
K

P (K)

)

as K → 0, whereK �→ P (K) is the put pricing function corresponding to C. Formulas (1) and
(2) are valid under very mild restrictions on call and put pricing function. For special stochastic
volatility models, sharp asymptotic formulas for the implied volatility were established in the
papers of E. M. Stein and the author (see [20, 22, 19, 21]). In sections 4 and 5, we compare
formulas (1) and (2) with known asymptotic formulas for the implied volatility. For instance,
it will be shown that Lee’s moment formulas (see [29]) and the tail-wing formulas due to
Benaim and Friz (see [2]) can be derived using (1) and (2).

We model the random behavior of the stock price by a nonnegative adapted stochastic
process X defined on a filtered probability space (Ω,F ,Ft,P

∗). It is supposed that X0 = x0
P
∗-a.s. for some number x0 > 0 and that E∗ [Xt] <∞ for every t ≥ 0. In addition, we assume

∗Received by the editors June 22, 2009; accepted for publication (in revised form) May 23, 2010; published
electronically August 17, 2010.

http://www.siam.org/journals/sifin/1/76271.html
†Department of Mathematics, Ohio University, Athens, OH 45701 (guli@math.ohiou.edu).
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that P∗ is a risk-free measure. This means that the discounted stock price process
{
e−rtXt

}
t≥0

is a (Ft,P
∗)-martingale. Here r ≥ 0 denotes the interest rate. It follows from the martingale

condition that

(3) x0 = e−rt
E
∗ [Xt] for all t ≥ 0.

The following standard notation will be used in the paper: u+ = max{u, 0}, where u is
a real number. The next definition introduces European style call and put pricing functions.
Recall that we denoted by r, X, x0, and P

∗ the interest rate, the stock price process, the
initial condition, and the risk-free measure, respectively.

Definition 1.1. Given r, X, x0, and P
∗, the European call pricing function C at time t = 0

is defined on [0,∞)2 by the following formula:

(4) C(T,K) = e−rT
E
∗ [(XT −K)+

]
.

Similarly, the European put pricing function P at time t = 0 is defined by

(5) P (T,K) = e−rT
E
∗ [(K −XT )

+] .
The functions C and P satisfy the put-call parity condition C(T,K) = P (T,K) + x0 −

e−rTK. This formula can be easily derived from (4) and (5).
A popular example of a call pricing function is the function CBS arising in the Black–

Scholes model. In this model, the stock price process is a geometric Brownian motion, satis-
fying the stochastic differential equation dXt = rXtdt+ σXtdWt, where r ≥ 0 is the interest
rate, σ > 0 is the volatility of the stock, and W is a standard Brownian motion. The process
X is given by

(6) Xt = x0 exp

{(
r − σ2

2

)
t+ σWt

}
,

where x0 > 0 is the initial condition. Black and Scholes found an explicit formula for the
pricing function CBS . This formula is as follows:

CBS (T,K, σ) = x0N (d1(K,σ)) −Ke−rTN (d2(K,σ)) ,

where

d1(K,σ) =
log x0 − logK +

(
r + 1

2σ
2
)
T

σ
√
T

, d2(K,σ) = d1(K,σ) − σ
√
T ,

and

N(z) =
1√
2π

∫ z

−∞
exp

{
−y

2

2

}
dy

(see, e.g., [28]).
Remark 1.2. It is known that, for fixedK > 0 and T > 0, the function ρ(σ) = CBS(T,K, σ)

is strictly increasing on (0,∞). If 0 < K < x0e
rT , then the range of the function ρ is the

interval
(
x0 −Ke−rT , x0

)
, while, for x0e

rT ≥ K, the range of ρ coincides with the interval
(0, x0).
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Definition 1.3. Let C be a call pricing function. For (T,K) ∈ (0,∞)2, the implied volatility
I(T,K) associated with C is equal to the volatility σ in the Black–Scholes model such that
C(T,K) = CBS(T,K, σ). The implied volatility is defined only if such a number σ exists and
is unique.

Using Remark 1.2, we see that, for T > 0 and K > 0 with 0 < K < x0e
rT , a necessary

condition for the existence of the implied volatility I(T,K) is as follows: x0 − Ke−rT <
C(T,K) < x0. Similarly, I(T,K) is defined for T > 0 and K > 0 with x0e

rT ≤ K if and only
if 0 < C(T,K) < x0. Note that the inequality C(T,K) < x0, T ≥ 0, K > 0, is always true.

Moreover, if (T,K) ∈ [0,∞)2, then
(
x0 −Ke−rT

)+ ≤ C(T,K).
In the next definitions, we introduce classes of call pricing functions.
Definition 1.4. The class PF∞ consists of all call pricing functions C, for which one of the

following equivalent conditions holds:
1. C(T,K) > 0 for all T > 0 and K > 0 with x0e

rT ≤ K.
2. P (T,K) > e−rTK − x0 for all T > 0 and K > 0 with x0e

rT ≤ K.
3. For every T > 0 and all a > 0, the random variable XT satisfies the condition

P
∗ [XT < a] < 1.

Definition 1.5. The class PF0 consists of all call pricing functions C, for which one of the
following equivalent conditions holds:

1. P (T,K) > 0 for all T > 0 and K > 0 with K < x0e
rT .

2. C(T,K) > x0 − e−rTK for all T > 0 and K > 0 with K < x0e
rT .

3. For every T > 0 and all a > 0, the random variable XT satisfies the condition 0 <
P
∗ [XT < a].

Remark 1.6. Suppose that the expiry T > 0 is fixed, and consider the pricing function
K �→ C(K) and the implied volatility K �→ I(K) as functions of the strike price K. If
C ∈ PF∞, then the implied volatility I(K) is defined for large values of K. This allows one
to study the asymptotic behavior of the implied volatility as K →∞. Similarly, if C ∈ PF0,
then I(K) exists for small values of K. In this case, it is interesting to determine how the
implied volatility behaves near zero. Finally, if C ∈ PF∞ ∩ PF0, then the implied volatility
I(T,K) exists for all T > 0 and K > 0.

We refer the interested reader to [13, 14, 17, 24] for additional information on the implied
volatility. The asymptotic behavior of the implied volatility for extreme strikes was studied
in [2, 3, 4, 22, 21, 29] (see also sections 10.5 and 10.6 of [24]).

In the present paper, we use various asymptotic relations between functions.
Definition 1.7. Let ϕ1 and ϕ2 be positive functions on (a,∞). We define several asymptotic

relations by the following:

1. If there exist α1 > 0, α2 > 0, and y0 > 0 such that α1ϕ1(y) ≤ ϕ2(y) ≤ α2ϕ1(y) for all
y > y0, then we write ϕ1(y) ≈ ϕ1(y) as y →∞.

2. If the condition limy→∞ [ϕ2(y)]
−1 ϕ1(y) = 1 holds, then we write ϕ1(y) ∼ ϕ2(y) as

y →∞.
3. Let ρ be a positive function on (0,∞). We use the notation ϕ1(y) = ϕ2(y) +O(ρ(y))

as y → ∞ if there exist α > 0 and y0 > 0 such that |ϕ1(y)− ϕ2(y)| ≤ αρ(y) for all
y > y0.

Similar relations can be defined in the case where y ↓ 0.
We will next give a quick overview of the results obtained in the present paper. In section
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2, various asymptotic formulas are established for the implied volatility K �→ I(K) as K →∞.
In section 3, the asymptotic behavior of the implied volatility is studied in the case where
K → 0. We also discuss a symmetry property of the implied volatility and formulate a
characterization theorem for call pricing functions (see section 3). In section 4, we give a new
proof of Lee’s moment formulas for the implied volatility, while in section 5 we compare our
asymptotic formulas with the tail-wing formulas due to Benaim and Friz. We also obtain tail-
wing formulas with error estimates under certain restrictions expressed in terms of smoothly
varying functions. In section 6, we talk about Pareto-type tails of stock price distributions
in uncorrelated Hull–White, Stein–Stein, and Heston models. For these distributions, we
compute the Pareto-type index and provide explicit expressions for the corresponding slowly
varying functions. In section 7, we obtain sharp asymptotic formulas for call pricing functions
in special stochastic volatility models and find tail-wing formulas with error estimates in the
case where the stock price density is equivalent to a regularly varying function. Finally, in
the appendix, we prove the characterization theorem for call pricing functions formulated in
section 3.

2. Asymptotic behavior of the implied volatility as K → ∞. In this section, we find
sharp asymptotic formulas for the implied volatility K �→ I(K) associated with a general call
pricing function C.

Theorem 2.1. Let C ∈ PF∞, and let ψ be a positive function with limK→∞ψ(K) =∞.
Then

I(K) =
1√
T

[√
2 logK + 2 log

1

C(K)
− log log

1

C(K)
−

√
2 log

1

C(K)
− log log

1

C(K)

]

+O

((
log

1

C(K)

)− 1
2

ψ(K)

)
(7)

as K →∞.

Theorem 2.1 and the mean value theorem imply the following assertion.

Corollary 2.2. For any call pricing function C ∈ PF∞,

(8) I(K) =

√
2√
T

[√
logK + log

1

C(K)
−

√
log

1

C(K)

]
+O

((
log

1

C(K)

)− 1
2

log log
1

C(K)

)

as K →∞.

Proof of Theorem 2.1. The following lemma was established in [22, 21] under certain
restrictions on the pricing function. The proof in the general case is similar.

Lemma 2.3. Let C be a call pricing function, and fix a positive continuous increasing func-
tion ψ with limK→∞ ψ(K) =∞. Suppose φ is a positive function such that limK→∞ φ(K) =∞
and

(9) C(K) ≈ ψ(K)

φ(K)
exp

{
−φ(K)2

2

}
.
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Then the following asymptotic formula holds:

I(K) =
1√
T

(√
2 log

K

x0erT
+ φ(K)2 − φ(K)

)
+O

(
ψ(K)

φ(K)

)
as K →∞.

Remark 2.4. It is easy to see that if (9) holds, then we have C ∈ PF∞.

Let us continue the proof of Theorem 2.1. With no loss of generality, we can assume that
the function ψ(K) tends to infinity slower than the function K �→ log log 1

C(K) . Put

φ(K) =

[
2 log

1

C(K)
− log log

1

C(K)
+ 2 log ψ(K)

] 1
2

.

Then we have φ(K) ≈
√

2 log 1
C(K) as K →∞, and it follows that

ψ(K) exp

{
−φ(K)2

2

}
φ(K)−1 ≈ C(K), K →∞.

Therefore, Lemma 2.3 gives

(10) I(K) =
1√
T

(√
2 log

K

x0erT
+ φ(K)2 − φ(K)

)
+O

((
log

1

C(K)

)− 1
2

ψ(K)

)

as K →∞. Now it is not hard to see that (10) and the mean value theorem imply (7).
This completes the proof of Theorem 2.1.

Our next goal is to replace the function C in formula (7) by another function C̃.
Corollary 2.5. Let C ∈ PF∞, and let ψ be a positive function with limK→∞ψ(K) =∞.

Suppose that C̃ is a positive function such that C̃(K) ≈ C(K) as K →∞. Then

I(K) =
1√
T

[√
2 logK + 2 log

1

C̃(K)
− log log

1

C̃(K)
−

√
2 log

1

C̃(K)
− log log

1

C̃(K)

]

+O

⎛⎝(
log

1

C̃(K)

)− 1
2

ψ(K)

⎞⎠(11)

as K →∞. In addition,
(12)

I(K) =

√
2√
T

[√
logK + log

1

C̃(K)
−

√
log

1

C̃(K)

]
+O

⎛⎝(
log

1

C̃(K)

)− 1
2

log log
1

C̃(K)

⎞⎠
as K →∞.

Formula (11) can be established exactly as (7). Formula (12) follows from (11) and the
mean value theorem.
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We can also replace a call pricing function C in (7) by a function C̃ under more general
conditions. However, this may lead to a weaker error estimate. Put

(13) τ(K) =

∣∣∣∣∣log 1

C(K)
− log

1

C̃(K)

∣∣∣∣∣ .
Then the following theorem holds.

Theorem 2.6. Let C ∈ PF∞, and let ψ be a positive function with limK→∞ψ(K) =∞.
Suppose C̃ is a positive function satisfying the following condition: There exist K1 > 0 and c
with 0 < c < 1 such that

(14) τ(K) < c log
1

C̃(K)
for all K > K1,

where τ is defined by (13). Then

I(K) =
1√
T

[√
2 logK + 2 log

1

C̃(K)
− log log

1

C̃(K)
−

√
2 log

1

C̃(K)
− log log

1

C̃(K)

]

+O

⎛⎝(
log

1

C̃(K)

)− 1
2

[ψ(K) + τ(K)]

⎞⎠(15)

as K →∞.
Proof. It is not hard to check that (14) implies the formula log 1

C̃(K)
≈ log 1

C(K) as K →∞.

Now, using (7), (13), and the mean value theorem, we obtain (15).
The next statement follows from the special case of Theorem 2.6, where ψ(K) = log log 1

C̃(K)
,

and from the mean value theorem.
Corollary 2.7. Let C ∈ PF∞, and suppose C̃ is a positive function satisfying the following

condition: There exist ν > 0 and K0 > 0 such that

(16)

∣∣∣∣∣log 1

C̃(K)
− log

1

C(K)

∣∣∣∣∣ ≤ ν log log 1

C̃(K)
, K > K0.

Then

I(K) =

√
2√
T

[√
logK + log

1

C̃(K)
−

√
log

1

C̃(K)

]
+O

⎛⎝(
log

1

C̃(K)

)− 1
2

log log
1

C̃(K)

⎞⎠
as K →∞.

Remark 2.8. It is not hard to see that if C(K) ≈ C̃(K) as K →∞, or if (16) holds, then
log 1

C(K) ∼ log 1
C̃(K)

as K →∞.

Corollary 2.9. Let C ∈ PF∞, and suppose C̃ is a positive function satisfying the condition

(17) log
1

C(K)
∼ log

1

C̃(K)
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as K →∞. Then

(18) I(K) ∼
√
2√
T

[√
logK + log

1

C̃(K)
−

√
log

1

C̃(K)

]

as K →∞.
Proof. It follows from (8) that

(19) I(K) ∼
√
2√
T

[√
logK + log

1

C̃(K)
−

√
log

1

C̃(K)

]
Λ(K),

where

Λ(K) =

√
logK + log 1

C̃(K)
+

√
log 1

C̃(K)√
logK + log 1

C(K) +
√

log 1
C(K)

.

Our next goal is to prove that Λ(K)→ 1 as K →∞. We have

Λ(K) =

√
Λ1(K) + Λ2(K) +

√
Λ2(K)√

Λ1(K) + 1 + 1
,

where

Λ1(K) =
logK

log 1
C(K)

and Λ2(K) =
log 1

C̃(K)

log 1
C(K)

.

It is not hard to show that, for all positive numbers a and b, |√a+ b − √a+ 1| ≤ |√b − 1|.
Therefore,

|Λ(K)− 1| =

∣∣∣√Λ1(K) + Λ2(K)−√
Λ1(K) + 1

∣∣∣+ ∣∣∣√Λ2(K)− 1
∣∣∣√

Λ1(K) + 1 + 1

≤
∣∣∣√Λ2(K)− 1

∣∣∣(20)

for K > K0. It follows from (17) and (20) that Λ(K) → 1 as K → ∞. Next, using (19), we
see that (18) holds.

This completes the proof of Corollary 2.9.

3. Asymptotic behavior of the implied volatility as K → 0. In this section, we turn our
attention to the behavior of the implied volatility as the strike price tends to zero. Let C be a
general call pricing function, and let X be a corresponding stock price process. This process
is defined on a filtered probability space (Ω,F ,Ft,P

∗), where P
∗ is a risk-free probability

measure. As before, we assume that the interest rate r, the initial condition x0, and the
expiry T are fixed, and we denote by μT the distribution of the random variable XT . The
Black–Scholes pricing function CBS satisfies the following condition:

(21) CBS(T,K, σ) = x0 −Ke−rT +
Ke−rT

x0
CBS

(
T,

(
x0e

rT
)2
K−1, σ

)
.
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A similar formula holds for the pricing function C. Indeed, it is not hard to prove using the
put/call parity formula that

C(T,K) = x0 −Ke−rT +
Ke−rT

x0
G

(
T,

(
x0e

rT
)2
K−1

)
,(22)

where the function G is given by

(23) G(T,K) =
K

x0erT
P

(
T,

(
x0e

rT
)2
K−1

)
.

It follows from (22) that

G
(
T,

(
x0e

rT
)2
K−1

)
= x0

∫ K

0
dμT (x)− x0

K

∫ K

0
xdμT (x).

Define a family of Borel measures {μ̃t}t≥0 on (0,∞) as follows: For any Borel set A in
(0,∞), put

(24) μ̃t(A) =
1

x0ert

∫
η−1(A)

xdμt(x),

where η(K) =
(
x0e

rT
)2
K−1, K > 0. It is not hard to see that μ̃t((0,∞)) = 1 for all t ≥ 0.

Moreover, for every Borel set A in (0,∞), we have

(25)

∫
η(A)

dμ̃(x) =
1

x0erT

∫
A
xdμT (x) and

∫
η(A)

xdμ̃T (x) = x0e
rT

∫
A
dμT (x).

It follows from (23) and (25) that

(26) G(T,K) = e−rT

∫ ∞

K
xdμ̃T (x)− e−rTK

∫ ∞

K
dμ̃T (x).

Remark 3.1. Suppose that, for every t > 0, the measure μt is absolutely continuous with
respect to the Lebesgue measure on (0,∞). Denote the Radon–Nikodym derivative by Dt.
Then, for every t > 0, the measure μ̃t admits a density D̃t given by

D̃t(x) =
(
x0e

rt
)3
x−3Dt

((
x0e

rt
)2
x−1

)
, x > 0.

Theorem 3.2. Let C be a call pricing function, and let P be the corresponding put pricing
function. Denote by {μt}t≥0 the family of marginal distributions of the stock price process X,
and define a family of measures {μ̃t}t≥0 by formula (24) and a function G by formula (26).
Then G is a call pricing function with the same interest rate r and the initial condition x0 as
the pricing function C, and it has a stock price process X̃ having {μ̃t}t≥0 as the family of its
marginal distributions.

We will need the following characterization of call pricing functions.
Theorem 3.3. A nonnegative function C defined on [0,∞)2 is a call pricing function at

time t = 0 with interest rate r and initial condition x0 if and only if the following hold:
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1. For every T ≥ 0, the function K → C(T,K) is convex.
2. For every T ≥ 0, the second distributional derivative μT of the function K �→ erTC(T,K)

is a Borel probability measure such that

(27)

∫ ∞

0
xdμT (x) = x0e

rT .

3. For every K ≥ 0, the function T → C(T, erTK) is nondecreasing.
4. For every K ≥ 0, C(0,K) = (x0 −K)+.
5. For every T ≥ 0, limK→∞C(T,K) = 0.

Remark 3.4. Let us note that similar, but a little less general, characterizations of pricing
functions are known. For instance, in section 1 of the paper [7] of Carmona and Nadtochiy,
there is a description of conditions which are imposed on call pricing functions by the absence
of arbitrage. This description essentially coincides with the necessity part of Theorem 3.3. We
also refer the reader to section 3 of the paper [6] of Buehler, where results related to Theorem
3.3 were established. The proof of Theorem 3.3 uses standard methods and is given in the
appendix for the sake of completeness.

Proof of Theorem 3.2. It suffices to prove that conditions 1–5 in Theorem 3.3 are valid for
the function G. We have μ̃T ([0,∞)) = 1. This equality follows from (25) and (3). In addition,
equality (27) holds for μ̃t by (25). Put

V (T,K) =

∫ ∞

K
xdμ̃T (x)−K

∫ ∞

K
dμ̃T (x).

Then G(T,K) = e−rTV (T,K). Moreover, the functionK �→ V (T,K) is convex on [0,∞) since
its second distributional derivative coincides with the measure μ̃T . This establishes conditions
1 and 2. The equality G(0,K) = (x0 −K)+ can be obtained using (25) and (26). This gives
condition 4. Next, we see that (26) implies

G(T,K) ≤ e−rT

∫ ∞

K
xdμ̃T (x),

and hence limK→∞G(T,K) = 0. This establishes condition 5. In order to prove condition 3
for G, we notice that (22) gives the following:

G
(
T, erTK

)
=
K

x0
C

(
T, erT

x20
K

)
+ x0 −K.

Now it is clear that condition 3 for G follows from the same condition for C. Therefore, G is
a call pricing function.

This completes the proof of Theorem 3.2.

Remark 3.5. It is not hard to see that if the call pricing function C in Theorem 3.2 satisfies
C ∈ PF∞, then G ∈ PF0. Similarly, if C ∈ PF0, then G ∈ PF∞. Finally, if C ∈ PF∞ ∩PF0,
then G ∈ PF∞ ∩ PF0.

We will next discuss a certain symmetry condition satisfied by the implied volatility. A
similar condition can be found in section 4 of [29] (see also formula 2.9 in [4]). Let C be
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a call pricing function such that C ∈ PF∞ ∩ PF0. Then G ∈ PF∞ ∩ PF0, and hence the
implied volatility IC associated with C and the implied volatility IG associated with G exist
for all T > 0 and K > 0. Replacing σ by IC(K) in (21) and taking into account the equality
CBS (T,K, IC (T,K)) = C(T,K) and (22), we see that

CBS

(
T,

(
x0e

rt
)2
K−1, IC(T,K)

)
= G

(
T,

(
x0e

rT
)2
K−1

)
.

Therefore, the following lemma holds.
Lemma 3.6. Let C ∈ PF∞ ∩ PF0, and let G be defined by (26). Then

(28) IC(T,K) = IG

(
T,

(
x0e

rT
)2
K−1

)
for all T > 0 and K > 0.

Formula (28) can be interpreted as a symmetry condition for the implied volatility. For a
certain class of uncorrelated stochastic volatility models, a similar condition was established
in [31] (see also [19]). For the models from this class, we have I(T,K) = I

(
T,

(
x0e

rT
)2
K−1

)
.

Lemma 3.6 and the results obtained in section 2 can be used to find sharp asymptotic
formulas for the implied volatility as K → 0.

Theorem 3.7. Let C ∈ PF0, and let P be the corresponding put pricing function. Suppose
that τ is a positive function with limK→0 τ(K) =∞. Suppose also that

(29) P (K) ≈ P̃ (K) as K → 0,

where P̃ is a positive function. Then the following asymptotic formula holds:

I(K) =

√
2√
T

[√
log

1

P̃ (K)
− 1

2
log log

K

P̃ (K)
−

√
log

K

P̃ (K)
− 1

2
log log

K

P̃ (K)

]

+O

⎛⎝(
log

K

P̃ (K)

)− 1
2

τ(K)

⎞⎠ .

In addition,

I(K) =

√
2√
T

[√
log

1

P̃ (K)
−

√
log

K

P̃ (K)

]
+O

⎛⎝(
log

K

P̃ (K)

)− 1
2

log log
K

P̃ (K)

⎞⎠
as K → 0.

An important special case of Theorem 3.7 is as follows.
Theorem 3.8. Let C ∈ PF0, and let P be the corresponding put pricing function. Then

(30) I(K) =

√
2√
T

[√
log

1

P (K)
−

√
log

K

P (K)

]
+O

((
log

K

P (K)

)− 1
2

log log
K

P (K)

)

as K → 0.
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Proof of Theorem 3.7. Formulas (29) and (23) imply that G(K) ≈ G̃(K) as K → ∞,
where

(31) G̃(K) = KP̃
((
x0e

rT
)2
K−1

)
.

Put ψ(K) = ψ
( (
x0e

rT
)2
K−1

)
. Then, applying Corollary 2.5 to G and G̃, we get

IG(K) =

√
2√
T

[√
logK + log

1

G̃(K)
− 1

2
log log

1

G̃(K)
−

√
log

1

G̃(K)
− 1

2
log log

1

G̃(K)

]

+O

⎛⎝(
log

1

G̃(K)

)− 1
2

ψ(K)

⎞⎠(32)

as K →∞. It follows from (28), (31), (32), and the mean value theorem that

√
T√
2
I(K) =

√
log

(x0erT )
2

K
+ log

K

(x0erT )
2
P̃ (K)

− 1

2
log log

K

(x0erT )
2
P̃ (K)

−
√

log
K

(x0erT )
2
P̃ (K)

− 1

2
log log

K

(x0erT )
2
P̃ (K)

+O

⎛⎝(
log

K

P̃ (K)

)− 1
2

τ(K)

⎞⎠
=

√
log

1

P̃ (K)
− 1

2
log log

K

P̃ (K)
−

√
log

K

P̃ (K)
− 1

2
log log

K

P̃ (K)
+O

⎛⎝(
log

K

P̃ (K)

)− 1
2

τ(K)

⎞⎠
as K → 0. Note that formula (31) implies K[P̃ (K)]−1 →∞ as K → 0.

This completes the proof of Theorem 3.7.

4. Sharp asymptotic formulas for the implied volatility and Lee’s moment formulas.
It will be assumed in this section that the call pricing function satisfies C ∈ PF∞ ∩ PF0. In
[29], Lee obtained important asymptotic formulas for the implied volatility. Lee’s results are
as follows.

Theorem 4.1. Let I be the implied volatility associated with a call pricing function C. Define
a number p̃ by

(33) p̃ = sup
{
p ≥ 0 : E∗

[
X1+p

T

]
<∞

}
.

Then the following equality holds:

(34) lim sup
K→∞

TI(K)2

logK
= ψ(p̃),

where the function ψ is given by

(35) ψ(u) = 2− 4
(√

u2 + u− u
)
, u ≥ 0.
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Theorem 4.2. Let I be the implied volatility associated with a call pricing function C. Define
a number q̃ by

(36) q̃ = sup
{
q ≥ 0 : E

[
X−q

T

]
<∞

}
.

Then the following formula holds:

(37) lim sup
K→0

TI(K)2

log 1
K

= ψ(q̃).

Formulas (34) and (37) are called Lee’s moment formulas, and the numbers 1 + p̃ and
q̃ are called the right-tail index and the left-tail index of the distribution of the stock price
XT , respectively. These numbers show how fast the tails of the distribution of the stock price
decay.

We will next show how to derive Lee’s moment formula (34) using our formula (8). In
order to see how (8) is linked to Lee’s formulas, we note that, for every a > 0,

(38)
√
1 + a−√a =

(
1− 2

(√
a2 + a− a

)) 1
2
=

√
2−1ψ(a).

Therefore, Lee’s formulas (34) and (37) can be rewritten as follows:

(39) lim sup
K→∞

√
TI(K)√
2 logK

=
√

1 + p̃−
√
p̃

and

(40) lim sup
K→0

√
TI(K)√
2 log 1

K

=
√

1 + q̃ −
√
q̃.

Our next goal is to establish formula (39).
Lemma 4.3. Let C ∈ PF∞ ∩ PF0, and put

(41) l = lim inf
K→∞

(logK)−1 log
1

C(K)
.

Then

(42) lim sup
K→∞

√
TI(K)√
2 logK

=
√
1 + l −

√
l.

Proof. Observe that (8) implies

√
TI(K)√
2 logK

=

√
1 +

log 1
C(K)

logK
−

√
log 1

C(K)

logK
+O

(
(logK)−

1
2

(
log

1

C(K)

)− 1
2

log log
1

C(K)

)

=

⎡⎣√1 +
log 1

C(K)

logK
+

√
log 1

C(K)

logK

⎤⎦−1

+O

(
(logK)−

1
2

(
log

1

C(K)

)− 1
2

log log
1

C(K)

)
(43)
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as K →∞. It is clear that (42) follows from (43).

Let us continue the proof of formula (39). Denote by ρT the complementary distribution
function of XT given by ρT (y) = P [XT > y], y > 0. Then

(44) C(K) = e−rT

∫ ∞

K
ρT (y)dy, K > 0.

Define the following numbers:

(45) r∗ = sup
{
r ≥ 0 : C(K) = O

(
K−r

)
as K →∞}

and

(46) s∗ = sup
{
s ≥ 0 : ρT (y) = O

(
y−(1+s)

)
as y →∞

}
.

Lemma 4.4. The numbers p̃, l, r∗, and s∗ given by (33), (41), (45), and (46), respectively,
are all equal.

Proof. If s∗ = 0, then the inequality s∗ ≤ r∗ is trivial. If s > 0 is such that ρT (y) =
O

(
y−(1+s)

)
as y →∞, then

C(K) = O

(∫ ∞

K
y−(1+s)dy

)
= O

(
K−s

)
as K →∞. Hence s∗ ≤ r∗.

Next, let r ≥ 0 be such that C(K) = O (K−r) as K → ∞. Then (44) shows that there
exists c > 0, for which

cK−r ≥ e−rT

∫ ∞

K
ρT (y)dy ≥ e−rT

∫ 2K

K
ρT (y)dy ≥ e−rT ρT (2K)K, K > K0.

Therefore, ρT (K) = O
(
K−(r+1)

)
as K →∞. It follows that r∗ ≤ s∗. This proves the equality

r∗ = s∗.
Suppose that 0 < l <∞. Then, for every ε > 0, there exists Kε > 0 such that

log
1

C(K)
≥ (l − ε) logK, K > Kε.

Therefore, C(K) ≤ K−l+ε,K > Kε. It follows that l − ε ≤ r∗ for all ε > 0, and hence l ≤ r∗.
The inequality l ≤ r∗ also holds if l = 0 or l =∞. This fact can be established similarly.

To prove the inequality r∗ ≤ l, suppose that r∗ = 0 and r < r∗. Then C(K) = O (K−r)
as K → ∞, and hence 1

C(K) ≥ cKr for some c > 0 and all K > K0. It follows that

log 1
C(K) ≥ log c+ r logK,K > K0, and

log 1
C(K)

logK
≥ log c

logK
+ r.
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Now it is clear that

(47) lim inf
K→∞

log 1
C(K)

logK
≥ r.

Using (47), we see that l ≥ r∗. If r∗ = 0, then the inequality l ≥ r∗ is trivial. This proves
that l = r∗ = s∗.

It is clear that, for all p ≥ 0,

(48) E

[
X1+p

T

]
= (1 + p)

∫ ∞

0
ypρT (y)dy.

Suppose that s∗ = 0; then the inequality s∗ ≤ p̃ is trivial. If, for some s > 0, ρT (y) =
O

(
y−(1+s)

)
as y → ∞, then it is not hard to see using (48) that E[X1+p

T ] < ∞ for all p < s.
It follows that s∗ ≤ p̃.

On the other hand, if E[X1+p
T ] < ∞ for some p ≥ 0, then there exists a number M > 0

such that

(49) M >

∫ ∞

K
ypρT (y)dy ≥ Kp

∫ ∞

K
ρT (y)dy = erTKpC(K).

In the proof of (49), we used (48) and (44). It follows from (49) that C(K) = O (K−p) as
K →∞, and hence p̃ ≤ r∗.

This completes the proof of Lemma 4.4.
To finish the proof of formula (34), we observe that (42) and the equality l = p̃ in Lemma

4.4 imply formula (39).
It will be explained next how to obtain formula (40) from formula (30). Taking into

account (30), we get the following lemma.
Lemma 4.5. Let C ∈ PF∞ ∩ PF0, and define a number by

(50) m = lim inf
K→0

(
log

1

K

)−1

log
1

P (K)
.

Then

(51) lim sup
K→0

√
TI(K)√
2 log 1

K

=
√
m−√m− 1.

It is not hard to see that m ≥ 1, where m is defined by (50). Put

ηT (y) = P [XT ≤ y] = 1− ρT (y), y ≥ 0.

Then

P (K) = e−rT

∫ K

0
ηT (y)dy

and

E

[
X−q

T

]
= q

∫ ∞

0
y−q−1ηT (y)dy
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for all q > 0. Note that ηT (0) = P [XT = 0].

Consider the following numbers:

(52) u∗ = sup {u ≥ 1 : P (K) = O (Ku) as K → 0}

and

(53) v∗ = sup {v ≥ 0 : ηT (y) = O (yv) as y → 0} .

It is not hard to see, using the same ideas as in the proof of Lemma 4.4, that the following
lemma holds.

Lemma 4.6. The numbers q̃, m, u∗, and v∗ defined by (36), (50), (52), and (53), respec-
tively, satisfy the condition q̃ + 1 = m = u∗ = v∗ + 1.

Now it is clear that formula (40) follows from (51) and Lemma 4.6.

5. Sharp asymptotic formulas for the implied volatility and the tail-wing formulas of
Benaim and Friz. In [2], Benaim and Friz studied asymptotic relations between a given call
pricing function, the implied volatility associated with it, and the law of the stock returns,
under an additional assumption that there exist nontrivial moments of the stock price. We will
next give several definitions from the theory of regularly varying functions (these definitions
will be needed in the remaining part of the paper) and then formulate some of the results
obtained in [2].

Definition 5.1. Let α ∈ R, and let f be a positive Lebesgue measurable function defined
on some neighborhood of infinity. The function f is called regularly varying with index α if
the following condition holds: For every λ > 0, f(λx)

f(x) → λα as x → ∞. The class consisting
of all regularly varying functions with index α is denoted by Rα. Functions belonging to the
class R0 are called slowly varying.

The following asymptotic formula is valid for all functions f ∈ Rα with α > 0:

(54) − log

∫ ∞

K
e−f(y)dy ∼ f(K) as K →∞

(see Theorem 4.12.10(i) in [5]). This result is known as Bingham’s lemma.

Definition 5.2. Let α ∈ R, and let f be a positive function defined on some neighborhood
of infinity. The function f is called smoothly varying with index α if the function h(x) =
log f (ex) is infinitely differentiable and h′(x) → α, h(n)(x) → 0 for all integers n ≥ 2 as
x→∞.

An equivalent definition of the class SRα is as follows:

(55) f ∈ SRα ⇔ lim
x→∞

xnf (n)(x)

f(x)
= α(α − 1) . . . (α− n+ 1)

for all n ≥ 1.

Definition 5.3. Let g be a function on (0,∞) such that g(x) ↓ 0 as g → ∞. A func-
tion l defined on (a,∞), a ≥ 0, is called slowly varying with remainder g if l ∈ R0 and
l(λx)
l(x) − 1 = O(g(x)) as x→∞ for all λ > 1.
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Definitions 5.1–5.3 can be found in [5]. The theory of regularly varying functions has
interesting applications in financial mathematics. Besides [2, 3, 4], such functions appear in
the study of Pareto-type tails of distributions of stock returns (see, e.g, [10] and the references
therein). We refer the reader to [1] for more information on Pareto-type distributions and
their applications. Pareto-type distributions are defined as follows. Let X be a random
variable on a probability space (Ω,F ,P), and let F be the distribution function of X given by
F (y) = P[X ≤ y], y ∈ R. By F̄ we denote the complementary distribution function of X, that
is, the function F̄ (y) = 1−F (y), y ∈ R. The distribution F is called a Pareto-type distribution
with index α > 0 if and only if there exists a function g ∈ R−α such that F̄ (y) ∼ g(y) as
y →∞. More precisely, the Pareto-type condition means that there exists a function h ∈ R0

such that F̄ (y) ∼ y−αh(y) as y →∞. Note that the Pareto-type index of F is the negative of
the index of regular variation of the function g.

We will next formulate some of the results obtained in [2] adapting them to our notation
(see Theorem 1 in [2]). Benaim and Friz use a different normalization in the Black–Scholes
formula and consider the normalized implied volatility as a function of the log-strike k. In
the formulation of Theorem 5.4, the function ψ is defined by ψ(u) = 2 − 4(

√
u2 + u − u).

This function has already appeared in section 4. It is clear that ψ is strictly decreasing on
the interval [0,∞] and maps this interval onto the interval [0, 2]. Note that the conditions in
Theorem 5.4 imply C ∈ PF∞.

Theorem 5.4. Let C be a call pricing function, and suppose that

(56) E
∗ [X1+ε

T

]
<∞ for some ε > 0.

Then the following statements hold:
1. If C(K) = exp {−η(logK)} with η ∈ Rα, α > 0, then

(57) I(K) ∼
√
logK√
T

√
ψ

(
− logC(K)

logK

)
as K →∞.

2. If F̄ (y) = exp {−ρ(log y)} with ρ ∈ Rα, α > 0, then

(58) I(K) ∼
√
logK√
T

√
ψ

(
− log[KF̄ (K)]

logK

)
as K →∞.

3. If the distribution μT of the stock price XT admits a density DT and if

DT (x) =
1

x
exp {−h(log x)}

as x→∞, where h ∈ Rα, α > 0, then

(59) I(K) ∼
√
logK√
T

√
ψ

(
− log[K2DT (K)]

logK

)
as K →∞.

The functions V (k) and c(k) in [2] correspond in our notation to the functions
√
TI(K)

and erTC(K), respectively. We also take into account that the distribution density f of the
stock return at time T is related to the density DT by the formula f(y) = eyDT (e

y).
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The formulas contained in Theorem 5.4 are called the right-tail-wing formulas. The idea
to express the asymptotic properties of the implied volatility in terms of the behavior of the
distribution density of the stock price has also been exploited in [22] and [21] in the case of
special stock price models with stochastic volatility.

Our next goal is to derive Theorem 5.4 from Corollary 2.9. The next statement is nothing
else but this corollary in disguise.

Corollary 5.5. Let C ∈ PF∞. Then

(60) I(K) =

√
logK√
T

√
ψ

(
− logC(K)

logK

)
+O

((
log

1

C(K)

)− 1
2

log log
1

C(K)

)
as K →∞, where ψ is defined by (35).

The equivalence of formulas (8) and (60) can be easily shown using (38).
Remark 5.6. It follows from Corollary 5.5 that formula (57) holds for any call pricing

function from the class PF∞, and hence no restrictions are needed in part 1 of Theorem 5.4.
Moreover, formula (60) contains an error term, which is absent in formula (57).

We will next briefly explain how to obtain (58) and (59). We will prove a slightly more
general statement, assuming that

(61) F̄ (y) ≈ exp {−ρ(log y)}
as y →∞ in part 2 of Theorem 5.4 and

(62) DT (x) ≈ x−1 exp {−h(log x)}
as x→∞ in part 3. Some of the ideas used in the proof below are borrowed from [2] (see the
proofs in section 3 of [2]). With no loss of generality, we may suppose that α ≥ 1. The proof
of the tail-wing formulas is based on Bingham’s lemma and the following equalities:

C(K) = e−rT

∫ ∞

K
F̄ (y)dy

and

(63) F̄ (y) =

∫ ∞

y
DT (x)dx.

If α > 1 in parts 2 or 3 of Theorem 5.4, then the moment condition (56) holds, and we have
ρ(u) − u ∈ Rα in part 2 and h(u) − u ∈ Rα in part 3. If α = 1, then the moment condition
gives ρ(u)− u ∈ R1 in part 2 and h(u)− u ∈ R1 in part 3 (see section 3 in [2]).

Suppose that (61) holds. Put λ(u) = ρ(u)− u. Then we have C(K) ≈ Ĉ(K) as K →∞,
where

Ĉ(K) =

∫ ∞

logK
exp {−λ(u)} du.

Applying formula (54) to the function λ, we obtain

log
1

Ĉ(K)
∼ λ(logK) = log

1

KF̄ (K)
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as K →∞. Since C(K) ≈ Ĉ(K), we also have

log
1

C(K)
∼ log

1

Ĉ(K)
,

and hence

log
1

C(K)
∼ log

1

KF̄ (K)

as K →∞. Now it clear that formula (58) follows from (18) and (38).
Next, assume that equality (62) holds. Then (63) implies (61) with

ρ(y) = − log

∫ ∞

y
e−h(u)du.

Applying Bingham’s lemma, we see that ρ ∈ Rα. This reduces the case of the distribution
density DT of the stock price in Theorem 5.4 to that of the complementary distribution
function F̄ .

Remark 5.7. The tail-wing formula (58) also holds, provided that α = 1 and ρ(u)−u ∈ Rβ

with 0 < β ≤ 1. A similar statement is true in the case of formula (59). The proof of
these assertions does not differ from the proof given above. Interesting examples here are
ρ(u) = u + uβ if β < 1 and ρ(u) = u+ u

log u if β = 1. Note that the moment condition does
not hold in these cases.

Formulas (58) and (59) do not include error estimates. Our next goal is to find asymptotic
formulas for the implied volatility which contain error estimates. We can do it under certain
smoothness assumptions on the functions ρ and h appearing in Theorem 5.4. Note that the
conditions in Theorems 5.8 and 5.9 imply C ∈ PF∞.

Theorem 5.8. Let F̄ be the complementary distribution function of the stock price XT .
Suppose that

(64) F̄ (y) ≈ exp {−ρ(log y)}
as y → ∞, where ρ is a function such that either ρ ∈ SRα with α > 1, or ρ ∈ SR1 and
λ(u) = ρ(u)− u ∈ Rβ for some 0 < β ≤ 1. Then

(65) I(K) =

√
2√
T

(√
ρ(logK)−

√
ρ(logK)− logK

)
+O

(
log [ρ(logK)]√

ρ(logK)

)
as K →∞.

Theorem 5.9. Let DT be the distribution density of the stock price XT . Suppose that

(66) DT (x) ≈ 1

x
exp {−h(log x)}

as x → ∞, where h is a function such that either h ∈ SRα with α > 1, or h ∈ SR1 and
g(u) = h(u) − u ∈ SRβ for some 0 < β ≤ 1. Then

(67) I(K) =

√
2√
T

(√
h(logK)−

√
h(logK)− logK

)
+O

(
log [h(logK)]√

h(logK)

)
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as K →∞.
Remark 5.10. Formulas (65) and (67) are equivalent to the formulas

I(K) =

√
logK√
T

√
ψ

(
ρ(logK)− logK

logK

)
+O

(
log [ρ(logK)]√

(ρ(logK))

)
, K →∞,

and

I(K) =

√
logK√
T

√
ψ

(
h(logK)− logK

logK

)
+O

(
log [h(logK)]√

(h(logK))

)
, K →∞,

respectively, where the function ψ is defined by (35). If equality holds in (64) and (66), then
we get the following tail-wing formulas with error estimates:

I(K) =

√
logK√
T

√√√√ψ

(
− log

[
KF̄ (K)

]
logK

)
+O

⎛⎝(
log

1[
KF̄ (K)

])− 1
2

log log
1[

KF̄ (K)
]
⎞⎠

and

I(K) =

√
logK√
T

√
ψ

(
− log [K2DT (K)]

logK

)
+O

((
log

1

[K2DT (K)]

)− 1
2

log log
1

[K2DT (K)]

)
as K →∞.

We will next prove Theorem 5.9. The proof of Theorem 5.8 is similar but less complicated.
We leave it as an exercise for the reader.

Proof of Theorem 5.9. We borrow several ideas used in the proof of formula (54) (see
Theorem 4.12.10(i) in [5]). The following lemma is standard.

Lemma 5.11. Suppose r ∈ SRα with α > 0. Then∫ ∞

x
e−r(u)du =

e−r(x)

r′(x)

(
1 +O

(
1

r(x)

))
as x→∞.

Proof. Using the integration by parts formula, we see that

(68)

∫ ∞

x
e−r(u)du =

e−r(x)

r′(x)
−

∫ ∞

x
e−r(u)ρ1(u)du,

where

ρ1(u) =

(
1

r′(u)

)′
=
r′′(u)
r′(u)2

.

It follows from (55) that |ρ1(u)| = O
(
r(u)−1

)
as u→∞. Using (55) again, we obtain∫ ∞

x
e−r(u)ρ1(u)du = O

(∫ ∞

x
r′(u)e−r(u) 1

r(u)r′(u)
du

)
= O

(∫ ∞

x
r′(u)e−r(u) u

r(u)2
du

)
(69)
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as x → ∞. Since, for every ε > 0, the function u �→ e−εr(u)ur(u)−2 is ultimately decreasing,
(69) implies that

(70)

∫ ∞

x
e−r(u)ρ1(u)du = O

(
e−r(x) x

r(x)2

)
as x→∞. Now Lemma 5.11 follows from (68), (70), and (55).

Let us continue the proof of Theorem 5.9. For h ∈ SRα with α > 1, we have g ∈ SRα.
On the other hand, if α = 1, we assume that g ∈ SRβ with 0 < β ≤ 1. Consider the following
functions:

D̃T (x) =
1

x
exp {−h(log x)} and Ĉ(K) = K2D̃T (K) = exp {−g(logK)} .

We have

(71) C(K) ≈
∫ ∞

logK
e−g(u)du−K

∫ ∞

logK
e−h(u)du

as K →∞. Now, applying Lemma 5.11, we get∫ ∞

logK
e−g(u)du =

Ke−h(logK)

g′(logK)

(
1 +O

(
1

g(logK)

))
and

K

∫ ∞

logK
e−h(u)du =

Ke−h(logK)

h′(logK)

(
1 +O

(
1

h(logK)

))
as K →∞. It follows that

(72)

∫ ∞

logK
e−g(u)du−K

∫ ∞

logK
e−h(u)du =

Ke−h(logK)

h′(logK)g′(logK)

(
1 +O

(
h(logK)

g(logK) logK

))
as K → ∞. In the proof of (72), we used (55). Next, employing (71), (72), and (55), we
obtain

C(K) ≈ C̃(K), where C̃(K) =
K(logK)2e−h(logK)

h(logK)g(logK)
.

Next, we see that

(73) log
1

C̃(K)
− log

1

Ĉ(K)
= log

h(logK)g(logK)

(logK)2
.

It follows from (73) that there exists a > 0 such that

(74)

∣∣∣∣∣log 1

C̃(K)
− log

1

Ĉ(K)

∣∣∣∣∣ ≤ a log log 1

Ĉ(K)
, K > K1.

Indeed, if α > 1, we can take a > 2α−2
α in (74), and if α = 1 and 0 < β ≤ 1, we take a > 1−β

β .

It is not hard to see that an estimate similar to (74) is valid with C instead of C̃. Now it
follows from Corollary 2.7 that formula (67) holds.
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The proof of Theorem 5.9 is thus completed.

Similar results can be obtained in the case of the left-tail-wing formulas established in [2].
We will formulate only the following assertion, which is equivalent to Theorem 3.8.

Corollary 5.12. Let C ∈ PF0, and let P be the corresponding put pricing function. Then

I(K) =
log 1

K√
T

√
ψ

(
log P (K)

logK
− 1

)
+O

((
log

K

P (K)

)− 1
2

log log
K

P (K)

)

as K → 0, where ψ(u) = 2− 4(
√
u2 + u− u), u ≥ 0.

The equivalence of Theorem 3.8 and Corollary 5.12 can be shown using (38) with a =
(logK)−1 log P (K)− 1.

We will next apply Theorem 5.9 to the Black–Scholes model (a similar computation was
felicitously called a sanity check in [2]). It is clear that I(K) = σ for all K > 0. Let us see
what can be obtained for the Black–Scholes model by using formula (67). We have to at least
make sure that limK→∞ I(K) = σ.

The distribution density of the stock price in the Black–Scholes model is given by

DT (x) =

√
x0erT√
2πTσ

exp

{
−σ

2t

8

}
x−

3
2 exp

{
−

(
log

x

x0erT

)2 (
2Tσ2

)−1

}
.

This follows from (6). Hence, DT satisfies condition (66) in Theorem 5.9 with

h(u) =
1

2Tσ2
(
u− log

(
x0e

rT
))2

+
1

2
u.

It is clear that h ∈ SR2. Applying Theorem 5.9, we get

I(K) =
1√
T

⎡⎣√ 1

Tσ2

(
log

K

x0eμT

)2

+ logK −
√

1

Tσ2

(
log

K

x0eμT

)2

− logK

⎤⎦+O

(
log logK

logK

)

as K →∞. It is not hard to see that the right-hand side of the previous asymptotic formula
tends to σ as K →∞.

6. Stock price distribution densities and pricing functions in stochastic volatility mod-
els.

Regularly varying stock price distributions. We will next show that, in some models with
stochastic volatility, the stock priceXt is Pareto-type distributed for every t > 0 (the definition
of a Pareto-type distribution can be found in section 5). The models we are going to consider
are the uncorrelated Stein–Stein, Heston, and Hull–White models. We will first formulate
several results obtained in [20, 19, 21]. Recall that the stock price process Xt and the volatility
process Yt in the Hull–White model satisfy the following system of stochastic differential
equations:

(75)

{
dXt = rXtdt+ YtXtdW

∗
t ,

dYt = νYtdt+ ξYtdZ
∗
t .
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In (75), r ≥ 0 is the interest rate, ν ∈ R
1, and ξ > 0. The Hull–White model was introduced

in [26]. The volatility process in this model is a geometric Brownian motion.
The Stein–Stein model is defined as follows:

(76)

{
dXt = rXtdt+ |Yt|XtdW

∗
t ,

dYt = q (m− Yt) dt+ σdZ∗
t .

It was introduced and studied in [33]. In this model, the absolute value of an Ornstein–
Uhlenbeck process plays the role of the volatility of the stock. We assume that r ≥ 0, q ≥ 0,
m ≥ 0, and σ > 0.

The Heston model was developed in [25]. It is given by

(77)

{
dXt = rXtdt+

√
YtXtdW

∗
t ,

dYt = q (m− Yt) dt+ c
√
YtdZ

∗
t ,

where r ≥ 0, m ≥ 0, and c ≥ 0. The volatility equation in (77) is uniquely solvable in the
strong sense, and the solution Yt is a positive stochastic process. This process is called a
Cox–Ingersoll–Ross process. We assume that the processes W ∗

t and Z∗
t in (75), (76), and (77)

are independent Brownian motions under a risk-free probability P
∗. The initial conditions for

the processes X and Y are denoted by x0 and y0, respectively.
We will next formulate sharp asymptotic formulas for the distribution density Dt of the

stock price Xt in special stock price models. These formulas were obtained in [20, 19, 21].
1. Stein–Stein model. The following result was established in [21]: There exist positive

constants B1, B2, and B3 such that

(78) Dt

(
x0e

rtx
)
= B1(log x)

− 1
2 eB2

√
log xx−B3

(
1 +O

(
(log x)−

1
4

))
as x→∞. The constants in (78) depend on the model parameters. The constant B3

satisfies B3 > 2. Explicit formulas for the constants B1, B2, and B3 can be found in
[21]. It follows from (78), the mean value theorem, and the inequality

(79) ea − 1 ≤ aea, 0 ≤ a ≤ 1,

that

(80) Dt(x) = B0(log x)
− 1

2 eB2
√
log xx−B3

(
1 +O

(
(log x)−

1
4

))
as x→∞, where B0 = B1

(
x0e

rt
)B3 .

2. Heston model. It was shown in [21] that there exist constants A1 > 0, A2 > 0, and
A3 > 2 such that

(81) Dt

(
x0e

rtx
)
= A1(log x)

− 3
4
+ qm

c2 eA2
√
log xx−A3

(
1 +O

(
(log x)−

1
4

))
as x → ∞. The constants in (81) depend on the model parameters. Explicit expres-
sions for these constants can be found in [21]. It follows from (81), the mean value
theorem, and (79) that

(82) Dt(x) = A0(log x)
− 3

4
+ qm

c2 eA2
√
logxx−A3

(
1 +O

(
(log x)−

1
4

))
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as x→∞, where A0 = A1

(
x0e

rt
)A3 .1

3. Hull–White model. The following asymptotic formula holds for the distribution density
of the stock price in the Hull–White model (see Theorem 4.1 in [19]):

Dt

(
x0e

rtx
)
= Cx−2(log x)

c2−1

2 (log log x)c3(83)

exp

⎧⎨⎩− 1

2tξ2

(
log

[
1

y0

√
2 log x

t

]
+

1

2
log log

[
1

y0

√
2 log x

t

])2
⎫⎬⎭(

1 +O
(
(log log x)−

1
2

))
as x → ∞. The constants C, c2, and c3 have been computed in [19]. It follows from
(83), the mean value theorem, and (79) that

Dt(x) = C0x
−2(log x)

c2−1
2 (log log x)c3(84)

exp

⎧⎨⎩− 1

2tξ2

(
log

[
1

y0

√
2 log x

t

]
+

1

2
log log

[
1

y0

√
2 log x

t

])2
⎫⎬⎭(

1 +O
(
(log log x)−

1
2

))
as x→∞, where C0 = C

(
x0e

rt
)2
.

Equalities (80), (82), and (84) show that stock price distribution densities in the Stein–
Stein, Heston, and Hull–White models are equivalent to regularly varying functions. Indeed,
for the Stein–Stein model, we have

(85) Dt(x) ∼ x−βtht(x), x→∞,
with

(86) βt = B3 and ht(x) = B0(log x)
− 1

2 eB2
√
log x,

and it is not hard to see that ht ∈ R0. For the Heston model, (85) is valid with

(87) βt = A3 and ht(x) = A0(log x)
− 3

4
+ qm

c2 eA2
√
log x.

The function ht defined in (87) is a slowly varying function. For the Hull–White model,
condition (85) holds with βt = 2 and

ht(x) = C0(log x)
c2−1

2 (log log x)c3(88)

× exp

⎧⎨⎩− 1

2tξ2

(
log

[
1

y0

√
2 log x

t

]
+

1

2
log log

[
1

y0

√
2 log x

t

])2
⎫⎬⎭ .

1Formula (82) was recently established for the stock price density in the correlated Heston model, and
a better error estimate O((log x)−1/2) was obtained in this formula (see [16]). Moreover, using the methods
developed in the present paper, formula (105) (see section 7) was extended to the implied volatility in the
correlated Heston model.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

632 ARCHIL GULISASHVILI

Here we also have ht ∈ R0. Note that the constants B3 and A3 in (86) and (87) depend on t
(see [21]).

Remark 6.1. It is also true that the functions ht in (86) and (87) are slowly varying with

remainder g(x) = (log x)−
1
2 . To prove this fact, put ha,b(x) = (log x)aeb

√
log x, where b > 0

and a ∈ R. Then the function ha,b is slowly varying with remainder g(x) = (log x)−
1
2 . This

follows from the following asymptotic formula:∣∣∣∣ha,b(λx)ha,b(x)
− 1

∣∣∣∣
=

(log x+ log λ)a
[
exp

{
b
√
log x+ log λ− b√log x}− 1

]
+ (log x+ log λ)a − (log x)a

(log x)a

+O
(
(log x)−

1
2

)
, x→∞.

Remark 6.2. This remark illustrates the smooth variation condition in Theorem 5.9. Here
we show that the stock price distribution density DT in the Stein–Stein model or in the Heston
model satisfies condition (66). Indeed, for the Stein–Stein model, we can take

h(u) = (B3 − 1) u−B2

√
u+

1

2
log u

and using Definition 5.2 prove that h ∈ SR1 and h(u) − u ∈ SR1. Similarly, for the Heston
model,

h(u) = (A3 − 1) u−A2

√
u+

(
3

4
− qm

c2

)
log u,

and hence h ∈ SR1 and h(u) − u ∈ SR1. Next, taking into account the previous statements
and applying Theorem 5.9, we can obtain tail-wing formulas with error estimates in the Stein–
Stein and the Heston models. However, for the stock price density in the Hull–White model,
condition (66) does not hold. This can be shown by using the explicit formula for the function
h that can be obtained from (88) and proving that h ∈ SR1 and h(u) − u ∈ SR0. In section
7, more refined methods will be developed. The tail-wing formulas obtained in section 7 are
applicable to all the special stochastic volatility models considered in the present paper.

The next theorem shows that the distribution of the stock price Xt in the Stein–Stein,
Heston, and Hull–White models is Pareto-type.

Theorem 6.3. Let F t be the complementary distribution function of the stock price Xt in
the Stein–Stein, Heston, or Hull–White models. Then the following formula holds:

(89) F t(y) ∼ y−αt h̃t(y)

as y →∞. For the Stein–Stein model, αt = B3−1 and h̃t(y) =
1

B3−1ht(y), where ht is defined

in (86). For the Heston model, we have αt = A3 − 1 and h̃(y) = 1
A3−1ht(y), where ht is given

by (87). Finally, for the Hull–White model, αt = 1 and h̃t = ht, where ht is defined by (88).
To prove Theorem 6.3, we integrate equalities (80), (82), and (84) on the interval [x,∞)

and take into account the following theorem due to Karamata: For all α < −1 and l ∈ R0,

(90)
xα+1l(x)∫∞
x tαl(t)dt

→ −α− 1
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as x→∞ (see Proposition 1.5.10 in [5]).
It follows from Theorem 6.3 that the Pareto-type index αt of the stock price Xt in the

Stein–Stein model is equal to B3 − 1. For the Heston model, we have αt = A3 − 1, and, for
the Hull–White model, the Pareto-type index satisfies αt = 1. Theorem 6.3 also describes the
corresponding slowly varying functions.

7. Asymptotic behavior of call pricing functions and tail-wing formulas with error
estimates. In this section, we find asymptotic formulas with error estimates for call pricing
functions and the implied volatility under the assumption that the distribution density of the
stock price is asymptotically equivalent to a regularly varying function.

Theorem 7.1. Let C be a call pricing function, and suppose that the distribution of the
stock price XT admits a density DT . Suppose also that

(91) DT (x) = xβh(x)(1 +O(ρ(x)))

as x → ∞, where β < −2, h is a slowly varying function with remainder g, and ρ(x) ↓ 0 as
x→∞. Then

(92) C(K) = e−rT 1

(β + 1)(β + 2)
Kβ+2h(K)[1 +O(ρ(K)) +O(g(K))]

as K →∞.
Proof. The following assertion (see Theorem 3.1.1 in [18] or problem 30 on p. 192 in [5])

will be used in the proof.
Theorem 7.2. Let L be a slowly varying function with remainder g, and let v be a positive

function on (1,∞) such that∫ ∞

1
λεv(λ)dλ <∞ for some ε ≥ 0.

Then ∫ ∞

1
v(λ)

L(λx)

L(x)
dλ =

∫ ∞

1
v(λ)dλ+O(g(x))

as x→∞.
It follows from (91) and Theorem 7.2 that

C(K) = e−rT

∫ ∞

K
(x−K)DT (x)dx = e−rT

∫ ∞

K
(x−K)xβh(x)dx(1 +O(ρ(K)))

= e−rTKβ+2h(K)

∫ ∞

1
(y − 1)yβ

h(Ky)

h(K)
dy(1 +O(ρ(K)))

= e−rTKβ+2h(K)

∫ ∞

1
(y − 1)yβdy[1 +O(ρ(K)) +O(g(K))]

as K → ∞. Now it is clear that formula (92) holds, and the proof of Theorem 7.1 is thus
completed.

Theorem 7.1 allows us to characterize the asymptotic behavior of the call pricing function
C(K) in the Stein–Stein and the Heston models.
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Theorem 7.3. (a) The following formula holds for the call pricing function C(K) in the
Stein–Stein model:

(93) C(K) = e−rT B0

(1−B3) (2−B3)
(logK)−

1
2 eB2

√
logKK2−B3

(
1 +O

(
(logK)−

1
4

))
as K →∞. The constants in (93) are the same as in (80).

(b) The following formula holds for the call pricing function C(K) in the Heston model:

(94) C(K) = e−rT A0

(1−A3) (2−A3)
(logK)−

3
4
+ qm

c2 eA2
√
logKK2−A3

(
1 +O

(
(logK)−

1
4

))
as K →∞. The constants in (94) are the same as in (82).

It is not hard to see that Theorem 7.3 follows from (80), (82), Remark 6.1, and Theorem
7.1.

Next, we turn our attention to the Hull–White model. Note that Theorem 7.3 cannot be
applied in this case since for the Hull–White model we have β = −2. Instead, we will employ
the asymptotic formula for fractional integrals established in [19, Theorem 3.7]. A special case
of this formula is as follows: Let b(x) = B(log x) be a positive increasing function on [c,∞)
with B′′(x) ≈ 1 as x→∞. Then

(95)

∫ ∞

K
exp{−b(x)}dx =

exp{−b(K)}
b′(K)

(
1 +O

(
(logK)−1

))
as K →∞. Formula (95) will be used in the proof of the following result.

Theorem 7.4. Let C be a call pricing function, and suppose that the distribution of the
stock price XT admits a density DT . Suppose also that

(96) DT (x) = x−2 exp{−b(log x)}(1 +O(ρ(x)))

as x→∞. Here the function b is positive, is increasing on [c,∞) for some c > 0, and is such
that the condition b(x) = B(log x). Moreover, B′′(x) ≈ 1 as x→∞, and ρ(x) ↓ 0 as x→∞.
Then

(97) C(K) = e−rT exp{−b(logK)} logK
B′(log logK)

[
1 +O

(
(log logK)−1

)
+O(ρ(K))

]
as K →∞.

Proof. We have

C(K) = e−rT

[∫ ∞

K
xDT (x)dx −K

∫ ∞

K
DT (x)dx

]
= e−rT

[∫ ∞

K
x−1 exp{−b(log x)}dx−K

∫ ∞

K
x−2 exp{−b(log x)}dx

]
(1 +O(ρ(K)))(98)

= e−rT

∫ ∞

K
x−1 exp{−b(log x)}dx(1 +O(ρ(K))) +O (exp{−b(logK)})

= e−rT

∫ ∞

logK
exp{−b(u)}dx(1 +O(ρ(K))) +O (exp{−b(logK)}) .(99)
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Using (95), we get

(100)

C(K) = e−rT exp{−b(logK)}
b′(logK)

(
1 +O

(
(log logK)−1

))
[1 +O(ρ(K))] +O (exp{−b(logK)})

= e−rT exp{−b(logK)} logK
B′(log logK)

[
1 +O

(
(log logK)−1

)
+O(ρ(K))

]
+O (exp{−b(logK)}) .

Since B′(x) ≈ x as x→∞, (100) implies (97).

The next assertion characterizes the asymptotic behavior of a call pricing function in the
Hull–White model.

Theorem 7.5. Let C be a call pricing function in the Hull–White model. Then

(101)

C(K) = 4Tξ2C0e
−rT (logK)

c2+1
2 (log logK)c3−1

× exp

⎧⎨⎩− 1

2Tξ2

(
log

[
1

y0

√
2 logK

T

]
+

1

2
log log

[
1

y0

√
2 logK

T

])2
⎫⎬⎭(

1 +O
(
(log logK)−

1
2

))
as K →∞. The constants in (101) are the same as in formula (80).

Proof. We will employ Theorem 7.4 in the proof. It is not hard to see using (84) that
formula (96) holds for the distribution density DT of the stock price in the Hull–White model.
Here we choose the functions b, B, and ρ as follows:

b(u) = − logC0− c2 − 1

2
log u− c3 log log u+ 1

2Tξ2

(
log

[
1

y0

√
2u

T

]
+

1

2
log log

[
1

y0

√
2u

T

])2

,

B(u) = − logC0− c2 − 1

2
u− c3 log u+ 1

2Tξ2

[
log

1

y0

√
2

T
+

1

2
u+

1

2
log

(
log

1

y0

√
2

T
+

1

2
u

)]2

,

and ρ(x) = (log log x)−
1
2 . It is clear that B′′(u) ≈ 1 and B′(u) ≈ u as u → ∞. Moreover,

using the mean value theorem, we obtain the following estimate:

(102)
1

B′(log logK)
− 4Tξ2

log logK
= O

(
(log logK)−2

)
as K →∞. Next, taking into account (97) and (102), we see that (101) holds.

This completes the proof of Theorem 7.5.

The following theorem concerns tail-wing formulas with error estimates under the restric-
tions imposed on the stock price density DT in Theorems 7.1 and 7.4.

Theorem 7.6. Suppose that the distribution of the stock price XT admits a density DT such
that

(103) DT (x) ≈ xβh(x)
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as x → ∞, where β < −2 and h is a slowly varying function. Let ψ be a positive function
with limK→∞ ψ(K) =∞. Then

I(K)

√
T√
2

=

√
logK + log

1

K2DT (K)
− 1

2
log log

1

K2DT (K)

−
√

log
1

K2DT (K)
− 1

2
log log

1

K2DT (K)

+O
(
(logK)−

1
2 ψ(K)

)
=

√
logK + log

1

Kβ+2h(K)
− 1

2
log log

1

Kβ+2h(K)
−

√
log

1

Kβ+2h(K)
− 1

2
log log

1

Kβ+2h(K)

+O
(
(logK)−

1
2 ψ(K)

)
as K →∞.

Proof. Theorem 7.6 can be established as follows. It is not hard to see that (103) and (90)
imply the following formula: C(K) ≈ Kβ+2h(K) as K → ∞. Therefore, C ∈ PF∞, and we
can apply Corollary 2.5 with C̃(K) = K2DT (K) or C̃(K) = Kβ+2h(K) to finish the proof of
Theorem 7.6.

A similar theorem holds for small values of the strike price.

Theorem 7.7. Suppose that the distribution of the stock price XT admits a density DT such
that

(104) DT (x) ≈ xγh
(
x−1

)
as x→ 0, where γ > −1 and h is a slowly varying function. Let τ be a positive function with
limK→0 τ(K) =∞. Then

I(K)

√
T√
2

=

√
log

1

K2DT (K)
− 1

2
log log

1

KDT (K)
−

√
log

1

KDT (K)
− 1

2
log log

1

KDT (K)

+O

((
log

1

K

)− 1
2

τ(K)

)

=

√
log

1

Kγ+2h (K−1)
− 1

2
log log

1

Kγ+1h (K−1)

−
√
log

1

Kγ+1h (K−1)
− 1

2
log log

1

Kγ+1h (K−1)

+O

((
log

1

K

)− 1
2

τ(K)

)

as K → 0.
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Proof. Theorem 7.7 can be derived from Theorem 3.7. Indeed, using (104) and (90), we
obtain the following formula: P (K) ≈ Kγ+2h

(
K−1

)
as K → 0. Next, applying Theorem 3.7

with P̃ (K) = K2DT (K) or P̃ (K) = Kγ+2h
(
K−1

)
, we see that Theorem 7.7 holds.

Theorems 7.6 and 7.7 imply sharp asymptotic formulas for the implied volatility in special
stochastic volatility models. For instance, the following assertions (they were established in
[21]) follow from Theorem 7.6:

1. Let us consider the implied volatility k �→ Î(k) in the uncorrelated Heston model as
a function of the log-strike k = log K

x0erT
. Then there exist positive constants A2 and

A3 such that, for every positive function ψ with limx→∞ ψ(x) =∞,

(105) Î(k) = β1k
1
2 + β2 + β3

log k

k
1
2

+O

(
ψ(k)

k
1
2

)
as k →∞, where

β1 =

√
2√
T

(√
A3 − 1−

√
A3 − 2

)
,

β2 =
A2√
2T

(
1√

A3 − 2
− 1√

A3 − 1

)
,

and

β3 =
1√
2T

(
1

4
− a

c2

)(
1√

A3 − 1
− 1√

A3 − 2

)
.

Explicit expressions for the constants A2 and A3 can be found in [21].
2. For the uncorrelated Stein–Stein model, there exist positive constants B2 and B3 such

that, for every positive function ψ with limx→∞ ψ(x) =∞,

Î(k) = γ1k
1
2 + γ2 +O

(
ψ(k)

k
1
2

)
as k →∞, where

γ1 =

√
2√
T

(√
B3 − 1−

√
B3 − 2

)
and

γ2 =
B2√
2T

(
1√

B3 − 2
− 1√

B3 − 1

)
.

Explicit expressions for the constants B2 and B3 can be found in [21].

Next, we turn our attention to the stock price density in the uncorrelated Hull–White
model. Since this density is not equivalent to a regularly varying function (this follows from
(84)), we cannot use Theorems 7.6 and 7.7 to characterize the asymptotic behavior of the
implied volatility. The next assertion provides an asymptotic formula which can be applied
to the implied volatility in the Hull–White model.

Theorem 7.8. Suppose that the distribution of the stock price XT admits a density DT .
Suppose also that

DT (x) ≈ x−2 exp{−b(log x)}
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as x → ∞, where the function b is positive, is increasing on [c,∞) for some c > 0, and is
such that b(x) = B(log x) with B′′(x) ≈ 1 as x → ∞. Let ψ be a positive function with
limK→∞ ψ(K) =∞. Then

I(K) =
1√
T

[√
2 logK −

√
2 log

1

K2DT (K)
− log log

1

K2DT (K)
+ 2 log

(
log logK

logK

)]
+O

(
(log logK)−1 ψ(K)

)
=

1√
T

[√
2 logK −

√
2b(logK)− log (b(logK)) + 2 log

(
log logK

logK

)]
+O

(
(log logK)−1 ψ(K)

)
as K →∞.

Remark 7.9. The stock price distribution density in the uncorrelated Hull–White model
satisfies the condition in Theorem 7.8. This can be checked using (84). Applying Theorem
7.8 and simplifying the resulting expressions, we can deduce the asymptotic formula for the
implied volatility in the Hull–White model that was obtained in [22]. More details can be
found in [22].

To prove Theorem 7.8, we first reason as in (99) and (100) to get the relation

C(K) ≈ exp{−b(logK)} logK
log logK

≈ K2DT (K)
logK

log logK

as K → ∞. It follows that C ∈ PF∞, and hence Corollary 2.5 can be applied. Simplifying
the resulting expressions, using the mean value theorem, and taking into account that b(u) ≈
(log u)2 as u→∞, we complete the proof of Theorem 7.8.

8. Appendix.
Proof of Theorem 3.3. The following well-known fact from the theory of convex functions

will be used in the proof: If U(x) is a convex function on (0,∞), then the second (distribu-
tional) derivative μ of the function U is a locally finite Borel measure on (0,∞), and any such
measure is the second derivative of a convex function U which is unique up to the addition of
an affine function (see, e.g., [32, Appendix, p. 500]). Kellerer’s theorem that appears in the
proof below concerns marginal distributions of Markov martingales (see [27]; see also [23, 30]).
This theorem is often used in the papers devoted to the existence of option pricing models
reproducing observed option prices (see [6, 9, 11] and the references therein; see also [12],
where the Sherman–Stein–Blackwell theorem is employed).

Let C be a pricing function, and denote by μT the distribution of the random variable
XT . Then the second distributional derivative of the functionK �→ erTC(T,K) coincides with
the measure μT . Our goal is to establish that conditions 1–5 in the formulation of Theorem
3.3 hold. It is clear that conditions 1 and 4 follow from the definitions. Condition 2 can be
established using the equivalence of (3) and (27). We will next prove that condition 3 holds.
This condition is equivalent to the following inequality:

(106)

∫ ∞

0
(x−K)+dμS

(
erSx

) ≤ ∫ ∞

0
(x−K)+dμT

(
erTx

)
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for all K ≥ 0 and 0 ≤ S ≤ T < ∞. The previous inequality can be established by taking
into account the fact that the process e−rtXt, t ≥ 0, is a martingale and applying Jensen’s
inequality. Finally, condition 5 follows from the estimate

C(T,K) ≤ e−rT

∫ ∞

K
xdμT (x)

and (27). This proves the necessity part of Theorem 3.3.

To prove the sufficiency, let us assume that C is a function such that conditions 1–5 in the
formulation of Theorem 3.3 hold. Consider the family of Borel probability measures {νT }T≥0

on R defined as follows: For every T ≥ 0, νT (A) = μT
(
erTA

)
if A is a Borel subset of [0,∞),

and νT ((−∞, 0)) = 0. In this definition, the symbol μT stands for the second distributional
derivative of the function K �→ erTC(T,K). Since condition 3 is equivalent to (106), we have

(107)

∫
R

(x−K)+dνS(x) ≤
∫
R

(x−K)+dνT (x)

for all K ≥ 0 and 0 ≤ S ≤ T <∞. Let ϕ be a nondecreasing convex function on [0,∞), and
denote by η its second distributional derivative. Then we have ϕ(x) =

∫∞
0 (x− u)+dη(u) +

ax+ b for all x ≥ 0, where a and b are some constants. Next, using (107) and (27), we obtain

(108)

∫
R

ϕ(x)dνS(x) ≤
∫
R

ϕ(x)dνT (x)

for all K ≥ 0, 0 ≤ S ≤ T < ∞. Hence, the family {νT}T≥0 is increasing in the convex
ordering. The reasoning leading from (107) to (108) is known (see [15] or Appendix 1 in
[8]). By Kellerer’s theorem (Theorem 3 in [27]), (108) and (27) imply the existence of a
filtered probability space (Ω,F ,Ft,P

∗) and of a Markov (Ft,P
∗)-martingale Y such that the

distribution of YT coincides with the measure νT for every T ≥ 0. Now put XT = erTYT ,
T ≥ 0. It follows that the measure μT is the distribution of the random variable XT for every
T ≥ 0. This produces a stock price process X such that the process e−rtXt is a martingale.
Next, we see that condition 4 implies μ0 = δx0 , and hence X0 = x0 P

∗-a.s. Taking into account
inequality (27), we define the following function:

(109) V (T,K) =

∫ ∞

K
xdμT (x)−K

∫ ∞

K
dμT (x) = E

∗ [(XT −K)+
]
.

It is clear that the second distributional derivative of the functionK �→ V (T,K) coincides with
the measure μT . Therefore, e

rTC(T,K) = V (T,K) + a(T )K + b(T ) for all T ≥ 0 and K ≥ 0,
where the functions a and b do not depend on K. Since limK→∞C(T,K) = 0 (condition 5)
and limK→∞ V (T,K) = 0, we see that a(T ) = b(T ) = 0, and hence C(T,K) = e−rTV (T,K).
It follows from (109) that C is a call pricing function.

This completes the proof of Theorem 3.3.
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Affine Point Processes and Portfolio Credit Risk∗
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Abstract. This paper analyzes a family of multivariate point process models of correlated event timing whose
arrival intensity is driven by an affine jump diffusion. The components of an affine point process
are self- and cross-exciting and facilitate the description of complex event dependence structures.
ODEs characterize the transform of an affine point process and the probability distribution of an
integer-valued affine point process. The moments of an affine point process take a closed form. This
guarantees a high degree of computational tractability in applications. We illustrate this in the
context of portfolio credit risk, where the correlation of corporate defaults is the main issue. We
consider the valuation of securities exposed to correlated default risk and demonstrate the signifi-
cance of our results through market calibration experiments. We show that a simple model variant
can capture the default clustering implied by index and tranche market prices during September
2008, a month that witnessed significant volatility.

Key words. self-exciting point process, affine jump diffusion, Hawkes process, transform, portfolio credit deriva-
tive, correlated default, index and tranche swap
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1. Introduction. The collapse of Lehman Brothers brought the financial system to the
brink of a breakdown. The dramatic repercussions point to the existence of feedback phenom-
ena that are channeled through the complex web of informational and contractual relationships
in the economy. Lehman was an important node in a network of derivative traders. It had
bought and sold default insurance on a large number of firms and was itself a reference en-
tity in countless other insurance contracts. Its downfall triggered payments that forced some
insurance sellers into default, leaving the corresponding protection buyers with losses. It also
exposed the counterparties to the contracts Lehman itself had written.

This and related episodes motivate the design of models of correlated default timing that
incorporate the feedback phenomena that plague credit markets. This paper analyzes a family
of computationally tractable self-exciting point processes that can capture event feedback. The
future evolution of a self-exciting point process is influenced by the timing of past events and
their marks, for example, the financial loss they caused. This feature takes account of the
direct impact of events. It also generates a dependence structure between arrival rates and
losses, a property that is empirically well documented.
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Our stepping stone is the Hawkes process, perhaps the most parsimonious self-exciting
point process. The conditional event arrival rate or intensity of a Hawkes process jumps
in response to events and tends toward a target level in the absence of an event. While
the Hawkes process is widely used in a range of disciplines, its distributional properties are
poorly understood. We develop these properties, exploiting the fact that the two-dimensional
process consisting of a Hawkes process and its intensity is Markov. The structure of the
associated infinitesimal generator leads to a Dynkin formula and closed expressions for the
moments of the Hawkes intensity. We show that a transform of the Hawkes process satisfies
a certain partial integral differential equation (PIDE). The solution to that equation turns
out to be an exponentially affine function of the initial value of the two-dimensional process,
whose coefficients satisfy a system of ODEs. Analysis of the transform leads to ODEs that
characterize the probability distribution of a Hawkes process. We obtain closed formulae for
the moments of the process.

The transform, distribution, and moment formulae generate computational tractability for
a range of applications in portfolio credit risk. To illustrate, we use a Hawkes process to model
the cumulative loss due to default in a portfolio of firms. The jump times represent default
times, and the jump magnitudes represent the random losses at default. This formulation
captures the impact of a default on the surviving names. It also incorporates the negative
correlation between default and recovery rates. The transform formulae facilitate the valua-
tion, hedging, and calibration of a portfolio credit derivative, which is a security whose payoff
is a specified function of the portfolio loss, and which provides insurance against default losses
in the portfolio. An index swap, for example, pays any portfolio losses before the contract
maturity. A tranche swap pays a slice of the portfolio loss specified by a lower and an upper
attachment point. Our market calibration experiments, which are based on index and tranche
price data observed before and after Lehman’s collapse, indicate the empirical significance of
the self-exciting property of the loss process. An empirical analysis demonstrates that the
parsimonious Hawkes process can capture the default correlation implied by credit market
rates on each trading day in September 2008, a month that witnessed dramatic volatility.
This is a significant improvement over the industry standard copula model.

The insight into the probabilistic structure of the Hawkes process leads us to consider an
extension to a multivariate point process whose intensity is driven by an affine jump diffusion
process that represents a vector of stochastic risk factors. The variation of the factors generates
diffusive and jump volatility of conditional event arrival rates. The point process itself can
be a risk factor so that the point process components are self- and cross-exciting. The basic
transform, distribution, and moment characterization arguments developed for the Hawkes
process extend to this family of affine point processes.

While this article highlights derivatives valuation applications, the self-exciting point pro-
cesses considered here are also potential tools for the risk management of corporate debt
portfolios, for which event feedback and the dependence between default and recovery rates
are significant issues. For example, Das et al. [14] test a doubly stochastic model whose fea-
tures are similar to those of the models endorsed by the regulatory authorities to estimate
portfolio credit risk. In a doubly stochastic model event times are conditionally independent.
Das et al. [14] find evidence of historical default clustering in excess of that implied by the
model they tested. This suggests that doubly stochastic models underestimate risk capital.
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A self-exciting point process model implies a more realistic degree of default clustering. It
also accounts for the dependence between default and recovery rates, whose importance is
emphasized in Basel II’s pillar I guidelines; see [5].

The point processes examined in this paper facilitate a top-down approach to portfolio
credit risk, in which the portfolio loss process is specified without reference to the constituent
names. There are other examples of this approach in the literature. Arnsdorf and Halperin [2]
describe arrivals by a nonlinear death process and its generalizations. Brigo, Pallavicini, and
Torresetti [9] model events by a mixed Poisson process and its extensions. Cont and Minca
[12] describe arrivals by a nonhomogeneous Markov chain. Davis and Lo [15] model events
by a piecewise deterministic Markov process. Ding, Giesecke, and Tomecek [16] propose
a time-changed linear birth process as a model of arrivals. In [28], defaults are driven by
independent Poisson processes that model idiosyncratic, sector specific, and economy-wide
events. Lopatin and Misirpashaev [29] introduce a point process model with an intensity whose
drift is modulated by the portfolio loss. The family of loss point processes proposed in this
paper is distinct from, or in some special cases encompasses, the models introduced in these
contributions. This paper features multivariate, interacting point processes with stochastic
recoveries, and correlated arrival and recovery rates. Calibration experiments establish the fit
of a basic model variant to the market data in September 2008.

The top-down specification of the portfolio loss process generates computational advan-
tages for portfolio derivatives valuation. Constituent name hedging requires the sensitivities
of the portfolio derivative price with respect to changes in the prices of the single-name deriva-
tives referenced on the constituents. The sensitivities determine the amount of single-name
protection on each portfolio constituent to be bought or sold in order to neutralize portfolio
derivative price fluctuations due to small changes in the constituent risks. Giesecke, Goldberg,
and Ding [20] develop a random thinning approach to estimate these hedges for a given port-
folio loss process. For September 2008, they demonstrate the effectiveness of this approach
for the Hawkes process. The empirical results indicate that a top-down model enables better
hedging than the industry standard copula model.

Section 2 develops the distributional properties of the Hawkes process. Section 3 applies
these results to the valuation of credit derivatives. Market calibration experiments demon-
strate the significance of the self-exciting feature and the fit of the Hawkes model. Section 4
provides further parametric examples of multivariate self- and cross-exciting point processes.
Section 5 concludes. The appendix contains the proofs.

2. Hawkes process. Consider a sequence of default stopping times 0 < T1 < T2 < . . .
that are defined on a complete probability space (Ω,F , P ) with right-continuous and complete
information filtration F = (Ft)t≥0. The nature of the probability measure P depends on the
application. In risk management applications, P is the actual or statistical measure. In
valuation applications, P is a risk-neutral pricing measure, relative to which the discounted
price of a traded security is a martingale. The financial loss at Tn is given by a random
variable �n ∈ FTn . The sequence (Tn, �n) generates a nonexplosive default counting process
N given by Nt =

∑
n≥1 1{Tn≤t} and a loss point process L defined by Lt =

∑
n≥1 �n1{Tn≤t}.

We propose to specify the processes N and L directly through a conditional arrival rate
or intensity λ and a distribution ν on (0,∞) for the loss �n at an event. We assume that the
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Figure 1. Annual defaults of Moody’s rated U.S. firms between January 1970 and November 17, 2008.
Source: Moody’s Default Risk Service. The peak in 1970 represents a cluster of 24 railway defaults triggered by
the collapse of Penn Central Railway on June 21, 1970. The fallout of the 1987 crash is indicated by the peak
in the early 1990s. The burst of the internet bubble caused many defaults during 2001–2002. From a trough in
2007, default rates increased significantly in 2008.

jump transform
∫
eωzdν(z) exists and is finite for complex ω and admits a finite derivative∫

zeωzdν(z). The intensity follows a strictly positive stochastic process that describes the
conditional mean default rate in the sense that E(Nt+Δ − Nt | Ft) ≈ λtΔ for small Δ > 0.
This means that N − ∫ ·

0 λsds is a local martingale relative to P and F. The process followed
by λ completely determines the conditional distribution of N . We analyze a family of models
for λ whose features are empirically motivated.

2.1. Empirical motivation. Empirical observation dictates the properties of the stochastic
process followed by λ. Most importantly, λ must replicate the clustering of defaults seen in
Figure 1, which is due to the dependence of the default times Tn. The dependence is a result
of the sensitivity of firms to common economic risk factors that vary stochastically through
time. It is also caused by the informational and contractual linkages between firms, which
provide a channel for the propagation of financial distress from one firm to another. The
existence of these feedback phenomena is indicated by the ripple effects associated with the
default of Lehman Brothers on September 15, 2008 and is further empirically documented in
[4], [11], [17], [24], [27], and others. We propose to model the impact of a default on the other
firms by ramping up the intensity at an event. This amounts to including the default process
itself as a risk factor.

Another important empirical feature is the negative correlation between default and re-
covery rates. During periods with elevated default rates, creditors tend to recover less at a
default than during periods with relatively few defaults. While documented by Altman et al.
[1] and many others, this property has been largely ignored in a theoretical literature that is
focused on modeling default timing. We propose to capture this property by modeling the
magnitude of the response of the intensity to a default as a linear function of the realized loss
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Figure 2. Sample paths of the intensity (1) and the associated loss process L. A jump in the intensity
represents the impact of a default. The jump size is the product of the loss at default and the sensitivity
parameter δ = 1. The loss at default is drawn from a uniform distribution on {0.4, 0.6, 0.8, 1}. The rate κ = 5
controls the exponential decay after an event. The reversion level c = λ0 = 0.7.

at an event. The larger the loss, the larger the impact of an event on the other firms, and the
bigger the increase of the intensity at an event.

2.2. Specification. We examine a basic intensity model that incorporates the features
described above. We suppose events arrive with intensity λ given by

λt = u(t) +

∫ t

0
h(t− s) dLs.(1)

The first to default intensity u(t) = c+ e−κt(λ0− c) is a deterministic function of time, c > 0,
λ0 > 0, and the impact of a loss on the intensity is governed by the function

h(v) = δe−κv, v ≥ 0,(2)

with κ ≥ 0 and δ ≥ 0. As illustrated in the sample path of (λ,L) shown in Figure 2, the
randomness in the default rate is driven by two sources of uncertainty: the timing of events
and the recovery at these events. At a default, the intensity ramps up by the realized loss
scaled with the sensitivity parameter δ. The lower the recovery, the higher the jump of the
default rate. The impact of an event decays exponentially over time with rate κ. The reversion
level is c. It follows that defaults are positively self-affecting, or self-exciting. Further, default
and recovery rates are negatively correlated. Despite its parsimony, in section 3.3 we show
that the basic model (1) is very effective at replicating the clustering of defaults implied by
market prices.

While parsimonious and empirically motivated, the intensity model (1) and its extensions
discussed in section 4 may not be appropriate for relatively small portfolios. This is because
(1) generates a point process (N,L) that does not terminate when all firms in the portfolio are
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Figure 3. Sample paths of the Poisson and Hawkes processes. A bar indicates the number of arrivals in
a given year. While the Poisson arrivals are evenly distributed over time due to the order statistics property,
the Hawkes arrivals are clustered thanks to the self-exciting property. For the Hawkes process, c = λ0 = 1,
κ = 1.5, δ = 2, and the loss at default has a uniform distribution ν on {0.4, 0.6, 0.8, 1}. The Poisson process is
the special Hawkes process for which δ = 0 so that λt = u(t). We choose c = λ0 = 10.57 to match the expected
number of Hawkes events over 30 years.

in default. This feature tends to be innocuous for the large diversified portfolios in practice,
which can have as many as several thousand names, and for which the likelihood of total
default is typically negligible. It is fully appropriate only for portfolios in which defaulted
names are replaced with new names, as may be the case for collateralized debt obligations
with actively managed collateral pools.

The intensity λ governs the common event times of N and L. While the jumps of the
default process N are unit-sized, the jumps of the loss process L are drawn from the distribu-
tion ν on (0,∞) of loss given default. The two-dimensional process J = (L,N)� is a Hawkes
process; see [22] and [23]. Variants of the Hawkes process have been applied to a range of
problems in science and engineering; see [13] for a sample of these. They have only recently
been used in financial economics. For example, Bowsher [7] fits different Hawkes models to
security trade data. Surprisingly, despite these applications, the distributional properties of
Hawkes-type processes are poorly understood. We establish these properties below and extend
the Hawkes process to a broad family of self-exciting point processes.

We note two special cases. If κ = 0 in the specification (1), then λ is constant between
events, and so J is a birth process. If δ = 0, then J is a Poisson process whose intensity u(t)
evolves deterministically through time and whose interarrival times are independent. Figure
3 contrasts the sample paths of the Poisson and Hawkes processes. It shows how the self-
exciting property of the Hawkes process generates arrivals that are overdispersed relative to
Poisson arrivals. The resulting event clusters are strikingly similar to those of the empirical
default process in Figure 1. The parameter δ in (1) allows us to directly control the frequency
of these clusters. The parameter κ governs their magnitude.

While the Hawkes process induces clustered arrivals, it does not explode, and therefore
the integral At =

∫ t
0 λsds is finite for all t. To see this, it suffices to consider the case κ = 0,

when λ has nondecreasing sample paths. Then N is a birth process, which is nonexplosive
and integrable. From this we can conclude that Nt is integrable also in the case κ > 0.
This, in turn, implies that At is integrable, and that the compensated local jump martingale
M = N −A is a martingale. To see this, we can appeal to Corollary 3 in Chapter II.6 of [30],
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which implies that M is a martingale if [M,M ] is integrable. But [M,M ] = N . Further, we
obtain that E(M2

t ) = E(Nt) = E(At).

2.3. Dynkin formula. While the process J itself does not have the Markov property, the
process Y = (λ, J)� is a Markov process in a state space D = R+ × (R+ × N). Y has an
infinitesimal generator D, defined at a function g : D → R with continuous partial derivative
gλ(λ, x), by

(Dg)(λ, x) = κ(c− λ)gλ(λ, x) + λ

∫
[g(λ+ δz, x + (z, 1)�)− g(λ, x)]dν(z).(3)

Proposition 2.1. If the expectation

E

(∫ t

0
|(Dg)(λs, Js)− κ(c− λs)gλ(λs, Js)|ds

)
(4)

is finite for each t, then for each t ≤ T we have a Dynkin formula

E(g(λT , JT ) | Ft) = g(λt, Jt) + E

(∫ T

t
(Dg)(λs, Js)ds

∣∣∣Ft

)
.(5)

Proposition 2.1 provides a formula expressing the conditional expectation of a function g
of the Markov process Y = (λ, J)� in terms of the infinitesimal generator (3). This formula is
useful for functions g for which the expectation of (Dg)(λs, Js) can be calculated. We exploit
it to obtain explicit formulae for the first and second moments of the intensity. Consider the
function g(λ, x) = λ. We calculate

E((Dg)(λs, Js)) = E(κ(c − λs)) + E

(
λs

∫
δzdν(z)

)
= κc+ μE(λs),

where μ = δ� − κ and � =
∫
zdν(z) is the expected loss at default. Letting m(t) = E(λt),

equation (5) implies that

m(t) = E(g(λt, Jt)) = λ0 + κct+ μ

∫ t

0
m(s)ds.(6)

In other words, the mean intensity solves the ODE m′(t) = κc+ μm(t) with initial condition
m(0) = λ0. The solution is

m(t) = E(λt) =

(
κc

μ
+ λ0

)
eμt − κc

μ
(7)

provided that μ �= 0. Equation (7) shows that for μ > 0, the mean intensity grows exponen-
tially (without bound) in time. For μ → 0, the mean intensity grows linearly with time as
limμ→0E(λt) = λ0 + κct. For μ < 0, the mean intensity decays exponentially with time to
the long-run mean

lim
t→∞E(λt) = −κc

μ
> 0.(8)
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We apply a similar argument to the function g(λ, x) = λ2 to show that the second moment
v(t) = E(λ2t ) solves the ODE

v′(t) = ρm(t) + 2μv(t)(9)

with initial condition v(0) = λ20, where ρ = 2κc + δ2
∫
z2dν(z). Here, we assume that ν has

finite second moment. For μ �= 0, the solution to (9) is given by

v(t) =
1

2μ2
[
κcρ(eμt − 1)2 + 2μλ0e

μt(ρ(eμt − 1) + μλ0e
μt)
]
.(10)

We conclude that for μ < 0, the long run variance of the intensity satisfies

lim
t→∞Var(λt) = lim

t→∞(v(t)−m2(t)) =
κcδ2

2μ2

∫
z2dν(z).(11)

2.4. Transform. Along with the distribution ν of the loss at default, the intensity speci-
fication (1) determines the distribution of the processes N and L. We develop a formula for
a transform of the point process J = (L,N)� that includes as special cases the Laplace and
Fourier transforms. The transform can be inverted to obtain the corresponding distribution.

Let u ∈ C
2−, the set of pairs of complex numbers with nonpositive real part. Express the

conditional transform E(exp(u ·JT ) | Ft) as f(t, λt, Jt) for some complex-valued function f on
[0, T ]×D. For f(t, λt, Jt) to be a martingale, its drift must vanish. This means that f must
satisfy the PIDE

0 = ft(t, λ, x) + (Df)(t, λ, x)

with boundary condition f(T, λ, x) = exp(u · x), where (Df)(t, λ, x) is obtained by applying
the generator D to the real and imaginary parts of f(t, ·, ·). This PIDE reduces to a system
of ODEs when f is taken to be an exponentially affine function of λ and x. This argument is
made precise in the next result.

Proposition 2.2. The transform of the point process J = (L,N)� is given by

E(exp(u · JT ) | Ft) = exp(a(t) + b(t)λt + u · Jt),(12)

where t ≤ T , u ∈ C
2−, and the coefficient functions a(t) = a(u, t, T ) and b(t) = b(u, t, T )

satisfy the following ODEs:

∂tb(t) = κb(t) + 1− θ(δb(t) + u · (1, 0)�) exp(u · (0, 1)�),(13)

∂ta(t) = −κcb(t)(14)

with boundary conditions a(T ) = b(T ) = 0, where θ is the jump transform

θ(ω) =

∫
eωzdν(z), ω ∈ C.(15)

The argument behind Proposition 2.2 immediately extends to more general functionals
of Y = (λ, J)�. For example, the argument leads to the transform of the vector Y and not
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just its component J . Section 4 covers this extension in a more general setting with multiple
stochastic risk factors driving the intensity λ of J . We then obtain the joint transform of the
point process and the risk factors. This yields, in particular, the transform of the intensity of
the point process.

In some cases the ODEs (13) and (14) can be solved analytically—for example, when
κ = 0 and J is a birth process. In the general case, the ODEs are quickly solved numerically,
using the Runge–Kutta algorithm, for example.

2.5. Moments. By differentiating the conditional transform of J with respect to u and
evaluating the derivative at u = 0, we find the conditional expectation

E(v · JT | Ft) = A(0, t, T ) + B(0, t, T )λt + v · Jt(16)

for v ∈ R
2 and t ≤ T , where the functions A(t) = A(u, t, T ) and B(t) = B(u, t, T ) satisfy

∂tB(t) = κB(t)− (δB(t) + v · (1, 0)�)θ′(δb(t)) − v · (0, 1)�θ(δb(t)),(17)

∂tA(t) = −κcB(t)(18)

with boundary conditions A(T ) = B(T ) = 0. The derivative of the jump transform is

θ′(ω) =
∫
zeωzdν(z), ω ∈ C,

and a(t) and b(t) satisfy (13) and (14) and the relevant boundary conditions. Since u = 0, we
can choose a(t) = b(t) = 0. Under mild assumptions on the distribution ν (continuity of θ′(ω)
suffices), this solution is unique and (17) simplifies to

∂tB(t) = (κ− δ�)B(t)− v · (�, 1)�,(19)

where � =
∫
zdν(z) is the expected loss at default. Provided that μ = δ� − κ �= 0, we obtain

the following explicit solutions:

B(t) = 1

μ
v · (�, 1)�(eμ(T−t) − 1),(20)

A(t) = 1

μ
v · (�, 1)�κc

(
1

μ
(eμ(T−t) − 1)− T + t

)
.(21)

For μ �= 0, the mean number of events takes the form

E(Nt) = c1(e
μt − 1) + c2t,

where c1 = (κc + μλ0)/μ
2 and c2 = −κc/μ. If κ = 0 and N is a birth process, then E(Nt)

grows exponentially in t at rate δ� > 0. If κ > 0, then the growth of E(Nt) is determined by
the sign of μ. If μ > 0, then we have exponential growth at rate μ that is counteracted by
linear decay at rate c2. If μ < 0, then we have linear growth at rate c2 = limt→∞E(λt) that
is counteracted by exponential decay at rate μ.

Higher order conditional moments of JT can be calculated similarly, by successively differ-
entiating the transform. Thus, we obtain a closed form expression for conditional expectations
of the form E(f(JT ) | Ft), where f : R+ × N → R is an integrable function that is polyno-
mial. We can estimate the conditional expectation E(h(JT ) | Ft) for any continuous, integrable
function h on R+ × N by approximating h with f .
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2.6. Transform inversion. The transform of JT can be inverted using fast Fourier trans-
form techniques to obtain the conditional distribution given Ft of NT and LT for all future
dates T . The distribution of NT can also be obtained directly. Proposition 2.2 implies that
the conditional probability generating function of the Hawkes process takes the form

E(vNT−Nt | Ft) = exp(c(t) + d(t)λt)(22)

for v ∈ (0, 1) and t ≤ T , where the coefficient functions

c(t) = c(v, t, T ) = a((0, log v)�, t, T ),

d(t) = d(v, t, T ) = b((0, log v)�, t, T )

satisfy the ODEs

∂td(t) = κd(t) + 1− vθ(δd(t)),(23)

∂tc(t) = −κcd(t)(24)

with boundary conditions c(T ) = d(T ) = 0. Equations (23)–(24) determine the distribution
of the Hawkes process. Expansion of the left-hand side of (22) into a power series shows that
for n = 0, 1, 2, . . .

ϕt(n, T ) = P (NT −Nt = n | Ft) =
1

n!
∂nv exp(c(v, t, T ) + d(v, t, T )λt)|v=0.(25)

In practice, the calculation of these probabilities calls for the solution of a system of ODEs
derived from (23)–(24). In case n = 0 we get

ϕt(0, T ) = exp(C(t) +D(t)λt),

where the functions D(t) = d(0, t, T ) and C(t) = c(0, t, T ) satisfy the ODEs

∂tD(t) = κD(t) + 1,(26)

∂tC(t) = −κcD(t)

with boundary conditions C(T ) = D(T ) = 0. We obtain the formula

ϕt(0, T ) = exp

(
c− λt
κ

(1− e−κ(T−t))− c(T − t)
)

(27)

provided that κ > 0. Note that the probability (27) of no events during (t, T ] does not explic-
itly depend on the clustering parameter δ (this parameter influences only the current intensity
value λt). It agrees with the probability of no events during (t, T ] for an inhomogeneous Pois-
son process with intensity u(t) = c + (λ0 − c) exp(−κt). This is because between events, the
Hawkes intensity (1) is deterministic and governed by u(t).

For n ≥ 1 the probability (25) depends on the clustering parameter δ. Using Faà di
Bruno’s formula (chain rule for higher derivatives), we get

ϕt(n, T ) = ϕt(0, T )
∑ 1

m1! · · ·mn!

n∏
k=1

(
Ck(t) +Dk(t)λt

k!

)mk

,(28)
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where the sum is over all n-tuples (m1, . . . ,mn) of nonnegative integers that satisfy the con-
straint m1 + 2m2 + · · ·+ nmn = n and the functions

Dk(t) = ∂kvd(v, t, T )|v=0,

Ck(t) = ∂kv c(v, t, T )|v=0

satisfy the ordinary differential equations

∂tDk(t) = κDk(t)− kEk−1(t),(29)

∂tCk(t) = −κcDk(t)(30)

with boundary conditions Ck(T ) = Dk(T ) = 0, where Ek(t) = ∂kv θ(δd(v, t, T ))|v=0 can be
calculated by another application of Faà di Bruno’s formula,

Ek(t) =
∑ k!

m1! · · ·mk!
θ(m1+···+mk)(δD(t))

k∏
i=1

(
δDi(t)

i!

)mi

,(31)

and the sum is over all k-tuples (m1, . . . ,mk) of nonnegative integers that satisfy m1+2m2+
· · · + kmk = k. Equations (29) and (30) are solved numerically unless δ = 0, in which case
N is a time-inhomogeneous Poisson process with intensity u(t). Klimko [25] provides a fast
algorithm for the calculation of the summands in Faà di Bruno’s formula, which can be applied
to treat the computation of (28) and (31) efficiently.

3. Portfolio credit derivatives. We use the results developed above to analyze portfolio
credit derivatives, which expose an investor to the risk of correlated default in a reference
portfolio of credit-sensitive instruments such as loans or bonds. We consider index and tranche
swaps, which are the most popular portfolio derivatives. These are bilateral contracts, in
which one party provides default protection on the reference portfolio, and the other party
pays a premium for this protection. The basic valuation problem, addressed below, is to
determine the fair premium, which is governed by the correlated default timing in the reference
portfolio. Through a market calibration, we show that the basic intensity model (1) captures
the correlated default risk implied by the premia offered in the market.

3.1. Valuation. Index and tranche swaps are based on a portfolio whose n constituent
securities have a notional 1, maturity date T , and premium payment dates (tm). The loss at
the kth default is �k ∈ [0, 1]. The swap is specified by a lower attachment point K ∈ [0, 1]
and an upper attachment point K ∈ (K, 1]. An index swap has attachment points K = 0
and K = 1. The swap notional K = n(K −K). The protection seller covers portfolio losses
as they occur, given that the cumulative losses are larger than K but do not exceed K. The
cumulative payments at time t, denoted Ut, are given by the “call spread”

Ut = (Lt −Kn)+ − (Lt −Kn)+.(32)

The value at time t ≤ T of these payments is given by

Dt = E

(∫ T

t
e−r(s−t)dUs

∣∣∣Ft

)
,(33)
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where, here and below, the reference measure P is a risk-neutral pricing measure with respect
to an interest rate r > 0. By Stieltjes integration by parts, we can conveniently express the
value Dt in terms of conditional expectations of U :

Dt = e−r(T−t)E(UT | Ft)− Ut + r

∫ T

t
e−r(s−t)E(Us | Ft) ds.(34)

The protection buyer receives the loss payments and, in return, makes premium payments
to the protection seller. Each premium payment has two parts. The first part is an upfront
payment, which is expressed as a fraction F of the tranche notional K. For an index swap,
F = 0. The second part consists of payments that are proportional to the premium notional
It, which is given by n − (Nt ∧ n) = n + (Nt − n)+ − Nt for an index swap and K − Ut for
a tranche swap with K < 1. Let cm be the day count fraction for the period m, roughly 1/4
for quarterly payments. Then, with S denoting the running premium rate, the value at time
t ≤ T of the premium payments is given by

Pt(F, S) = FK + S
∑
tm≥t

e−r(tm−t)cmE(Itm | Ft).(35)

For a fixed upfront rate F , the running spread St at time t is the solution S = St to
the equation Dt = Pt(F, S). Setting Dt = Pt(F, S) for a fixed S gives a value F = Ft for
the time t upfront rate Ft. Formulae (34) and (35) indicate that these rates depend only
on call options E((v · Js − c)+ | Ft) with various strikes c, maturities s ∈ (t, T ], and values
v ∈ {(0, 1)�, (1, 0)�}. Thus, to value a swap we need only calculate the values of options
on N and L. One approach to calculating these values is to integrate the option payoff
function (x − c)+ against the point process distribution. The latter is obtained by inverting
the point process transform in Proposition 2.2. In the case of N , the inverse transform is
given by formula (25). Alternatively, we can invert the transform of the option price, which is
a function of the transform of the point process and that of the payoff function; see [26]. We
may also apply the saddlepoint approximations developed by Glasserman and Kyoung-kuk
[21] for affine jump diffusion models. These are applicable here since the transform of Js is
an exponentially affine function of the intensity.

The valuation formulae developed above lead to approximate tranche and index rates to
the extent that the distribution of the loss process L, which does not terminate at the nth
default in the portfolio, has nonnegligible mass beyond the total portfolio notional n. This is
mainly relevant for super senior tranches, which depend on the tail of the loss distribution.
As pointed out in section 2.2 above, the approximation tends to be accurate for the large
diversified reference portfolios typical in practice.1 Note also that in this case, the index swap
spread can be expressed in terms of E(v · Js | Ft); from formula (16), we then obtain a closed
formula for the index rate.

1Exact valuation results can always be obtained at an additional computational expense. To this end, we
replace N by Nn = N ∧n and L by Ln =

∑Nn

k=1 �k in the formulae. The distribution of the process Nn, which
has intensity λ1{N<n}, is easily calculated from the distribution of N : we have P (Nn

s = k) = P (Ns = k) for
all k < n and P (Nn

s = n) = P (Ns ≥ n). The calculation of the distribution of Ln requires further steps. If,
for example, the losses �k are independent and identically distributed (i.i.d.) and independent of Nn, then this
amounts to a convolution operation.
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Figure 4. Annualized premium for protection against default losses in a portfolio of 100 equally weighted
securities as implied by the model specification (1), stated in basis points (1 basis point = 10−4). We assume
quarterly premium payments and set λ0 = c = 1. The risk-free rate r = 5%. The loss at default �n is uniformly
distributed on {0.24, 0.96} with expectation � = 0.6. Left panel: Index swap spread as a function of the maturity
date T for each of several values of the clustering parameter δ. The decay rate κ = 1. Right panel: 5-year index
spread as a function of δ for each of several values of κ.

3.2. Numerical examples. To develop some intuition for the model parameters, we pro-
vide numerical examples of index and tranche rates. Based on the approximate index swap
spread formula, the left panel of Figure 4 shows the index swap spread S0 as a function of
the maturity date T for each of several values of the clustering parameter δ. For δ = 0,
the portfolio loss process is a compound Poisson process, which generates a flat spread term
structure. All else fixed, the higher δ, the more frequent the event clusters, the higher the
spread, and the steeper the term structure. The right panel of Figure 4 shows the T = 5 year
index swap spread as a function of δ for each of several values of the decay rate κ. For κ = 0,
the portfolio loss process is a compound birth process. All else equal, the higher κ, the faster
the impact of an event decays, and the smaller the chance of large losses.

The tranche swap rate increases with maturity and decreases with seniority. An increase in
the lower attachment point, K, leads to greater subordination (that is, buffer capital) available
to the protection seller, who covers only the losses in excess of K. The left panel of Figure
5 shows the upfront tranche swap rate2 F0 as a function of the clustering parameter δ for
each of several sets of standard attachment points, assuming the running spread S0 = 0. The
sensitivity of the tranche rate to δ increases with the seniority of the tranche. This is because
senior tranches are most exposed to default clustering, the frequency of which is controlled
by δ. The bigger δ, the fatter the tail of the portfolio loss distribution. Since relatively few
defaults suffice to wipe out the subordinated tranches, the frequency of clusters is less relevant
for the pricing of these tranches. The right panel of Figure 5 shows the upfront tranche rate
as a function of the volatility (standard deviation) of the loss at default �n. The sensitivity to
the volatility of the loss increases with seniority.

2See section 3.3 for details on the method of computation.
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Figure 5. Upfront premium rate for protection against default losses in a tranche of a portfolio of 100
equally weighted securities as implied by the model specification (1). We assume the running spread is equal
to zero. The maturity T = 5 years. We set λ0 = c = 1 and κ = 1. The risk-free rate r = 5%. Left panel:
Tranche upfront rate as a function of the clustering parameter δ for each of several sets of standard attachment
points. The loss at default �n is uniformly distributed on {0.24, 0.96} with expectation � = 0.6. Right panel:
Tranche upfront rate as a function of the volatility of the loss at default �n for each of several sets of standard
attachment points. The expected loss at default is 0.6. The clustering parameter δ = 1.

3.3. Market calibration. We perform market calibration experiments to illustrate the
empirical importance of the self-exciting feature. To this end, we fit the parameters of the
specification (1) from index and tranche swap market rates for each of the 21 trading days
of September 2008. This month witnessed significant volatility due to the demise of Fannie
Mae and Freddy Mac on the 8th, the default of Lehman Brothers on the 15th, the collapse
of American International Group on the 16th, the problems appearing at Morgan Stanley on
the 18th, and the default of Washington Mutual on the 25th. The swap market rates are for
the T = 5 year maturity, and are obtained from UBS. They reference the CDX High Yield
portfolio, which consists of 100 equally weighted names of relatively low credit quality. The
tranches have attachment points (0, 10%), (10%, 15%), (15%, 25%), and (25%, 35%). Thus,
together with the quote for the index contract, we have five quotes per calibration date, from
which we fit the parameter vector θ = (c, κ, δ, λ0). In accordance with market practice, we
assume that the distribution of the loss at default ν = δ0.6. The risk-free rate of interest r
is set to the five year rate quoted on a calibration date (from Bloomberg). Swap premium
payments are made quarterly. Using a gradient-based method, we numerically solve the
nonlinear optimization problem

min
θ∈Θ

∑
m

(Mid(m)−Model(m,θ))2

Mid(m)
,(36)

where Θ = (0, 8]× [0, 10]× [0, 20]× (0, 30] and the sum ranges over the contracts. The market
midquote Mid(m) is the arithmetic average of the market bid and ask quotes for index or
tranche m. The model rate for index or tranche m is denoted Model(m,θ) and is given by
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the formulae developed in section 3.1. The optimization is initialized at a set of parameter
values drawn from a uniform distribution over the parameter space Θ and is repeated for each
of 100 independent draws. The optimal parameter vector θ∗ is the solution to (36) with the
minimum objective function value among all 100 runs.

The index and tranche swap pricer and the optimization are implemented in MATLAB.
The ODEs (13)–(14) determining the point process transform (12) are solved numerically
using the Runge–Kutta method. The transform (12) is inverted numerically using the fast
Fourier transform. We use 1100 sample points, a value we found to be a good tradeoff between
speed and accuracy. To get a sense of the numerical accuracy of this procedure, we contrast
the distribution of N generated by the fast Fourier transform with that based on formula (28).
We find that the fast Fourier transform produces very accurate results. It is also quicker than
the evaluation of formula (25), which requires high-precision algorithms. The computations
are performed on a PC with a 2.66 GHz Intel Processor and 4 GB of RAM.

For each of the 21 calibration dates, we calculate the average absolute percentage pricing
error (AAPE), given by (1/5)

∑5
m=1 |Model(m, θ∗) − Mid(m)|/Mid(m). The left panel of

Figure 6 shows the time series of these errors during September 2008. The model fits the
market on each date, with an AAPE over all calibration dates of 4.4% and a variance of
0.086. For comparison, the market standard copula model completely failed calibration on
several days during September 2008.3 The calibration errors are relatively low during the most
volatile period, which started on September 15th with the default of Lehman. This indicates
that the model captures the default correlation implied by the market prices, especially in
periods of extreme stress. The calibrated values of the clustering parameter δ, shown in the
right panel of Figure 6, suggest that this may be related to the self-exciting property of the
default process. The time series behavior of the calibrated values of δ clearly reflects the
events in mid-September. It indicates the fear of investors of a cluster of events triggered by
the default of Lehman on the 15th (first peak) and the near collapse of Morgan Stanley on
the 18th (second peak).

4. Affine point processes. We extend the basic Hawkes model. Our primary objective is
to permit a richer structure for the intensity without reducing the computational tractability
of the basic specification. The extension is required for applications in which the intensity
is influenced by a set of risk factors that follow stochastic processes on their own. In the
basic model (1), the point process itself is the only such risk factor. The extension facilitates
the inclusion of exogenous (jump) diffusion risk factors that are relevant to arrivals. This is
particularly important for empirical applications, in which the intensity model is estimated
from a time series of portfolio derivative market prices, as in [3] and [28]. In these applications,
the model must replicate the diffusive fluctuation of market prices, and this requires the
presence of diffusive risk factors.

The idea behind the extension is to replace the intensity component λ of the Markov
process (λ, J)� analyzed in Proposition 2.1 by a Markov process X that represents a vector of
stochastic risk factors. The process X drives the intensity of the jumps of J . The transform
of (X,J)� is computationally tractable if X is taken to be an affine jump diffusion. This

3That is, calibration required parameter values outside the set of admissible model parameter values. The
copula model called for a correlation coefficient larger than 1, which is not meaningful.
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Figure 6. Calibration results for the basic intensity model (1) for the 21 trading days of September 2008,
for the CDX High Yield portfolio. Left panel: Average absolute percentage error (AAPE) for each calibration
date. Right panel: Value of the clustering parameter δ for each calibration date.

formulation leads to an affine point process.

4.1. Specification. We call a point process affine if its event arrival intensity is an affine
function of an affine jump diffusion and its jump sizes are drawn from a fixed distribution. A
Markov process X in a state space D ⊂ R

d × R+ is an affine jump diffusion in the sense of
[19] if X is a strong solution to the SDE

dXt = μ(Xt, t) dt+ σ(Xt, t) dWt +
m∑
i=1

ζ i dZi
t , X0 ∈ R

d,(37)

whereW is an R
d-valued standard Brownian motion, μ : D → R

d is the drift, σ : D → R
d×d is

the volatility, and each Zi is a temporally consistent Rd
+-valued point process. In other words,

the component processes of each vector Zi share event times and differ only in jump sizes,
and we denote their common intensity by λi(Xt, t) for some λi : D → R+. The jump sizes
are drawn from a distribution νi on R

d
+ that has no mass zero at 0. Each parameter ζ i is a

d-dimensional diagonal matrix. We assume that for each t, {x : (x, t) ∈ D} contains an open
subset of Rd. For time-dependent coefficient functions that are bounded and continuous on
R+, we assume that

μ(x, t) = K0(t) +K1(t)x, K0(t) ∈ R
d, K1(t) ∈ R

d×d,

(σ(x, t)σ(x, t)�)jk = (H0)jk(t) + (H1)jk(t) · x, H0(t) ∈ R
d×d, H1(t) ∈ R

d×d×d,

λi(x, t) = Λi
0(t) + Λi

1(t) · x, Λi
0(t) ∈ R, Λi

1(t) ∈ R
d, i = 1, 2, . . . ,m.

Whether an affine point process J driven by X has the self-exciting property depends on
the relation between J and its intensity λt = λ(Xt, t), where λ : D → R+. The self-exciting
property holds if X, and hence λ, depends on J itself. A sufficient condition is that at least one
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of the component processes of J is temporally consistent with one of the component processes
of one of the jump terms Zi of X. Since the intensity is a function of the realized loss at
default, we also generate a dependence structure between default and recovery rates in the
self-exciting case.

4.2. Self-exciting examples. To illustrate the specification of an affine point process, we
first consider the two-dimensional case J = (L,N)�. J is driven by a one-dimensional risk
factor X with a single jump term Z that we identify with the component process L. The
remaining component process N is temporally consistent with Z. Thus, L and N are one-
dimensional affine point processes that share common event times that arrive with intensity
λ(Xt, t). By construction, the jump sizes of L are governed by the distribution ν. The jumps
of N are unit-sized since N counts the arrivals. The specification of J as an affine point
process is completed with the specification of the coefficient functions of the risk factor X.

Example 4.1. Suppose K0(t) = κc for κ ≥ 0 and c > 0, K1(t) = −κ, H0(t) is a matrix of
zeros, H1(t) is a tensor of zeros, X0 = c, and ζ = δ ≥ 0. Let Λ0(t) = 0 and Λ1(t) = 1. Then
the intensity λ = X of J satisfies the basic model (1):

dλt = κ(c− λt) dt+ δ dLt.

A significant generalization of the basic specification is made by introducing Brownian
terms and independent jump terms in the intensity. The Brownian terms model the diffusive
fluctuation in the default rate and can be driven by a stochastic volatility. The jump terms
model the sensitivity of the intensity to market events, such as macroeconomic shocks or
defaults to names that are outside the portfolio.

Example 4.2. Suppose the coefficient functions of X are chosen as in Example 4.1, with
the exception of the tensor H1(t), for which (H1)111(t) = σ2 for σ ≥ 0; all other elements are
zero. Then the intensity λ = X of J satisfies the SDE

dλt = κ(c− λt) dt+ σ
√
λt dWt + δ dLt,(38)

showing that between events, the intensity drifts stochastically toward c with diffusive fluctu-
ations driven by W . A sample path of the intensity is in Figure 7. Compare with the sample
path of the basic model (1) in Figure 2.

In practice, the impact of a default on the other firms may depend on the characteristics
of the defaulter. The next example allows us to distinguish between different types of firms
represented in the portfolio. We consider a two-dimensional affine point process J = (L1, L2)�

whose components record portfolio losses triggered by defaults of two firm types. The port-
folio loss process L is the sum L1 + L2. The process J is driven by a two-dimensional risk
factor X = (X1,X2)� = (λ1, λ2)� with two jump terms Z1 and Z2 whose components are
identified, respectively, with L1 and L2. This means that both component processes of Zi are
indistinguishable from Li.

Example 4.3. Suppose

K0(t) = (κ1c1, κ2c2)�, K1(t) = diag(−κ1,−κ2),
H0(t) is a matrix of zeros, H1(t) is a tensor of zeros, and

ζ1 = diag(δ1,1, δ2,1), ζ2 = diag(δ1,2, δ2,2).
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Figure 7. Sample paths of the intensity (38) and the associated loss process L. A jump in the intensity
represents the impact of a default. The jump size is the product of the loss at default and the sensitivity
parameter δ = 1. The loss at default is drawn from an independent uniform distribution on {0.4, 0.6, 0.8, 1}.
The reversion rate κ = 5 and the reversion level c = λ0 = 0.7. The volatility σ = 0.2 controls the diffusive
fluctuation of the intensity between events.

Let Λi
0(t) = 0 for i = 1, 2, Λ1

1(t) = (1, 0)�, and Λ2
1(t) = (0, 1)�. Then the intensities λ1 = X1

and λ2 = X2 satisfy the SDE

dλit = κi(ci − λit) dt+ δi,1 dL1
t + δi,2 dL2

t .

While the parameters δ1,1 and δ2,2 control the self-excitation, the parameters δ1,2 and δ2,1

control the cross-excitation of the processes L1 and L2.
The preceding example illustrates the significance of allowing J to be vector-valued. The

multidimensional setting facilitates the specification of (univariate) point processes whose
arrivals are correlated. The dependence between the components of J can be induced by a
diffusion risk factor that is common to the component intensities. It can also be generated by
direct interaction terms, as in Example 4.3. In the latter case, an arrival of one component
process has an impact on the intensities of other component processes. This facilitates the
modeling of cross-excitation phenomena. For example, the component processes can model
distinct portfolios. A default causes a loss in the respective portfolio and also has an impact
on firms in the other portfolios.

4.3. Transform. A general affine point process J is as computationally tractable as the
basic Hawkes model (1). To derive a formula for the transform of J , we can apply the PIDE
arguments developed in Propositions 2.1 and 2.2, which are based on the generator of the
Markov process Y = (X,J)�. An alternative approach is to construct Y as an affine jump
diffusion process in an enlarged state space and then to apply to this process the transform
characterization for affine jump diffusions developed by [19]. This approach, pursued below,
allows us to embed our point process model formulation into the affine jump diffusion setting,
which is standard in many areas.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

660 EYMEN ERRAIS, KAY GIESECKE, AND LISA R. GOLDBERG

Proposition 4.4. Suppose J is a dimension k affine point process driven by a dimension
d affine jump diffusion X with state space DX × R+ ⊂ R

d × R+. Then Y = (X,J)� is
a dimension (k + d) affine jump diffusion with state space DY × R+ ⊂ R

k+d × R+ whose
coefficients (K0,K1,H0,H1,Λ

i
0,Λ

i
1, ζ

i) and jump distributions νi are canonically determined
by the corresponding items for X.

In Proposition 4.4 and below, we use the same symbols for the coefficients of X and Y to
avoid further complicating notation. We illustrate the idea in Example 4.3.

Example 4.5. In the setting of Example 4.3, the four-dimensional affine jump diffusion
Y = (X,J)� = (λ1, λ2, L1, L2)� has two (four-dimensional) jump terms Z1 and Z2 whose
components are indistinguishable from L1 and L2, respectively. Since the third and fourth
components of Y are driftless, the third and fourth rows of the drift coefficients are populated
with zeros. These coefficients are given by

K0(t) = (κ1c1, κ2c2, 0, 0)�, K1(t) = diag(−κ1,−κ2, 0, 0).
The volatility coefficients H0(t) and H1(t) are zero since X has no Brownian term. The
sensitivity matrices are

ζ1 = diag(δ1,1, δ2,1, 1, 0), ζ2 = diag(δ1,2, δ2,2, 0, 1).

Finally, we give coefficients of the arrival intensities λit = Λi
0(t) + Λi

1(t) · Yt. We have Λ1
0(t) =

Λ2
0(t) = 0 and

Λ1
1(t) = (1, 0, 0, 0)� , Λ2

1(t) = (0, 1, 0, 0)� .

Proposition 4.4 facilitates the application of Proposition 1 in [19], which expresses the
conditional transform of an affine jump diffusion as an exponentially affine function of its
current value. Let C

n denote the set of n-tuples of complex numbers. When well defined at
t ≤ T and u ∈ C

d+k, the conditional transform of the (d+k)-dimensional affine jump diffusion
Y = (X,J)� constructed in Proposition 4.4 is given by

ψ(u, Yt, t, T ) = E(exp(u · YT ) | Ft).(39)

Under technical conditions that are stated in the appendix for completeness,

ψ(u, Yt, t, T ) = exp(α(u, t, T ) + β(u, t, T ) · Yt),(40)

where the coefficient functions β(t) = β(u, t, T ) and α(t) = α(u, t, T ) satisfy the ODEs

∂tβ(t) =−K1(t)
�β(t)− 1

2
β(t)�H1(t)β(t) −

m∑
i=1

Λi
1(t)(θ

i(ζ iβ(t))− 1),(41)

∂tα(t) =−K0(t) · β(t)− 1

2
β(t)�H0(t)β(t)−

m∑
i=1

Λi
0(t)(θ

i(ζ iβ(t)) − 1)(42)

with boundary conditions α(T ) = 0 and β(T ) = u and jump transforms

θi(ω) =

∫
R
d+k
+

eω·zdνi(z).(43)
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Under additional technical conditions stated in the appendix for completeness, the trans-
form (40) can be differentiated with respect to u to get the formula

E(eu·YT v · YT | Ft) = ψ(u, Yt, t, T )(A(u, v, t, T ) +B(u, v, t, T ) · Yt),(44)

where t ≤ T , u ∈ C
d+k, and v ∈ R

d+k, and where the coefficient functions B(t) = B(u, v, t, T )
and A(t) = A(u, v, t, T ) satisfy the ODEs

∂tB(t) =−K1(t)
�B(t)− β(t)�H1(t)B(t)−

m∑
i=1

Λi
1(t)∇θi(ζ iβ(t)) · ζ iB(t),(45)

∂tA(t) =−K0(t) · B(t)− β(t)�H0(t)B(t)−
m∑
i=1

Λi
0(t)∇θi(ζ iβ(t)) · ζ iB(t)(46)

with boundary conditions A(T ) = 0 and B(T ) = v.
As in the case of the Hawkes process, we get a closed formula for E(v · YT | Ft). To see

this, note that the assumption u = 0 implies that α = β = 0. Therefore, since ∇θi(0) is equal
to the (d+ k)-vector �i of expected losses of the ith jump term, (45) and (46) simplify to4

∂tB(t) = −K1(t)
�B(t)−

m∑
i=1

Λi
1(t)⊗ �iζ iB(t),

∂tA(t) = −K0(t) ·B(t)−
m∑
i=1

Λi
0(t)�

i�ζ i ·B(t).

We conclude that

B(0, v, t, T ) = v exp

(∫ T

t

(
K1(s)

� +

m∑
i=1

Λi
1(s)⊗ �iζ i

)
ds

)
,(47)

A(0, v, t, T ) =

∫ T

t

(
K0(s) +

m∑
i=1

Λi
0(s)�

i�ζ i
)
·B(s) ds.(48)

The transform (40) encodes the joint distribution of the risk factor process X and the
point process J . It facilitates applications that require the calculation of functionals of the
form E(h(XT , JT ) | Ft) for suitable functions h. An example application is the valuation of
forward or option contracts on index and tranche swaps; see [6] and [16]. Other applications
include empirical time-series estimation problems as in [3] and the calculation of the future
mark-to-market exposure generated by a portfolio derivative position.

We can follow the argument in section 2.6 to characterize in terms of ODEs derived from
(41)–(42) the probability distribution of an integer-valued affine point process that may be
driven by a multidimensional risk factor process X. Alternatively, we can apply Fourier
inversion to the transform, which would also cover multidimensional and real-valued affine
point processes.

4The tensor product u⊗ v of vectors u and v is a matrix whose ijth element is uivj .
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4.4. Further extensions. The specification can be generalized to include a stochastic
discount rate that is driven by the affine jump diffusion Y . Since Y includes the affine point
process J , this specification would generate a dependence structure among default, recovery,
and risk-free rates. Another potential extension is the generalization of the driving risk factor
process X to a more general Markov process, such as the general affine process analyzed in
[18] or the linear-quadratic jump diffusion process analyzed in [10].

5. Conclusion. We study a family of self-exciting point processes for applications in port-
folio credit risk. These processes can capture the feedback from default events and the de-
pendence structure between default and recovery rates, both features that are emphasized
in the empirical literature on portfolio credit risk. The processes are also computationally
tractable, because ODEs characterize their probability distribution. We illustrate this with
an application to the valuation of portfolio credit derivatives, which are securities with payoffs
that depend on the cumulative loss due to default in a portfolio of corporate bonds or loans.
Market calibration experiments demonstrate the fit of a basic specification and highlight the
empirical importance of the self-exciting feature.

Appendix. Proofs.
Proof of Proposition 2.1. Note that Y is a process with right-continuous paths of finite

variation. By a change of variables for Stieltjes integrals,

g(λt, Jt)− g(λ0, J0) =
∫ t

0
gλ(λs, Js)κ(c − λs)ds+

∑
0<s≤t

[g(λs, Js)− g(λs−, Js−)].

We can write∑
0<s≤t

[g(λs, Js)− g(λs−, Js−)] = Ug
t +

∫ t

0

∫
[g(λs + δz, Js + (z, 1)�)− g(λs, Js)]dν(z)λsds,

where Ug is a process defined by

Ug
t =

∫ t

0

∫
[g(λs− + δz, Js− + (z, 1)�)− g(λs−, Js−)]dν(z)dMs

andM = N−∫ ·
0 λsds is a martingale. The integrability condition on the predictable integrand

guarantees that Ug is a martingale; see Theorem 8 in Chapter II of [8]. We conclude that
g(λ, J) is a special semimartingale with unique decomposition into a sum of a predictable
finite variation process and a martingale:

g(λt, Jt) = g(λ0, J0) +

∫ t

0
(Dg)(λs, Js)ds + Ug

t .

Since Ug is a martingale, so is the process defined by g(λt, Jt)− g(λ0, J0)−
∫ t
0 (Dg)(λs, Js)ds,

and this yields formula (5).
Proof of Proposition 2.2. For fixed T and u ∈ C

2−, define the function f : [0, T ] ×D → C

by the conditional expectation

f(t, λ, x) = E(exp(u · JT ) |λt = λ, Jt = x).
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Then E(exp(u · JT ) | Ft) = f(t, λt, Jt). Since for u ∈ C
2− the real and imaginary parts of the

function g(λ, x) = exp(u·x) are in the domain of the generator D, so are the real and imaginary
parts of the function f(t, λ, x) for each time t. The function f(t, λ, x) is also differentiable
with respect to t, and the derivative is continuous; see Proposition VII.1.2 in [31]. For this,
we note that Y = (λ, J)� is a Feller process.

Now, for (f (t, λt, Jt))t≤T to be a martingale, we must have that{
ft(t, λ, x) + (Df)(t, λ, x) = 0,
f(T, λ, x) = exp(u · x),(49)

where (Df)(t, λ, x) is obtained by applying D to the real and imaginary parts of f(t, ·, ·). We
propose the following change of variables: w(t, λ, u) = f (t, λ, x) e−u·x. Then, after rearranging
terms and denoting z̄ = (z, 1)�, (49) takes the form⎧⎨⎩

wt(t, λ, u) + λ
∫
[w (t, λ+ δz, u) − w (t, λ, u)] eu·z̄dν (z)

+λ
∫
(eu·z̄ − 1)w (t, λ, u) dν (z) + κ (c− λ)wλ(t, λ, u) = 0,

w(T, λ, u) = 1.

We take w(t, λ, u) = ea(t)+b(t)λ . Then,

λ∂tb+ ∂ta+ λ

∫
(eδbz − 1)eu·z̄dν (z) + λ

∫ (
eu·z̄ − 1

)
dν (z) + κ (c− λ) b = 0

so that {
∂tb = κb− ∫ (eδbz+u·z̄ − 1)dν(z),
∂ta = −κcb

with boundary conditions a(T ) = b(T ) = 0.
Proof of Proposition 4.4. The process Y = (X,J)� is Markov since the intensity of J

depends only on the current state of X, which is Markov, and the jump distribution of J is
fixed. We can append the components of J one at a time. Therefore, it is sufficient to consider
the case where J is one-dimensional. By assumption, its arrival intensity λ can be expressed
as a time-dependent affine function λ(Xt, t) = Λ0(t) + Λ1(t) ·Xt of Xt.

The first step is to extend the d-dimensional jump processes Zi by one dimension. Suppose
the affine point process J is self-affecting so that it is temporally consistent with some Zi.
Renumbering if necessary, assume that i = 1 and extend Z1 by appending the component
process J . We retain the symbol ν1 for the distribution on R

d+1 that governs the jump sizes
of Z1. The extensions of the remaining Zis are made by appending temporally consistent
counting processes. In other words, the jumps in the (d + 1)st component of Z2, Z3, . . . , Zm

are of unit size. It follows that the (degenerate) jump distributions νi on R
d+1 are canonically

determined for i ≥ 2.
Next, we specify the affine jump diffusion coefficients of Y . Since the intensity λi of

Zi is an affine function of X, it can be expressed as an affine function of Y . The one-
dimensional coefficients Λi

0 remain the same, and the d-dimensional vectors Λi
1 are extended

to dimension (d+1) with a zero. The dimension (d+1) sensitivity matrix of Y to Z1 is given
by ζ1 = diag(0, 0, . . . , 0, 1). We extend the d× d sensitivity matrices ζ2, ζ3, . . . , ζm by adding
one additional row and column with all entries set to zero.
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If the affine point process J is not temporally consistent with any Zi, then all of the Xis
are extended by counting processes and all the (degenerate) νis are canonically determined.
Here, we add an (m+ 1)st jump term given by (d + 1) copies of J . The intensity λm+1 = λ,
and so Λm+1

0 (t) = Λ0(t), and the (d + 1) vector Λm+1
1 (t) is obtained from the d vector Λ1(t)

by appending a zero. Each of the m sensitivity matrices ζ i is extended from dimension d to
dimension one with a row and column of zeros. The (d + 1)-dimensional sensitivity matrix
ζm+1 = diag(0, 0, . . . , 0, 1).

Since J is a pure jump process, the drift coefficients K0 and K1 and the covariance matrix
coefficients H0 and H1 are obtained from the corresponding coefficients for X by extending
with rows and columns of zeros.

Based on Proposition 4.4, we apply [19, Proposition 1], which implies that the conditional
transform of Y = (X,J)� is given by (40) if the coefficient functions β and α uniquely solve
the differential equations (41) and (42) and if for (u, T ) ∈ C

d+k×R+ the following expectations
are all finite:

(1) E(|ΨT |), where Ψt = exp(α(t) + β(t) · Yt).
(2) E((

∫ T
0 ηt · ηt dt)1/2), where ηt = Ψtβ(t)

�σ(Yt, t).
(3) E(

∫ T
0 |γt| dt), where γt = Ψt

∑m
i=1(θ

i(ζ iβ(t))− 1)λi(Yt, t).

Similarly, based on Proposition 4.4, we apply [19, Proposition 3], which implies that the
conditional expectation of eu·YT (v · YT ) is given by formula (44) if the coefficient functions β
and α uniquely solve the differential equations (41) and (42), the coefficient functions B and A
uniquely solve the differential equations (45) and (46), and if for (u, v, T ) ∈ C

d+k×R
d+k×R+

the following expectations are all finite:

(1) E(|ΦT |), where Φt = Ψt (A(t) +B(t) · Yt).
(2) E((

∫ T
0 η̄t · η̄t dt)1/2), where η̄t = Φt(β(t)

� +B(t)�)σ(Yt, t).
(3) E(

∫ T
0 |γ̄t| dt), where γ̄t =

∑m
i=1 λ

i(Yt, t)(Φt(θ
i(ζ iβ(t))− 1) + Ψt∇θi(ζ iβ(t)) · ζ iB(t)).
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[8] P. Brémaud, Point Processes and Queues – Martingale Dynamics, Springer-Verlag, New York 1981.
[9] D. Brigo, A. Pallavicini, and R. Torresetti, Calibration of CDO tranches with the dynamical

generalized Poisson loss model, Risk, 20 (2007), pp. 70–75.
[10] P. Cheng and O. Scaillet, Linear-quadratic jump-diffusion modeling, Math. Finance, 17 (2007),

pp. 575–598.
[11] P. Collin-Dufresne, R. Goldstein, and J. Helwege, How large can jump-to-default risk premia be?

Modeling contagion via the updating of beliefs, Working paper, Columbia University, New York, NY,
2009.

[12] R. Cont and A. Minca, Extracting portfolio default rates from CDO spreads, Working paper, Columbia
University, New York, NY, 2008.

[13] D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Volume I, Springer-
Verlag, New York, 2003.

[14] S. Das, D. Duffie, N. Kapadia, and L. Saita, Common failings: How corporate defaults are correlated,
J. Finance, 62 (2007), pp. 93–117.

[15] M. Davis and V. Lo, Modeling default correlation in bond portfolios, in Mastering Risk Volume 2:
Applications, C. Alexander, ed., Prentice Hall, Englewood Cliffs, NJ, 2001, pp. 141–151.

[16] X. Ding, K. Giesecke, and P. Tomecek, Time-changed birth processes and multi-name credit deriva-
tives, Oper. Res., 57 (2009), pp. 990–1005.

[17] D. Duffie, A. Eckner, G. Horel, and L. Saita, Frailty correlated default, J. Finance, 64 (2009),
pp. 2089–2123.

[18] D. Duffie, D. Filipovic, and W. Schachermayer, Affine processes and applications in finance, Ann.
Appl. Probab., 13 (2003), pp. 984–1053.

[19] D. Duffie, J. Pan, and K. Singleton, Transform analysis and asset pricing for affine jump-diffusions,
Econometrica, 68 (2000), pp. 1343–1376.

[20] K. Giesecke, L. Goldberg, and X. Ding, A top down approach to multi-name credit, Oper. Res., to
apear.

[21] P. Glasserman and K.-K. Kim, Saddlepoint approximations for affine jump diffusion models, J. Eco-
nomic Dynamics and Control, 33 (2009), pp. 37–52.

[22] A. G. Hawkes Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971),
pp. 83–90.

[23] A. G. Hawkes and D. Oakes, A cluster process representation of a self-exciting process, J. Appl.
Probab., 11 (1974), pp. 493–503.

[24] P. Jorion and G. Zhang, Good and bad credit contagion: Evidence from credit default swaps, J. Financial
Economics, 84 (2007), pp. 860–883.

[25] E. M. Klimko, An algorithm for calculating indices in Faa di Bruno’s formula, BIT, 13 (1973), pp. 38–49.
[26] R. W. Lee, Option pricing by transform methods: Extensions, unification, and error control, J. Comput.

Finance, 7 (2004), pp. 51–86.
[27] F. Longstaff, The subprime credit crisis and contagion in financial markets, J. Finance, to appear.
[28] F. Longstaff and A. Rajan, An empirical analysis of collateralized debt obligations, J. Finance, 63

(2008), pp. 529–563.
[29] A. Lopatin and T. Misirpashaev, Two-dimensional Markovian model for dynamics of aggregate credit

loss, Adv. Econometrics, 22 (2008), pp. 243–274.
[30] P. Protter, Stochastic Integration and Differential Equations, Springer-Verlag, New York, 2004.
[31] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Heidelberg,

2005.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. FINANCIAL MATH. c© 2010 Society for Industrial and Applied Mathematics
Vol. 1, pp. 666–728

Real Options Games in Complete and Incomplete Markets with Several Decision
Makers∗

Alain Bensoussan†, J. David Diltz‡, and SingRu Hoe§

Abstract. We consider optimal investment policies for irreversible capital investment projects under uncertainty
in a monopoly situation and in a Stackelberg leader-follower game. We consider two types of payoffs:
lump-sum and cash flows. The decisions are the times to enter into the market. The problems
belong to the class of optimal stopping times, for which the right approach is that of variational
inequalities (V.I.s). In the case of complete markets, payoffs are expected values with respect to
the risk-neutral probability. In the case of incomplete markets, the risk-neutral probability is not
defined. We consider an investor maximizing his/her utility function, and we consider the investment
in the project as an additional decision, besides portfolio investment and consumption decisions.
This decision remains a stopping time, conversely to the portfolio investment and consumption
decisions (continuous controls). The game problem raises new difficulties. The leader’s V.I. has a
nondifferentiable obstacle. The weak formulation of the V.I. handles this difficulty. In some cases,
the solution of the V.I. may be continuously differentiable although the obstacle is not. An additional
difficulty occurs for lump-sum payoffs in the case of incomplete markets. We cannot compare gains
and losses at different times. We propose an alternative approach, using equivalence (indifference)
considerations. In the case of payoffs characterized by cash flows, this difficulty does not exist, but
an intermediary problem arises which has a nice interpretation as a differential game. The solutions
thus obtained for the Stackelberg game are not intuitive. Therefore, competition has important
consequences on investment decisions.
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different, higher threshold. Fixed suspension and resumption costs drive a wedge between the
thresholds, creating a “hysteresis” effect. Free boundary conditions determine threshold prices.

Classic real options models did not address the possibility that the investment strategy
exercised by one firm could have an impact on the optimal investment policies of a competitor.
If a firm fears pre-emption, the delay option value is less significant, and project value ap-
proaches the traditional net present value. Notable contributions in this area include papers
by Grenadier [15], [16], [17]. Grenadier [15] applied option game theory to the real estate
market to explain development cascades and overbuilding. Extensions to the analysis (see
Grenadier [16], [17]) consider equilibrium strategies with option exercise games.1 While pre-
emption fears erode delay option value, Dixit and Pindyck [10, p. 314] note that the situation
is different if the roles of leader and follower are exogenously determined as in the Stackelberg
game. In this case, the leader has the ability to wait, recognizing the option value. They dis-
cuss the possible option values and investment strategies in narrative terms without rigorous
proof. We address the problem rigorously and obtain the optimal strategies for the leader and
the follower in both complete and incomplete market cases. The latter case is particularly
important for real options for the reasons discussed below.

Capital investment projects are typically nontraded. That is, claims to these assets are
not traded in well-developed secondary markets. The result is that real options markets are
incomplete. Nevertheless, many articles simply assume markets are complete; i.e., all risk can
be hedged completely. In some models the static NPV proxies for the nontraded underlying
asset, a strategy that Copeland and Antikarov [7] call the “marketed asset disclaimer.” Bren-
nan and Schwartz [3], [4] and Dixit and Pindyck [10] use a capital asset pricing model, and
then they estimate a risk-adjusted project return rate and solve the option value as a thresh-
old optimization. Financial mathematicians address the issue by employing strategies such
as (1) minimizing tracking error (see, for example, Duffie and Richardson [12]); (2) selecting
a martingale measure for pricing using minimal martingale or minimal entropy methods (see
Follmer and Sonderman [13], Schweizer [45], Delbaen and Schachermayer [9], and Frittelli
[14]); and (3) employing utility functions to estimate an indifference price (see Henderson
[20], [21], Henderson and Hobson [23], Musiela and Zariphopoulou [39], [41], Oberman and
Zariphopoulou [43], and Hodges and Neuberger [26]). For incomplete markets, we adopt in
this paper the utility-based approach, considering utility maximization with joint decisions of
stopping times, portfolio investment strategies, and/or consumption rules.

We consider a duopoly model of Stackelberg leader-follower type in an irreversible capital
investment under uncertainty. The decision can be made over an infinite horizon with the
constraint that the follower be forbidden to invest until the leader has already done so. Leader
and follower roles are predetermined. The Stackelberg game has been applied in many areas,
including electricity pricing (see Ho, Luh, and Muralidharan [25]), NOx allowances in the
electric power industry (see Chen et al. [6]), supply chain management and marketing channels
(see He et al. [19]), server-proxy-user systems in computer science (see Han and Xia [18]), and
others.

Our framework assumes that uncertainties embedded in the irreversible capital investment

1See, for example, Dixit and Pindyck [10, Chap. 9], Grenadier [15], [16], [17], Smets [46], Lambrecht and
Perraudin [32], Huisman [28], Smit and Trigeorgis [48], Smit and Ankum [47], etc.
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project arise from the uncertainties of investment payoffs. We consider two types of investment
payoffs: lump-sum investment payoffs and investment payoffs as a series of cash flows.

The primary advantage to modeling uncertainty as a lump-sum investment payoff lies
in its simplicity. As noted by Dixit and Pindyck [10], modeling uncertainty in terms of
project value in many cases leads to the same optimal policies as modeling uncertainty in
cash flows.2 On the other hand, focusing on cash flows permits comparison between results
of our model and more conventional decision making paradigms. We model the uncertainty
of lump-sum investment payoffs by assuming that the investment project value is governed
by an externally determined geometric Brownian motion. To capture the uncertainty from
cash flows, we consider project cash flows to evolve according to an arithmetic Brownian
motion. The possibility of negative cash flows deals explicitly with the fact that the project’s
operations may generate losses. The option we are interested in is the time to invest (when
to enter into the market) for both the follower and the leader. These problems are optimal
stopping time problems. From Bensoussan and Lions [1], it is known that the right tool to
solve these problems is variational inequalities (V.I.s), introduced by Stampacchia in 1964
and Lions and Stampacchia [33] in the context of physical and mechanical applications. The
definition of payoffs is easy in the complete market case. There exists a unique risk-neutral
probability. So the payoffs are mathematical expectations with respect to this probability. For
the follower, as in the case of a single decision maker, the V.I. has an obstacle function (the
outcome received at the stopping time to be decided) which is C1 (continuously differentiable).
There is then a strong formulation for the V.I., and the solution can be obtained by a threshold
strategy. This is not the case for the leader’s problem. The obstacle function is C0, not C1.
We need to use a weak formulation for the V.I. We prove the existence and uniqueness of the
solutions in the weak form. We then study the regularity of the solution and find that it is
indeed C1 and piecewise C2. So the solution of the V.I. is more regular than the obstacle.
However, the optimal strategy is not given by a single threshold. This is related to the lack
of smoothness of the obstacle. The optimal strategy is obtained by two intervals. For the
cash flow model characterized by an arithmetic Brownian motion process, we encounter the
additional difficulty of an unbounded obstacle function.

In the incomplete market case, we use a utility-based approach for the valuation. The
manager’s (investor’s) risk preferences are modeled through an exponential utility function.
We consider the manager’s (investor’s) utility maximization with joint decisions of stopping
times, portfolio investment strategies, and/or consumption rules. For the case of lump-sum
investment payoffs, we do not allow intermediate consumption in order to simplify exposition
and to avoid the penalization arising from the case of negative consumption. The manager
(investor) maximizes his/her expected utility of wealth taking portfolio investment strategies
and stopping times into consideration. The follower’s and the single decision maker’s value
functions are solutions of V.I.s, which can be written in a strong formulation, and the optimal
strategies are obtained through a threshold approach. The situation is much more complex for
the leader’s problem since we are unable to compare gains and losses at different times as in the
complete market case. We circumvent the problem by employing equivalence (indifference)

2While this statement holds in complete markets, the relationship between the two models is in general an
open question.
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considerations as a surrogate of the present value used as a comparison benchmark in the
complete market situation. In addition, we encounter the same mathematical difficulty as in
the complete market case, namely, that the leader’s obstacle function is nonsmooth. We thus
formulate and solve V.I.s in the weak sense. However, we have neither the situation of a more
regular solution nor of a two-interval strategy. We comment on this problem, the full solution
of which is open.

For the case of investment payoffs as a series of cash flows, the manager (investor) faces a
utility maximization problem in which he/she chooses a portfolio investment strategy, a con-
sumption rate, and a stopping time for market entry (capital investment). The problem can
be split into two parts. We first assume that the investment project has already been under-
taken. This leads to a control problem of portfolio selection and consumption rate, augmented
by the stochastic income stream from the capital project now in place. We then consider the
problem of choosing the optimal stopping time, portfolio selection, and consumption rules be-
fore the optimal stopping. We get a V.I. with a nonlinear differential operator. The obstacle
is defined by the first part. The solution to this V.I. has an interesting interpretation, that
of the stochastic differential game, different from the Stackelberg game. For the follower and
the single decision maker, we prove the existence and uniqueness of the solution of the V.I.,
which is C1 and piecewise C2. For the leader’s problem, we first characterize his/her payoff
at the optimal stopping time. The leader must take into account the effect of the follower’s
anticipated entry on his/her portfolio investment and consumption decisions. Again, we en-
counter a nonsmooth obstacle function, and we must interpret the V.I. in the weak sense. We
study the regularity of the solution, employing penalization, and here the challenge is to find
suitable a priori estimates. We prove the existence and uniqueness of the solutions in their
strong forms. The leader’s optimal stopping rule is given by a two-interval strategy.

The remainder of this paper is organized as follows. In section 2, we briefly describe
general features of problems and models studied. In sections 3 and 4, we present models and
generate results for the case of lump-sum investment payoffs, respectively, for the complete
market and the incomplete market cases. In sections 5 and 6, we present models and results
for the case when the investment payoff is characterized as a series of cash flows. We present
concluding remarks in section 7.

2. General features of problems and models.

2.1. Asset valuation in complete and incomplete markets. The issue of valuation is key
in finance. We have to assign a “fair” value to random outcomes, often called “contingent
claims.” The expected value is not a fair value because risk is not taken into consideration.
The essential property of complete markets is that there exists one and only one fair value. It
is the expected value of the random outcome with respect to a new probability measure, called
the risk-neutral probability. This risk-neutral probability is uniquely defined. So in the case of
complete markets we will measure the value of losses and gains by taking simply the expected
value with respect to the risk-neutral probability. For our later purpose, the framework is as
follows. Consider a probability space (Ω,F ,Q) with a Wiener process W (t). We assume that
the market is characterized by a single asset, S(t), whose evolution is governed by

(2.1) dS(t) = rS(t)dt+ σS(t)(λdt + dW (t)),
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where r is a risk-free interest rate, σ is the volatility, and λ is the Sharpe ratio; they are all
constants. The market is complete, and there exists a unique risk-neutral probability. It is
obtained as follows: we define

Ŵ (t) =W (t) + λt

and the process Z(t) by
dZ(t) = −λZ(t)dW (t), Z(0) = 1.

The risk-neutral probability measure Q̂ is then

dQ̂

dQ
|Ft = Z(t)

with Ft = σ(W (s), s ≤ t). Under Q̂, Ŵ (t) is a standard Wiener process. The fair value of
a contingent claim is simply the expected value of the random outcome with respect to the
risk-neutral probability.

Let us now consider the situation of incomplete markets. The risk-neutral probability
is not unique. The classical valuation approach is inappropriate, and alternatives must be
considered. One proposed solution is to introduce a rational utility-maximizing investor who
evaluates unhedgeable risk based on the investor’s risk preferences. Utility-based valuation in
stochastic dynamic market environments derives from the famous work of Merton [35], who
developed the original dynamic, stochastic model of expected utility maximization. We adopt
the utility-based valuation in our incomplete market model. We assume an exponential utility
function to describe the investor’s risk preferences. As noted in Musiela and Zariphopoulou
[41], there are advantages working with an exponential utility function. For example, the asset
value is given in terms of a nonlinear pricing rule that has certainty equivalent characteristics.
However, this nonlinear pricing functional is not the static analogue of the certainty equivalent
corresponding to the exponential preferences. It is distorted, with a magnitude that depends
only on the correlation between the traded and the nontraded assets. Another advantage is
that the measure under which the indifference price is computed is a measure under which
the traded asset price is a martingale and which has the minimal entropy with respect to the
historical one.

2.2. Structures of the market. In addition to the consideration of market completeness,
we consider two different types of market structures: one market player or two market players.
Market players’ decisions are the time to enter into the market. In the case of one market
player, the entrepreneur may operate without consideration of any potential competitor’s
decisions (i.e., a monopolist in the product market). By paying an investment cost K at the
market entry time τ , the firm expects to receive the whole operation income.

In the case of two market players, we consider a Stackelberg leader-follower game. The roles
of leader and follower have been predetermined, for example, by regulations, by competitive
advantages of market powers, etc. The follower is forbidden to invest until the leader has
already done so. The leader enters the market at time θ and the follower at time τ ≥ θ. Each
player pays an investment cost K upon entry. The leader receives the whole operation income
prior to the follower’s entry. Upon the follower’s entry, depending on the competitiveness or
the regulation, the leader may share the market with the follower evenly or the leader may
maintain larger portions of the operation income, leaving smaller portions to the follower.
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2.3. Lump-sum and cash flow models. We consider two types of operation incomes from
the capital investment undertaken. One is the operation income characterized by a lump-sum,
which means that the investment project yields a one time payoff at the time of investment for
a given cost K. We model this situation in terms of the investment project value, governed by
a geometric Brownian motion process. In this model, the leader has to incorporate into his/her
objective function his/her surrender project value to the follower upon the follower’s optimal
entry, so one has to compare values of events taking place at different times. In the case of
complete markets, the payoff is the expected value with respect to the unique risk-neutral
probability, so gains/losses at different times are comparable (by expected present values with
respect to the risk-neutral probability). In the case of incomplete markets, we encounter a
major hurdle for the leader’s value function. Due to the absence of the unique martingale
measure, we choose to work with the investor’s utility, and there is no identity relationship for
values at different times. We circumvent the problem by employing equivalence (indifference)
considerations. However, we then encounter another mathematical difficulty. The “obstacle”
function is nonsmooth and, in this case, we are unable to get the result that the solution of the
V.I. is C1 (i.e., smoother than the obstacle) as in the case of complete markets. By exploring
with an explicit calculation for a two-interval solution, we arrive at only a partial answer.

In the other model, the operation income is characterized by cash flows, which means that
by paying a given cost K at the investment time the entrepreneur receives a series of cash
flows thereafter. The cash flow evolves as an arithmetic Brownian motion process. Unlike
the lump-sum model, the problem of comparing gains and losses at different times does not
arise in this model, in either the complete or the incomplete case, because it is a cash flow
valuation.

We present a detailed problem formulation, models, and valuation procedures for the case
of lump-sum investment payoffs in sections 3 and 4, and for the case of the investment payoff
characterized as a series of cash flows in sections 5 and 6.

3. Lump-sum payoffs and complete market assumption.

3.1. Single player. We assume that the investment opportunity is driven by a stochastic
value process:

dV (s) = rV (s)ds + ηV (s)(ξds + dW (s))(3.1)

= (r + η(ξ − λ))V (s)ds + ηV (s)dŴ (s); s ≥ t; V (t) = v,(3.2)

where η and ξ are constants. We denote the solution of (3.2) by Vv,t(s), s ≥ t. Beginning at
t, the firm undertakes the capital investment project at time τ > t, at which point the firm
invests at a cost K in return for the project value (1− a)Vv,t(τ), where a ∈ [0, 1).3 The firm’s
problem is to find an optimal stopping time to maximize the expected discounted project value:

(3.3) F (v, t) = sup
τ≥t

Ê
[
e−r(τ−t)

(
(1− a)Vv,t(τ)−K

)
�τ<∞

]
,

3This specification is for preparing the situation of two players. a represents market share by other active
participants. For the single decision maker case, a is zero. In the Stackelberg games that follow, a represents
the leader’s market share after the follower’s entry into the market. In the context of the leader-follower model,
we assume a ≥ 1

2
. Otherwise, the leader will surrender a majority interest in the project, providing a strong

disincentive to enter at all.
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where Ê[·] is the expectation with respect to the risk-neutral probability measure Q̂.
This is a stationary problem; hence the value function (3.3) becomes

(3.4) F (v) = sup
τ≥0

Ê
[
e−rτ

(
(1− a)Vv(τ)−K

)
�τ<∞

]
, where Vv(t) = Vv,0(t).

Clearly, since τ = ∞ is possible (i.e., the firm never invests), F (v) ≥ 0. Assuming that
the function F (v) is sufficiently smooth, F (v) solves the following V.I. as a consequence of
dynamic programming:

(3.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F (v) ≥ ((1− a)v −K),

F ′(v)v
(
r + η(ξ − λ))+ 1

2F
′′(v)v2η2 − rF (v) ≤ 0,[

F (v)− ((1− a)v −K)
][
F ′(v)v

(
r + η(ξ − λ))+ 1

2F
′′(v)v2η2 − rF (v)] = 0,

F (0) = 0; F (v) ≥ 0; F (v) has linear growth at infinity.

From Chapter 5 in Dixit and Pindyck [10], we have the following theorem.
Theorem 3.1. Assume ξ < λ:

(3.6) F (v) =

⎧⎨⎩
K

β − 1

(v
v̂

)β
, v ≤ v̂,

(1− a)v −K, v ≥ v̂,

where β = 1
2 − r+η(ξ−λ)

η2
+
√(

1
2 − r+η(ξ−λ)

η2

)2
+ 2r

η2
> 1, and v̂ = βK

(1−a)(β−1) .

A proof is needed to check that F (v) in (3.6) is the solution of the V.I. since a threshold
is not necessarily a solution of the V.I. We omit the proof.

The optimal stopping rule which achieves the supremum in (3.4) is τ̂(v) = inf{t|Vv(t) ≥ v̂}.
Using Vv(τ̂(v)) = v̂ if τ̂(v) <∞ and v < v̂, we have the probabilistic representation

(3.7) F (v) =
(
(1− a)v̂ −K)Ê[exp{−rτ̂(v)}] if v < v̂.

3.2. Two players: A Stackelberg game. We now consider a two firm (i.e., two player)
Stackelberg game. The roles of leader and follower have been predetermined. Each firm
may invest in the capital project, but the actions, actual and/or anticipated, of one player
affect the other’s decision. Both players face an optimal stopping problem similar to the
monopolist’s, albeit with the complications inherent in the leader-follower framework. The
follower is forbidden to invest until the leader has already done so. The leader enters the
market at time θ and the follower at time τ ≥ θ, both stopping times of the filtration Ft.
Again, each player pays an investment cost K upon entry. The leader knows that the follower,
acting rationally, will enter at time τ̂θ, at which time he/she must surrender a portion of the
project to the follower.

3.2.1. Statement of the leader’s problem. We first notice that

(3.8) τ̂θ = θ + τ̂(Vv(θ))

with a slight abuse of notation. We consider the function τ̂(v), in which v is deterministic. It
is an entry time for the process Vv(t). So it depends on v and on all the values of the process
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Vv(t). It can be considered as a functional of v and Ŵ (.). If we replace the initial time 0 by a
random time θ which is a stopping time with respect to Ft, then we mean the same functional
on arguments Vv(θ) and Ŵ (. + θ) − Ŵ (θ). It is a stopping time with respect to Ft+θ. It is

important to notice that Ŵ (. + θ) − Ŵ (θ) is independent of Vv(θ). Therefore we have the
following formula for any test function Ψ(x, s):

(3.9) Ê[Ψ(Vv(τ̂θ), τ̂θ)|Fθ] = Ψ(Vv(θ), θ)�Vv(θ)≥v̂ + �Vv(θ)<v̂Ê[Ψ(v̂, t+ τ̂(v))]|v=Vv (θ),t=θ.

From (3.9) and (3.7), with Ψ(x, s) = exp{−r(s−t)}, s ≥ t, we can write explicitly the Laplace
transform of the conditional density as

(3.10) Ê[exp{−r(τ̂θ − θ)}|Fθ] = �Vv(θ)≥v̂ + �Vv(θ)<v̂
F (Vv(θ))

(1− a)v̂ −K .

When the leader enters at time θ < ∞, by paying cost K, he/she receives Vv(θ) minus
the expected discounted value that he/she will surrender to the follower at the time of the
follower’s entry. Assuming the follower is rational, the leader knows that the follower will
enter at time τ̂θ. At time τ̂θ, the leader surrenders (1− a)Vv(τ̂θ). So at time θ, if θ <∞, the
leader receives

Vv(θ)−K − (1− a)Ê[e−r(τ̂θ−θ)Vv(τ̂θ)�τ̂θ<∞|Fθ

]
= aVv(θ)�Vv(θ)≥v̂ + (Vv(θ)− βF (Vv(θ))�Vv(θ)<v̂ −K,

where we use the fact that (1−a)v̂
(1−a)v̂−K = β and F (v) is defined in (3.6). To facilitate the

presentation, we define

(3.11) Ψ(v) = av�v≥v̂ + (v − βF (v))�v<v̂ −K.
The leader’s problem can now be expressed as

(3.12) L(v) = sup
θ≥0

Ê
[
e−rθΨ(Vv(θ))�θ<∞

]
.

The leader’s value function L(v) must satisfy

(3.13) L(v) ≥ 0; L(v) ≥ Ψ(v).

The obstacle Ψ(v) presents a problem because it is only continuous, not C1(0,∞). There
is, however, only one point of nondifferentiability, v̂, which we observe from the following:

(3.14) Ψ′(v) =

{
a, v > v̂,

1− β(1− a)
(v
v̂

)β−1
, v < v̂,

with Ψ′(v̂ − 0) = 1− β(1− a) < Ψ′(v̂ + 0) = a.
We next find bounds associated with the obstacle function, Ψ(v), and the value function,

L(v). We first proceed to the bound of Ψ(v). By (3.11), Ψ(v) can be expressed as

Ψ(v) = av −K + Ψ̃(v)�v<v̂ ,
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where Ψ̃(v) = (1− a)v − βF (v) satisfies

Ψ̃′(v) = (1− a)− βF ′(v) =

⎧⎨⎩ 1− a
[
1− β

(v
v̂

)β−1
]
, v ≤ v̂,

(1− a)(1− β), v ≥ v̂.

Hence, Ψ̃′(v) ≥ 0 if 0 < v < v∗ = v̂
(
1
β

) 1
β−1 < v̂ and Ψ̃′(v) < 0 if v > v∗.

Moreover, Ψ̃(0) = Ψ̃(v̂) = 0. Therefore,

(3.15) av −K ≤ Ψ(v) ≤ av.

We now proceed to bounds for L(v). By (3.12) and (3.15), we have

(3.16) L(v) ≤ a sup
θ≥0

Ê
[
e−rθVv(θ)�θ<∞

]
.

From (3.2), we have

dVv(t)e
−rt = η(ξ − λ)Vv(t)e−rtdt+ ηVv(t)e

−rtdŴ (t)

≤ ηVv(t)e−rtdŴ (t),

which shows the supermartingale property for the discounted value process. By the optional
sampling theorem, this implies

Ê
[
Vv(θ ∧ T )e−r(θ∧T )

] ≤ v, from which it follows that Ê
[
Vv(θ)e

−rθ
�θ<∞

] ≤ v.
Therefore, (3.16) implies 0 ≤ L(v) ≤ av. From (3.12) and (3.15), we have L(v) ≥ Ψ(v) ≥
av −K; hence we arrive at the bound of L(v):

(3.17) (av −K)+ ≤ L(v) ≤ av.

We now proceed to formulate the leader’s problem in a different way. By (3.12), we need

to evaluate Ê
[
e−rθVv(θ)�θ<∞

]
. Using

Ê
[
Vv(θ ∧ T )e−r(θ∧T )

]
= v + η(ξ − λ)Ê

[∫ θ∧T

0
e−rsVv(s)ds

]
,

letting T →∞, and using

Ê
[
Vv(T )e

−rT
]
= veη(ξ−λ)T → 0 as T →∞,

we obtain

(3.18) Ê
[
Vv(θ)e

−rθ
�θ<∞

]
= v + η(ξ − λ)Ê

[∫ θ

0
e−rsVv(s)ds

]
.
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Rewriting (3.12) by making use of (3.18) with some algebraic manipulation and setting
U(v) = L(v)− av +K, we have4

U(V ) = sup
θ≥0

Ê

{
e−rθ

(
Ψ
(
Vv(θ)

)− aVv(θ) +K

)
�θ<∞

+

∫ θ

0
e−rs

(
aη(ξ − λ)Vv(s) + rK

)
ds

}
= sup

θ≥0
Ê

{
e−rθχ

(
Vv(θ)

)
�θ<∞ +

∫ θ

0
e−rsf

(
Vv(s)

)
ds

}
.(3.19)

This formulation leads to an optimal stopping time problem with an obstacle χ(v) = Ψ(v)−
av +K and a running profit f(v) = aη(ξ − λ)v + rK.

We have

(3.20) 0 ≤ χ(v) ≤ K and 0 ≤ U(v) ≤ K.
3.2.2. The leader’s problem V.I. We now formulate the analytic problem corresponding

to (3.19) by dynamic programming. We cannot proceed as in (3.5) because we cannot guar-
antee that U(v) is C1(0,∞) since χ(v) is not C1(0,∞). We must establish the variational
formulation of (3.19) in the weak sense.

We introduce the following useful functional spaces with a weight function w(x) = 1
(1+x2)�

:

L2
�(Ω) =

{
Φ(x)|

∫
Ω
w(x)Φ2(x)dx <∞

}
,(3.21)

H1
�(Ω) =

{
Φ ∈ L2

�(Ω)|xΦ′(x) ∈ L2
�(Ω) if Ω ⊆ R

+; Φ′(x) ∈ L2
�(Ω) if Ω ⊆ R

}
,(3.22)

where L2
�(Ω) is a Hilbert space with the weighted scalar product

(3.23) (Φ, Φ̃)� =

∫
Ω
Φ(x)Φ̃(x)w(x)dx

and H1
� (Ω) is a Sobolev space with the scalar product

(3.24) ((Φ, Φ̃))� = (Φ, Φ̃)� +

∫
Ω
x2w(x)Φ′(x)Φ̃′(x)dx.

We work on L2
�(0,∞) and H1

�(0,∞).5 We define on H1
�(0,∞) the bilinear form

b(Φ, Φ̃) =

∫ ∞

0
vΦ′(v)

[
−(r + η(ξ − λ)) + η2

1− v2(
− 1)

1 + v2

]
Φ̃(v)w(v)dv

+
1

2

∫ ∞

0
Φ′(v)Φ̃′(v)v2η2w(v)dv +

∫ ∞

0
rΦ(v)Φ̃(v)w(v)dv.(3.25)

4It is straightforward that the uniqueness and existence of the solution, U(v), guarantees the uniqueness
and existence of the solution, L(v) = U(v) + av −K.

5� > 3
2
.
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Clearly, b(Φ,Φ)6 is continuous on H1
�(0,∞). For α ≥ α0, we have the coercivity property

(3.26) b(Φ,Φ) + α(Φ,Φ)� ≥ c0‖Φ‖2�, c0 > 0.

We consider the convex subset of H1
� (0,∞):

(3.27) K =

{
Φ ∈ H1

� (0,∞)|Φ(v) ≥ χ(v) ∀ v, Φ(0) = K

}
.

Note that K is not empty because the constant K belongs to K.
The V.I. corresponding to (3.19) is

(3.28) b(U, Ũ − U) ≥ (f, Ũ − U)� ∀ Ũ ∈ K, U ∈ K.

To study the existence and uniqueness of the solution to (3.28), we introduce the modified
problem

(3.29) b(U, Ũ − U) + α(U, Ũ − U)� ≥ (f, Ũ − U)� + α(G, Ũ − U)� ∀ Ũ ∈ K, U ∈ K.

In (3.29), G is given with

(3.30) 0 ≤ G(v) ≤ K.

The coercivity property (3.26) guarantees the problem (3.29) has a unique solution that we
denote by Γα(G) to emphasize the dependence on G.

We first check that the unique solution, Γα(G), to (3.29) is in the interval [0,K], the bound
of U(v).

Lemma 3.2. We have the property

(3.31) 0 ≤ Γα(G) ≤ K.

Proof. See Appendix A.
We next check the contraction mapping property.
Lemma 3.3. We have

(3.32) ‖Γα(G1)− Γα(G2)‖L∞ ≤ α

α+ r
‖G1 −G2‖L∞ .

Proof. See Appendix B.
Theorem 3.4. Assume ξ − λ < 0. The V.I. (3.28) has a unique solution U such that

(3.33) 0 ≤ U ≤ K.

Proof. It is a consequence of the fact that a solution to (3.28) satisfying (3.33) is a fixed
point of Γα, defined as a map from the interval (3.33) into itself.

Theorem 3.5. The solution U of the V.I. (3.28) coincides with (3.19).
Proof. See Appendix C.

6Replace Φ̃ with Φ in (3.25).
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3.2.3. Smoothness of the solution. It turns out that the solution U(v) will be smoother
than the obstacle. This is due to the fact that the obstacle is not continuously differentiable
in a single point. So the V.I. will have a strong formulation, which is given by the following
relations:

(3.34)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1
2U

′′(v)η2v2 − (r + η(ξ − λ))vU ′(v) + rU(v) ≥ aη(ξ − λ)v + rK,

U(v) ≥ χ(v),
[U(v)− χ(v)][−1

2U
′′(v)η2v2 − (r + η(ξ − λ))vU ′(v)
+ rU(v)− aη(ξ − λ)v − rK] = 0,

U(0) = K

with χ(v) =
(
(1− a)v − βF (v))�v<v̂ satisfying

(3.35)

{
−1

2χ
′′(v)η2v2 − (r + η(ξ − λ))vχ′(v) + rχ(v) = −(1− a)η(ξ − λ)v if v < v̂,

χ(0) = χ(v̂) = (1− a)v̂ − βK
β−1 = 0,

where v̂ = βK
(1−a)(β−1) .

We look for a solution to (3.34) in an interval 0 ≤ U(v) ≤ U(v), where U(v) will be a
ceiling function which is C1 and vanishes for v sufficiently large. We consider

(3.36) U(v) = −a
[
v − v̄ − v̄

β

((v
v̄

)β − 1

)]
, v < v̄.

This function and its derivative vanish at v̄, i.e., U(v̄) = U
′
(v̄) = 0. It is extended by 0 for

v > v̄.
We first need to check that U(v) defined above is an appropriate ceiling function. Using

(3.36), we see that

−1

2
v2η2U

′′ − vU ′(
r + η(ξ − λ)) + rU = avη(ξ − λ) + arv̄

(
1− 1

β

)
≥ avη(ξ − λ) + rK(3.37)

for v̄ sufficiently large.
We also need to check the property that U(v) > χ(v). Since χ(v) = 0 for v > v̂, it is

sufficient to prove U(v) > χ(v) for v < v̂. From (3.37), we have

avη(ξ − λ) + arv̄

(
1− 1

β

)
> −(1− a)vη(ξ − λ),

provided arv̄(1 − 1
β ) > −vη(ξ − λ), which occurs if arv̄(1 − 1

β ) > −v̂η(ξ − λ), i.e., if v̄ is

sufficiently large. This inequality together with (3.35) implies U(v) ≥ χ(v). Combining with
the first inequality implies

(3.38) U(v) ≤ U(v).

Thus, U(v) is an appropriate ceiling function.
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We now apply penalty approximation techniques to (3.34). We approximate (3.34) by a
smoother problem, a penalized problem. That is, we look for Uε such that

{
−1

2U
′′
ε (v)η

2v2 − (r + η(ξ − λ))vU ′
ε(v) + rUε(v) = aη(ξ − λ)v + rK + 1

ε (χ− Uε(v))
+,

Uε(0) = K; Uε(v̄) = 0.

(3.39)

We also have

(3.40) Uε(v) ≤ U(v).

We can check the property of (3.40). Indeed, setting Ũε = Uε − U , we have{
−1

2 Ũ
′′
ε (v)η

2v2 − (r + η(ξ − λ))vŨ ′
ε(v) + rŨε(v) ≤ 1

ε

(
Ũε(v)

)−
,

Ũε(0) = 0; Ũε(v̄) = 0.

This implies Ũε ≤ 0 by the maximum principle, and (3.40) is satisfied.

The key point is to check the estimate

(3.41)
(χ− Uε)

+

ε
≤ c0.

Using the property of χ(v), we have

−1

2
U ′′
ε (v)η

2v2 − (r + η(ξ − λ))vU ′
ε(v) +

(
r +

1

ε

)
Uε(v) ≥ aη(ξ − λ)v + rK

≥ aη(ξ − λ)v̄ + rK for v < v̄;

hence

(3.42) Uε(v) ≥ ε
(
aη(ξ − λ)v̄ + rK

)
.

Consider next (0, v̂) and set

U∗
ε (v) = Uε(v)− χ(v).

U∗
ε (v) satisfies the following equations:

(3.43)

{
−1

2U
∗′′
ε (v)η2v2 − (r + η(ξ − λ))vU∗′

ε (v) + rU ′
ε(v) = aη(ξ − λ)v + rk + 1

εU
∗
ε (v)

−,
U∗
ε (0) = K; U∗

ε (v̂) ≥ ε
(
aη(ξ − λ)v̄ + rK

)
.

This implies

U∗
ε (v) ≥ min

[
ε
(
η(ξ − λ)v̂ + rK

)
, ε
(
aη(ξ − λ)v̄ + rK

)]
.

Therefore, we obtain (3.41) with

(3.44) c0 = −rK − η(ξ − λ)max(v̂, av̄) > 0.
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Referring back to (3.37), we have

(3.45)

∫ v̄

0
v2|U ′′

ε |dv ≤ C.

Therefore, we can extract from Uε(v) a subsequence, still denoted Uε(v), such that

(3.46)

⎧⎪⎨⎪⎩
Uε(v)→ U(v) in L∞(0, v̄) weak star,

vU ′
ε(v)→ vU ′(v) in L2(0, v̄) weakly,

v2U ′′
ε (v)→ v2U ′′(v) in L∞(0, v̄) weak star.

In particular, we can take
U(v̄) = 0; U(0) = K.

Passing to the limit in (3.39), we obtain

(3.47)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
2U

′′(v)η2v2 − (r + η(ξ − λ))vU ′(v) + rU(v) = aη(ξ − λ)v + rK + ϕ(v),

U(v) ≥ χ(v),
(U(v) − χ(v))ϕ(v) = 0,

U(0) = K,

U(v̄) = 0,

U(v) ∈ C1(0, v̄), U ′′(v) ∈ L∞(0, v̄).

The function U(v) is the solution of (3.34). Let us check that

(3.48) U ′(v̄) = 0.

Indeed, U ′(v̄) ≤ 0 since U(v) > 0 for v < v̄. But, from (3.40), we have U(v) ≤ U(v), yielding

U(v)− U(v̄)

v − v̄ ≥ U(v)− U(v̄)

v − v̄ for v < v̄,

and thus U ′(v̄) ≥ 0. We see that (3.48) holds. It follows that the function U(v), the solution
of (3.47), extended by 0 is the solution of (3.34).

The next interesting result is that we can get an explicit solution for U(v). It is not a
threshold solution, which is due to the lack of smoothness of the obstacle χ(v) in v̂. The
solution will be referred as a two-interval solution, as explained in the following.

Theorem 3.6. There exist three points 0 < v1 < v2 < v̂ < v3 such that

(3.49)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2U
′′(v)η2v2 − (r + η(ξ − λ))vU ′(v) + rU(v) = aη(ξ − λ)v + rK,

0 < v < v1 and v2 < v < v3,

U(v) = χ(v) for v1 ≤ v ≤ v2,
U(v) = 0 for v > v3

with matching conditions U ′(v1) = χ′(v1), U ′(v2) = χ′(v2), and U ′(v3) = 0.
Proof. See Appendix D.
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So the solution coincides with the obstacle on two intervals. Knowing this fact, it is
possible to make a direct calculation taking into account

(3.50)

{
U(v) = −av +K +Avβ if v < v1,

U(v) = −av +K + Cvβ +Dvβ1 if v2 < v < v3,

where β and β1 are, respectively, the positive and negative roots of the characteristic equation
1
2η

2β2 +
(
r+ η(ξ − λ)− 1

2η
2
)− r = 0, and A, C, and D are constants to be defined. We leave

it to the reader to perform these calculations.
We can define the leader’s optimal stopping rule as

(3.51) θ̂(v) =

⎧⎪⎪⎨⎪⎪⎩
inf{t|Vv(t) ≥ v1} if 0 ≤ v < v1,
0 if v1 ≤ v ≤ v2,
inf{t|Vv(t) ≤ v2 or Vv(t) ≥ v3} if v2 < v < v3,
0 if v ≥ v3.

3.2.4. Optimal rules in the case of complete markets. We summarize the leader’s and
the follower’s optimal investment rules as follows:

1. If v < v1, the leader waits to enter until v ≥ v1, and the follower enters when v ≥ v̂.
2. If v1 < v < v2, the leader enters immediately, and the follower enters when v ≥ v̂.
3. If v2 < v < v3, the leader waits to enter until v moves outside the interval bounded

by v2 and v3. The follower’s optimal policy is more complicated, and there are two
possibilities. One possibility is v2 < v < v̂ < v3. If the leader enters because v ≤ v2, the
follower will make his/her move when v ≥ v̂. If the leader enters because v ≥ v3, the
follower enters immediately since v ≥ v3 > v̂. The other possibility is v2 < v̂ < v < v3.
Although v ≥ v̂, indicating that the follower should enter, the follower is blocked from
doing so until the leader enters. If the leader enters because v ≤ v2, the follower will
make his/her move when v ≥ v̂ again. If the leader enters because v ≥ v3, the follower
enters immediately since v ≥ v3 > v̂.

4. If v ≥ v3, the leader invests immediately, and the follower then makes his/her move.
Note that both the leader’s and the follower’s investment rules deviate from the mo-

nopolist’s case. Although the follower’s optimal investment trigger, v̂, is the same as the
monopolist’s, he/she is forbidden to enter the market until the leader has already done so.
The leader’s optimal investment trigger, characterized by two intervals, which are [v1, v2] and
[v3,∞), differs from the monopolist’s, v̂, due to the consideration of strategic interactions from
the follower’s action. By Theorem 3.6, the unique triple for the leader’s optimal stopping is
such that 0 < v1 < v2 < v̂ < v3; the leader will invest suboptimally if he/she ignores the
follower’s action.

4. Lump-sum payoffs and incomplete market assumption.

4.1. Utility-based pricing model. The asset S representing the market still evolves as
(2.1). The project value process V of (3.1), generated by the capital investment project, now
evolves as

(4.1) dV (t) = rV (t)dt+ ηV (t)
(
ξdt+ ρdW (t) +

√
1− ρ2dW 0(t)

)
,
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where W (t) and W 0(t) are independent Wiener processes. The market asset S depends on
only one of the Wiener processes, but the project value depends on both. The parameter
0 < |ρ| < 1 is the correlation coefficient between market uncertainty and project value process
uncertainty. The market asset S can span only a portion of the project value risk driven
by the Wiener process W (t). This leaves the remaining risk driven by W 0(t) unhedgeable.
Therefore, the market is incomplete, and there is more than one risk-neutral pricing measure.
Alternatives to arbitrage-free pricing must be developed in order to correctly value assets and
define the related risk management.

We adopt the utility-based pricing approach where the risk-averse investor’s preferences
are characterized by an exponential utility function given by

(4.2) U(x) = −1

γ
e−γx,

where the argument x is the investor’s wealth (x > 0), and γ is his/her risk aversion parameter,
with γ > 0.

The rational investor maximizes his/her expected utility of wealth. To simplify exposition,
we ignore consumption. The evolution of wealth is uniquely driven by the investment port-
folio strategy. Given initial wealth, x, the risk-averse investor optimizes his/her portfolio by
dynamically choosing allocations in the market asset S and the riskless bond. The investor’s
wealth, X, evolves as

(4.3) dX(t) = rX(t)dt+X(t)π(t)σ
(
λdt+ dW (t)

)
,

where π(t) is the portion of wealth invested in asset S. We use the discounted values Ṽ (t) =
V (t)e−rt and X̃(t) = X(t)e−rt, where

dṼ (t) = Ṽ (t)η
(
ξdt+ ρdW (t) +

√
1− ρ2dW 0(t)

)
,(4.4)

dX̃(t) = X̃(t)π(t)σ
(
λdt+ dW (t)

)
.(4.5)

Processes Ṽ (t) and X̃(t) are positive. Let Ft = σ(W (s),W 0(s); s ≤ t). We consider stopping

times τ with respect to Ft starting with initial values Ṽ (0) = v, X̃(0) = x. At τ , the individual
invests and receives X̃x(τ) + (Ṽv(τ) −K)+.7 With a pair (π(·), τ) we associate the objective
function

(4.6) Jx,v(π(·), τ) = E

[
e

λ2

2
τU

(
X̃x(τ)+

(
Ṽv(τ)−K

)+)]
.

We assume τ is finite a.s. The function (4.6) is well defined, but the value −∞ is possible.

When |ρ| = 1, we expect the criterion to be equivalent to Ê
(
Ṽv(τ)−K

)+
, which differs from

the risk-neutral pricing, Ê[e−rτ (Vv(τ)−K)+]. These changes are motivated by the quest for

7This formulation is similar to the specification that the investment cost grows at the risk-free rate.
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an analytical solution. The positive exponential is used because U defined in (4.2) is negative.

The coefficient λ2

2 permits an essential simplification.8

The investor’s problem is to maximize his/her expected utility taking portfolio investment
strategies and stopping times into consideration. We define the associated value function as

(4.7) F (x, v) = sup
π(·),τ

Jx,v(π(·), τ).

4.2. Single player. In this section, we want to solve the single player problem. We prepare
for the sharing of the resource by using a coefficient a. At time τ , the individual invests and
receives X̃x(τ) + (1− a)Ṽv(τ)−K.

With a pair (π(·), τ) we associate the objective function

(4.8) Jx,v(π(·), τ) = E

[
e

λ2

2
τU

(
X̃x(τ) +

(
(1− a)Ṽv(τ)−K

)+)]
.

We again assume τ is finite a.s. The associated value function is defined as

(4.9) F (x, v) = sup
π(·),τ

Jx,v(π(·), τ).

We solve the problem by V.I. By Henderson [22], we have the following theorem.

Theorem 4.1. We assume ξ − ρλ < 0 and set

(4.10) β = 1− 2(ξ − ρλ)
η

> 1.

Define v̂ by

(4.11) (1− a)v̂ = K +
�

γ(1− ρ2)
with � the unique positive solution of

(4.12) e − �

β
= 1 +

Kγ(1− ρ2)
β

.

We look for a solution F (x, v) = U(x)Φ(v) and have

(4.13) F (x, v) =

⎧⎨⎩ U(x)
(
χ(v)

) 1
1−ρ2 if 0 < v < v̂,

U(x)e−γ
(
(1−a)v−K

)
if v ≥ v̂,

8Henderson [22] formulated the same investment problem, recognizing that this is a nonstandard situation.
Wealth must be evaluated at a finite intermediate time. She also showed how this formulation eliminates bias
that might influence the manager’s choice of exercise/investment time in the infinite horizon setting. She also

noted that the choice of λ2

2
is a modeling choice, and it is not essential to solve the model in closed form. It is

essential for unbiased investment timing.
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where χ(v) = 1− (1−e−)
(
v
v̂

)β
. Note that if |ρ| is close to one or γ is close to zero (i.e., risk

neutrality), then � ∼ Kγ(1−ρ2)
β−1 and v̂ = Kβ

(β−1)(1−a) . It is the value identified in section 3.1,

except for a different value of β.9

Differing from Henderson’s verification through a probabilistic argument, we prove that
F (x, v) in (4.13) is the solution of the V.I. (which is the equivalent of the Bellman equation
for stopping times). We omit the proof. The optimal strategy for the investor is

(4.14) τ̂(x, v) = inf{t ≥ 0|Ṽv(t) is outside (0, v̂)} = τ̂(v)

and τ̂(v) < ∞ a.s. This is the optimal stopping time and does not depend on the initial
wealth x.

4.3. Two players: A Stackelberg game. As in section 3.2, we consider a Stackelberg
leader and follower game. The leader enters the market at time θ and the follower at time
τ ≥ θ, both stopping times of the filtration Ft. The leader knows that the follower, acting
rationally, will enter at time τ̂θ, at which time he/she must surrender a portion of the project
to the follower.

The follower’s investment problem is given by solving the one player problem. After the
leader’s entry, he/she makes the optimal stopping decision. By paying an investment cost K

at τ , the follower receives X̃x(τ) + (1 − a)Ṽ (τ). The follower’s problem is to maximize the
expected discounted utility of wealth by choosing stopping time τ and investment strategy π.
Thus, the follower’s strategy is identical to that described in section 4.2. We have the follower’s
value function as defined by (4.13), where v̂ is given by (4.11) with � the unique value of
(4.12). Thus, the optimal stopping strategy for the follower, τ̂(v), is the same as defined in
(4.14).

The stopping time τ̂(v) is the optimal entry if the follower can enter the market at time
zero. Since the follower enters after the leader (who starts at θ), for finite θ, the follower will
enter at time

(4.15) τ̂θ = θ + τ̂
(
Ṽv(θ)

)
with the same considerations as for (3.9).

4.3.1. The leader’s problem. The leader must take into account the fact that the follower
will enter according to τ̂(v). The evolution of the leader’s discounted wealth, and of the
discounted value process, are as in (4.5) and (4.4), respectively.

Beginning with initial wealth x, the leader rebalances his/her portfolio holdings by dy-
namically choosing the investment allocations, π(·), in the asset S and riskless bond. The
leader chooses a stopping time θ (with respect to Ft), at which time he/she invests. At stop-

ping time θ, the leader receives X̃x(θ) + (Ṽv(θ)−K)+. However, he/she must anticipate the
follower’s optimal entry and the corresponding sharing of the market.

9By assuming investment cost grows at the risk-free rate in the complete market, we can see directly that
when |ρ| → 1 or γ → 0 the optimal investment rule converges to the complete market/risk-neutral valuation
case.
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The follower may enter the market after θ, and he/she will decide to do so according to
the rule τ̂θ described in (4.15). The leader anticipates the follower’s actions. So we have the
following rules:

1. If Ṽ (θ) > v̂, the follower enters immediately and the leader gets X̃(θ) + aṼ (θ) −K,
where a is the leader’s market share after entry by the follower. This payoff is larger
than X̃(θ) since, by assumption, a > 1

2 .

2. If Ṽ (θ) < v̂, then τ̂
(
Ṽ (θ)

)
> 0, and the leader gets X̃(θ) + (Ṽ (θ) −K) immediately.

However, he/she surrenders, at time θ+ τ̂
(
Ṽ (θ)

)
, a percentage (1−a) of project value

to the follower.
We encounter a hurdle in the latter scenario. Unlike the solution in the complete market,
we cannot compare gains and losses occurring at different times directly. At time θ, the
leader must determine the value surrendered to the follower, taking into account the follower’s
optimal entry at τ̂θ. In the complete market case, this is straightforward because the valuation
is in the monetary unit. In the incomplete market case, we are unable to evaluate cash flows
generated (or outflows incurred) at different points in time. We will circumvent this problem
converting the surrender value by an equivalence (indifference) consideration. We describe
this amount in reference to the follower because this surrender value must be equivalent to
an inflow that he/she will receive in his/her portfolio optimization problem after the time of
entrance τ̂θ. The leader has no choice but to take into account a surrender value which is
acceptable to the follower.

We proceed by first obtaining the surrender project value with equivalence (indifference)
consideration. We can start at the origin, which will later be the time of entrance of the
leader. Let X̃(t), Ṽ (t) be the wealth of the follower and the value process governed by (4.5)

and (4.4) with X̃(0) = x, Ṽ (0) = v. If v > v̂, then everything takes place at time 0. The
follower receives (1−a)v. He/she values this operation by U

(
x+(1−a)v) since his/her wealth

is x+ (1− a)v.
If 0 < v < v̂, then the follower receives, at time τ̂(v), (1−a)Ṽ (τ̂(v)), and the corresponding

value is

e
λ2

2
τ̂(v)U

(
X̃x

(
τ̂(v)

)
+ (1− a)Ṽv

(
τ̂(v)

))
.

Note that K does not enter this calculation because we are looking at the equivalent only at
the initial time (later the entrance time of the leader) of what the follower will receive from
the leader at time τ̂(v). The amount K plays a role in calculating τ̂(v).

Since he/she can manage his/her portfolio on the interval of time
(
0, τ̂ (v)

)
, the value is

in fact

(4.16) H(x, v) = max
π(·)

E
[
e

λ2

2
τ̂(v)U

(
X̃x

(
τ̂(v)

)
+ (1− a)Ṽv

(
τ̂(v)

))]
and we have the boundary condition

(4.17) H(x, v̂) = U
(
x+ (1− a)v̂).

If v = 0, then τ̂(v) = 0; therefore

(4.18) H(x, 0) = U(x).
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To simplify exposition, we define the nonlinear differential operator

ΓH(x, v) =
∂H

∂v
vηξ +

1

2

∂2H

∂v2
v2η2 +

1

2
λ2H − 1

2

(
λ∂H

∂x + ∂2H
∂x∂vρηv

)2
∂2H
∂x2

,

and H(x, v) must satisfy

(4.19)

{
ΓH(x, v) = 0, x ∈ R, v < v̂,

H(x, 0) = U(x); H(x, v̂) = U(x+ (1− a)v̂).
We look for a solution

(4.20) H(x, v) = U(x)Λ(v)

and find that

(4.21) Λ(v) =
(
1 +Bvβ

) 1
1−ρ2 ,

where B = −1−e
−
(
�+Kγ(1−ρ2)

)
v̂β

, β is defined in (4.10), and � is the unique solution of (4.12).
Comparing to the function Φ(v) defined in Theorem 4.1, we have

(4.22) Φ(v)e−γK ≤ Λ(v) ≤ Φ(v).

We consider that the follower is indifferent between receiving He(v) at time 0 and losing
his/her right to enter into the market at time τ̂(v), or to exert his/her right to enter into the
market. The leader will use this value to express an equivalent to the commitment he/she has
to share the market with the follower in due time, at the time when he/she enters into the
market. We define now the indifference value He(v) by

H(x+He(v), 0) = H(x, v)

= U
(
x+He(v)

)
= U(x)e−γHe(v);(4.23)

then

(4.24) e−γHe(v) = Λ(v), 0 < v < v̂.

We have the extension

(4.25) He(v) = (1− a)v, v ≥ v̂,
since the follower jumps into the market immediately and the leader surrenders (1− a)v. For
v < v̂, we have τ̂(v) > 0 and it is necessary that He(v) < (1 − a)v since He(v) is the time 0
value which makes him/her indifferent by having this amount at time 0 and not having (1−a)v
at time τ̂(v). Therefore, we need to have the property

(4.26) He(v) ≤ (1− a)v if v < v̂,
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which is satisfied since this amounts to

G(v) = Λ(v)− e−γ(1−a)v

= 1 +Bvβ − e−γ(1−a)(1−ρ2)v

≥ 0 if v < v̂.(4.27)

Equation (4.27) is true because G′′(v) ≤ 0, G′(0) = γ(1− a)(1 − ρ2) > 0, and

G′(v̂) =
−γ(1− a)(1 − ρ2)(1− e−γK(1−ρ2))

e − 1
< 0.

The leader deducts the amount K+He(v) from the value v that he/she receives at time 0
if he/she decides to invest at time 0. We can now formulate the leader’s problem completely.

For each pair (π(·), θ), the leader’s objective function is

(4.28) Jx,v(π(·), θ) = E

[
e

λ2

2
θU

(
X̃(θ) +

(
Ṽ (θ)−K −He(Ṽ (θ))

)+)]
and the leader’s problem is to maximize (4.28) with respect to portfolio investment strategies,
π, and stopping times, θ. Thus, we define the leader’s value function:

(4.29) L(x, v) = sup
π(·),θ

Jx,v
(
π(·), θ).

We impose θ <∞ a.s.

4.3.2. The leader’s problem V.I. We first note from the definition (4.29)

L(x, 0) ≥ sup
θ
Ee

λ2

2
θU(x) = U(x).

Next, we may write the V.I. in the strong sense that L(x, v) in (4.29) must satisfy as a
consequence of dynamic programming, assuming sufficient smoothness,

(4.30)

⎧⎪⎨⎪⎩
ΓL(x, v) ≤ 0,

L(x, v) ≥ U(x+
(
v −K −He(v)

)+)
,

ΓL(x, v)
[
L(x, v)− U(x+

(
v −K −He(v)

)+)]
= 0.

We can see that for v = 0, U(x) satisfies all the conditions. Therefore we may add the
boundary condition

(4.31) L(x, 0) = U(x).

We look for a solution of the form

(4.32) L(x, v) = U(x)L(v)
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and obtain

(4.33)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L′(ξ − λρ) + 1
2vη(L

′′ − ρ2L′2
L ) ≥ 0,

L(v) ≤ e−γ
(
v−K−He(v)

)+
,[

L′(ξ − λρ) + 1
2vη(L

′′ − ρ2L′2
L )
][
L(v)− e−γ

(
v−K−He(v)

)+]
= 0,

L(0) = 1.

We want a solution such that

(4.34) 0 ≤ L(v) ≤ 1.

Setting L(v) = Σ(v)
1

1−ρ2 , we obtain the V.I.

(4.35)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Σ′(ξ − λρ) + 1
2vηΣ

′′ ≥ 0,

Σ(v) ≤ e−γ(1−ρ2)
(
v−K−He(v)

)+
,[

Σ′(ξ − λρ) + 1
2vηΣ

′′][Σ(v)− e−γ(1−ρ2)
(
v−K−He(v)

)+]
= 0,

0 ≤ Σ(v) ≤ 1; Σ(0) = 1.

We encounter the same mathematical difficulty as we have for the leader’s problem in the
complete market. The obstacle

(4.36) ψ(v) = e−γ(1−ρ2)
(
v−K−He(v)

)+
is continuous but not C1. At point v̂, we have ψ(v̂) = e−γ(1−ρ2)(av̂−K). Moreover, we note the
following property.

Lemma 4.2. The function v−K−He(v) vanishes at a single point vo such that K < vo < v̂.
Proof. See Appendix E.
The function

(
v−K−He(v)

)+
is continuous but not C1. The derivative is discontinuous

at vo and v̂. The obstacle ψ(v) has the same property. Since the obstacle is not in C1, we must
consider (4.35) in a weak sense. Nevertheless the function Σ(v) will be the value function of
an optimal stopping problem (no continuous control). Namely, we have the state equation10

(4.37) dV (t) = V (t)η
(
(ξ − λρ)dt+ dW (t)

)
, V (0) = v,

and the value function

(4.38) Σ(v) = inf
τΣ
Jv(τΣ)

with

(4.39) Jv(τΣ) = E
[
ψ
(
Vv(τΣ)

)]
,

10Note that this is a different V (t) process from the original model. This V (t) process arises from our
redefined control problem Σ(v). This is the process for which we define the optimal stopping rule for τ̂Σ, not
the original V (t) process.
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and τΣ must be a stopping time which is a.s. finite. To formulate (4.38) in a weak form
sense, we introduce the Sobolev space H1

�(0,∞) with the scalar product (3.24). We define the
bilinear form

b(φ, φ̃) =

∫ ∞

0
φ′(v)

{
−η(ξ − λρ) + η2

1− v2(
− 1)

1− v2
}

φ̃(v)

(1 + v2)�
dv

+
1

2

∫ ∞

0

φ′(v)φ̃′(v)v2η2

(1 + v2)�
dv.(4.40)

Consider next the convex set

(4.41) K = {φ ∈ H1
�(0,∞)|0 ≤ φ(v) ≤ ψ(v) ∀ v},

which contains ψ(v); i.e., it is not empty.

The V.I. corresponding to (4.38) is

(4.42) b(Σ, Σ̃ − Σ) ≥ 0 ∀ Σ̃ ∈ K, Σ ∈ K.

We observe from (4.33), (4.34), and (4.35) that τΣ, the optimal stopping we obtain in (4.38),
and θ, the optimal stopping we obtain in (4.29), coincide. To simplify the notation and to
make use of the optimal stopping notation we defined for the leader, we slightly abuse the
notation by replacing τΣ with θ.

We turn now to prove the existence and uniqueness of the solution of (4.42), whose solution
coincides with that of the value function (4.38). We proceed by first establishing the property
that the set of solutions of (4.42) has a maximum and a minimum element within a convenient
interval. In Theorem 4.3, we prove that the minimum and the maximum solutions coincide,
equal to the value function (4.38).

Theorem 4.3. Assume ξ − λρ < 0. Then there exists one and only one solution of (4.42).
It coincides with the value function (4.38).

Proof. See Appendix F.

4.3.3. Obtaining a two-interval solution. We can investigate whether the solution Σ(v)
of the V.I. (4.42) is smoother than the obstacle, as is the case in the situation of complete
markets. Unfortunately, here, because of the presence of the term He(v), we cannot have a
general result. Nevertheless, we can explore directly the possibility that a C1 solution exists
by looking for a two-interval strategy for which we will give only a partial account. Namely,
we seek three values v1, v2, v3 such that

(4.43) v0 < v1 < v2 < v̂ < v3

and

(4.44)

⎧⎪⎪⎨⎪⎪⎩
Σ′(ξ − λρ) + 1

2vηΣ
′′ = 0, 0 < v < v1,

Σ(v) = ψ(v), v1 < v < v2,
Σ′(ξ − λρ) + 1

2vηΣ
′′ = 0, v2 < v < v3,

Σ(v) = ψ(v), v = v3,
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with the value matching conditions

(4.45)

⎧⎨⎩
Σ(v1) = ψ(v1); Σ′(v1) = ψ′(v1),
Σ(v2) = ψ(v2); Σ′(v2) = ψ′(v2),
Σ(v3) = ψ(v3); Σ′(v3) = ψ′(v3).

We consider an explicit calculation. We begin with v1. We have Σ(v) = 1+Dvβ for 0 < v < v1
since Σ(0) = 1. It follows that we have the conditions (by (4.45))⎧⎨⎩ 1 +Dvβ1 = e−γ(1−ρ2)

(
v1−K−He(v1)

)
,

βDvβ−1
1 = −γ(1− ρ2)(1− (He)′(v1)

)
e−γ(1−ρ2)

(
v1−K−He(v1)

)
;

hence

(4.46) eγ(1−ρ2)
(
v1−K−He(v1)

)
− γ(1 − ρ2)v1

β

(
1− (He)′(v1)

)
= 1.

On the other hand, by (4.24), we obtain

−γ(1− ρ
2)v1

β

(
He(v)

)′
= 1− eγ(1−ρ2)He(v1),

and using this in (4.46) we obtain the equation for v1:

(4.47) eγ(1−ρ2)
(
v1−K−He(v1)

)
+ eγ(1−ρ2)He(v1) = 2 +

γv1(1− ρ2)
β

.

Proposition 4.4. Assume

(4.48) (1− a)e
+γK(1−ρ2) − 1

e − 1
< 1;

then the solution of (4.47), which exists, belongs to (v0, v̂). Moreover, with any solution v1,
one can associate a negative constant D such that the first conditions in (4.45) are satisfied.

Proof. See Appendix G.
Having obtained v1, we next look for the values of v2 and v3. For v2 < v < v3, Σ(v) =

A+ Cvβ, where A and C are constants. We write the conditions as follows (by (4.45)):

(4.49)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A+Cvβ2 = e−γ(1−ρ2)

(
v2−K−He(v2)

)
,

Cβvβ−1
2 = −γ(1− ρ2)(1− (He)′(v2)

)
e−γ(1−ρ2)

(
v2−K−He(v2)

)
,

A+Cvβ3 = e−γ(1−ρ2)(av3−K),

Cβvβ−1
3 = −aγ(1− ρ2)e−γ(1−ρ2)(av3−K).

We eliminate the constants A and C to obtain a system of two equations with two unknowns,
v2 and v3:

(4.50)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
1 + 1

β v3(1− ρ2)a
)
eγ(1−ρ2)

(
v2−K−He(v2)

)
= eγ(1−ρ2)(av3−K)[

2 + γ
β v2(1− ρ2)− eγ(1−ρ2)He(v2)

]
,

γ
β
a(1−ρ2)e

γ(1−ρ2)

(
v2−K−He(v2)

)
vβ−1
3

= eγ(1−ρ2)(av3−K)

vβ−1
2

[ γ
β (1− ρ2) + 1−eγ(1−ρ2)He(v2)

v2

]
.
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Unfortunately this nonlinear system of algebraic equations is not easy to study analytically.
Even if we can solve it, it will remain to prove that the two-interval solution is indeed a solution
of the V.I.

4.3.4. Optimal rules in the case of incomplete markets. In the incomplete market sit-
uation, we need a weak formulation for the leader’s problem V.I. The optimal stopping is the
first time when the solution and the obstacle coincide. However, we cannot state that the
optimal strategy is characterized by two intervals, as is the case in the situation of complete
markets. Once the leader has entered into the market, the follower will enter according to the
threshold strategy v̂ defined by (4.11). The single decision maker’s optimal entry time is the
same as in the complete market case if the correlation between market risk and investment
risk approaches unity (i.e., |ρ| → 1) or γ approaches zero (i.e., a risk-neutral investor). We
conclude that market completeness and risk aversion are important inputs into the optimal
investment policy.

5. Cash flow payoffs and complete market assumption. We now turn to consider the
second type of investment operation incomes characterized by a series of cash flows (cf. section
2.3).

5.1. Single player. We assume that the cash flow process Y (t) from investment operation
evolves as

dY (t) = αdt+ ςdW (t)(5.1)

= (α− λς)dt+ ςdŴ (t), Y (0) = y,(5.2)

where α and ς are constants. The reason for modeling the stochastic investment cash flow
stream as an arithmetic Brownian motion is the recognition of the possibility of loss from
operations. Negative values from the arithmetic Brownian motion may be interpreted as a
loss generated from operations.

If the firm exploits the investment opportunity by paying cost K, it will obtain a continuous
cash flow δY (t) per unit time. At time t, the project value, V (t), from the operation is the
expected discounted cash flow stream under the risk-neutral probability measure given as

(5.3) V (t) = δÊ

[∫ ∞

t
e−r(s−t)Yy(s)ds|Ft

]
= δ

(
Yy(t)

r
+
α− λς
r2

)
.

From (5.3), the expected discounted payoff from the capital investment project undertaken
at time τ is

(5.4) Jy(τ) = Ê

[
e−rτ

(
δ

(
Yy(τ)

r
+
α− λς
r2

)
−K

)
�τ<∞

]
.

The firm’s objective is to find an optimal stopping time to maximize the expected discounted
payoff. That is,

(5.5) F (y) = sup
τ≥0

Jy(τ).
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Assuming F (y) is sufficiently smooth, we can write the V.I. in the strong sense that F (y)
must satisfy as a consequence of dynamic programming

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α− λς)F ′(y) +
1

2
ς2F ′′(y)− rF (y) ≤ 0,

F (y) ≥
(
δ

(
y

r
+
α− λς
r2

)
−K

)
,[

F (y)−
(
δ

(
y

r
+
α− λς
r2

)
−K

)][
(α− λς)F ′(y) +

1

2
ς2F ′′(y)− rF (y)

]
= 0,

F (y) ≥ 0; F has linear growth at ∞.
The solution is C1(−∞,∞) and piecewise C2. This suffices to give a meaning to (5.6) for
almost all y. Such a solution, F (y), if it exists, will be unique since, by a classical verification
argument, it will coincide with (5.5).

Theorem 5.1. Let

(5.7) β = −α− λς
ς2

+

√(
α− λς
ς2

)2

+
2r

ς2
> 0

and

(5.8) ŷ =
1

β
+
r

δ
K − α− λς

r
> 0;

then there exists a unique solution F of (5.6), which is C1, given by

(5.9) F (y) =

⎧⎪⎪⎨⎪⎪⎩
δ

rβ
exp{−β(ŷ − y)} if y ≤ ŷ,

δ

(
y

r
+
α− λς
r2

)
−K if y ≥ ŷ.

Proof. See Appendix H.
We next define the optimal stopping rule τ̂(y) that achieves the supremum in (5.5). From

general results on V.I., we have

τ̂(y) = inf

{
t|F (Yy(t)) = δ

(
Yy(t)

r
+
α− λς
r2

)
−K

}
= inf{t|G(Yy(t)) = 0},

where G(y) = F (y) − δ(yr + α−λς
r2

) + K. From the proof of Theorem 5.1, we see that G(y)
decreases from K to zero on the interval (0, ŷ) and remains zero for y > ŷ. Thus, Yy(t) = ŷ is
the solution to the above equation. Therefore, we can write

(5.10) τ̂(y) = inf{t|Yy(t) ≥ ŷ}.
By (5.10), the manager undertakes the capital investment as soon as the cash flow process
reaches the threshold ŷ from below. Using Yy(τ̂ (y)) = ŷ if τ̂(y) < ∞ and y < ŷ, we have the
probabilistic representation of value function F (y):

(5.11) F (y) =
δ

rβ
Ê
[
exp
(−rτ̂(y))] if y < ŷ.
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5.2. Two players: A Stackelberg game. We now consider the situation of section 3.2
but with the investment payoff as a series of cash flows. Upon entry, the leader receives
a continuous cash flow δ1Y (t) per unit time prior to the follower’s entry. Once both have
entered, each gets a continuous cash flow δ2Y (t) per unit time, with δ2 < δ1.

11

5.2.1. Statement of the leader’s problem. As in section 3.2.1, the follower’s optimal
stopping is

(5.12) τ̂θ = θ + τ̂
(
Yy(θ)

)
with considerations similar to those for (3.9) and we can write explicitly the Laplace transform
of the conditional density as

(5.13) Ê[e−r(τ̂θ−θ)|Fθ] = �Yy(θ)≥ŷ + �Yy(θ)<ŷe
−β
(
ŷ−Yy(θ)

)
.

When the leader enters at time θ < ∞, by paying cost K, he/she receives a continuous
cash flow δ1Yy(t) per unit time prior to the follower’s entry and gets a continuous cash flow
δ2Yy(t) per unit time after the follower’s entry. By anticipating the follower’s optimal entry
at time τ̂θ, entering at time θ <∞, the leader’s expected discounted payoff is

−K + δ1Ê

[∫ τ̂θ

θ
e−r(s−θ)Y (s)ds|Fθ

]
+ δ2Ê

[
�τ̂θ<∞

∫ ∞

τ̂θ

e−r(s−θ)Y (s)ds|Fθ

]
= −K + δ2

(
Yy(θ)

r
+
α− λς
r2

)
+ (δ1 − δ2)�Yy(θ)<ŷ

[
Yy(θ)

r
+
α− λς
r2

−
(

1

rβ
+
K

δ2

)
e−β(ŷ−Yy(θ))

]
,

where we use the fact that ŷ
r + α−λς

r2
= 1

rβ + K
δ2
. To facilitate the presentation, we define

(5.14)

Ψ(y) = −K + δ2

(
y

r
+
α− λς
r2

)
+ (δ1 − δ2)�y<ŷ

[
y

r
+
α− λς
r2

−
(

1

rβ
+
K

δ2

)
e−β(ŷ−y)

]
.

The leader’s objective is to find a stopping time, θ, to maximize the expected discounted
payoff:

(5.15) L(y) = sup
θ≥0

Ê
[
e−rθΨ

(
Yy(θ)

)
�θ<∞

]
.

The leader’s value function L(y) must satisfy

(5.16) L(y) ≥ 0; L(y) ≥ Ψ(y).

The obstacle, Ψ(y), presents a challenge because it is C0(−∞,∞), not C1(−∞,∞). The
only point of nondifferentiability is ŷ. In addition, Ψ(y) is unbounded as y → ±∞, which we
observe from the following. By (5.14), we may express Ψ(y) as

(5.17) Ψ(y) =
δ2
r

[
1

β
+ y − ŷ + δ1 − δ2

δ2
�y<ŷ

(
y − ŷ + μ

(
1− e−β(ŷ−y)

))]
,

where μ = ŷ + α−λς
r = δ2+rβK

βδ2
.

11The condition of δ2 < δ1 expresses the idea of the first-mover advantages; otherwise, the leader would have
no desire to enter into the market prior to the follower.
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5.2.2. The leader’s problem V.I. As in section 3.2.2, the nondifferentiability point of the
obstacle function requires us to write the variational formulation of (5.15) in the weak sense.
We introduce the useful functional spaces, the Hilbert space L2

�(−∞,∞) defined by (3.21),
and the Sobolev space H1

� (−∞,∞) defined by (3.22), with the corresponding scalar products
defined by (3.23) and (3.24), respectively. We define on H1

� (−∞,∞) the bilinear form

b(Φ, Φ̃) = −
∫ ∞

−∞

(
α− λς + 
yς2

1 + y2

)
Φ′(y)Φ̃′(y)w(y)dy +

1

2

∫ ∞

−∞
ς2Φ′(y)Φ̃(y)w(y)dy

+ r

∫ ∞

−∞
Φ(y)Φ̃(y)w(y)dy.(5.18)

We consider the convex subset

(5.19) K = {Φ ∈ H1
� (−∞,∞)|Φ(y) ≥ Ψ(y) ∀y},

where K is not empty since it contains Ψ.
The V.I. corresponding to (5.15) is

(5.20) b(L, L̃− L) ≥ 0 ∀L̃ ∈ K, L ∈ K.
Theorem 5.2. The value function (5.15) is the unique solution of the V.I. (5.20).
Proof. See Appendix I.

5.2.3. Smoothness of the solution. Because the obstacle is nondifferentiable only at
a single point, ŷ, it turns out that the solution L(y) will be smoother than the obstacle.
Therefore the V.I. will have a strong formulation:

(5.21)

⎧⎪⎨⎪⎩
−1

2ς
2L′′(y)− (α− ςλ)L′(y) + rL(y) ≥ 0,

L(y) ≥ Ψ(y),

(L(y)−Ψ(y))[−1
2 ς

2L′′(y)− (α− ςλ)L′(y) + rL(y)] = 0.

Note that Ψ(y) satisfies

(5.22)

{
−1

2ς
2Ψ′′(y)− (α− ςλ)Ψ′(y) + rΨ = δ1y − rK, y < ŷ,

Ψ(ŷ) = δ2
r ŷ +

δ2

r2
(α− ςλ)−K = δ2

rβ .

We would like L ≥ 0.
Consider

u(y) = L(y)−
(
δ2
r
y +

δ2
r2

(α− ςλ)
)
+K,

m(y) = Ψ(y)−
(
δ2
r
y +

δ2
r2

(α− ςλ)
)
+K,

giving us

(5.23)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2ς
2u′′(y)− (α − ςλ)u′(y) + ru ≥ −δ2y + rK,

u(y) ≥ m(y),

(u(y)−m(y))[−1
2 ς

2u′′(y)− (α − ςλ)u′(y) + ru+ δ2y − rK] = 0,

u(y) ≥ −( δ2r y + δ2
r2
(α− ςλ)) +K.
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The function m satisfies

(5.24) −1

2
ς2m′′(y)− (α− ςλ)m(y) + rm(y) = (δ1 − δ2)y, y < ŷ.

Proposition 5.3. There exists a unique u ∈ C1(−∞,∞), piecewise C2 solution of (5.23).
This function vanishes for y sufficiently large.

Proof. This is a special case of the more complex problem presented in Theorem 6.5, and
thus we refer the reader to the proof of Theorem 6.5.

Next, we are able to arrive at a two-interval solution stated in the proposition that follows.

Proposition 5.4. There exists a triple y1 < y2 < ŷ < y3 such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1
2ς

2u′′(y)− (α− ςλ)u′(y) + ru = −δ2y + rK for y < y1 and y2 < y < y3,

u(y) ≥ m(y),

u(y) = m(y) for y1 ≤ y ≤ y2,
u(y) = 0 for y ≥ y3,
u′(y1) = m′(y1); u′(y2) = m′(y2); u′(y3) = 0.

Proof. The proof is similar to the proof of Theorem 6.6, a more complex problem.

We can define the leader’s optimal stopping rule as

(5.25) θ̂(y) =

⎧⎪⎪⎨⎪⎪⎩
inf{t|Yy(t) ≥ y1} if y < y1,
0 if y1 ≤ y ≤ y2,
inf{t|Yy(t) ≤ y2 or Yy(t) ≥ y3} if y2 < y < y3,
0 if y ≥ y3.

5.2.4. Optimal rules in the case of complete markets. As in section 3.2.4, the leader’s
optimal stopping rule (i.e., optimal investment strategy) is characterized as a two-interval
solution, which is [y1, y2] and [y3,∞) with the relation such that y1 < y2 < ŷ < y3, where
ŷ is the follower’s optimal investment trigger (same as the monopolist’s). It is observed that
the optimal stopping for both parties differs from the monopolist’s. Although the follower’s
optimal investment trigger coincides with the monopolist’s, he/she does not act the same as
the monopolist due to the concern of strategic interactions from the leader. The leader will
invest nonoptimally if he/she ignores the strategic effect of competition.

6. Cash flow payoffs and incomplete market assumption.

6.1. Utility-based pricing model. We consider the model of section 4.1 with a cash flow
process rather than a project value process. The asset S representing the market still evolves
as (2.1). The cash flow process Y of (5.1), generated by the capital investment project, evolves
as

(6.1) dY (t) = αdt+ ς
(
ρdW (t) +

√
1− ρ2dW 0(t)

)
,

where W (t) and W 0(t) are independent Wiener processes.
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The rational utility-maximizing individual investor’s exponential (i.e., constant absolute
risk aversion (CARA)) utility function is given by

(6.2) U(C) = −1

γ
e−γC ,

where the argument C is the investor’s consumption.

Remark 6.1.1. We allow for negative consumption. For C ∈ R, U increases from −∞
to 0. As C → −∞, it leads to huge negative values. We interpret this effect as a penalty
to the utility maximization investor. We could, of course, impose the constraint of nonnega-
tive consumption. However, imposing nonnegativity on the consumption would rule out the
analytical solutions for further developments, a property we would like to retain for the full
analysis. Therefore, we choose to accept negative consumption which could lead to huge nega-
tive utility values (big penalties for our utility maximization investor) instead of imposing the
nonnegativity constraint on the consumption. We also note that the negative consumption
occurs when x or y becomes very negative and we cannot avoid this situation since x, y ∈ R.

The rational investor maximizes his/her expected utility of consumption. Given the initial
wealth, x, the risk-averse investor optimizes his/her portfolio by dynamically choosing allo-
cations in the market asset S, the riskless bond, and the consumption rate C. The investor’s
wealth, X, evolves as

(6.3)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX(t) = π(t)X(t)σ(λdt + dW (t)) + rX(t)dt− C(t)dt, t < τ,

X(τ) = X(τ − 0) −K,
dX(t) = π(t)X(t)σ(λdt + dW (t)) + rX(t)dt− C(t)dt+ δY (t)dt, t > τ,

dY (t) = αdt+ ς
(
ρdW (t) +

√
1− ρ2dW 0(t)

)
,

X(0) = x, Y (0) = y, with x, y ∈ R,

where π(t) is the ratio of wealth invested in asset S, C(t) is the consumption rate, and
τ is a stopping time, chosen optimally by the investor. At τ , he/she invests in the project
by paying an investment cost K. Thus, there is a jump in the wealth process, making it
discontinuous at τ . After τ , the wealth process evolves differently since the investor receives
an additional income stream, i.e., a cash flow stream at a rate δY (t) per unit time. Prior to
τ , allocations in the market asset are for portfolio investment purposes and provide partial
hedges against the uncertain capital investment payoff. After τ , the investor solves the optimal
investment/consumption portfolio problem to invest his/her total wealth.

We see from (6.3) that the wealth process has two possible evolution regimes. To facilitate
further representation, we introduce the processes, regime 0, X0 and regime 1, X1:

dX0(t) = π(t)X0(t)σ(λdt + dW (t)) + rX0(t)dt− C(t)dt, X0(0) = x,(6.4)

dX1(t) = π(t)X1(t)σ(λdt + dW (t)) + rX1(t)dt− C(t)dt+ δY (t)dt.(6.5)

The wealth process X corresponds to X0 before the stopping time τ and X1 after τ .

After τ , the investor solves a control problem of portfolio selection and consumption
rate, augmented by the stochastic income δY (t). With a pair of (C(·), π(·)) we associate the
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objective function

(6.6) Jx,y
(
C(·)) = E

[∫ ∞

0
e−μtU

(
C(t)

)
dt

]
,

where μ is the discount rate. This function may take the value −∞. We define the utility
maximization control problem as

(6.7) F 1(x, y) = sup
{π(·),C(·)}∈U1

x,y

J
(
C(·)),

where U1
x,y is the set of admissible controls to be defined later (cf. section 6.2.1).

At time τ , the investor stops, receiving F 1(X0(τ)−K,Y (τ)). With a triple of (C(·), π(·), τ)
we associate the objective function

(6.8) Jx,y
(
C(·), π(·), τ) = E

[∫ τ

0
e−μtU

(
C(t)

)
dt+ F 1

(
X0(τ)−K,Y (τ)

)
e−μτ

]
.

We assume τ is finite a.s. The investor’s problem is to maximize the expected discounted
utility from consumption by choosing stopping time τ , consumption rate C, and portfolio
investment strategy π. We define the associated value function as

(6.9) F (x, y) = sup
{π(·),C(·),τ}∈U0

xy

Jx,y
(
C(·), π(·), τ)

with U0
xy a set of admissible controls to be defined later (cf. section 6.2.2).

6.2. Single player. In this section, we solve a single player’s problem, and, as such, the
manager/investor has no need to consider the actions of any other firm. By paying cost K,
the firm expects to receive a continuous cash flow δY (t) per unit time. The investor’s wealth
evolves as (6.3), for which we introduce regimes (6.4) and (6.5) to facilitate exposition.

The investor’s problem is to maximize the expected discounted utility from consump-
tion with respect to investment time τ , consumption rate C, and investment strategy π. As
described in section 6.1, it is necessary to solve the problem in two steps: post- and preinvest-
ment utility maximization, i.e., after the stopping time τ and prior to τ . The obstacle used
in solving preinvestment utility maximization is defined by the solution of the postinvestment
utility maximization. We proceed in detail in the following sections.

6.2.1. Postinvestment utility maximization. Before considering the optimal stopping
problem, we begin with a control problem relative to the process X1(t). That is, we assume
the capital investment project has been undertaken, and we solve the investor’s utility maxi-
mization as a control problem of portfolio selections and consumption rules, augmented by a
stochastic income stream, δY (t) per unit time.

To facilitate the notation, for Ft-adapted processes π(t) and C(t), we introduce the local
integrability condition Ii, i = 0, 1:

(6.10) Ii =

{
E
∫ T
0

(
π(t)Xi(t)

)2
dt <∞ ∀ T,

E
∫ T
0

(
C(t)

)2
dt <∞ ∀ T,
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and we also define

τ iN = inf
{
t|�i=1

(
rX1(t) + δY (t)

)
+ �i=0X

0(t) ≤ −N}, i = 0, 1.

To a pair of (C(·), π(·)) we introduce the objective function

(6.11) Jx,y
(
C(·)) = E

[∫ ∞

0
e−μtU

(
C(t)

)
dt

]
.

This function may take the value −∞. The investor’s problem is to maximize his/her expected
discounted utility from consumption. We define the associated value function as

(6.12) F 1(x, y) = sup
{π(·),C(·)}∈U1

x,y

Jx,y
(
C(·)),

where U1
x,y = {(π,C) : I1; τ1N ↑ ∞ a.s. as N ↑ ∞; e−μTE[e−γ

(
rX1(T )+δY (T )

)
]→ 0 as T →∞}.

We associate the value function F 1(x, y) with the Bellman equation

−μF 1 +
∂F 1

∂x
(rx+ δy) +

∂F 1

∂y
α+

1

2

∂2F 1

∂y2
ς2 + sup

C

{
U(C)− C ∂F

1

∂x

}
+ sup

π

{
πxσ

(
λ
∂F 1

∂x
+ ςρ

∂2F 1

∂xy

)
+

1

2

∂2F 1

∂x2
π2x2σ2

}
= 0.(6.13)

Define the feedbacks

(6.14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĉ(x, y) = −1

γ
ln
∂F 1

∂x
,

π̂(x, y)σx = −
λ+ ∂F 1

∂x + ςρ∂2F 1

∂x∂y

∂2F 1

∂x2

,

and (6.13) may be rewritten as

−uF 1 +
∂F 1

∂x

(
rx+ δy − 1

γ
+

1

γ
ln
∂F 1

∂x

)
+
∂F 1

∂y
α+

1

2

∂F 1

∂y2
ς2

− 1

2

(
λ∂F 1

∂x + ςρ∂2F 1

∂x∂y

)2
∂2F 1

∂x2

= 0.(6.15)

We look for a solution of (6.15) as
(6.16)

F 1(x, y) = − 1

rγ
exp

{
−rγ

(
x+

δ

r
y

)
+ 1− μ+ λ2

2

r
− δγ

r

(
α− λςρ− 1

2
ς2δγ(1 − ρ2)

)}
.

Theorem 6.1. The function F 1(x, y) defined by (6.16) coincides with the value function
(6.12).

Proof. See Appendix J.
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6.2.2. Preinvestment utility maximization. After obtaining the solution to postinvest-
ment utility maximization in section 6.2.1, we solve the full problem by making use of the
value function F 1(x, y). That is, we now turn to the problem of optimal stopping. Before
the stopping time τ , the wealth process is governed by (6.4), and the cash flow evolves as
(6.1). At time τ , the investor stops, receiving F 1(X0(τ)−K,Y (τ)). Therefore, the objective
function is

(6.17) Jx,y
(
C(·), π(·), τ) = E

[∫ τ

0
e−μtU

(
C(t)

)
dt+ F 1

(
X0(τ)−K,Y (τ)

)
e−μτ

]
and we define the value function

(6.18) F (x, y) = sup
{π(·),C(·),τ}∈U0

xy

Jx,y
(
C(·), π(·), τ),

where U0
xy = {(π,C, τ) : I0; τ <∞ a.s.; τ∗ = lim ↑ τ0N ≥ τ a.s.}.

As a consequence of dynamic programming, assuming sufficient smoothness of F (x, y), we
write the V.I. in the strong sense that F (x, y) must satisfy

(6.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μF + ∂F
∂x rx+ ∂F

∂y α+ 1
2
∂2F
∂y2

ς2 + supC
(
U(C)− C ∂F

∂x

)
+ supπ

[
πxσ

(
λ∂F

∂x + ςρ ∂2F
∂x∂y

)
+ 1

2π
2x2σ2 ∂2F

∂x2

] ≤ 0,

F (x, y) ≥ F 1(x−K, y),(
F (x, y)− F 1(x−K, y)

)[
−μF + ∂F

∂x rx+ ∂F
∂y α+ 1

2
∂2F
∂y2

ς2 + supC
(
U(C)− C ∂F

∂x

)
+ supπ

[
πxσ

(
λ∂F

∂x + ςρ ∂2F
∂x∂y

)
+ 1

2π
2x2σ2 ∂

2F
∂x2

]]
= 0,

where in the curly brace we find the nonlinear 2nd order differential operator appearing at
the left-hand side of the first inequality. Since x, y ∈ R, there are no boundary conditions.
We look for a solution:

(6.20) F (x, y) = − 1

rγ
exp

[
−rγ(x+ g(y)

)
+ 1− μ+ λ2

2

r

]
.

Going back to the expression of F 1(x, y) in (6.16), it will be convenient to introduce

(6.21) f(y) =
δy

r
+

δ

r2

(
α− λςρ− 1

2
ς2ργ(1− ρ2)

)
so that

(6.22) F 1(x, y) = − 1

rγ
exp

[
−rγ(x+ f(y)

)
+ 1− μ+ λ2

2

r

]
.

Define the feedbacks

(6.23)

⎧⎨⎩Ĉ(x, y) = r
(
x+ g(y)

) − 1
γ

(
1− μ+λ2

2
r

)
,

π̂(x, y) = λ
rγ − ςρg′(y).
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Substituting (6.23) and the functions F (x, y) and F 1(x, y), defined in (6.20) and (6.22), re-
spectively, into (6.19), the V.I. (6.19) that F (x, y) must satisfy reduces to the following V.I.
expressed in terms of g(y):

(6.24)

⎧⎨⎩
1
2ς

2g′′ + g′(α− λςρ)− 1
2ς

2rγ(1− ρ2)g′2 − rg ≤ 0,
g(y) ≥ f(y)−K,(
g(y)− f(y) +K

)[
1
2ς

2g′′ + g′(α− λςρ)− 1
2ς

2rγ(1− ρ2)g′2 − rg] = 0.

This V.I. cannot be interpreted simply as a control problem. Indeed, the nonlinear operator
is connected to a minimization problem and the inequalities are connected to a maximization
problem for a stopping time. Therefore, g(y) is more appropriately the value function of a
differential game than of a control problem.

Considering u(y) = g(y) − f(y) +K, the V.I. (6.24) becomes

(6.25)

⎧⎨⎩
−1

2ς
2u′′ − u′(α− λςρ− ς2δγ(1 − ρ2))+ 1

2ς
2rγ(1− ρ2)u′2 + ru ≥ −δy + rK,

u ≥ 0,
u
[−1

2ς
2u′′ − u′(α− λςρ− ς2δγ(1 − ρ2)) + 1

2ς
2rγ(1− ρ2)u′2 + ru+ δy − rK] = 0.

We study (6.25) by the threshold approach. For ŷ fixed, we solve the Dirichlet problem

{ −1
2ς

2u′′ − u′(α− λςρ− ς2δγ(1 − ρ2)) + 1
2 ς

2rγ(1− ρ2)u′2 + ru = −δy + rK, y < ŷ,

u(ŷ) = 0

(6.26)

and we require linear growth for y → −∞.
Theorem 6.2. For each ŷ, there exists a unique solution of (6.26) with the estimate

−(−δŷ + rK)−

r
≤ u(y) ≤ −δ

r
(y − ŷ) + 1

r

(
−δŷ + rK − δ

r

(
α− λςρ− γδς2(1− ρ2)))+

for y < ŷ.(6.27)

The solution is C2 in (−∞, ŷ).
There exists a unique ŷ such that

(6.28) u′(ŷ) = 0, ŷ ≥ rK

δ
.

The corresponding solution of (6.26) extended by 0 beyond ŷ is the unique solution of the V.I.
(6.25). It is C1 and piecewise C2.

Proof. See Appendix K.
Returning to (6.24), from Theorem 6.2, we have proven that there exists a unique g(y) ∈

C1 and piecewise C2. Moreover, there exists a unique ŷ such that

(6.29)

⎧⎪⎨⎪⎩
−1

2ς
2g′′ − g′(α− λςρ) + 1

2ς
2rγ(1− ρ2)g′2 + rg = 0, y < ŷ,

g(y) = δ
ry −K + δ

r2

(
α− λςρ− 1

2ς
2δγ(1 − ρ2)), y ≥ ŷ,

g′(ŷ) = δ
r .
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The function g(y) is the value function of the stochastic control problem:

g(y) = inf
v(·)

E

[∫ θy
(
v(·)
)

0
e−rt 1

2
v2(t)dt

+ e−rθy
(
v(·)
)[
δ

r
y −K +

δ

r2

(
α− λςρ− 1

2
ς2δγ(1 − ρ2)

)]]
(6.30)

with the state equation

(6.31) dY (t) = (α− λςρ− ς2δγ(1 − ρ2) + ς
√
rγ(1− ρ2)v(t))dt + ςdW (t), Y (0) = y < ŷ,

where v(·) is adapted and locally square integrable, and θy
(
v(·)) is the first time the process

(6.31) reaches ŷ.

As y → −∞, θy
(
v(·))→∞ for any control v(·); hence,

(6.32) g(y)→ 0 as y → −∞; g(y) ≥ 0.

The positivity follows from the property u(y) ≥ −f(y) + K. Indeed, u(y) = −f(y) + K
satisfies the first inequality in (6.25) as an equality.

Theorem 6.3. The function F (x, y) given by (6.20) coincides with the value function (6.18).

Proof. See Appendix L.

We next define the optimal stopping rule, which achieves supremum in (6.18), as

τ̂(y) = inf{t|Yy(t) ≥ ŷ},

where ŷ is the unique value defined by the V.I. (6.26) and (6.28).

Remark 6.2.1. When ρ2 → 1, the investor’s investment problem converges to the solution
of the optimal stopping problem

g(y) = sup
τ
Ê[e−rτ (V (τ)−K)�τ<∞].

Proof. When ρ2 → 1, the solution of g(y) in (6.24) coincides with the solution of F (y) in
(5.6).

Remark 6.2.2. When γ → 0, the investor’s investment problem converges to the solution
of the optimal stopping problem under the minimal martingale measure:12

g(y) = sup
τ
Ê[e−rτ (V (τ)−K)�τ<∞].

The justification is similar to Remark 6.2.1.

Remark 6.2.3. In the incomplete market, the investor’s option value to invest, g(y), de-
creases with respect to the risk aversion parameter.

Proof. By (6.24), it is obvious that g(y) is decreasing with respect to γ.

12The unique measure makes the market asset price a martingale while preserving the conditional of the
nontraded factor.
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6.3. Two players: A Stackelberg game. We consider the situation of section 5.2 in the
case of incomplete markets. The follower’s investment problem is similar to that of the single
player. After the leader’s entry, he/she makes the optimal stopping decision. By paying an
investment cost K at time τ , the follower receives a continuous cash flow stream, δ2Y (t) per
unit time. Like the single player, the follower’s problem is to maximize the expected discounted
utility from consumption by choosing stopping time τ , consumption rate C, and investment
strategy π. Thus, the follower’s strategy is identical to that described in section 6.2 with
δ becoming δ2. We have the follower’s value function as defined by (6.20) with g(y) satisfying
(6.24), where ŷ is the unique value defined by the V.I. (6.25) and (6.28). We take δ = δ2.

The optimal stopping strategy for the follower is

τ̂(y) = inf{t|Yy(t) ≥ ŷ},

where ŷ is the unique value defined by the V.I. (6.25) and (6.28). Note again that we must
take δ = δ2 and thus ŷ ≥ rK

δ2
. The stopping time τ̂(y) is the optimal entry if the follower can

enter the market at time zero. Since the follower enters after the leader (who starts at θ), for
finite θ, the follower will enter at time

(6.33) τ̂θ = θ + τ̂
(
Yy(θ)

)
with considerations similar to those for (3.9).

6.3.1. The leader’s problem. By paying costK, the leader expects to receive a continuous
cash flow δ1Y (t) per unit time prior to the follower’s entry and δ2Y (t) per unit time after the
follower’s entry. The leader’s wealth evolution is similar to (6.3), but it is complicated by the
fact that the follower will enter according to the optimal stopping rule τ̂θ. Thus, the wealth
evolves according to three regimes, X0 (cf. (6.4)), X1 (cf. (6.34)), and X2 (cf. (6.34)), which
correspond to (1) before the leader’s stopping, θ, (2) after the leader’s stopping but prior to
the follower’s optimal entry, and (3) after the follower’s optimal entry, respectively.

The leader’s problem is to maximize the expected discounted utility from consumption by
choosing stopping time θ, consumption rate C, and investment strategy π. Again, as described
in section 6.1, we solve the utility maximization problem in two steps: post- and preinvestment
utility maximization. The leader’s postinvestment utility maximization is complicated by the
fact that, upon the follower’s optimal entry, the leader’s stochastic income stream will be
changed from δ1Y (t) per unit time to δ2Y (t) per unit time. Consequently, the leader must
solve the postinvestment utility maximization problem with respect to consumption rules
and investment strategies under two stochastic income streams. As in the single player’s
preinvestment utility maximization, the obstacle for the preinvestment utility maximization
is obtained from the solution of postinvestment utility maximization.

6.3.2. Leader’s postinvestment utility maximization. As in section 6.2.1, we begin with
a control problem assuming the capital investment project has been undertaken. We solve the
investor’s utility maximization problem of portfolio strategy with stochastic incomes.

A key aspect of the analysis is to define carefully what the leader receives at time θ when
he/she decides to exploit the cash flow Y (t). Suppose θ = 0, his/her wealth is x, and the cash
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flow y > 0. The wealth becomes x−K immediately since he/she has to pay the fixed cost of
entry. The follower will enter at τ̂(y). We then have the following evolution of wealth:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX1(t) = π(t)X1(t)σ
(
λdt+ dW (t)

)
+ rX1(t)dt+ δ1Y (t)dt− C(t)dt, 0 < t < τ̂(y),

X1(0) = x,

dX2(t) = π(t)X2(t)σ
(
λdt+ dW (t)

)
+ rX2(t)dt+ δ2Y (t)dt− C(t)dt, t > τ̂(y),

X2
(
τ̂(y)

)
= X1

(
τ̂(y)

)
,

dY (t) = αdt+ ς
(
ρdW (t) +

√
1− ρ2dW 0(t)

)
, Y (0) = y.

(6.34)

If θ = 0 and y ≥ ŷ, the follower enters at time 0 and the leader’s problem is exactly the same
as the follower’s, namely problem (6.12) with δ = δ2. So we consider the function

(6.35) L2(x, y) = − 1

rγ
e−rγ

(
x+f(y)

)
+1−μ+λ2

2
r

with

(6.36) f(y) =
δ2y

r
+
δ2
r2

(
α− λςρ− 1

2
ς2δ2γ(1− ρ2)

)
.

If θ = 0 and y < ŷ, the leader’s problem is described as follows. The wealth process and cash
flow process are governed by X1(t) and Y (t) defined in (6.34).

As in the single player case, to facilitate the notation, for Ft-adapted processes π(t) and
C(t), we introduce the local integrability condition Ii, i = 0, 1, which is defined in (6.10) and
define

τ iN = inf{t|�i=1X
1(t) + �i=0X

0(t) ≤ −N}, i = 0, 1.

At the follower’s entry time, τ̂(y), the leader gets L2
(
X1
(
τ̂(y)

)
, Y
(
τ̂(y)

))
(cf. (6.35)) as shown

in the above case where both market players are in the market. With a pair (C(·), π(·)) we
associate the objective function

(6.37) Jx,y
(
C(·), π(·)) = E

[∫ τ̂(y)

0
e−μtC(t)d(t) + L2

(
X1
(
τ̂(y)

)
, Y
(
τ̂(y)

))
e−μτ̂ (y)

]
,

where we recall τ̂(y) <∞ a.s. We consider the value function

(6.38) L1(x, y) = sup
{π(·),C(·)}∈U1

x,y

Jx,y
(
C(·), π(·)),

where U1
x,y = {(π,C) : I1; τ∗ = lim ↑ τ1N ≥ τ̂(y) a.s.}. We associate the value function with

the Bellman equation

(6.39)

⎧⎪⎪⎨⎪⎪⎩
−μL1 + ∂L1

∂x (rx+ δ1y) +
∂L1

∂y α+ 1
2
∂2L1

∂y2
ς2 + supC

(
U(C)−C ∂L1

∂x

)
+ supπ

[
πxσ

(
λ∂L1

∂x + ςρ∂2L1

∂x∂y

)
+ 1

2π
2x2σ2 ∂

2L1

∂x2

]
= 0,

L1(x, ŷ) = L2(x, ŷ), y < ŷ.
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Define the feedbacks

(6.40)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĉ(x, y) = −1

γ
ln
∂L1

∂x
,

π̂(x, y)σx = −
λ+ ∂L1

∂x + ςρ∂2F 1

∂x∂y

∂2L1

∂x2

.

Substituting (6.40) into (6.39), we can rewrite (6.39) as

−μL1 +
∂L1

∂x

(
rx+ δ1y − 1

γ
+

1

γ
ln
∂L1

∂x

)
+
∂L1

∂y
α+

1

2

∂1L1

∂y2
ς2

− 1

2

(
λ∂L1

∂x + ςρ∂2L1

∂x∂y

)1
∂2L1

∂x2

= 0, y < ŷ,(6.41)

and we look for a solution

(6.42) L1(x, y) = − 1

rγ
e−rγ

(
x+g(y)

)
+1−μ+λ2

2
r

with g the solution of

(6.43)

{
−1

2ς
2g′′ − (α− ςρ)g′ + 1

2r
2γ2ς2(1− ρ2)g′2 + rg = δ1y, y < ŷ,

g(ŷ) = f(ŷ); g has linear growth at −∞.
Considering the difference m = g − f , we rewrite (6.43) as

(6.44)

{
−1

2ς
2m′′ −m′(α− λςρ− ς2δ2γ(1− ρ2))+ 1

2ς
2rγ(1− ρ2)m′2 + rm = (δ1 − δ2)y,

m(ŷ) = 0; m has linear growth at y → −∞.
We look for a solution of (6.44) in the interval

(6.45)
δ1 − δ2
r

(y − y∗) ≤ m(y) ≤ δ1 − δ2
r

[
y − y0 + (y0 − ŷ)eβ(y−ŷ)

]
for y < ŷ,

where β > 0 is the solution of

−1

2
ς2β2 − β(α− λςρ− γδς2(1− ρ2))+ r = 0,

and y0 = −α−λςρ−δ2γς2(1−ρ2)
r with f(y0 +

δ22γς
2(1−ρ2)
r2

) = 0, and we take

(6.46) y∗ = max

(
ŷ, y0 +

γς2(1− ρ2)(δ1 − δ2)
2r

)
.

Similar to Theorem 6.2, there exists one and only one solution of (6.44) in the interval (6.45),
which is C1 and piecewise C2. We thus have proven there exists a unique g(y) ∈ C1 and
piecewise C2. As a result, we prove the existence and uniqueness solution of the Bellman
equation (6.39). It remains to prove the form of solution defined by (6.42) is indeed the value
function defined by (6.38).

Theorem 6.4. The function L1(x, y) defined by (6.42) coincides with the value function
given in (6.38).

Proof. See Appendix M.
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6.3.3. Leader’s preinvestment utility maximization. After obtaining the solution to the
leader’s postinvestment utility maximization in section 6.3.2, we can solve the full problem by
making use of the value function L1(x, y). We turn to the leader’s optimal stopping problem
(i.e., choice of θ). Before the stopping time θ, wealth and cash flow evolve as (6.4) and (6.1).

At time θ, the leader stops and receives L1(X0(θ)−K,Y (θ)); the objective of the leader
is to maximize

(6.47) Jx,y
(
C(·), π(·), θ) = E

[∫ θ

0
U
(
C(t)

)
e−μtdt+ L1

(
X0(θ)−K,Y (θ)

)
e−μθ

]
and we define the value function

(6.48) L(x, y) = sup
{π(·),C(·),θ}∈U0

x,y

Jx,y
(
C(·), π(·), θ),

where U0
x,y = {(π,C, θ) : I0; θ <∞ a.s.; τ∗ = lim ↑ τ0N ≥ θ a.s.}. As a consequence of dynamic

programming, we write the V.I. in the strong sense that the value function L(x, y) must satisfy

(6.49)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μL+ rx∂L
∂x + α∂L

∂y + 1
2ς

2 ∂2L
∂y2 + supC

(
U(C)− C ∂L

∂x

)
+ supπ

[
πσx

(
λ∂L

∂x + ςρ ∂2L
∂x∂y

)
+ 1

2π
2x2σ2 ∂2L

∂x2

] ≤ 0,

L(x, y) ≥ L1(x−K, y),(
L(x, y)− L1(x−K, y))[−μL+ rx∂L

∂x + α∂L
∂y + 1

2ς
2 ∂2L
∂y2 + supc

(
U(C)− C ∂L

∂x

)
+ supπ

[
πσx

(
λ∂L

∂x + ςρ ∂2L
∂x∂y

)
+ 1

2π
2x2σ2 ∂2L

∂x2

]]
= 0.

We look for a solution

(6.50) L(x, y) = − 1

rγ
e−rγ

(
x+h(y)

)
+1−μ+λ2

2
r

and obtain that h(y) must satisfy the V.I.

(6.51)

⎧⎪⎨⎪⎩
1
2 ς

2h′′ + (α− λςρ)h′ − 1
2 ς

2rγ(1− ρ2)h′2 − rh ≤ 0,

h(y) ≥ g(y) −K,(
h(y)− g(y) +K

)[
1
2 ς

2h′′ + (α− λςρ)h′ − 1
2ς

2rγ(1− ρ2)h′2 − rh] = 0.

We meet with the classical difficulty that the obstacle g(y) − K is C0 but not C1, so that
the V.I. (6.51) must be interpreted in a weak sense. We cannot as in (6.25) consider u(y) =
h(y)−g(y)+K since g(y) is not sufficiently smooth. We will nonetheless consider the function

u(y) = h(y)− f(y) +K,

which satisfies

(6.52)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2ς
2u′′ − (α− λςρ− ς2δ2γ(1− ρ2))u′ + 1

2ς
2rγ(1− ρ2)u′2 + ru ≥ −δ2y + rK,

u ≥ m,
(u−m)

[−1
2ς

2u′′ − (α− λςρ− ς2δ2γ(1 − ρ2))u′ + 1
2 ς

2rγ(1− ρ2)u′2
+ ru+ δ2y − rK

]
= 0.
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The function m(y) = g(y) − f(y) is defined by (6.44), which can be interpreted as, after the
leader has entered, the difference between the leader’s project value in anticipation of the
follower’s (optimal) entry and the leader’s project value after the follower’s entry. We see at
once that if m ≤ 0, then u coincides with the solution of (6.26). The leader and the follower
have the same strategy since the leader has no advantage in anticipation. So we will consider
the case

(6.53) m is not always negative.

In that case, m is positive near ŷ. Indeed, otherwise, we consider the first point y∗ < ŷ such
that m(y∗) = 0. Necessarily, y∗ < 0. Otherwise, m would have a negative local minimum in
the interval (0, ŷ). This is impossible from the maximum principle since the right-hand side
of (6.44) is positive if y > 0. So we may assume

(6.54) m′(ŷ − 0) < 0.

Since u(y) = −f(y) +K satisfies the first inequality in (6.52) as an equality, we have

(6.55) u(y) ≥ −f(y) +K,

which is the same constraint as for the follower; thus h(y) ≥ 0.
We look for a solution of (6.52) in an interval 0 ≤ u(y) ≤ ū(y), where ū(y) will be a ceiling

function which is C1 and vanishes for y sufficiently large. We consider the ceiling function

(6.56) ū(y) =
δ2
r

[
−(y − kŷ) + eβ(y−kŷ) − 1

β

]
,

where k is sufficiently large. This function is such that ū(kŷ) = ū′(kŷ) = 0. We extend it by 0
for y > kŷ. Also, ū(y) > 0 for y < kŷ.

Theorem 6.5. Assume (6.53). There exists a unique u ∈ C1(−∞,∞), piecewise C2 solu-
tion of (6.52). This function vanishes for y sufficiently large. It is the value function

(6.57) u(y) = inf
v(·)

sup
θ
Jy
(
v(·), θ) = sup

θ
inf
v(·)

Jy
(
v(·), θ) = Jy

(
v̂(·), θ̂),

where {
Jy
(
v(·), θ) = E

[∫ θ
0

(−δ2Yy(t) + rK + 1
2v

2(t)
)
e−rtdt+m

(
Yy(θ)

)
e−rθ

�θ<∞
]
,

v(·) ∈ Uy =
{
lim supT→∞

(−EYy(T )e−rT
)
= 0
}
.

Moreover, u(y) + δ2
r y is bounded for y → −∞, and u ≥ 0.

Proof. See Appendix N.
We now want to show that the solution to (6.52) is characterized by two intervals. The

difficulty is that one cannot interpret u(y) simply as the value function of a control problem.
We approach the problem directly.

We must find three points y1, y2, y3 such that

(6.58) y1 < y2 < ŷ < y3
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and

(6.59)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1
2ς

2u′′(y)− (α− λςρ− ς2δ2γ(1− ρ2))u′(y) + 1
2 ς

2rγ(1− ρ2)u′2(y) + ru(y)

= −δ2y + rK for y < y1 and y2 < y < y3,

u(y) = m(y) for y1 ≤ y ≤ y2,
u(y) = 0 for y ≥ y3,
u′(y1) = m′(y1); u′(y2) = m′(y2); u′(y3) = 0.

We can take y3 = ȳ = kŷ with k sufficiently large. We show the existence of a unique
two-interval solution in the following theorem.

Theorem 6.6. Assume (6.53). Then the solution u of (6.52) is of the form (6.59). There
exists a unique triple y1, y2, y3 with y1 < y2 < ŷ < y3 such that (6.59) holds.

Proof. See Appendix O.

By Theorem 6.6, for the process Y (t) given in (6.1), we can define the optimal stopping
rule as

(6.60) θ̂(y) =

⎧⎪⎪⎨⎪⎪⎩
inf{t|Yy(t) ≥ y1} if y < y1,
0 if y1 ≤ y ≤ y2,
inf{t|Yy(t) ≤ y2 or Yy(t) ≥ y3} if y2 < y < y3,
0 if y ≥ y3.

It remains to show that the function L(x, y) defined by (6.50) is the value function (6.48).

Theorem 6.7. Assume (6.53). Then the function L(x, y) defined by (6.50) is the value
function (6.48).

Proof. The feedbacks

(6.61)

⎧⎨⎩Ĉ(x, y) = r
(
x+ h(y)

) − 1
γ

(
1− μ+λ2

2
r

)
,

π̂(x, y)σx = λ
rγ − ςρh′(y)

and the stopping time (6.60) provide the optimal control. The proof is similar to that of
Theorem 6.3.

6.3.4. Optimal rules in the case of incomplete markets. We prove that the single player
and the follower have a unique optimal stopping strategy characterized by a threshold. The
leader’s optimal stopping strategy is characterized by a two-interval solution. The optimal
stopping rules for the leader and the follower can be characterized as those described in
the complete market section. In the single decision maker model, we are able to recover
complete market results by allowing |ρ| (the correlation between the traded and the nontraded
assets) → 1. And when γ (the risk aversion coefficient) → 0, the problem becomes one of
optimal stopping under a minimal martingale measure. The option value to invest is decreasing
in γ. Market completeness and risk aversion are essential factors for evaluating optimal
investment policies. For managers, we caution that naively assuming market completeness
may lead to nonoptimal investment decisions.
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7. Conclusion. We study optimal investment policies in an irreversible capital investment
under uncertainty in a monopoly situation and in a Stackelberg leader-follower game. We
consider two types of investment payoffs: lump-sum and cash flows. The decisions are the
times to enter into the market. We employ V.I.s for solving these optimal stopping time
problems.

In the case of complete markets, we work with the risk-neutral probability measure for
the valuation. In the case of incomplete markets, we adopt the utility-based valuation where
the investor solves the utility maximization with joint decisions of stopping times, portfolio
investment, and/or consumption rules.

For the case of lump-sum payoffs, we proved that the single player and consequently
the follower have a unique optimal stopping strategy characterized by a threshold, both for
the complete and incomplete capital markets. In the complete market, the leader’s optimal
investment rule is characterized by a two-interval strategy. In the incomplete market, we need
the weak formulation of the leader’s problem and can characterize the optimal stopping only
as the first time the solution touches the obstacle. For the case of flow payoffs, we prove
that the single player and the follower have a unique optimal stopping strategy characterized
by a threshold, and that the leader’s optimal stopping strategy can be characterized by the
two-interval solution in both the complete and the incomplete markets.

In both payoff situations, we find that differences in the investment stopping time depend
on the degree of completeness in the market and conclude that market completeness and
risk aversion are important inputs into the optimal investment policy. In addition, optimal
investment policies for both the leader and the follower deviate from those of the single
decision maker. Strategic considerations are shown to be important in the formulation of
capital investment project decisions. Use of classical real option rules for a single decision
maker will lead to nonoptimal investment.

Appendix A. Proof of Lemma 3.2. We take Ũ = K − (U − K)− as a test function in
(3.29). Indeed, Ũ ∈ K so that

−b(U, (U −K)+)− α(U, (U −K)+)� ≥ −(f, (U −K)+)� − α(G, (U −K)+)�.

Hence,

−b((U −K)+, (U −K)+)− α|(U −K)+|2� ≥ −(f − rK, (U −K)+)�

− α(G −K, (U −K)+)�

≥ 0,

which implies (U −K)+ = 0. That is, Γα(G) ≤ K.

The property Γα(G) ≥ 0 is obvious since Γα(G) ∈ K; hence Γα(G) ≥ χ ≥ 0.

Appendix B. Proof of Lemma 3.3. To simplify notation, let U1 = Γα(G1), and let
U2 = Γα(G2). By definition,

(B.1)

{
b(U1, Ũ − U1) + α(U1, Ũ − U1)� ≥ (f, Ũ − U1)� + α(G1, Ũ − U1)�,

b(U2, Ũ − U2) + α(U2, Ũ − U2)� ≥ (f, Ũ − U2)� + α(G2, Ũ − U2)�.
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Set M = α‖G1−G2‖L∞
α+r .

We take Ũ = U1− (U1−U2−M)+ in the first relation (B.1) and Ũ = U2+(U1−U2−M)+

in the second relation (B.1). Adding, we deduce

−b(U1 − U2, (U1 − U2 −M)+)− α(U1 − U2, (U1 − U2 −M)+)�

≥ −α(G1 −G2, (U1 − U2 −M)+)�;

hence,

−b(U1 − U2, (U1 − U2 −M)+)− α(U1 − U2, (U1 − U2 −M)+)�

− (r + α)(M, (U1 − U2 −M)+)

≥ −α(G1 −G2, (U1 − U2 −M)+)�.

Since (r + α)M ≥ α(G1, G2), we have

b((U1 − U2 −M)+, (U1 − U2 −M)+) + α|(U1 − U2 −M)+|2 ≤ 0.

Therefore, U1 − U2 ≤M . Similarly, U2 − U1 ≤M , and we conclude that (3.32) holds.

Appendix C. Proof of Theorem 3.5. We can approximate χ(v) by a sequence of smooth
functions χε(v) such that

sup
v
|χε(v) − χ(v)| → 0 as ε→ 0.

In the present context, such an approximation is easily obtained because χ(v) is smooth except
in v̂. As a result, the solution U is more regular than H1

� (0,∞). The solution is locally H2,
and the V.I. can be written as in (3.5), calling U ε the solution of the V.I. (3.28) with χε

instead of χ; we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v(r + η(ξ − λ))U ε′(v) + 1

2U
ε′′(v)η2v2 − rU ε(v) + f(v) ≤ 0,

U ε(v) ≥ χε(v),[
U ε(v)− χε(v)

][
v(r + η(ξ − λ))U ε′(v) + 1

2U
ε′′(v)η2v2 − rU ε(v) + f(v)

]
= 0,

U ε(0) = K.

It is standard to check that

U ε(v) = sup
θ≥0

Ê

[
e−rθχε

(
Vv(θ)

)
�θ<∞ +

∫ θ

0
e−rsf

(
Vv(s)

)
ds

]
and, clearly,

sup
v
|U ε(v) − U(v)| ≤ sup

v
|χε(v)− χ(v)|.

On the other hand, U ε remains in a bounded subset of H1
�(0,∞), and we can extract a

subsequence converging to U(v), a solution of (3.28), inH1
�(0,∞) weakly. From the uniqueness

of the solution of (3.28), the sequence converges, and thus the solution of (3.28) coincides with
(3.19).
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Appendix D. Proof of Theorem 3.6. Since U(0) = K > χ(0) = 0 and U(v̄) = χ(v̄) = 0,
there exists a first point v1 ≤ v̄ such that U(v1) = χ(v1). We must have v1 < v̂. Otherwise,
v1 = v̄. But, from (3.5), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F ′(v)v
(
r + η(ξ − λ))+ 1

2F
′′(v)v2η2 − rF (v) ≤ 0,

F (v) ≥ (1− a)v −K,[
F (v)− (1− a)v +K

][
F ′(v)v

(
r + η(ξ − λ))+ 1

2F
′′(v)v2η2 − rF (v)] = 0,

F (0) = 0,

which, by setting U(v) = F (v)− (1− a)v +K, may be re-expressed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2U
′′(v)v2η2 − U ′(v)v

(
r + η(ξ − λ))+ rU(v) ≥ (1− a)vη(ξ − λ) + rK,

U(v) ≥ 0,

U(v)
[−1

2U
′′(v)v2η2 − U ′(v)v

(
r + η(ξ − λ))+ rU(v)− (1− a)vη(ξ − λ)− rK] = 0,

U(0) = K.

(D.1)

We then observe that U(v) coincides with the solution of (D.1) (with (1− a) replaced by a),
i.e., the same system of (3.34) with χ(v) = 0. But then v̄ = v̂; hence v1 = v̂. In this case
Ũ(v) = U(v)− χ(v) satisfies

(D.2)

{
−1

2 Ũ
′′(v)v2η2 − Ũ ′(v)v

(
r + η(ξ − λ)) + rŨ(v) = vη(ξ − λ) + rK,

Ũ(0) = K; Ũ(v̂) = 0.

Since U ′(v̂) = 0, it follows that Ũ ′(v̂ − 0) = −χ′(v̂ − 0). This in turn implies Ũ ′(v̂ − 0) > 0
because χ′(v̂ − 0) < 0. It then follows that Ũ(v) < 0 for v close to v̂, which is impossible.
Therefore v1 ≤ v̂. Indeed, setting Ũ(v) = U(v)− χ(v), it satisfies

−1

2
Ũ ′′(v)v2η2 − Ũ ′(v)v

(
r + η(ξ − λ)) + rŨ(v) = vη(ξ − λ) + rK

with Ũ(0) = K, Ũ(v1) = 0, Ũ ′(v1) = 0. The matching of the derivative comes from the fact

that Ũ(v) is C1 and Ũ(v) ≥ 0, Ũ(v1) = 0. So v1 is the local minimum; hence Ũ ′(v1) = 0, and

we have Ũ ′(v1) = χ′(v1).
Since U(v̂) > χ(v̂) = 0, there exists an interval in which v̂ is contained such that the

equation holds in this interval, denoted as (v2, v3) with v3 = v̄ and v2 < v̂. Necessarily,
we have v2 ≥ v1; otherwise, U(v) will be the solution of the equation on (0, v3), which is
impossible. So we have U(v2) = χ(v2) and necessarily U ′(v2) = χ′(v2).

On the other hand, on the interval (v1, v2), χ(v) satisfies all conditions (3.35) and the
right-hand side −(1 − a)η(ξ − λ)v > aη(ξ − λ)v + rK; therefore, χ(v) satisfies all conditions
(3.34) on (v1, v2). Therefore U(v) = χ(v) on (v1, v2).

By the uniqueness of U(v), the triple v1, v2, v3 is necessarily unique.
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Appendix E. Proof of Lemma 4.2. From the relation −γ(1 − ρ2)He(v) = ln(1 + Bvβ),
we obtain for v < v̂

(
He(v)

)′
=

−βBvβ−1

γ(1− ρ2)(1 +Bvβ)
,

(
He(v)

)′′
=

−βB
γ(1− ρ2)

(β − 1)Bvβ−2 −Bv2β−2

(1 +Bvβ)2
> 0.

So
(
He(v)

)′
increases from 0 to

(
He
)′
(v̂ − 0) = (1− a)e

+Kγ(1−ρ2) − 1

e − 1
> (1− a) = (He

)′
(v̂ + 0).

It follows that v −K −He(v) may either be increasing from 0 to v̂ or may pass by a positive
maximum. At any rate, there is one and only one 0.

Appendix F. Proof of Theorem 4.3. We first prove that (4.42) has a set of solutions with
a maximum and a minimum element. For that we consider a monotone increasing sequence
and monotone decreasing sequence Σn and Σn defined as follows:

b(Σn+1, Σ̃− Σn+1) + α(Σn+1, Σ̃− Σn+1)� ≥ α(Σn, Σ̃− Σn+1)�,(F.1)

b(Σn+1, Σ̃− Σn+1) + α(Σn+1, Σ̃− Σn+1)� ≥ α(Σn, Σ̃− Σn+1)�.(F.2)

We start with

(F.3) Σ0 = ψ; Σ0 = 0.

In (F.1) and (F.2) α is a sufficiently large number, which ensures that the bilinear form
b(Σ, Σ̃) + α(Σ, Σ̃)� is coercive. It follows that the sequences Σn and Σn are well defined.
Clearly Σ1 ≤ Σ0. Let us check that if Σn ≤ Σn−1, then Σn+1 ≤ Σn. Consider (F.1) with n−1
replacing n; hence

(F.4) b(Σn, Σ̃− Σn) + α(Σn, Σ̃− Σn)� ≥ α(Σn−1, Σ̃− Σn)�.

We take Σ̃ = Σn+1− (Σn+1 −Σn)+ = min(Σn,Σn+1) in (F.1) and Σ̃ = Σn + (Σn+1 −Σn)+ =
max(Σn,Σn+1) in (F.4). We get

−b(Σn+1, (Σn+1 − Σn)+
)− α(Σn+1, (Σn+1 − Σn)+

)
�
≥ −α(Σn, (Σn+1 − Σn)+

)
�
,

b
(
Σn, (Σn+1 − Σn)+

)
+ α

(
Σn, (Σn+1 − Σn)+

)
�
≥ α(Σn−1, (Σn+1 − Σn)+

)
�
.

Adding, we easily deduce that (Σn+1 − Σn)+ = 0. As n → ∞, we obtain that Σn ↓ Σ, the
maximum solution of (4.42). Indeed, if Σ is a solution such that Σ ≤ Σ0, then Σ ≤ Σ1. It
follows that Σ ≤ Σn; hence Σ ≤ Σ. Similarly Σn ↑ Σ, the minimum solution of (4.42).

We next prove that the maximum and the minimum solutions coincide. We first verify that
the optimal stopping time θ̂ is finite a.s. and proceed with convergence of solutions from the
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smooth function construction. Suppose now ψ ∈ C1. Then we rely on the classical result on
V.I.s that the minimum and the maximum solutions coincide with the value function defined
in (4.38) and (4.39). The optimal stopping time θ̂(v) is defined by

(F.5) θ̂(v) = inf
{
t|Σ(Vv(t)) = ψ

(
Vv(t)

)}
.

We have θ̂(v) < ∞ a.s. Indeed, we first note that Σ is also C1 and there exists a number
M > v̂ such that

(F.6) Σ(v) = ψ(v), v ≥M.

Otherwise, Σ(v) < ψ(v) ∀ v and the differential equation Σ′(ξ − λρ) + 1
2vηΣ

′′ = 0 holds for
any v. Therefore, we have Σ(v) = 1 +DV β with D a negative constant. This is not possible
since Σ(v) ≥ 0 ∀ v.

If

Σ(M) = e−γ(1−ρ2)(aM−K),

Σ′(M) = −aγ(1− ρ2)e−γ(1−ρ2)(aM−K),

then for v ≥M , Σ(v) = e−γ(1−ρ2)(av−K) satisfies conditions (4.35) since Σ′(ξ−λρ)+ 1
2vηΣ

′′ ≥ 0
thanks to assumption ξ − λρ < 0. Therefore, we have (F.6). Take v < M and define

θM(v) = inf
{
t|Vv(t) = 0 or Vv(t) ≥M

}
;

then θM(v) < ∞ a.s. But θ̂(v) < θM(v) since Σ
(
Vv
(
θM(v)

))
= ψ

(
Vv
(
θM(v)

))
, and we have

θ̂ <∞ a.s.
We next construct smooth functions ψε(v) which approximate ψ(v) from below or from

above. We consider a sequence of C1 approximations ψε(v) ≥ 0 of the obstacle ψ(v). Define
a convex subset

Kε =
{
φ|0 ≤ φ ≤ ψε

}
and let Σε be the unique solution of the V.I.

(F.7) b(Σε, Σ̃− Σε) ≥ 0 ∀ Σ̃ ∈ Kε, Σε ∈ Kε,

which, thanks to the regularity of ψε, can be written as

(F.8)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Σ′
ε(ξ − λρ) + 1

2vηΣ
′′
ε ≥ 0,

Σε(v) ≤ ψε(v),[
Σ′
ε(ξ − λρ) + 1

2vηΣ
′′
ε

][
Σε(v)− ψε(v)

]
= 0,

0 ≤ Σε(v) ≤ 1,

Σε(0) = 1,

and Σε(v) is the value function:

(F.9) Σε(v) = inf
θ
E
[
ψε

(
Vv(θ)

)]
.
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We begin an approximation such that

(F.10) ψε(v) ↑ ψ(v) as ε ↓ 0.
We can define the increasing processes Σε,n(v) corresponding to ψε(v) and Σε,n(v) ↑ Σε(v) as
n ↑ ∞. However, if we compare Σε,n(v) and Σn(v), it is easy to check that

(F.11) Σε,n(v) ≤ Σn(v) ≤ Σ(v);

therefore, we obtain

(F.12) Σε(v) ≤ Σ(v).

But from formula (F.9), Σε(v) converges toward the value function. We obtain that the value
function is smaller than the minimum solution Σ(v) of (4.42).

Next consider an approximation

(F.13) ψε(v) ↓ ψ(v) as ε ↓ 0
and the monotone decreasing process Σn

ε . We have Σn
ε ↓ Σε; therefore, this time Σn

ε ≥ Σε ≥ Σ,
and Σε ≥ Σ. But Σε converges again towards the value function. Therefore the minimum and
maximum solutions of (4.42) coincide and are equal to the value function. This completes the
proof.

Appendix G. Proof of Proposition 4.4. To prove that solutions of (4.47) exist, we consider
the function

Z(v) = eγ(1−ρ2)
(
v−K−He(v)

)
+ eγ(1−ρ2)He(v) −

(
2 +

γv(1 − ρ2)
β

)
and note that Z(0) = e−γ(1−ρ2)K − 1 < 0.

On the other hand,

Z(v̂) = e+ 2a−1
1−a

(
+γK(1−ρ2)

)
+ e+γK(1−ρ2) − 2− 1

1− a(e
 − 1).

Setting u = 2a−1
1−a , u ∈ (0,∞), and considering the function

h(u;�) = e+u
(
+γK(1−ρ2)

)
+ e+γK(1−ρ2) − 2− (u+ 2)(e − 1),

one can easily check that h(u;�) > 0. Hence, Z(v̂) > 0. Therefore, there are values v1 such
that Z(v1) = 0. It remains to verify that v1 > v0. By (4.46), we can rewrite (4.47) as

eγ(1−ρ2)
(
v1−K−He(v1)

)
= 1 +

γv1(1− ρ2)
β

(
1− (He(v1)

)′)
.

But from the assumption and Lemma 4.2, we have 1−(He(v1)
)′
> 0; hence v1−K−He(v1) > 0,

which implies v1 > v0. It remains to define D by

Dvβ1 = e−γ(1−ρ2)
(
v1−K−He(v1)

)
− 1

to satisfy the first conditions (4.45). This completes the proof.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REAL OPTION STACKELBERG GAME 713

Appendix H. Proof of Theorem 5.1. The solution (5.9) is C1(−∞,∞) and piecewise C2.
It satisfies F (y) ≥ 0 and the condition that F (y) has linear growth at ∞. By construction,
it satisfies the complimentary slackness condition (i.e., the product condition of (5.6)). To
complete the proof, we must verify the inequalities

(H.1) F (y) ≥ δ
(
y

r
+
α− λς
r2

)
−K if y ≤ ŷ

and

(H.2) (α− λς)F ′(y) +
1

2
ς2F ′′(y)− rF (y) ≤ 0 if y ≥ ŷ.

To prove (H.1), consider G(y) = F (y)− δ(yr + α−λς
r2

) +K. We have, if y < ŷ,

G′(y) =
δ

r

(
e−β(ŷ−y) − 1

)
< 0 and G′′(y) =

δβ

r
e−β(ŷ−y) > 0.

Hence G′(y) increases up to zero on (−∞, ŷ). Therefore, G′(y) ≤ 0 on (−∞, ŷ) and G(y) is
decreasing on (−∞, ŷ). Since G(ŷ) = 0, G(y) ≥ 0 on (−∞, v̂), we have shown that (H.1) is
true.

The inequality (H.2) is equivalent to y ≥ rK
δ for y ≥ ŷ, which implies 1

β >
α−λς

r . This is

true because r − β(α− λς) = 1
2ς

2β2.

Appendix I. Proof of Theorem 5.2. Before proceeding to prove the value function (5.15)
is the unique solution of the V.I. (5.20), we introduce the approximation function, ΨM(y),
to overcome the problem of the unbounded obstacle, Ψ(y), and define the corresponding
approximated value function, LM (y). Note that

(I.1) Ψ(y) =
δ2
rβ

+
δ2
r
(y − ŷ)+ − δ1

r
(y − ŷ)− + μ

δ1 − δ2
r

�y<ŷ

(
1− e−β(ŷ−y)

)
.

We consider the following expression:

(I.2) ΨM (y) =
δ2
rβ

+
δ2
r

M(y − ŷ)+
M + (y − ŷ)+ −

δ1
r
(y − ŷ)− + μ

δ1 − δ2
r

�y<ŷ

(
1− e−β(ŷ−y)

)
,

with

(I.3) ΨM (y) ↑ Ψ(y) as M ↑ ∞.

In correspondence with ΨM (y), we set

(I.4) LM (y) = sup
θ≥0

Ê
[
e−rθΨM

(
Yy(θ)

)
�θ<∞

]
.

It is easy to check that

(I.5) LM (y) ↑ L(y) as M ↑ ∞.
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From (I.2), we have ΨM(y) ≤ δ2
rβ + δ2

r M + μ(δ1−δ2)
r = VM , and therefore we have 0 ≤

LM(y) ≤ VM .
We consider the convex subset of H1

� (−∞,∞):

(I.6) KM = {Φ ∈ H1
�(−∞,∞)|Φ(y) ≥ ΨM (y) ∀y},

which is not empty since it contains ΨM .
Lemma I.1. There exists a unique LM in KM such that

(I.7) b(LM , L̃− LM ) ≥ 0 ∀L̃ ∈ KM

and

(I.8) 0 ≤ LM (y) ≤ VM .
Lemma I.2. The unique solution of (I.7) and (I.8) coincides with the value function (I.4).
Lemma I.3. The function L(y) defined by (5.15) is the solution of the V.I. (5.20) with

(I.9) 0 ≤ L(y) ≤ δ2
r
(y − ŷ)+ + C,

where C is a convenient constant.
Lemma I.4. The set of solutions of (5.20) such that

(I.10) 0 ≤ L(y) ≤ L0(y)

has a maximum and a minimum element, where

(I.11) L0(y) =
1

2
y2 +

α− λς
r

y + C0,

with

(I.12) C0 >
1

2r2
(α − λς)2 +max

(
δ1
rβ

+
δ1 − δ2
δ2

K,
δ22
2r2

)
.

We are now ready to prove Theorem 5.2. Since the discontinuity of Ψ′ occurs at one point
only, we may construct smooth functions Ψε(y) which approximate Ψ(y) from below or above
and which, in addition, have linear growth. Since Ψε(y) is smooth, the corresponding solution
of the V.I. (5.20) is smoother than H1

�(−∞,∞). In fact, Ψ′′
ε (y) ∈ L2

�(−∞,∞) and the V.I. can
be written in the classical form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(α− λς)L′
ε(y) +

1
2L

′′
ε (y)− rLε(y) ≤ 0,

Lε(y) ≥ Ψε(y),(
Lε(y)−Ψε(y)

)[
(α− λς)L′

ε(y) +
1
2L

′′
ε (y)− rLε(y)

]
= 0,

Lε(y) ≥ 0; Lε(y) has linear growth.

However, it is classical that smooth solutions are unique and coincide with the value function

(I.13) Lε(y) = sup
θ≥0

Ê[e−rθΨε(Yy(θ))�θ<∞].
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Consider now the case when

(I.14) Ψε(y) ↑ Ψ(y) as ε ↓ 0.
We may define the increasing process Lε,n(y) as defined in Lemma I.4, and naturally Lε,n(y) ↑
Lε(y) as n ↑ ∞. However, if we compare Lε,n(y) and Ln(y), one may verify that

(I.15) Lε,n(y) ≤ Ln(y) ≤ L(y).
We therefore obtain

(I.16) Lε(y) ≤ L(y).
As ε ↓ 0 Lε(y) ↑ toward a solution of (5.20) and from (I.16) it is necessarily the smallest
solution. From formula (I.13), one may verify that Lε(y) ↑ toward the value function (5.15).
So the value function coincides with the minimum solution. Consider now an approximation
such that

(I.17) Ψε(y) ↓ Ψ(y) as ε ↓ 0.
We prove in a similar manner that Lε(y) ↓ L(y), the maximum solution. Therefore, the
minimum and maximum solutions coincide. We have shown that the value function (5.15)
is the unique solution of (5.20). The property (I.9) is a consequence of the properties of the
value function.

Appendix J. Proof of Theorem 6.1. We compute the feedbacks

(J.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĉ(x, y) = rx+ δy − 1

γ

(
1− μ+ λ2

2

r

)
+
δ

r

(
α− λςρ− 1

2
ς2δγ(1 − ρ2)

)
,

π̂(x, y)xσ =
λ

γr
− ςρδ

r

and note that U
(
Ĉ(x, y)

)
= rF 1(x, y). We also have

π̂(x, y)xσλ+ rx− Ĉ(x, y) + δy =
1

γ

(
1− μ− λ2

2

r

)
− δ

r

(
α− 1

2
ς2δγ(1 − ρ2)

)
.

So the corresponding wealth is given by

(J.2) dX̂1 =

[
1

γ

(
1− μ− λ2

2

r

)
− δ

r

(
α− 1

2
ς2δγ(1 − ρ2)

)]
dt+

(
λ

rγ
− ςρδ

r

)
dW.

We also note

(J.3)

⎧⎪⎪⎨⎪⎪⎩
∂F 1

∂x
π̂(x, y)xσ +

∂F 1

∂y
ςρ = −λF 1(x, y),

∂F 1

∂y
ς
√

1− ρ2 = −γδς
√

1− ρ2F 1(x, y).
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Using the Itô differential together with the above calculation, we have

d

(
F 1
(
X̂1(t), Y (t)

)
e−μt

)
= −re−μtF 1

(
X̂1(t), Y (t)

)
dt

− e−μtF 1
(
X̂1(t), Y (t)

)[
λdW (t) + γδς

√
1− ρ2dW 0(t)

]
.

Integrating between 0 and T ∧ τ̂N , we can write

E
[
F 1
(
X̂1(T ∧ τ̂N), Y (T ∧ τ̂N)

)
e−μT∧τ̂N ]

= F 1(x, y)− rE
[∫ T∧τ̂N

0
e−μtF 1

(
X̂1(t), Y (t)

)
dt

]
,(J.4)

where τ̂N = inf{t|rX̂1(t) + δY (t) ≤ −N}, and
exp
(−μT )E{exp[−γ(rX̂1(T ∧ τ̂N) + δY (T ∧ τ̂N)

)]} ≤ exp
(−γ(rx+ δy)

)
.

Hence, exp(−μT ) exp(γN)P(τ̂N < T ) ≤ exp
(−γ(rx+ δy)

)
.

Since τ̂N ↑ τ̂∗ a.s. and P(τ̂∗ < T ) ≤ P(τ̂N < T ), we get P(τ̂∗ < T ) = 0 ∀ T ; hence,
τ̂∗ =∞ a.s.

Passing to the limit as N →∞ in (J.4), we obtain

E
[
F 1
(
X̂1(T ), Y (T )

)
e−μT

]
= F 1(x, y)− rE

[∫ T

0
e−μtF 1

(
X̂1(t), Y (t)

)
dt

]
;

therefore, E
[
F 1
(
X̂1(T ), Y (T )

)
e−μT

]
= F 1(x, y)e−rT and the control{

Ĉ(t) = Ĉ
(
X̂1(t), Y (t)

)
,

π̂(t) = π̂
(
X̂1(t), Y (t)

)
is admissible. Clearly,

(J.5) J
(
Ĉ(·)) = F 1(x, y).

On the other hand, we easily check that for any admissible control

J
(
C(·)) ≤ F 1(x, y);

hence the desired result has been obtained.

Appendix K. Proof of Theorem 6.2. For each ŷ fixed, the solution of (6.26) is the value
function of a stochastic control problem. The state equation is

(K.1) dY (t) =
(
α− λςρ− γδς2(1− ρ2) + ς

√
rγ(1− ρ2)v(t))dt+ ςdW (t), Y (0) = y < ŷ,

where v(·) is adapted and locally square integrable. Let θy
(
v(·)) be the first time the process

reaches ŷ; it can be ∞. We then have

(K.2) u(y) = inf
v(·)

E

[∫ θy
(
v(·)
)

0
e−rt

(
−δYy(t) + rK +

1

2
v2(t)

)
dt

]
.
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For 0 < t < θy
(
v(·)), we have Yy(t) < ŷ, and thus

E

[∫ θy
(
v(·)
)

0
e−rt

(
−δYy(t) + rK +

1

2
v2(t)

)
dt

]
≥ −δŷ + rK

r

(
1− Ee−rθy

(
v(·)
))

≥ −(−δŷ + rK)−

r
;

hence we get the left inequality in (6.27). To prove the right inequality, we just notice that
u(y) ≤ z(y), where z(y) is the solution of{ −1

2ς
2z′′ − z′(α− λςρ− ς2δγ(1 − ρ2))+ rz = −δy + rK,

z(ŷ) = 0.

The function z(y) is given explicitly by

(K.3) z(y) = −δ
r
(y − ŷ) + (1− eβ(y−ŷ))

[−δŷ + rK

r
− δ

r2
(
α− λςρ− γδς2(1− ρ2))],

where β > 0 is the solution of

−1

2
ς2β2 − β(α− λςρ− γδς2(1− ρ2))+ r = 0,

which proves the right inequality in (6.27).
We now check the condition (6.28). We denote by u(y; ŷ) the unique solution of (6.26) and

(6.27) for a given ŷ and y < ŷ. From (6.27), we have u(y; ŷ) ≥ 0 if ŷ ≤ rK
δ ; hence u′(ŷ; ŷ) ≤ 0

for ŷ ≤ rK
δ .

From (K.3),

z′(y; ŷ) = −δ
r
− βeβ(y−ŷ)

[−δŷ + rK

r
− δ

r2
(
α− λςρ− γδς2(1− ρ2))];

hence,

z′(ŷ; ŷ) = −δ
r
− β

[−δŷ + rK

r
− δ

r2
(
α− λςρ− γδς2(1− ρ2))].

Therefore, z′(ŷ; ŷ) > 0 if ŷ is sufficiently large. It follows that z(y; ŷ) < 0 if y < ŷ close to ŷ.
Therefore, u(y; ŷ) < 0 if y < ŷ close to ŷ. Hence u′(ŷ; ŷ) > 0.

Therefore, there exists ŷ such that (6.28) holds. We have ŷ ≥ rK
δ ; otherwise u′′(ŷ) < 0,

which is impossible.
We then check that the function u(y) is the solution of the V.I. (6.25). First, we check

that u(y) ≥ 0. Since u′′(ŷ) > 0, we have u(y) > 0 near ŷ; hence u′(y) < 0 near ŷ. The function
u(y) cannot have a positive maximum on (rKδ , ŷ); hence u(y) decreases on ( rKδ , ŷ). Therefore,
u( rKδ ) > 0. Necessarily, u(y) > 0 on (−∞, rKδ ). Since for y > ŷ, −δy + rK ≤ −δŷ + rK ≤ 0,
the differential inequality is also verified for y > ŷ.

Finally, to complete the proof we prove the uniqueness of ŷ and the fact that the V.I. (6.25)
has a solution of the form (6.26) and (6.28). We first check that ŷ is uniquely defined. For
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that we will rely on an interesting interpretation of the solution of (6.26) and (6.28). Again
call u(y; ŷ) this solution, in which u(y; ŷ) = 0 for y ≥ ŷ. If we define

χ(y; ŷ) =

{ −δy +Kr, y < ŷ,
0, y > ŷ,

which is an L∞ function (not continuous in ŷ), then the function u appears as the solution of

(K.4)

{
−1

2ς
2u′′ − u′(α − λςρ− ς2δγ(1 − ρ2)) + 1

2ς
2rγ(1− ρ2)u′2 + ru = χ(y; ŷ),

u has linear growth as y → −∞.

But then u(y; ŷ) has the probabilistic interpretation

(K.5) u(y; ŷ) = inf
v(·)

E

[∫ θy
(
v(·)
)

0
e−rt

(
χ
(
Yy(t); ŷ

)
+

1

2
v2(t)

)
dt

]
,

where the state equation dY is as in (K.1), v(·) is adapted and locally square integrable, and
θy
(
v(·)) is the first time the process reaches ŷ.

The function χ(y; ŷ) decreases with ŷ; hence u(y; ŷ) also decreases with ŷ. Hence, if
ŷ1 < ŷ2, we have u(y; ŷ1) ≥ u(y; ŷ2). But then for ŷ1 < y < ŷ2, u(y; ŷ2) ≤ 0. Since it is also
≥ 0, u(y, ŷ2) = 0 for ŷ1 < y < ŷ2. Necessarily, u(y; ŷ1) = u(y; ŷ2) for y < ŷ1 since they satisfy
the same equation. Therefore, u(y; ŷ1) = u(y; ŷ2). Therefore, ŷ1 = ŷ2 since we naturally
interpret ŷ in (6.28) as the first point for which u(ŷ) = 0, u′(ŷ) = 0.

To complete the proof, it remains to check that a solution of the V.I. (6.25) is necessarily of
the form (6.26) and (6.28). Indeed, let us consider ŷ∗ to be the first point for which u(ŷ∗) = 0.
We claim that ŷ∗ �=∞. If ŷ∗ =∞, then u satisfies

(K.6)

{
−1

2ς
2u′′ − u′(α− λςρ− ς2δγ(1 − ρ2))+ 1

2ς
2rγ(1− ρ2)u′2 + ru = −δy + rK,

u ≥ 0; u has linear growth as y → −∞,

which is of the form (K.4) with χ(y;∞). We know a function u(y; ŷ) for a certain ŷ finite
and u(y; ŷ) ≥ u(y;∞). But then u(y;∞) = 0 for y > ŷ, which is not possible from (K.6).
So ŷ∗ < ∞. We claim that u′(ŷ∗) = 0. We know that u′(ŷ∗) ≤ 0. If u′(ŷ∗) < 0, then u(y)
becomes negative after ŷ∗, which is impossible. But then u(y) = u(y; ŷ∗) for y ≤ ŷ∗. Moreover
ŷ∗ > rK

δ . We also have u(y) = 0 for y > ŷ∗. Otherwise u(y) becomes positive after ŷ∗. But
then it cannot always stay positive since we would have (K.6) holding for y > ŷ∗, with a
right-hand side negative and u(ŷ∗) = 0. Necessarily, u(y) ≤ 0, which is impossible. Since u(y)
must vanish after ŷ∗, it will have a positive maximum after ŷ∗, which is also not possible.
Therefore, u = 0 for y ≥ ŷ∗. The proof has been completed.

Appendix L. Proof of Theorem 6.3. Consider the feedbacks

(L.1)

⎧⎨⎩Ĉ(x, y) = r
(
x+ g(y)

) − 1
γ

(
1− μ+λ2

2
r

)
,

π̂(x, y)σx = λ
rγ − ςρg′(y),
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and we have U
(
Ĉ(x, y)

)
= rF (x, y). Let X̂0(t) be the optimal wealth trajectory given by

(6.4), applying the feedbacks (L.1). We have

π̂(x, y)σλx + xr − Ĉ(x, y) = −λςρg′(y)− rg(y) + 1

γ

(
1− μ− λ2

2

r

)
;

hence

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dX̂0(t) =

[
−rg(Y (t))− λςρg′(Y (t)) + 1

γ

(
1− μ−λ2

2
r

)]
dt+

(
λ
rγ − ςρg′(Y (t))

)
dW (t),

X̂0(0) = x,

dY (t) = αdt+ ς
(
ρdW (t) +

√
1− ρ2dW 0(t)

)
,

Y (0) = y.

(L.2)

Let τ̂(y) = inf{t|Yy(t) ≥ ŷ}, which does not depend on x. We have E[τ̂ (y)] = ŷ−y
α for y < ŷ;

therefore, τ̂(y) <∞ a.s. As in (J.4), we can write

E
[
F
(
X̂0(τ̂ ∧ τ̂N), Y (τ̂ ∧ τ̂N)

)
e−μτ̂∧τ̂N ]− F (x, y) = −rE[∫ τ̂∧τ̂N

0
e−μtF

(
X̂0(t), Y (t)

)
dt

]
,

where τ̂N = inf{t|X̂0(t) ≤ −N}, and we deduce

E
{
exp
[−rγ(X̂0(τ̂ ∧ τ̂N) + g

(
Y (τ̂ ∧ τ̂N)

))]
exp
(−μτ̂ ∧ τ̂N)} ≤ exp

(−γr(x+ g(y)
)
.

Since Y (τ̂ ∧ τ̂N) < ŷ, g
(
Y (τ̂ ∧ τ̂N)

)
is bounded; hence exp(rγN)E

[
exp(−μτ̂)�τ̂N<τ̂

] ≤
exp
(−γr(x+ g(y))

)
. Therefore, if τ̂∗ = lim ↑ τ̂N , we obtain τ̂∗ ≥ τ̂N a.s. It follows that⎧⎪⎨⎪⎩

Ĉ(t) = Ĉ
(
X̂0(t), Y (t)

)
,

π̂(t) = π̂
(
X̂0(t), Y (t)

)
,

τ̂(y)

forms an admissible control. We obtain F (x, y) = Jx,y
(
Ĉ(·), π̂(·), τ̂).

On the other hand, for any admissible control, we have

F (x, y) ≥ E
[∫ τ∧τN

0
U
(
C(t)

)
e−μtdt+ F

(
X0(τ ∧ τN), Y (τ ∧ τN)

)
exp(τ ∧ τN)

]
.

Letting N tend to ∞, we obtain F (x, y) ≥ Jxy
(
C(·), π(·), τ), which completes the proof of the

desired result.

Appendix M. Proof of Theorem 6.4. We consider the feedbacks

(M.1)

⎧⎨⎩Ĉ(x, y) = r
(
x+ g(y)

) − 1
γ

(
1− μ+λ2

2
r

)
,

π̂(x, y)σx = λ
rγ − ςρg′(y).
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We have U
(
Ĉ(x, y)

)
= rL1(x, y) if y < ŷ. The corresponding wealth process X̂1(t) has the

Itô differential

(M.2) dX̂1 =

[
δ1Y − rg(Y )− λςρg′(Y ) +

1

γ

(
1− μ− λ2

2

r

)]
dt+

(
λ

rγ
− ςρg′(Y )

)
dW.

Let τ̂N be the first time when X̂1(t) reaches −N . We get

E
[
L1
(
X̂1
(
τ̂(y) ∧ τ̂N

)
, Y
(
τ̂(y) ∧ τ̂N

))
e−μτ̂ (y)∧τ̂N ]− L1(x, y)

= −rE
[∫ τ̂ (y)∧τ̂N

0
L1
(
X̂1(t), Y (t)

)
e−μtdt

]
.

We deduce

E
[
L1
(
X̂1
(
τ̂(y) ∧ τ̂N

)
, Y
(
τ̂(y) ∧ τ̂N

))
e−μτ̂ (y)∧τ̂N ] ≤ e−γr

(
x+g(y)

)
.

Calling τ̂∗ = lim ↑ τ̂N , we obtain τ̂∗ ≥ τ̂(y) a.s. Therefore, the control{
Ĉ(t) = Ĉ

(
X̂1(t), Y (t)

)
,

π̂(t) = π̂
(
X̂1(t), Y (t)

)
is admissible. Moreover,

L1(x, y) = E

[∫ τ̂ (y)∧τ̂N
0

U
(
Ĉ(t)

)
e−μtdt

]
+E

[
L1
(
X̂1
(
τ̂(y) ∧ τ̂N

)
, Y
(
τ̂(y) ∧ τ̂N

))
e−μτ̂ (y)∧τ̂N ]

and, from the boundary condition that L1(x, y) satisfies at y = ŷ, we get

L1(x, y) = J
(
Ĉ(·), π̂(·)).

On the other hand, for any admissible pair
(
C(·), π(·)), we have

L1(x, y) ≥ E
[∫ τ̂ (y)∧τN

0
U
(
C(t)

)
e−μtdt

+ L1
(
X1
(
τ̂(y) ∧ τN

)
, Y
(
τ̂(y) ∧ τN

))
e−μτ̂ (y)∧τN

]
,

and letting N tend to ∞, we obtain L1(x, y) ≥ J(C(·), π(·)) and the proof is completed.

Appendix N. Proof of Theorem 6.5. We consider the ceiling function

(N.1) ū(y) =
δ2
r

[
−(y − kŷ) + eβ(y−kŷ) − 1

β

]
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REAL OPTION STACKELBERG GAME 721

where k is sufficiently large. This function is such that ū(kŷ) = ū′(kŷ) = 0. We extend it by 0
for y > kŷ. Also, ū(y) > 0 for y < kŷ. We check

(N.2) ū > m.

Since m = 0 for y > ŷ, it is sufficient to prove (N.2) for y < ŷ. However,

−1

2
ς2ū′′ − (α− λςρ− ς2δ2γ(1− ρ2)′)ū′ + 1

2
ς2rγ(1− ρ2)ū′2 + rū

≥ δ2
r

(
α− λςρ− ς2δ2γ(1− ρ2)

)− δ2(y − kŷ)− δ2
β

≥ (δ1 − δ2)y for y < ŷ,(N.3)

provided δ2
r

(
α− λςρ− ς2δ2γ(1− ρ2)

)
+ δ2kŷ − δ2

β > δ1ŷ. This implies (N.2). We also have

δ2
r

(
α− λςρ− ς2δ2γ(1− ρ2)

)− δ2(y − kŷ)− δ2
β
> δ2y + rK,

provided δ2
r

(
α−λςρ−ς2δ2γ(1−ρ2)

)
+δ2kŷ− δ2

β > rK. Therefore, ū satisfies the two inequalities
(6.52), so it can be taken as a ceiling function.

Combining with (6.55), we must have

(N.4) −f(y) + k ≤ u(y) ≤ ū(y).

Since f(y) = δ2
r (y − ỹ0) with ỹ0 = −α−λςρ−δ2γς2(1−ρ2)

r +
δ22γς

2(1−ρ2)
r2

, we have u+ δ2y
r bounded

as y → −∞.

We use the penalty technique to approximate (6.52). We approximate (6.52) by a smoother
problem, a penalized problem. We introduce the problem with uε such that

(N.5)

⎧⎪⎨⎪⎩
−1

2ς
2u′′ε −

(
α− λςρ− ς2δ2γ(1− ρ2)

)
u′ε +

1
2ς

2rγ(1− ρ2)u′2ε + ruε

= −δ2y + rK + 1
ε (m− uε)+,

uε(ȳ) = 0; uε(y) + f(y) is bounded as y → −∞.

In (N.5), ȳ = kŷ, where k is sufficiently large.

We have the property

(N.6) uε(y) ≤ ū(y).

Let us define ũε(y) = uε(y)−m(y). We have ũε(ȳ) = 0 and ũε →∞ as y → −∞. If ũε(y) ≥ 0
on (−∞, ȳ), then (m− uε)+ = 0.

Suppose that ũε(y) becomes negative; then we can consider points of negative minimum.
We check that ŷ cannot be such a point. Indeed, we know that m′(ŷ−0) < 0 from (6.54). If ŷ
were a minimum of ũε, we would have ũε(ŷ−0) ≤ 0 ≤ ũε(ŷ+0) and since u′ε(ŷ−0) = u′ε(ŷ+0),
m′(ŷ − 0) ≥ 0, which is a contradiction. Therefore, if y∗ε is a negative minimum of ũε(y), we
have y∗ε < ŷ or y∗ε > ŷ.
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If y∗ε > ŷ, it is also a local minimum of uε. But then considering (N.5)

ruε(y
∗
ε ) ≥ −δ2ȳ + rK − 1

ε
uε(y

∗
ε ),

which implies uε(y
∗
ε ) ≥ ε(−δ2ȳ + rK); hence ũε(y

∗
ε ) ≥ ε(−δ2ȳ + rK).

Suppose now y∗ε < ŷ. We note that on (−∞, ŷ), ũε satisfies

−1

2
ς2ũ′′ε −

(
α− λςρ−

(
δ2
r

+m′
)
ς2rγ(1− ρ2)

)
ũ′ε +

1

2
ς2rγ(1− ρ2)ũ′2ε + rũε

= −δ1y + rK +
1

ε
ũ−ε ,

but then rũε(y
∗
ε ) ≥ −δ1ŷ + rK − 1

ε ũε(y
∗
ε ), and ũε(y

∗
ε ) ≥ ε(−δ1ŷ + rK). Therefore,

ũε(y) = uε(y)−m(y) ≥ ε(rK −max(δ2ȳ, δ1ŷ)
) ≥ −εc0

with c0 = max(δ2ȳ, δ1ŷ) > 0, and we get

(N.7)
(m− uε)+

ε
≤ c0.

Consider next u(y) to be the solution of

{
−1

2ς
2u′′ − (α− λςρ− ς2δ2γ(1− ρ2))u′ + 1

2ς
2rγ(1− ρ2)u′2 + ru = −δ2y + rK, y < y,

u(y) = 0.

(N.8)

Then we have the estimates

(N.9) −f(y) +K ≤ u(y) ≤ uε(y) ≤ ū(y).

Since u(y) = ū(y) = 0, we have

(N.10) u′(y − 0) ≥ u′ε(y − 0) ≥ ū′(y) = 0.

From the estimates (N.9), we have

(N.11)
|uε(y)|

(1 + y2)�
≤ C ∀ 
 > 1

2
.

We now check

(N.12)
|u′ε(y)|

(1 + y2)�
≤ C ∀ 
 > 1

2
, y ≤ y,

with u′ε(y) = u′ε(y − 0).

From (N.10), we know that this is the time for y = y.
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Consider zε =
uε

(1+y2)�
; then zε satisfies

−1

2

ς2z′′ε
(1 + y2)�

− z′ε
{
−2
rγς2(1− ρ2)y

1 + y2
+

2
y

(1 + y2)�+1
+
α− λςρ− γδ2ς2(1− ρ2)

(1 + y2)�

}
+

1

2
rγς2(1− ρ2)z′2ε = ζε(y), y < ȳ,(N.13)

and |ζε(y)| ≤ C if 
 > 1
2 .

Consider a point where z′ε is maximum positive or minimum negative. Let yε be such a
point. If yε < ȳ, then z′′ε (yε) = 0 and from (N.13) we necessarily have |z′ε(yε)| ≤ C. Now,

on y, we have z′ε(ȳ− 0) =
u′
ε(y−0)

(1+y2)�
, and thus |z′ε(y)| ≤ C. Since u′

ε(y)
(1+y2)�

= z′ε(y)+
2�y
1+y2

zε(y), we

obtain (N.12). From (N.5), we deduce

(N.14)
|u′′ε (y)|

(1 + y2)2�
≤ C.

Therefore, we can extract from uε(y) a subsequence, still denoted uε(y), such that

(N.15) uε(y)→ u(y), u′ε(y)→ u(y) pointwise on (−∞, ȳ).
Calling χε = 1

ε (m− uε)+, we also have

(N.16)

{
χε → χ in L∞(−∞, ȳ) weak star,
u′′
ε (y)

(1+y2)2�
→ u′′(y)

(1+y2)2�
in L∞(−∞, ȳ) weak star.

The limit u satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2ς
2u′′ − (α− λςρ− ς2δ2γ(1− ρ2))u′ + 1

2ς
2rγ(1− ρ2)u′2 + ru = −δ2y + rK + χ,

u ≥ m,
(u−m)χ = 0,

u(y) = 0.

(N.17)

Then, necessarily,

(N.18) u′(y − 0) = 0.

Indeed u(y) ≥ m(y) is positive for y close to y; hence u′(y − 0) ≤ 0. Moreover, from (N.10),
u′(y − 0) ≥ 0. Hence, we have (N.18). Therefore, u extended by 0 beyond y remains C1 and
is the solution of the V.I. (6.52). We can take y to be the first point where u(y) touches 0.
Necessarily, u(y) ≥ 0.

Consider again the first point y∗ < ŷ such that m(y∗) = 0. Then y∗ < 0 and m(y) < 0 for
y < y∗. Therefore, for y < y∗ the following differential equation holds:

−1

2
ς2u′′ − (α− λςρ− ς2δ2γ(1− ρ2))u′ + 1

2
ς2rγ(1− ρ2)u′2 + ru

= −δ2y + rK, y < y∗.(N.19)
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There must exist a point y∗∗ < y∗ such that u′(y∗∗) < 0. Otherwise, u′(y) ≥ 0 ∀ y < y∗; hence
u(y) is bounded for y < y∗, which is impossible since u(y)→∞ as y → −∞. We claim

(N.20) u′(y) < 0 if y < y∗∗.

Otherwise, there would be a point of maximum. From (N.19) the value of this maximum
would be negative, which is impossible. Hence, we have (N.20).

Define the feedback v̂(y) = −u′(y)ς√rγ(1− ρ2), and from (N.20)

(N.21) v̂(y) ≥ v̂(y)�y∗∗<y<ȳ ≥ v0.
We associate with (N.5) a stochastic differential game. The state equation is governed by

(N.22)

{
dY (t) =

(
α− λςρ− ς2δ2γ(1− ρ2) + v(t)ς

√
rγ(1− ρ2))dt+ ςdW (t),

Y (0) = y, y < ȳ,

where v(t) is the control (adapted process). We define the cost function

(N.23) J ε
y

(
v(·), ϑ(·)) = E

[∫ θ̄

0

(
−δ2Yy(t)+rK+

1

2
v2(t)+

1

ε
m
(
Yy(t)

)
ϑ(t)

)
e−

∫ t
0

(
r+ϑ(s)

ε

)
dsdt

]
,

where θ̄ = inf{t|Yy(t) = ȳ}. We then have

(N.24) uε(y) = inf
v(·)

sup
ϑ(·)

J ε
y

(
v(·), ϑ(·)) = sup

ϑ(·)
inf
v(·)

J ε
y

(
v(·), ϑ(·)).

Thus, there exists a saddle point. Optimal processes, v̂ε(t) and ϑ̂ε, are obtained from feedbacks{
v̂ε(y) = −u′ε(y)ς

√
rγ(1− ρ2),

ϑ̂ε(y) = �m(y)>uε(y)

by the formula {
v̂ε(t) = v̂ε

(
Yy(t)

)
,

ϑ̂ε(t) = ϑ̂ε
(
Yy(t)

)
.

Consider the optimal trajectory Ŷy(t) given by (see (N.22))

(N.25) dŶ =
(
α− λςρ− γδ2ς2(1− ρ2) + v̂(Y )ς

√
rγ(1− ρ2))dt+ ςdW.

We have from (N.21) dŶ ≥ −c1dt + ςdW ; hence EŶy(t) ≥ y − c1t. Therefore, from the
estimates (N.4) and (N.1),

(N.26) Eu
(
Ŷy(t)

) ≤ δ2
r

[−EŶy(t) + c2
] ≤ δ2

r

[−y + c1t+ c2
]
.

We next define optimal stopping:

(N.27) θ̂ = θ̂(y) = inf
{
t|u(Ŷy(t)) = m

(
Ŷy(t)

)}
.
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Using Itô’s formula, we can write

u(y) = E

[∫ T∧θ̂

0

(
−δ2Ŷy(t) + rK +

1

2
v̂2(t)

)
e−rtdt+ u

(
Yy(T ∧ θ̂)

)
e−rT∧θ̂

]
,

where v̂(t) = v̂
(
Ŷy(t)

)
. Therefore,

u(y) = E

[∫ T∧θ̂

0

(
−δ2Ŷy(t) + rK +

1

2
v2(t)

)
e−rtdt+m

(
Yy(θ̂)

)
e−rT

�θ̂<T

+ u
(
Yy(T )

)
e−rT

�T≤θ̂

]
.

Letting T ↑ ∞, making use of the estimate (N.27), we obtain

(N.28) u(y) = Jy
(
v̂(·), θ̂).

Define the feedback ϑ̂(y) = �u(y)=m(y).

We define next the cost associated with any control v(·) and the feedback ϑ̂(·):

Jy(v(·), ϑ̂(·)) = E

[∫ θ̂

0

(
−δ2Yy(t) + rK +

1

2
v2(t)

)
e−rtdt+m

(
Yy(θ̂)

)
e−rθ̂

�θ̂<∞

]
,

where θ̂ = inf
{
t|u(Yy(t)) = m

(
Yy(t)

)}
. We check

u(y) ≤ E
[∫ T∧θ̂

0

(
−δ2Yy(t) + rK +

1

2
v2(t)

)
e−rtdt+ u

(
Yy(T ∧ θ̂)

)
e−rT∧θ̂

]
= E

[∫ T∧θ̂

0

(
−δ2Yy(t) + rK +

1

2
v2(t)

)
e−rtdt+m

(
Yy(θ̂)

)
e−rθ̂

�θ̂<T

+ u
(
Yy(T )

)
e−rT

]
.

Again, Eu
(
Yy(T )

)
e−rT ≤ δ2

r

[−EYy(T )e−rT + c2e
−rT

]
and from the transversality condition

Eu
(
Yy(T )

)
e−rT → 0 as T →∞. Therefore,

u(y) ≤ Jy
(
v(·), ϑ̂(·));

thus u(y) ≤ supθ infv(·) Jy
(
v(·), θ).

Now, considering again Ŷy(t), we have for any stopping time θ

u(y) ≥ E
[∫ T∧θ

0

(
−δ2Ŷy(t) + rK +

1

2
v2(t)

)
e−rtdt+ u

(
Ŷy(T ∧ θ)

)
e−rT∧θ

]
≥ E

[∫ T∧θ

0

(
−δ2Ŷy(t) + rK +

1

2
v2(t)

)
e−rtdt+m

(
Ŷy(θ)

)
e−reθ

�θ<T

]
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and, letting T →∞,
u(y) ≥ Jy

(
v̂(·), θ).

Therefore, u(y) ≥ infv(·) supθ Jy
(
v(·), θ). This completes the proof.

Appendix O. Proof of Theorem 6.6. We take y1 to be the first point such that u(y1) =
m(y1). We must have y1 < ŷ; otherwise we are in the case m ≤ 0, which is excluded. We also
have

(O.1) u′(y1) = m′(y1)

and δ1y1 ≥ rK.
Indeed, set ũ(y) = u(y)−m(y). Then ũ(y) satisfies

−1

2
ς2ũ′′ −

(
α− λςρ−

(
δ2
r
−m′

)
ς2rγ(1− ρ2)

)
ũ′ +

1

2
ς2rγ(1− ρ2)ũ′2 + rũ

= −δ1y + rK(O.2)

with ũ(y1) = 0, ũ′(y1) = 0. The matching of the derivatives comes from the fact that ũ(y)
is C1 and ũ(y) ≥ 0, ũ(y1) = 0. So y1 is the local minimum; hence ũ′(y1) = 0 and we have
(O.1). Now suppose δ1y1 ≤ rK; from (O.2), we see that ũ′′(y1 − 0) < 0; therefore, ũ(y) < 0
for y < y1 close to y1, which is impossible.

Call y2 the left end of the interval (y2, y3) with y3 = ȳ and y2 < ŷ, on which the equation
holds. So we have u(y2) = m(y2), and necessarily u′(y2) = m′(y2).

On the other hand, on the interval (y1, y2), m satisfies all conditions (6.52). So u = m on
the interval (y1, y2). By the uniqueness of u, the triple y1, y2, y3 is necessarily unique.
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Storage Costs in Commodity Option Pricing∗
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Abstract. Unlike derivatives of financial contracts, commodity options exhibit distinct particularities owing to
physical aspects of the underlying. An adaptation of no-arbitrage pricing to this kind of derivative
turns out to be a stress test, challenging the martingale-based models with diverse technical and
technological constraints, with storability and short selling restrictions, and sometimes with the
lack of an efficient dynamic hedging. In this work, we study the effect of storability on risk neutral
commodity price modeling and suggest a model class where arbitrage is excluded for both commodity
futures trading and simultaneous dynamical management of the commodity stock. The proposed
framework is based on key results from interest rate theory.

Key words. commodity options, theory of storage, futures markets, LIBOR model
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1. Introduction. Prospering economies are highly dependent on commodities. As a con-
sequence, sustainable commodity supply is a key factor for their future growth. Thus, the
commodity price risk becomes increasingly important. In the past, the price outbursts for
oil, biofuels, and agricultural products have clearly demonstrated that the commodity price
modeling and hedging deserve particular attention.

Despite the success of financial mathematics in many fields, we believe that the quantita-
tive understanding of commodity price risk is behind the state of the art and needs further
research. In the area of commodities, the models are less sophisticated, flexible, and consistent
than, for instance, in the theory of fixed income markets. Not surprisingly, many important
questions in commodity risk management cannot be addressed accordingly. For the sake of
concreteness, let us consider two commodities, electricity and gold, which are very different
in their nature and in their price behavior. Gold is, as a precious metal, a perfectly storable
good. Furthermore, gold is considered as an appreciated investment opportunity, particularly
during critical times. As a result, the price behavior of gold shows many similarities to a for-
eign currency. For instance, for gold loans, an interest rate (paid in gold) is available. On the
contrary, electricity is not economically storable. Strictly speaking, electrical energy delivered
at different points in time must be considered as different commodities. Electricity spot price
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spikes occur regularly; each price jump is followed by a relatively fast price decay, returning
back to the normal price level. Such a pattern is not possible for the gold spot price. Consider
now a calendar spread call option, which can be viewed as a regular call written on the price
spread between commodity futures with different maturities. Such a contract is obviously
sensitive to spot price spikes. Evidently, the pricing and hedging of such an instrument must
depend on whether it is written on electricity or on gold. However, such a differentiation is
hardly possible within common risk neutral commodity price models. At the present level of
the theory, the practitioner is essentially left alone with the problem of how to adapt a given
commodity price model to account for a perfect storability or for an absolute nonstorability
of the underlying good.

Apparently, the lack of storage parameter in the common commodity price models is traced
to the very philosophy of commodity risk hedging. Physical commodities are cumbersome:
Their storage could be difficult and expensive, the quality may be deteriorated by storage, and
the supply may require a costly transportation. Furthermore, short positions in commodities
are almost impossible. Contrary to this, futures are clean financial instruments, predestined
to hedge against undesirable price changes. Accordingly, futures are frequently considered as
prime underlyings. Thus, the generic approaches in commodity modeling attempt to exclude
merely the financial arbitrage (achieved by futures and options trading), losing sight of the
physical arbitrage, which may result from the trading of financial contracts in addition to an
appropriate inventory management. At the present stage, the valuation of commodity options
sticks to the calculation of prices which exclude arbitrage within a given futures market,
thus neglecting the existing real storage opportunities. According to this, there is a need for
a unified model which encompasses all commodities, distinguishing particular cases by their
storability degree. Here, we are confronted with complex situations. The variety of storage cost
structures ranges from a simple quality deterioration (agricultural products) and dependence
on related commodities (fodder price may depend on livestock prices) to the availability of the
inventory capacities. Furthermore, economists argue that negative storage costs are useful for
describing the benefit or premium associated with holding an underlying product or physical
good rather than a financial contract (convenience yield arguments). This benefit may depend
on the inventory levels since the marginal yield of the physical stock decreases as the quantity
approaches a level larger than the business requires. To complete the perplexity, we should
mention that the inventory levels, in turn, are interrelated with commodity spot prices (the
inventories are full when the commodity is cheap) and also could exhibit seasonalities (harvest
times for agricultural products). The bottom line is that there is no simple approach to facing
the entire range of storage particularities. However, we hope that a simplified cost structure
is able to capture those storability aspects which are quantitatively essential for derivatives
pricing. An empirical study presented in this contribution supports this assumption.

The connection between spot and futures prices for commodities with restricted storability
and the valuation of storage opportunities have attracted research interest for a long time. In
this work, we emphasize, among others, the works [3], [5], [7], [8], [9], and [10]. Moreover, the
comprehensive book [6] presents a state-of-the-art exposition in the commodity derivatives
pricing. More specifically, commodity spread options are discussed in [4], in the recent works
[1], [2], and in the literature cited therein.

In what follows, we present an approach where a single parameter controls the maximally
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possible slope of contango, thus giving a storability constraint. This should yield commodity
option prices more realistic than those obtained from traditional models, especially when the
instrument under valuation explicitly addresses the storability aspects (like a calendar spread
option, a virtual storage, or a swing-type contract).

2. Risk neutral modeling. Common approaches to the valuation of commodity derivatives
(see [7]) are based on the assumptions that the commodity trading takes place continuously
in time without transaction costs and taxes and that no arbitrage exists for all commodity-
related trading strategies. In the class of spot price models, the evolution (St)t∈[0,T ] of the
commodity spot price is described by a diffusion dynamics

(2.1) dSt = St((−μt)dt+ σtdWt)

realized on a filtered probability space (Ω,F , (Ft, P )t∈[0,T ]) with the prespecified drift (μt)t∈[0,T ]

and volatility (σt)t∈[0,T ]. The process (Wt)t∈[0,T ] stands for a Brownian motion under the
so-called spot martingale measure Q. This measure represents a vehicle for excluding arbi-
trage opportunities for the trading of commodity-related financial contracts, predominantly
of futures. The assumption therefore is that at any time t ∈ [0, τ ] ⊂ [0, T ] the price Et(τ)
of the futures contract written on the price of a commodity delivered at τ is given by the
Q-martingale

(2.2) Et(τ) = EQ(Sτ |Ft) for all t ∈ [0, τ ] for each futures maturity τ ∈ [0, T ]

whose terminal value equals the spot price Sτ . Beyond this property, futures dynamics has
to fulfill a series of reasonable assumptions. First of all, the dynamics (2.1), (2.2) has to be
consistent with the futures curve (E∗

0(τi))
n+1
i=0 initially observed at the market in the sense that

E(Sτi |F0) = E∗
0(τi) for all listed maturity dates τ0, . . . , τn+1. Next, one has to ensure a certain

flexibility of the futures curve, at least in terms of the feasibility for changes between backwar-
dation and contango, which evidently occur in commodity markets. Moreover, some authors
have argued that the correct choice of the spot price process has to reflect the frequently no-
ticed mean-reverting property. However, we believe that this observation is disputable since
there is no obvious reason why a risk neutral dynamics must inherit the statistical proper-
ties evident from the perspective of the objective measure. Overall, the correct choice of the
commodity price dynamics turns out to be a challenging task, more so because the following
storability requirement needs to be considered:

(2.3)
Given a storage cost structure, the dynamics
(2.2) should exclude arbitrage opportunities
for futures and physical commodity trading.

Our approach aims to give an appropriate implementation of this principle such that particular
commodities may be distinguished by a single parameter which stands for their specific storage
costs.

In our approach, we utilize a connection between commodity and money market models
(see [8]), which needs to be briefly outlined next. Given the dynamics (2.1), the diffusion
parameter (σt)t∈[0,T ] obviously reflects the fluctuation of the spot price, whereas the drift term
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(μt)t∈[0,T ] needs to be adjusted accordingly, in order to match the observed initial futures curve

(E∗
0(τi))

n+1
i=0 and to reflect some of its typical changes. It turns out that by an appropriate

change of measure these questions can be naturally carried out in the framework of short rate
models. Namely, observe that the solution

Sτ = S0e
− ∫ τ

0 μsdse
∫ τ
0 σsdWs− 1

2

∫ τ
0 σ2

sds, τ ∈ [0, T ],

to (2.1) satisfies

Sτ = Ste
− ∫ τ

t μsdsΛτΛ
−1
t , 0 ≤ t ≤ τ ≤ T,

where, under appropriate assumptions on (σt)t∈[0,T ], the martingale

Λτ = e
∫ τ
0 σsdWs− 1

2

∫ τ
0 σ2

sds, τ ∈ [0, T ],

provides a measure change to a probability measure Q̃ which is equivalent to Q and is given
by

dQ̃ = ΛTdQ.

Using the measure Q̃, we obtain

Et(τ) = E
Q
t (Sτ ) = E

Q
t (Ste

− ∫ τ
t
μsdsΛτΛ

−1
t ) = StE

Q̃
t (e

− ∫ τ
t
μsds)

with the proportion between the futures price and the spot price

Et(τ)/St = E
Q̃
t (e

− ∫ τ
t μsds) =: Bt(τ), t ≤ τ.

Obviously, all desired properties of the futures curve evolution can be addressed in terms of the
dynamics of (Bt(τ))t∈[0,τ ], τ ∈ [0, T ]. This observation shows that by modeling (μt)t∈[0,T ] as a

short rate of an appropriate interest rate model (with respect to Q̃) one obtains a commodity
price model which inherits futures curve properties from the zero bond curve of the underlying
interest rate model. More generally, [8] argues that any commodity futures price model can
be constructed as

Et(τ) = StBt(τ), 0 ≤ t ≤ τ ≤ T,
by a separate realization of spot price (St)t∈[0,T ] and an appropriate zero bond (Bt(τ))0<t≤τ≤T

dynamics. Although such a rigid framework is not ideal for addressing storage cost issues,
we utilize an analogy between commodity and money markets and borrow ideas from LIBOR
markets to introduce storage cost restrictions into commodity modeling.

3. A risk neutral approach to storage costs. Let us agree that a commodity market on
the time horizon [0, T ] is modeled by adapted processes

(3.1) (St)t∈[0,T ], (Et(τi))t∈[0,τi], i = 0, . . . , n+ 1,

realized on (Ω,F , P, (Ft)∈[0,T ]) with the interpretation that (St)t∈[0,T ] is the spot price process
and (Et(τi))t∈[0,τi] denotes the price evolution of the futures maturing at τi ∈ {τ0, . . . , τn+1} ⊂
[0, T ]. For simplicity, we assume that τ0 = 0, τn+1 = T and that all maturity times differ by
a fixed tenor Δ = τi+1 − τi for all i = 0, . . . , n. We shall agree on the following.
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Definition 3.1. The price processes (3.1) define a commodity market (which excludes ar-
bitrage for futures trading and simultaneous commodity stock management) if the following
conditions are satisfied:
(C0) (St)t∈[0,T ], (Et(τi))t∈[0,τi] for i = 0, . . . , n+ 1 are positive-valued processes.

(C1) There is no financial arbitrage in the sense that there exists a measure QE which is
equivalent to P and such that, for each i = 0, . . . , n + 1, the process (Et(τi))t∈[0,τi]
follows a martingale with respect to QE.

(C2) The initial values of the futures price processes (Et(τi))t∈[0,τi], i = 0, . . . , n + 1, fit

the observed futures curve (E∗
0(τi))

n+1
i=0 ∈ ]0,∞[n+1; i.e., it holds almost surely that

E0(τi) = E∗
0(τi) for all i = 0, . . . , n+ 1.

(C3) The terminal futures price matches the spot price: Eτi(τi) = Sτi for i = 0, . . . , n + 1.
(C4) There exists κ > 0 such that

(3.2) Et(τi+1)− κ ≤ Et(τi) for all t ∈ [0, τi], i = 1, . . . , n.

Let us explain why assumption (C4) is a convenient description of storage cost. For any
time t ≤ τi, consider the commodity forward prices Ft(τi), Ft(τi+1) and the prices pt(τi),
pt(τi+1) of zero bonds (whose face value is normalized to one) maturing at τi and τi+1, respec-
tively. To exclude arbitrage from physical storage facilities, we derive a relation between these
prices and the price kt(τi+1) of a contract which serves as a storage facility for one commodity
unit within [τi, τi+1]. Thereby, we assume that the price kt(τi+1) is agreed at time t and is
paid at τi+1. It turns out that to exclude the cash and carry arbitrage the prices must satisfy

(3.3) Ft(τi+1)− kt(τi)−
(

pt(τi)

pt(τi+1)
− 1

)
Ft(τi) ≤ Ft(τi), t ∈ [0, τi], i = 1, . . . , n+ 1.

This relation follows from the no-arbitrage assumption by examining a strategy, which fixes
the prices at time t, buys at time τi > t one commodity unit, stores it within [τi, τi+1], and
sells it at τi+1. Let us investigate in more detail the revenue from such a strategy.

Time τi-future τi+1-future Storage τi-bond τi+1-bond

t 1 long 1 short 1 long Ft(τi) long
pt(τi)

pt(τi+1)
Ft(τi) short

τi supply 1 short store cash flow Ft(τi)
pt(τi)

pt(τi+1)
Ft(τi) short

τi+1 expired delivery pay kt(τi+1) expired cash flow − pt(τi)
pt(τi+1)

Ft(τi)

Obviously, our agent starts with no initial capital since entering forward positions at time
t does not require any cash flow and both bond positions are balanced. Furthermore, the
strategy is self-financed. Namely, the capital required to buy one commodity unit at time τi
is financed by a cash flow from the expiring long bond position. At the end of this strategy,
the agent requires a capital kt(τi+1) to pay for the storage and pt(τi)

pt(τi+1)
Ft(τi) to close the short

bond position. However, our agent earns a revenue Ft(τi+1) from the delivery of the stored
commodity unit. Hence, the terminal capital is known with certainty in advance, at the initial
time t, and is equal to

Ft(τi+1)− kt(τi+1)− pt(τi)

pt(τi+1)
Ft(τi).
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In order to exclude arbitrage, we have to suppose that this terminal wealth cannot be positive.
Thus, we obtain (3.3). Now, let us elaborate on the approximation (3.2) of (3.3). Consider
the cumulative effect

(3.4) kt(τi) +

(
pt(τi)

pt(τi+1)
− 1

)
Ft(τi) for all t ∈ [0, τi] and i = 1, . . . , n

of the storage costs and interest rates. If we propose a model which satisfies

(3.5) Ft(τi+1)− κ ≤ Ft(τi) for all t ∈ [0, τi] and i = 1, . . . , n,

then the arbitrage by cash and carry is excluded at least in those situations where (3.4) is
bounded from below by the parameter κ. In this context, the accuracy of the estimation

(3.6) kt(τi) +

(
pt(τi)

pt(τi+1)
− 1

)
Ft(τi) ≥ κ for all t ∈ [0, τi] and i = 1, . . . , n

is critical. Whether such an estimate is possible in practice and whether it yields models
which capture storability aspects of the commodity price evolution must be explicitly verified
in any particular situation. In any case, we believe that for certain commodities the left-hand
side of (3.6) can be reasonably approximated by a constant and deterministic parameter κ,
which justifies the assumption (3.5). Finally, we pass from (3.5) to (3.2) by the approximation
of the forward prices Ft(τi), Ft(τi+1) by futures prices Et(τi), Et(τi+1).

4. Storage costs as contango limit. In principle, κ can be estimated from the actual
physical storage costs and the interest rate effects. Consequently, for certain commodities
there exists a maximally possible steepness of the futures curve in contango situations, which
is known among traders as the contango limit. That is, such a rough estimate of κ could also
be obtained from historical data by inspecting the maximal increase of the historical futures
curves

κ = max{Et(τi+1)(ω)− Et(τi)(ω) : for all t ≤ τi < τi+1}
based on a representative data record. Let us illustrate this method.

Consider the history of soybean trading at the Chicago Board of Trade (CBOT). At this
exchange, the soybean futures expire in January, March, May, July, August, September, and
November. Each contract is listed one year prior to expiry. Let us suppose a fixed tenor Δ of
two months. Thus, all prices of futures maturing in August are not considered. Within each
period [τi−1, τi], six futures prices with delivery dates τi, τi+1, . . . , τi+5 are available. Figure 1
shows a typical price evolution of six futures and the period where all six contracts are listed.
Moreover, Figure 2 illustrates the entire data set we use in this study. It encompasses the
end of the day futures prices ranging from 2000-10-02 to 2007-02-23. Figure 3 shows the
behavior of the difference of consecutive contracts in the entire data record. Note that this
picture clearly supports our viewpoint since there is a clear contango limit, represented by a
price which has never been hit by the difference Et(τi+1)−Et(τi). At the same time, there is
no limitation on the backwardation side since the differences Et(τi+1)− Et(τi) tilt seemingly
arbitrarily far downwards. To estimate the storage cost parameter, we use the historical data
depicted in Figure 2 and calculate κ by

(4.1) max{(Et(τi+1)− Et(τi))(ω) : t, τi, τi+1 where price observations are available}
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Figure 1. The price evolution of six consecutive futures contracts. Vertical lines separate a two month
period where all six contracts are traded.
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Figure 2. Soybean closing daily prices from CBOT in cents per bushel.

giving 24 US cents per bushel for two months. Thus, setting κ ≈ 26 could give a reasonable
futures price model which excludes cash and carry arbitrage for soybeans. Still, there is no
guarantee why the difference Et(τi+1) − Et(τi) in a future trajectory does not exceed 26. As
discussed before, a reliable estimation of κ should be based on a study of storage costs and
on bond prices. However, we believe that (4.1) may serve as a reasonable approximation.

Not surprisingly, similar analysis on other commodities shows that a clear historical con-
tango limit can also be observed for other storable agricultural products and for precious
metals but not for assets with limited storability (oil, gas, and electricity) and for perishable
goods (like livestock).
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Figure 3. The difference Et(τi+1)−Et(τi) shows an upper bound at 24 US cents per bushel for two months.

5. Modeling commodity dynamics. This section is devoted to the construction of com-
modity markets which satisfy the axioms formulated in Definition 3.1. Here the main task is to
establish a dynamics for martingales (Et(τi))t∈[0,τi] (i = 1, . . . , n+1) which obeys the storage
restriction (C4) and, at the same time, possesses a certain flexibility in the movements of the
futures curve. Fortunately, similar problems occurred in the theory of fixed income markets
and have been treated successfully. As a paradigm, we use the forward LIBOR market model,
also known as the BGM approach, named after A. Brace, D. Gatarek, and M. Musiela. In
their context, the dynamics of zero bonds (pt(τi))t∈[0,τi] with the fixed tenor Δ = τi+1 − τi,
i = 1, . . . , n, is described in terms of the so-called simple rates (Lt(τi))t∈[0,τi] defined by

(5.1) pt(τi+1) =
pt(τi)

1 + ΔLt(τi)
for i = 1, . . . , n, t ∈ [0, τi],

whose dynamics is modeled by stochastic differential equations

(5.2) dLt(τi) = Lt(τi)(βt(τi)dt+ γt(τi)dWt), i = 1, . . . , n,

where the deterministic volatilities (γt(τi))t∈[0,τi] are freely chosen for i = 1, . . . , n, whereas
the drifts (βt(τi))t∈[0,τi] for i = 1, . . . , n are determined by this choice. The importance of the
BGM formulation is that each simple rate (Lt(τi))t∈[0,τi] follows a geometric Brownian motion
with respect to the forward measure corresponding to the numeraire (pt(τi+1))t∈[0,τi]. This
fact yields explicit formulae for Caplets and therefore provides an important tool, implicit cal-
ibration, for this fixed-income model class. We suggest transferring this successful concept to
commodity markets by proposing a similar framework, where futures are consecutively inter-
related by stochastic exponentials, similarly to simple rates in (5.1). As in the BGM setting,
it turns out that this concept provides appropriate tools for the implicit model calibration.
The idea is to link the dynamics (Et(τi), Et(τi+1))t∈[0,τi] by

(5.3) Et(τi+1) =
Et(τi) + κ

1 + Zt(τi)
, t ∈ [0, τi], i = 1, . . . , n,
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where, likewise to the simple rate (5.2), the simple ratio (Zt(τi))t∈[0,τi] follows a diffusion

(5.4) dZt(τi) = Zt(τi)(αt(τi)dt+ σt(τi)dWt), t ∈ [0, τi], i = 1, . . . , n,

where (σt(τi))t∈[0,τi] and (αt(τi))t∈[0,τi] denote the volatilities and the drifts, respectively. We
will see later that the drifts follow from the choice of simple ratio volatilities and other model
ingredients. Before entering the details of the construction, let us emphasize that (5.3) indeed
ensures (3.2) by the nonnegativity of (Zt(τi))t∈[0,τi], which is a consequence of (5.4), under
appropriate conditions.

Now, let us construct a model which fulfills the axioms from Definition 3.1. We begin with
a complete filtered probability space (Ω,F , QE , (Ft)t∈[0,T ]) where the filtration is the augmen-

tation (by the null sets in FW
T ) of the filtration (FW

t )t∈[0,T ] generated by the d-dimensional
Brownian motion (Wt)t∈[0,T ]. All processes are supposed to be progressively measurable. For
equidistant futures maturity dates

0 = τ0 < τ1 < · · · < τn+1 = T ∈ [0, T ], Δ = τi+1 − τi, i = 0, . . . , n,

and the initial futures curve (E∗
0(τi))

n+1
i=1 ∈ ]0,∞[n+1, we construct a commodity market where

futures prices follow

(5.5) dEt(τi) = Et(τi)Σt(τi)dWt, t ∈ [0, τi], E0(τi) = E∗
0(τi), i = 1, . . . , n+ 1,

and obey (C0)–(C4) with a given storage cost parameter κ > 0. In a separate section, we
discuss how the volatility term structure

(Σt(τi))t∈[0,τi], i = 1, . . . , n + 1,

and its dimension d ∈ N are determined from a model calibration procedure.

First, we outline the intuition behind our construction. Given the local QE-martingale
(Et(τi))t∈[0,τi] as in (5.5), the Itô formula shows how, given (σt(τi))t∈[0,τ ], to settle the drift
(αt(τi))t∈[0,τ ] in (5.4) such that (5.3) becomes a martingale. With this principle, we construct
(Et(τi+1))t∈[0,τi] from given (Et(τi))t∈[0,τi] and (σt(τi))t∈[0,τi]. To proceed, we need to extend
this price process by (Et(τi+1))t∈[τi,τi+1] to the expiry date. This is effected by

dEt(τi+1) = Et(τi+1)Σt(τi+1)dWt, t ∈ [τi, τi+1],

where the volatility in front of delivery (Σt(τi+1))t∈[τi,τi+1] is exogenously given by

(5.6) Σt(τi+1) := ψt for all t ∈ [τi, τi+1], i = 0, . . . , n,

with a prespecified process (ψt)t∈[0,T ]. Having thus established (Et(τi+1))t∈[0,τi+1], the same
procedure is applied iteratively to determine all remaining futures (Et(τj+1))t∈[0,τj+1] with
j = i+ 1, . . . , n.

In the following lemma, we call a d-dimensional process (Xt)t∈[0,τ ] bounded if ‖Xt‖ < C
holds for all t ∈ [0, τ ] almost surely, for some C ∈ [0,∞[.
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Lemma 5.1. Let (Et)t∈[0,τ ] be a positive-valued martingale following dEt = EtΣtdWt with
a bounded volatility process (Σt)t∈[0,τ ]. If (σt)t∈[0,τ ] is bounded, then there exists a unique
strong solution to

(5.7)
dZt

Zt
= −σt

((
EtΣt

Et + κ
− Ztσt
Zt + 1

)
dt− dWt

)
, Z0 := Z∗

0 > 0.

Moreover,

(5.8) E′
t =

Et + κ

1 + Zt
, t ∈ [0, τ ],

follows the martingale dynamics

(5.9) dE′
t = E′

tΣ
′
tdWt, t ∈ [0, τ ],

with bounded

(5.10) Σ′
t =

EtΣt

Et + κ
− Ztσt
Zt + 1

, t ∈ [0, τ ].

Proof. Write (5.7) as

(5.11) dZt = F (Z)tdt+ ZtσtdWt, Z0 = Z∗
0 > 0,

where the functional F acts on the processes Z = (Zt)t∈[0,τ ] by

(5.12) F (Z)t = −Ztσt

(
EtΣt

Et + κ
− Ztσt
Zt + 1

)
, t ∈ [0, τ ].

To avoid technical difficulties in (5.7) occurring when the denominator Zt + 1 vanishes, we
first discuss a stochastic differential equation similar to (5.11)

(5.13) dZt = F̃ (Z)tdt+ ZtσtdWt, Z0 = Z∗
0 > 0,

where the functional F̃ acts by F̃ (Z)t := F (Z)t1{Zt≥0} for t ∈ [0, τ ] on each process Z =
(Zt)t∈[0,τ ]. Since supt∈[0,τ ] ‖σt‖ ≤ C ∈ [0,∞[ by assumption, the diffusion term in (5.13) is
Lipschitz continuous:

‖Ztσt − Z ′
tσt‖ ≤ C|Zt − Z ′

t| for all t ∈ [0, τ ].

Thus, to ensure the existence and uniqueness of the strong solution to (5.13) it suffices to
verify the Lipschitz continuity of F̃ in the sense that there exists C̃ ∈ [0,∞[ such that

(5.14) ‖F̃ (Z)t − F̃ (Z ′)t‖ ≤ C̃|Zt − Z ′
t| for all t ∈ [0, τ ].

The decomposition F̃ (Z)t = f̃1(t, Zt) + f̃2(t, Zt) + f̃3(t, Zt) with

f̃1(t, z) = −1{z≥0}z
Et

Et + κ
σtΣt,

f̃2(t, z) = −1{z≥0}z
1

z + 1
σtσt,

f̃3(t, z) = 1{z≥0}zσtσt
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for all t ∈ [0, τ ], z ≥ 0 shows that C̃ ≥ supt∈[0,τ ](|σtΣt| + 2|σtσt|) yields a Lipschitz constant

in (5.14); here C̃ ∈ [0,∞[ holds since both (Σt)t∈[0,τ ] and (σt)t∈[0,τ ] are bounded processes by
assumption.

Let (Zt)t∈[0,τ ] be the unique strong solution to (5.13). In order to show that this process
also solves (5.7), it suffices to verify that Zt ∈ ]0,∞[ holds almost surely for all t ∈ [0, τ ].
Indeed, the positivity follows from the stochastic exponential form

dZt = Zt

(
F̃ (Z)t
Zt

dt+ σtdWt

)
, Z0 = Z∗

0 > 0,

with bounded drift coefficient

(5.15)
F̃ (Z)t
Zt

= −σt
(
EtΣt

Et + κ
− Ztσt
Zt + 1

)
1{Zt≥0}, t ∈ [0, τ ].

To show the uniqueness, we argue that any solution (Z ′
t)t∈[0,τ ] to (5.11) coincides with (Zt)t∈[0,τ ]

on the stochastic interval prior the first entrance time of (Z ′
t)t∈[0,τ ] into ]−∞, 0] since on this

interval (Z ′
t)t∈[0,τ ] solves (5.13). Furthermore, (Z ′

t)t∈[0,τ ] is a continuous process, being a strong
solution to (5.11) by assumption. The continuity of (Z ′

t)t∈[0,τ ] shows that (Z ′
t)t∈[0,τ ] matches

(Zt)t∈[0,τ ] on the entire interval [0, τ ]. Finally, (5.9) is verified by a straightforward application
of the Itô formula.

Using the common stopping technique, Lemma 5.1 extends in a straightforward way from
bounded to continuous processes.

Proposition 5.2. Let (Et)t∈[0,τ ] be a positive-valued martingale following dEt = EtΣtdWt

with a continuous volatility process (Σt)t∈[0,τ ]. If (σt)t∈[0,τ ] is continuous, then there exists a
unique strong solution to

(5.16)
dZt

Zt
= −σt

((
EtΣt

Et + κ
− Ztσt
Zt + 1

)
dt− dWt

)
, Z0 := Z∗

0 > 0.

Moreover,

(5.17) E′
t =

Et + κ

1 + Zt
, t ∈ [0, τ ],

follows the martingale dynamics

(5.18) dE′
t = E′

tΣ
′
tdWt, t ∈ [0, τ ],

with continuous

(5.19) Σ′
t =

EtΣt

Et + κ
− Ztσt
Zt + 1

, t ∈ [0, τ ].

Proof. Introduce a sequence of stopping times

ϑk = inf{t ∈ [0, τ ] : max(‖σt‖, ‖Σt‖) ≥ k}, k ∈ N.
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Since both processes (σt)t∈[0,τ ] and (Σt)t∈[0,τ ] are continuous, we have limk→∞ ϑk = τ ; hence
the monotonically increasing sequence of stochastic intervals [0, ϑk], k ∈ N, covers the entire
time horizon:

(5.20)
⋃
k∈N

[0, ϑk] = Ω× [0, τ ].

Now, by stopping (σt)t∈[0,τ ] and (Σt)t∈[0,τ ] at the time ϑk, one obtains bounded processes

(σ
(k)
t := σt∧τk)t∈[0,τ ], (Σ

(k)
t := Σt∧τk)t∈[0,τ ].

Further, define (E
(k)
t )[0,τ ] as the solution to

dE
(k)
t = E

(k)
t Σ

(k)
t dWt, E

(k)
0 = E0.

If follows that for each k ∈ N the processes (E
(k)
t )t∈[0,τ ], (Σ

(k)
t )t∈[0,τ ], and (σ

(k)
t )t∈[0,τ ] satisfy the

assumptions of Lemma 5.1, which yields the corresponding processes (Z
(k)
t )t∈[0,τ ], (E

′(k)
t )t∈[0,τ ],

and (Σ
′(k)
t )t∈[0,τ ]. By construction, the next set of processes coincides with the previous one

on the common stochastic interval

Z
(k)
t (ω) = Z

(k+1)
t (ω)

Σ
′(k)
t (ω) = Σ

′(k+1)
t (ω)

E
′(k)
t (ω) = E

′(k+1)
t (ω)

⎫⎪⎪⎬⎪⎪⎭ for all t ∈ [0, ϑk(ω)], ω ∈ Ω, k ∈ N.

Thus, their limits

Zt := lim
k→∞

Z
(k)
t , Σ′

t := lim
k→∞

Σ
′(k)
t , E′

t := lim
k→∞

E
′(k)
t , t ∈ [0, τ ],

are well defined on [0, τ ] because of (5.20) and satisfy the assertions (5.16)–(5.19).

Remark. For later use, let us point out that the volatility process (Σ′
t)t∈[0,τ ] resulting from

(5.19) can be written as a function

(5.21) Σ′
t = s(E′

t, Et,Σt, σt) :=
EtΣt +E′

tσt
Et + κ

− σt, t ∈ [0, τ ].

The representation (5.21) follows directly from (5.19) by using

Zt

Zt + 1
= 1− 1

1 + Zt
= 1− E′

t

Et + κ
, t ∈ [0, τ ],

where the last equality is a consequence of (5.17). Let us point out that in the limiting
case, where the contango limit is almost reached, i.e., E′

t ≈ Et + κ, the volatility Σ′
t can be

approximated as

Σ′
t ≈

EtΣt

Et + κ
≈ EtΣt

E′
t

;
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thus the dynamics (E′
t)t∈[0,T ] follows that of (Et)t∈[0,T ], because of

dE′
t = E′

tΣ
′
tdWt ≈ E′

t
EtΣt

E′
t

dWt = EtΣtdWt = dEt.

This observation shows that the restriction Et+ κ ≥ E′
t necessarily causes strong correlations

of the process increments if the prices Et and E
′
t come close to the contango limit. On this

account the sensitivity of the model to the choice of storage cost parameter κ can be significant.
Now consider the entire construction of futures prices. Starting with

(5.22)

⎧⎪⎨⎪⎩
E∗

0(τi) ∈ ]0,∞[ for i = 1, . . . , n+ 1, initial futures curve,

(ψt)t∈[0,T ], in-front-of-maturity futures volatility (continuous),

(σt(τi))t∈[0,τi], i = 1, . . . , n, simple ratio volatilities (continuous),

we apply the following procedure.

Initialization. Start with E0(τ1) = E∗
0(τ1), . . . , E0(τn+1) = E∗

0(τn+1).

Recursion. Given initial values Eτi−1(τi), . . . , Eτi−1(τn+1), define

Et(τi), . . . , Et(τn+1) for all t ∈ [τi−1, τi]

successively for all i = 1, . . . , n by the following recursive procedure started at i := 1:

(i) Extend the next maturing futures price to its delivery date τi by

(5.23)
Σt(τi) = ψt,

dEt(τi) = Et(τi)Σt(τi)dWt,
t ∈ [τi−1, τi];

then proceed with the other futures.
(ii) For j = i, . . . , n, starting with the initial condition

Zτi−1(τj) =
Eτi−1(τj) + κ

Eτi−1(τj+1)
− 1

solve the stochastic differential equation

dZt(τj)

Zt(τj)
= −σt(τj)

(
Et(τj)Σt(τj)

Et(τj) + κ
− Zt(τj)σt(τj)

Zt(τj) + 1

)
dt+ σt(τj)dWt

for t ∈ [τi−1, τi] and define for all t ∈ [τi−1, τi]

Σt(τj+1) =
Et(τj)Σt(τj)

Et(τj) + κ
− Zt(τj)σt(τj)

Zt(τj) + 1
,

Et(τj+1) =
Et(τj) + κ

1 + Zt(τj)
.

(iii) If i < n+ 1, we set i := i+ 1 and proceed with the recursion onto [τi, τi+1]; otherwise
we finish the loop.
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To see that this procedure is well defined, we apply the results of Lemma 5.1 to the
recursion step replacing Et, Σt, σt, Zt by Et(τi), Σt(τi), σt(τi), Zt(τi), respectively. The
presented construction yields futures prices (Et(τi))t∈[0,τi] for i = 1, . . . , n+1 which obviously
satisfy (C0), (C1), (C2), (C4) from Definition 3.1. The last requirement (C4) follows from

Et(τi+1)− κ < Et(τi) ⇐⇒ Zt(τi) > 0,

where the existence of Zt(τi) ≥ 0 for all t ∈ [0, τi] is ensured by the assumptions (5.22)
and Lemma 5.1. Note that we do not consider (C3) since the spot price is not covered by
the above construction. If required, the spot price can be constructed in accordance with
assumption (C3). (See (5.24) below.)

Remark. Let us elaborate on simplifying assumptions, which we adopted in the present
approach in order to highlight the limitations and possible extensions of the model. First, our
framework is easily extendable to a nonequidistant maturity grid. By assuming that the tenors
Δi := τi+1 − τi depend on i = 0, . . . , n, we have to introduce different storage costs (κi)

n
i=0,

supposing that each κi is valid for the corresponding interval [τi, τi+1]. At this point, let us
mention that our construction also works if the parameter κi is random, provided that it is
known with certainty prior to τi, just before the beginning of corresponding interval [τi, τi+1].
Next, note that we address the futures prices directly, without reference to the spot price.
More precisely, the spot price occurs from the construction merely at the grid points (τi)

n+1
i=1 ,

being the terminal futures price Sτi = Eτi(τi), i = 1, . . . , n + 1. Since the spot price is not
quoted for most commodities, we believe this gives almost no limitation of model applicability.
However, if for some reason a spot price model is required, then the prices (Sτi)

n+1
i=1 can be

interpolated accordingly, for instance, linearly:

(5.24) St =
t− τi

τi+1 − τiEt(τi+1) +
τi+1 − t
τi+1 − τiEτi(τi), t ∈ [τi, τi+1], i = 1, . . . , n.

Such a choice comes close to the frequently used approximation of the spot price by the price of
the futures contract with nearest maturity. Finally, let us mention that by the reconstruction
of the spot price through interpolation the model can be extended towards a continuous system
of maturities by defining futures price evolution

Et(τ) = E
QE

(Sτ | Ft) for all t ∈ [0, τ ], τ ∈ [0, T ].

Obviously, such an extension provides at any time t a futures curve (Et(τ))τ∈[t,T ] which is
given by the underlying discrete curve (Et(τi))τi≥t interpolated by the procedure used in the
construction of the spot price. In particular, the linear interpolation (5.24) yields a continuous
and piecewise linear futures curve which respects the same contango limit as the discrete
model.

Finally, we emphasize that one of the main advantages of our model is a perfect time
consistency of the futures curve evolution, whereas to the best of our knowledge all approaches
in commodity modeling existing so far suffer from an inconsistency. For instance, defined by
few parameters, common spot price based commodity models (see [10]) are not able to match
an arbitrary initial futures curve. From this perspective, the futures price based models
(discussed in, among others, [4], [8]) are more appropriate since they provide an exact fit
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to the futures curve at the beginning. However, starting from such an initial curve, the
model-based futures curve evolution is in general not able to capture the real-world futures
curve change. This does not occur in our model since we describe a finite number of futures
contracts, in accordance with the common market practice. Namely, starting from the initial
curve (E0(τi))

n+1
i=1 , the futures curve (Et(τi))

n+1
i=1 at a later time t ∈ [τ0, τ1] can be arbitrary,

with the only restriction that it respect the contango limit. To see this, observe that the
distribution of

Et(τ1),
Et(τ2)

Et(τ1) + κ
=

1

Zt(τ1) + 1
, . . . ,

Et(τn+1)

Et(τn) + κ
=

1

Zt(τn) + 1

is equivalent to the Lebesgue measure on ]0,∞[× ]0, 1[n, which is ensured by our construction
of the next to maturity future and of the simple ratio processes from geometric Brownian
motions, using appropriate volatility structures.

6. Model calibration. This section is devoted to the calibration of the parameters of
our model. In the case that an appropriate type of calendar spread is actively traded on the
market, an implicit calibration is possible. Otherwise one has to rely on a historical calibration
based on principal component analysis. Alternatively, an approximation of calendar spread
option prices which is described in section 8 could also be used for an implicit calibration.

Implicit calibration. As mentioned previously, the model inherits the implied calibration
features from the BGM paradigm. Namely, for the case where interest rates and simple ratio
volatilities are deterministic, the fair prices (Cs)s∈[0,t] of the calendar spread option maturing
at t with the terminal payoff

(6.1) Ct = (Et(τi) + κ− (1 +K)Et(τi+1))
+ (t ≤ τi < τi+1)

are given by

(6.2) Cs = e−r(t−s)Es(τi+1)BS

(
Es(τi) + κ− Es(τi+1)

Es(τi+1)
,K, t, s, 0,

D(s, t, τi)√
t− s

)
, s ∈ [0, t],

where BS(x, k, t, s, ρ, v) stands for the standard Black–Scholes formula

BS(x, k, t, s, ρ, v) := xN (d+)− e−ρ(t−s)kN (d−),

d+ =
1

v
√
t− s

[
log
(x
k

)
+

(
ρ+

1

2
v2
)
(t− s)

]
,

d− = d+ − v
√
t− s

and D(s, t, τi) =
∫ t
s ‖σu(τi)‖2du. Consider the measure Qτi+1 , given by

dQτi+1 =
Eτi+1(τi+1)

E0(τi+1)
dQE .

By the change of measure technique, the process

Zt(τi) =
Et(τi) + κ− Et(τi+1)

Et(τi+1)
, t ∈ [0, τi],
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follows a martingale with respect to Qτi+1 with stochastic differential

dZt(τi) = Zt(τi)σt(τi)dW
τi+1

t

driven by the process (W
τi+1

t )t∈[0,τi] of Brownian motion with respect to Qτi+1 . Since the
simple ratio volatility (σt(τi))t∈[0,τi] is deterministic by assumption, (Zt(τi))t∈[0,τi] follows a
geometric Brownian motion with respect to Qτi+1 , which we use to derive

Cs = e−r(t−s)
E
QE

((Et(τi) + κ− (1 +K)Et(τi+1))
+|Fs)

= e−r(t−s)
E
QE

(
Eτi(τi+1)

(
Et(τi) + κ− Et(τi+1)

Et(τi+1)
−K

)+

|Fs

)
= e−r(t−s)Es(τi+1)E

Qτi+1
((Zt(τi)−K)+|Fs).

Note that the observation of the implied volatilities through (6.2) yields information on the
term structure of the simple ratio volatilities. This kind of implicit calibration is possible
if the market lists a sufficient number of calendar spread calls with appropriate parameters
(K + 1) and κ as in (6.1). Realistically, one cannot assume that there is always trading in
such specific instruments. Hence, the identification of the volatility structure from historical
data may become unavoidable.

Historical calibration. Next, we present a method for the historical model calibration based
on principal component analysis (PCA). This methodology has been applied for calibration
of fixed income market models (see [4]) and has been successfully adapted to the estimation
of futures volatilities in commodity and energy markets. In general, this technique requires
appropriate assumptions on time homogeneity. A typical hypothesis here is that the volatility
is time dependent through the time to maturity only. Under this condition, the volatility term
structure is identified by measuring the quadratic covariation of appropriate processes. Let
us adapt this technique to our case.

In our approach, the model is defined by the volatility processes (ψt)t∈[0,T ] and (σt(τi))t∈[0,τi],
i = 1, . . . , n, giving next to maturity futures prices and the simple ratio processes:

dEt(τi) = Et(τi)ψtdWt, t ∈ [τi−1, τi], i = 1, . . . , n+ 1,

dZt(τi) = Zt(τi)(αt(τi) + σt(τi)dWt), t ∈ [0, τi], i = 1, . . . , n.

We now consider the following assumption:

There exist v0, v1, . . . , vm ∈ R
d such that ψt = v0 for all t ∈ [0, T ] and

σt(τi) =
∑m

k=1 v
k1]Δ(k−1),Δk](τi − t) holds for all t ∈ [0, T ] and i = 1, . . . ,m.

(6.3)

In other words, (6.3) states that the in-front-of-maturity futures follow constant and deter-
ministic volatility and that the deterministic simple ratio volatility is piecewise constant and
time dependent through the time to maturity only. Under the assumption (6.3), the vectors
v0, v1, . . . , vm ∈ R

d are recovered from the quadratic covariation

(6.4) vkvlΔ = [Xk(i),X l(i)]τi − [Xk(i),X l(i)]τi−1 ,
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where the processes (Xk
t (i))t∈[τi−1,τi], i = 1, . . . , n + 1, k = 0, . . . ,m, are given by

X0
t (i) := lnEt(τi),(6.5)

Xk
t (i) := lnZt(τi−1+k) = ln

(
Et(τi−1+k) + κ

Et(τi+k)
− 1

)
, k = 1, . . . ,m,(6.6)

for t ∈ [τi−1, τi]. Consider historical futures prices, where within each trading period [τi−1, τi]
futures prices for m+ 1 subsequent maturity dates τi, . . . , τi+m are available. For such data,
calculate the observations

Xk
tj (i)(ω), tj ∈ ]τi−1, τi], k = 0, . . . ,m, i = 1, . . . ,m,

from (6.5), (6.6) at discrete times tj where the corresponding futures prices are available.
With this data set, approximate the quadratic covariation (6.4) by

V k,l(i) =
∑

(tj ,tj+1)∈]τi−1,τi]2

(Xk
tj+1

(i) −Xk
tj (i))(X

l
tj+1

(i)−X l
tj (i)), k, l = 0, . . . ,m.

For a representative history and sufficiently high data frequency, we can suppose that the
empirical quadratic covariation

(6.7) V k,l :=
1

Δ(n+ 1)

n+1∑
i=1

V k,l(i), k, l = 0, . . . ,m,

estimates
V k,l = vkvl, k, l = 0, . . . ,m,

the Gram’s matrix of v0, . . . , vn. The orthonormal eigenvectors of V = (V k,l)mk,l=0 give the

diagonalization V = ΦΛΦ� as follows: The columns Φ = (Φj,k)
m
j,k=0 are given by eigenvectors

φ0, . . . , φm and the corresponding eigenvalues λ0 ≥ λ1 ≥ · · · ≥ λm (which we agree to place in
descending order) are the diagonal entries of Λ. Following the philosophy of PCA, the model
based on

(6.8) v̂k := (λ
1/2
j Φj,k)

m
j=0, k = 0, . . . ,m,

in (6.3) (instead of vk) fits the historical observations since the quadratic covariation in (6.4)
is correctly reflected due to

(6.9) v̂kv̂l = V k,l for k, l = 0, . . . ,m.

An important problem is whether the observed historical data could be approximatively de-
scribed by the same type of model but with a reduced number d′ < d of stochastic factors.
In other words, the question is whether a model driven by d′ < d Brownian motions would
be sufficient to reproduce the observed empirical quadratic covariance. Note that if the user
decides to reduce the dimension to d′ < d, then a reasonable approximation of the measured
quadratic covariance is attained by dropping λd′ , . . . , λm, the smallest eigenvalues. In this
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case, (6.8) reduces to v̂k := (λ
1/2
j Φj,k)

d′
j=0 for k = 0, . . . ,m with v̂kv̂l ≈ V k,l for k, l = 0, . . . ,m

instead of (6.9). Clearly, the dimension reduction is a trade-off between the accuracy of the
covariance approximation and the dimension of underlying Brownian motion. For instance, a
rule of thumb could be to reduce the dimension to d′ if the remaining factors describe 95% of
the covariance:

d′−1∑
j=0

λj ≥ 0.95

m∑
j=0

λj .

7. Empirical results. Let us return to the soybean trading from section 4. There we
estimated the historical contango limit κ = 26, which we will use in the following calibration.
With this parameter, the realization of the logarithmic simple ratios can be computed and
their quadratic covariations can be estimated as explained above.

For the entire soybean data set, from 2000-10-02 to 2007-02-23, the Gram matrix V from
(6.7) is obtained as

(7.1) V ≈

⎡⎢⎢⎢⎢⎢⎢⎣

0.06 −0.01 0.00 0.02 0.04 0.04
−0.01 1.45 −0.09 0.04 0.05 −0.18
0.00 −0.09 0.98 −0.16 0.07 −0.04
0.02 0.04 −0.16 0.96 −0.40 0.10
0.04 0.05 0.07 −0.40 2.37 −1.79
0.04 −0.18 −0.04 0.10 −1.79 5.86

⎤⎥⎥⎥⎥⎥⎥⎦ .

For this symmetric matrix one obtains the following eigenvalue decomposition,

(7.2) Φ ≈

⎡⎢⎢⎢⎢⎢⎢⎣

0.00 0.02 0.00 −0.02 −0.05 1.00
−0.04 −0.18 0.96 0.21 −0.01 0.01
−0.01 0.15 −0.16 0.84 −0.49 −0.01
0.04 −0.39 0.00 −0.41 −0.82 −0.04
−0.39 0.81 0.19 −0.28 −0.27 −0.04
0.92 0.36 0.12 −0.08 −0.08 −0.02

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where the orthonormal eigenvectors are displayed as the columns and the corresponding eigen-
values are given by

(7.3) λ0 ≈ 6.63, λ1 ≈ 1.78, λ2 ≈ 1.45, λ3 ≈ 1.01, λ4 ≈ 0.74, λ5 ≈ 0.05.

As shown in the previous section, the volatility vectors are calculated by (6.8). Based on (7.2)
and (7.3) one obtains the following volatility vectors for our soybean market:

(7.4)

v0 = [ 0.01 0.03 0.00 −0.02 −0.04 0.23 ]�,
v1 = [ −0.09 −0.24 1.16 0.21 −0.01 0.00 ]�,
v2 = [ −0.03 0.20 −0.19 0.84 −0.43 0.00 ]�,
v3 = [ 0.11 −0.53 0.01 −0.41 −0.71 −0.01 ]�,
v4 = [ −1.00 1.08 0.23 −0.28 −0.23 −0.01 ]�,
v5 = [ 2.37 0.48 0.14 −0.08 −0.07 0.00 ]�.
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8. Option pricing. This section is devoted to the pricing and hedging of European options
written on storable underlyings. First, we show how to compute a hedging strategy, based on a
partial differential equation. However, as this equation is typically high dimensional, a Monte
Carlo simulation could be the appropriate method to price the options in our framework. As
the Monte Carlo simulation is straightforward, we do not discuss this method in detail but
apply it to examine the risk neutral distribution of the spread option payoff. We find out that
this distribution is close to lognormal, which suggests that calendar spread option prices could
be approximated by a Black–Scholes-type formula. Here, we build on the model we calibrated
in the previous sections. Hence we assume the settings of Lemma 5.1, i.e.,

(8.1)

the volatilities (ψu)u∈[0,T ] and

(σu(τi))u∈[0,T ] for all i = 1, . . . , n+ 1

are bounded and deterministic

⎫⎪⎬⎪⎭ .

Consider k + 1 futures prices

(8.2) (Eu(τi), Eu(τi+1), . . . , Eu(τi+k)) , u ∈ [τi−1, τi], i+ k ≤ n+ 1,

listed within the interval [τi−1, τi]. By construction, all of these processes follow

dEu(τi+j) = Eu(τi+j)Σu(τi+j)dWu, u ∈ [τi−1, τi], j = 0, . . . , k,

where, according to (5.21), the volatility is given by a function

Σu(τi+j) = s(j)(u,Eu(τi), . . . , Eu(τi+j)), u ∈ [τi−1, τi],

which can be calculated recursively:

(i) if j = 0, then s(0)(u,Eu(τi)) = ψu;
(ii) if j > 0, then

(8.3)
s(j)(u, (Eu(τi+l))

j
l=0) = s(Eu(τi+j), Eu(τi+j−1), s

(j−1)(u, (Eu(τi+l))
j−1
l=0 ), σu(τi+j−1)),

where s(·) is the function introduced in (5.21).

That is, due to Proposition 5.2, the vector of processes (8.2) follows a unique strong solution
to

dEu(τi+j) = Eu(τi+j)s
(j)(u,Eu(τi), . . . , Eu(τi+j))dWu, u ∈ [τi−1, τi], j = 0, . . . , k;

hence (8.2) is a Markov process.

Let us now consider the valuation of derivatives, written on commodity futures prices.
Given the European option with payoff f((Eτ (τi+j))

k
j=0) at maturity τ ∈ [τi−1, τi], its expected

payoff conditioned on time t ∈ [τi−1, τ ] is given by

E(f((Eτ (τi+j))
k
j=0) | Ft) =: g((Et(τi+j))

k
j=0)
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with an appropriate function g(·) whose existence follows from the Markov property. Fur-
thermore, Itô’s formula shows that this function can be determined as g(·) = φ(t, ·) from the
solution to the partial differential equation

∂

∂u
φ(u, e0, . . . , ek)(8.4)

= −1

2

k∑
j,l=0

∂2

∂ej∂el
φ(u, e0, . . . , ek)Eu(τi+j)Eu(τi+l)s

(j)(u, e0, . . . , ej)s
(l)(u, e0, . . . , el)

for (u, e0, . . . , ek) ∈ ]t, τ [× ]0,∞[k+1 subject to the boundary condition

φ(τ, e0, . . . , ek) = f(e0, . . . , ek) for (e0, . . . , ek) ∈ ]0,∞[k+1.

Finally, from the stochastic integral representation one obtains

f((Eτ (τi+j))
k
j=0)− g((Et(τi+j))

k
j=0) =

k∑
j=0

∫ τ

t

∂

∂ej
φ(u,Eu(τi), . . . , Eu(τi+k))dEu(τi+j),

and the hedging strategy for the European contingent claim becomes evident. Holding at any
time u ∈ [t, τ ] the position

hu(τi+j) =
∂

∂ej
φ(u,Eu(τi), . . . , Eu(τi+k))pu(τ)

in the futures contract with maturity τi+j, the European option payoff can be perfectly repli-
cated starting with the initial endowment

(8.5) pt(τ)g((Et(τi+j))
k
j=0).

Namely, by transferring the initial endowment and all cash flows from futures settlements to τ
by a zero bond maturing at τ , we determine the wealth of this strategy as

k∑
j=0

∫ τ

t

1

pu(τ)
hu(τi+j)dEu(τi+j) +

pt(τ)g((Et(τi+j))
k
j=0)

pt(τ)
= f((Eτ (τi+j))

k
j=0),

which matches the contingent claim of our option. In the case that the replication is required
from a date t earlier than τi−1, the same arguments need to be repeated for the previous
intervals.

Note that our model is inherently not complete. For instance, on the very last interval
[τn, τn+1] only one future is traded, but the number of uncertainty sources is still d > 1.
However, the above considerations show that under the assumption (8.1) a European option,
written on futures, can be replicated by appropriate positions in futures traded prior to the
expiry date of the option and in zero bonds maturing at this date.

Since the dimension of the partial differential equation (8.4) could be high and there is
no evident price approximations even for the simplest plain-vanilla options, we believe that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STORAGE COSTS IN COMMODITY OPTION PRICING 749

0 50 100 150

55
0

60
0

65
0

70
0

75
0

80
0

time in days

pr
ic

e 1st maturity
2d maturity
3d maturity
4th maturity
5th maturity
6th maturity

Figure 4. A simulation of futures prices. Vertical lines separate two month periods.

Monte Carlo simulation could be an appropriate way to price derivative instruments within
our model. To discuss an application, we turn to the valuation of a calendar spread option.
Here, we utilize the parameters obtained from the soybean example presented above. Note
that, as previously, futures prices are expressed in US cents per bushel, and Δ stands for the
two month duration between expiry dates, τi = iΔ, i = 1, . . . , n+1. The payoff of a calendar
spread option depends on the price difference of commodities delivered at different times. For
instance, it may provide the holder with the payment (Et(τ) − Et(τ

′) − K)+ at maturity t,
where τ and τ ′ are future delivery dates satisfying t < τ < τ ′. Based on a Monte Carlo
simulation, we examine the distribution of the difference Et(τ

′) − Et(τ) for the parameters
t = τ = 4Δ, τ ′ = 6Δ. Having supposed that the initial futures curve is flat (E0(τi) = 800)6i=1,
5000 realizations are generated. Figure 4 depicts a typical path resulting from a single run of
the Monte Carlo method. The estimated density Et(τ) − Et(τ

′) is shown in Figure 5. Note
the clear similarity to the shifted lognormal distribution. Next, we give a detailed discussion
of this observation. First, the storage costs for two periods (four months) is recognized as the
correct shift parameter. Indeed, Et(τ)−Et(τ

′) > −2κ holds by construction, so an appropriate
choice of the shift parameter corresponds to the expiry dates difference τ ′ − τ . To compare
now the distribution of ln(Et(τ)−Et(τ

′)+2κ) to the appropriately scaled normal distribution,
we plot in Figure 6 the estimated density of

(8.6) ln
(
Et(τ)− Et(τ

′) + 2κ
)

in comparison to the normal density, whose first two moments are chosen to match those
estimated for (8.6). That is, a close approximation in distribution

(8.7) Et(τ)− Et(τ
′)

d≈ exp(X)− 2κ, where X is Gaussian,
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Figure 5. The density of Et(τ )− Et(τ
′) exhibits a similarity to the lognormal density.
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Figure 6. The density of (8.6) (black) in comparison to the normal distribution (red).

seems to be possible. This can be used to derive an approximation for the price of spread
options, where by assuming the equality in (8.7) a Black–Scholes-type formula is obtained.
This observation is according to the approximative pricing schemes for spread and basket
options extensively studied in [1], [2], [4] and in the literature cited therein.

9. Conclusion. In this work, we have addressed the role of storage costs in commodity
price modeling. By appropriate interpretation of the no-arbitrage principle, we formulate a
minimal set of model assumptions which exclude arbitrage opportunities for futures trading
and simultaneous management of a stylized storage facility. In the presented commodity model
class, the storage cost plays the role of a constant parameter, which bounds the steepness of
the futures curve in any contango situation. This bound, well known as the contango limit
in commodity trading, forms an intrinsic ingredient of the proposed martingale-based futures
price dynamics. Following the expertise from the interest rate theory, we demonstrate how
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to construct and to calibrate commodity models which correspond to our assumptions. An
empirical study of soybean futures trading illustrates this concept. Moreover, we discuss
the valuation of calendar spread options. Here, numerical experiments raise the hope that
an appropriately shifted lognormal distribution may give an excellent approximation for the
payoff distributions of calendar spreads. This issue could be important for efficient pricing
and hedging of calendar spread options.
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Abstract. This paper presents an application of the recently developed method for simultaneous dimension
reduction and metastability analysis of high-dimensional time series in the context of computational
finance. Further extensions are included to combine state-specific principal component analysis
(PCA) and state-specific regressive trend models to handle the high-dimensional, nonstationary
data. The identification of market phases allows one to control the involved phase-specific risk for
futures portfolios. The numerical optimization strategy for futures portfolios based on Tikhonov-
type regularization is presented. The application of proposed strategies to online detection of the
market phases is exemplified first on the simulated data and then on historical futures prices for oil
and wheat from 2005–2008. Numerical tests demonstrate the comparison of the presented methods
with existing approaches.
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1. Introduction. In today’s financial industry, computational finance is used for a wide
field of applications. Throughout this paper, we will concentrate on the portfolio optimization
problem, where, for return maximization and risk minimization problems, the evolution of
security returns is estimated with a variety of different methods, in order to find an allocation
that optimizes a suitable performance criterion, while limiting the risk [27, 31]. For practical
reasons, computational methods have to address the following points:

1. Time series analysis. Market dynamics are most likely not reflected by a stationary
process, but involve (hidden) market phases, such as economic cycles, harvest cycles
(for grain, fruits, and other kinds of plants), and yearly holidays, and many more
aspects influence the markets. This poses fundamental problems for estimation: To
obtain sensible estimates for mean returns even in stationary linear models, hundreds of
years of data would be needed. In shorter intervals, estimation risk becomes significant.

∗Received by the editors June 15, 2009; accepted for publication (in revised form) July 3, 2010; published
electronically October 21, 2010. This work was supported by the DFG reseach center Matheon “Mathematics for
key technologies” in Berlin.

http://www.siam.org/journals/sifin/1/75402.html
†Corresponding author. Institute of Computational Science, University of Lugano, Via Giuseppe Buffi 13, CH-

6904 Lugano, Switzerland (lars.putzig@usi.ch).
‡Institute of Mathematics, Humboldt-University Berlin, Rudower Chaussee 25, 12489 Berlin, Germany (becherer@

mathematik.hu-berlin.de).
§Institute of Computational Science, University of Lugano, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland

(illia.horenko@usi.ch).

752



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FUTURES PORTFOLIO AND MARKET PHASE DETECTION 753

2. Sensitivity analysis. Approaches should be robust w.r.t. model parameter uncertainty.
This is a challenge for identification when estimating time-varying parameters.

3. High dimensionality. Financial data are high dimensional, as thousands of securities
are available from different asset classes (stocks, futures, etc.), and data are often avail-
able at high frequencies with nonequidistant time stepping (due to weekends, market
closures, holidays, etc.); e.g., the Wilshire 5000 consists of 5000 stocks. Hence, com-
putational ability to handle high numbers of assets (stocks, futures, etc.) is relevant.

Aspects 2 and 3 cause a high uncertainty of estimates, whereas nonstationarity as it relates
to aspect 1 (in observable dimensions, at least) means that estimates should involve time-
dependent functions, which could not be estimated in a nontrivial way, which is a well-known
problem. In 1989 Hamilton [13] suggested a numerical method for identification of piecewise
linear functions, called hidden market phases, assuming stationarity and Gaussianity of re-
turns. While Gaussianity is still a commonly used assumption by practitioners, many modern
models soften this by using, e.g., heavy tails [29]. Later this was extended to multidimensional
data using linear vector autoregressive (VAR) models [23]. Still, standard phase-identification
techniques based on the filtering approach (like wavelet-based spectral methods; see [1]) have
in general infeasible numerical complexity in high dimensions; other methods (e.g., Kalman
filter [21], VAR [23], (G)ARCH [6, 2]) require stronger assumptions about the underlying
dynamics or the methods (as in [3]) are based on perfect observability of the Markov process,
which cannot be taken for granted in reality. As demonstrated by the actual financial crises,
nonrobust reliance on simplified assumptions and ignorance of model risk can (among other
factors) lead to misperception of risk and possibly to a total loss of the investment. Therefore,
there is a need for a wider class of methods that are computationally capable of dealing with
realistic amounts of data, monitoring the evolution of risks, and optimizing the risk-return
profile of investments. While recent publications concentrate on robustness by using worst-
case scenarios (see, e.g., [10, 7, 11]) or penalty functions (see, e.g., [35]), or simply assuming
vanishing mean returns, this paper aims at an estimation of nonstationary trends and volatil-
ities directly from prices of futures contracts. Futures markets constitute broad and liquid
markets for several asset classes [5]. Leverage can be quite large for futures if the amplitude
of futures price variations is measured relative to the size of the margin requirement. But
this also induces a high risk. The minimization of this risk is one of the central points of this
paper. The recently developed framework for numerical treatment of aspect 1 of the above
list of problems is presented and used for clustering and analysis of nonstationary financial
data [16, 17, 14, 15]. An extension of the framework utilizing linear regression is introduced,
allowing for simultaneous market phase identification, dimension reduction, and estimation
of the phase-specific trends in the financial context. The ability of the extended framework
to identify change points online is demonstrated, both on simulated and real market data.
Finally, the numerical optimization strategy for phase-specific selection of futures portfolios is
presented and exemplified on a real 8-dimensional data set of futures data for wheat and oil.

This paper is organized as follows. In section 2, the FEM-based clustering framework is
introduced and its extension towards the financial data context is presented. In section 3,
we briefly consider the definition of returns and adapt this to futures markets, as the naive
definition does not fit in this context. The numerical futures portfolio optimization approach
is presented. Section 4 demonstrates the application of the proposed numerical framework
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to simulated and real data and offers a comparison to standard approaches (like the classical
methods proposed by Markowitz [27], the flexible multivariate GARCH(1,1) model [24], and
a simple 1

n -portfolio). In the end, a practical side constraint is considered, the notion of
neutrality.

2. Finding market phases. In the following, we will briefly describe the clustering frame-
work first introduced in [16, 17, 14, 15]. Special emphasis will be placed on the numerical
aspects and the interpretation of the framework in the context of high-dimensional financial
applications.

2.1. The clustering problem. Let St : [0, T ] → [0,∞)d be the observed d-dimensional
series of asset prices. We look for K models characterized by K distinct sets of a priori
unknown model parameters θ1, . . . , θK ∈ Ω, where Ω is the parameter space. Let g(St, θi) :
R
d×Ω→ [0,∞) be some distance function of the observation St and the set of parameters θi.

For the work done throughout this paper, the θi correspond to the changing market phases.
Then the vector Γt = (γ1(t), . . . , γK(t)), called the affiliation vector, gives the probability of
being in the ith market phase at time t. For a given observation St we want to solve the
clustering problem

(2.1)

K∑
i=1

γi(t)g(St, θi)→ min
Γt,Θ

for Θ = (θ1, . . . , θK). Moreover, as the γi(t) shall be probabilities, they are subject to the
constraint

K∑
i=1

γi(t) = 1 ∀t ∈ [0, T ],(2.2)

γi(t) ≥ 0 ∀t ∈ [0, T ], i = 1, . . . ,K.(2.3)

As we do not want to solve this problem for a specific time t only, but for the whole time
interval [0, T ], we introduce the averaged clustering functional L:

(2.4) L(Θ,Γ) =

∫ T

0

K∑
i=1

γi(t)g(St, θi)→ min
Γ,Θ

,

subject to the constraints (2.2)–(2.3).1 As was demonstrated in [16, 17, 14, 15] there are
practical difficulties in solving problem (2.4) numerically.

1. The problem is infinite dimensional since γi(t) is an element of some (not yet specified)
function space.

1If the Θi were known or fixed to some value, the minimization problem (2.4) would be solved analytically
w.r.t. Γ by

γi(t) =

{

1, i = argmin g(St,Θi),
0 else.
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2. The problem is ill-posed in the definition of Hadamard [12], as neither the uniqueness of
the solution nor its continuity w.r.t. the time series data is fulfilled in general. Because
of the high number of parameters, additional regularity assumptions will be needed to
identify the parameters, and to avoid problems like overfitting, underspecifying, and
unstable estimates.

3. As long as g is nonconvex, only locally optimal solutions can be found.
Problems 1 and 2 are addressed within sections 2.2 and 2.3; how to evade problem 3 is shown
in sections 2.4 and 2.5.

2.2. Persistent market phases. As shown in [16, 17, 14, 15], one of the possibilities for
overcoming the above-mentioned problem is to impose some additional assumptions on Γ. As
we look for hidden market phases, we do assume the process switching between phases is slow:
When the market switches to a new state, it will stay there for some time. This suggests a
new constraint on Γ:

(2.5)

∫ T

0
(∂tγi(t))

2 dt ≤ γεi , i = 1, . . . ,K, γεi ∈ (0,∞).

While (2.5) should reduce the transitions between different states, it is hard to handle this
inside the optimization. Instead, we thus expand our problem to the regularized form as
suggested by Tikhonov for linear least-squares problems [32]:

(2.6) Lε(Θ,Γ) = L(Θ,Γ) + ε2
K∑
i=1

∫ T

0
(∂tγi(t))

2 dt.

As was shown in [16], the parameter ε2 can be used to control the persistence of the cluster
states, by introducing a cost for short-term switching into another market phase.

2.3. Finite elements and discretization. Discrete time is, from a data point of view, not
really an additional assumption, as market data, even if given intraday, is ticked data; thus it
is discrete by nature. Time continuity of the data is a modeling idealization. This limits the
function space from which Γ is chosen, addressing problems 1 and 2. Thus let T be a finite
set of finite intervals on [0, T ]:

(2.7) T = {0 = t1 < t2 < · · · < tN = T}.

Then we can choose a finite element basis {v1(t), . . . , vN (t)} with

v1(t) �= 0 for t ∈ (t1, t2), v1(t) = 0 for t /∈ (t1, t2),(2.8)

vk(t) �= 0 for t ∈ (tk−1, tk+1), vk(t) = 0 for t /∈ (tk−1, tk+1), k = 2, . . . , N − 1,(2.9)

vN (t) �= 0 for t ∈ (tN−1, tN ), vN (t) = 0 for t /∈ (tN−1, tN ).(2.10)

This allows us to write γi as

(2.11) γi =
N∑
k=1

γ̂ki vk + δNi ,
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where δN = max{δNi , i = 1, . . . ,K} is the discretization error. Now (2.6) could be written as

(2.12) Lε(Θ,Γ) =

K∑
i=1

N∑
k=1

γ̂ki

∫ T

0
vk(t)g(St, θi) dt+ ε2

K∑
i=1

∫ T

0

(
N∑
k=1

γ̂ki ∂tvk(t)

)2

dt+O(δN ).

Using the local support of vk, we can define

(2.13) α(θi) =

(∫ t2

t1

v1(t)g(St, θi) dt, . . . ,

∫ tN

tN−1

vN (t)g(St, θi) dt

)
and

(2.14) H =

⎛⎜⎜⎝
∫ t2
t1
(∂tv1)

2(t) dt
∫ t2
t1
∂tv1(t)∂tv2(t) dt 0 . . .∫ t2

t1
∂tv1(t)∂tv2(t) dt

∫ t3
t1
(∂tv2)

2(t) dt
∫ t3
t2
∂tv2(t)∂tv3(t) dt . . .

0
. . .

. . .
. . .

⎞⎟⎟⎠
to create the discrete clustering problem (see, for example, [16])

(2.15) L̃ε(Θ,Γ) =
K∑
i=1

(
α(θi)

T γ̂i + ε2γ̂Ti Hγ̂i
)→ min

Γ,Θ
.

Please note that up to now all assumptions made concern the smoothness of the clustering
affiliation γi(t) (see condition (2.5)) only and no probabilistic or statistical assumptions on
the data xt are made. This abdication of including a priori assumptions on probabilistic
properties of the hidden and observable processes is a major feature of the presented method.

2.4. The distance function. When working with financial data, one might end up with
thousands of assets; e.g., the Wilshire 5000 index consists of 5000 stocks. W.r.t. this high
dimensionality, one has to think about methods able to handle these data. The popular
idea is to use the principal component analysis (PCA; see [33, 20]), where only a linear low-
dimensional manifold of the data space is used to represent the original. The drawback here
is the linearity of the manifold, as a globally optimal linear subspace might not exist. Thus
let Ti ∈ R

d×n for i = 1, . . . ,K, let n < d with T T
i Ti = Id be the projection matrices, and let

xt ∈ R
d be some time series deduced from St. Then we can define the distance function by

(2.16) g(xt, θi) = ‖(xt − μi)− TiT T
i (xt − μi)‖22, θi = (μi, Ti).

This distance function measures the reduction error resulting from the projection of the
d-dimensional data on the n-dimensional linear manifold i. The xt could be the returns
and Ti could be interpreted as the direction of maximal volatility of x, while μi describes
the mean behavior [18]. We can now try to get better results by using the time-dependent
function μi(t) instead of a constant one, e.g., approximating μi(t) with some regression model
as in [17]. Therefore let ϕi(t) be some basis of the functional space (e.g., monomials); then
the distance function changes to

(2.17) g(xt, θi) =

∥∥∥∥∥
(
xt−

ω∑
j=1

μjiϕj(t)

)
−TiT T

i

(
xt−

ω∑
j=1

μjiϕj(t)

)∥∥∥∥∥
2

2

, θi = ((μ1i , . . . , μ
k
i ), Ti),
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where ω is the order of the trend. In fact, we can see
∑ω

j=1 μ
j
iϕj(t) as the smoothed trend, so

this analysis can be interpreted as a detrending. Additionally we can estimate the covariance
matrix of a clustered set (xt) of the time series for some i by

(2.18) ΣT̄
i =

1∑
t≤T̄ γi(t)

∑
t≤T̄

γi(t)

(
xt −

ω∑
j=1

μjiϕj(t)

)(
xt −

ω∑
j=1

μjiϕj(t)

)T

.

From a practical viewpoint, one should include an additional weighting further connecting the
assets to their liquidity. However, the influence of liquidity on risk is not part of our analysis.
Please note that the combination of PCA, trend estimation, and clustering is not just a direct
chaining of both algorithms. The estimation of trends and covariance matrices is embedded in
the minimization problem (2.15).

2.5. Calculating the parameters. Given the analyzed time series xt and a cluster affilia-

tion Γ, we can now compute the cluster parameters μji and Ti. Therefore we have to solve for
each i = 1, . . . ,K the problem

α(θi)
T γ̂i + ε2γ̂Ti Hγ̂i → min

θi
(2.19)

⇔ α(θi)
T γ̂i → min

θi
.(2.20)

Using the definition of α and g we get

(2.21)

N∑
k=1

γki

∫ tk+1

tk−1

vk(t)

∥∥∥∥∥
(
xt −

ω∑
j=1

μjiϕj(t)

)
− TiT T

i

(
xt −

ω∑
j=1

μjiϕj(t)

)∥∥∥∥∥
2

2

dt→ min
μi,Ti

,

with t0 = t1 and tN+1 = tN . First-order conditions of optimality imply that partial derivatives
w.r.t. μji and Ti vanish; hence for μ we obtain that

0 =

N∑
k=1

γki

∫ tk+1

tk−1

vk(t)(TiT
T
i ϕl(t)− ϕl(t))

T (xt − TiT T
i xt) dt

−
ω∑

j=1

μji

N∑
k=1

γki

∫ tk+1

tk−1

vk(t)(TiT
T
i ϕl(t)− ϕl(t))

T (ϕj(t)− TiT T
i ϕj(t)) dt(2.22)

holds, and an analogous equation is obtained for Ti. The latter yields that Ti consists of
the eigenvectors corresponding to the n largest eigenvalues of the empirical covariance matrix
of the values associated with state i. Now the problem (2.15) could be solved by subspace
iteration; thus, starting with some arbitrary Γ0, we solve iteratively

(2.23) Θk = argmin
Θ
L̃ε(Θ,Γk)

and

(2.24) Γk+1 = argmin
Γ
L̃ε(Θk,Γ)
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for k = 0, 1, . . . . Although this algorithm is not guaranteed to converge to the globally
optimum, at least a local minimum will be found. By performing this algorithm several times
with different starting values Γ0, we can approximate the global optimal parameters. This
stepwise optimization allows us to exploit the structure of the problem. Separating these
two steps allows us to split the overall optimization into two numerically conceivable steps
performed subsequently until the overall optimization threshold is reached. These two steps
are (i) a problem that is (in the PCA case) analytically solvable (2.23) and results in the
efficient numerical solution of the eigenvalue problem; and (ii) a convex and sparse quadratic
programming problem ((2.24) with (2.2)–(2.3)) [16]. Because of that, the proposed numerical
scheme is numerically cheaper and more robust for high-dimensional applications than the
standard “out of the box” optimization methods applied to the same problem.

3. Adapting portfolio optimization theory to futures. The usual definition of returns
Rt =

St+Δt−St

St
cannot be naively applied to futures data, as the price for a contract is not St.

Instead, no price is charged for entering a futures contract, but an initial amount is paid into
the margin account that will hold the accrued gains and losses. So, given an initial margin of
I ∈ R

d and a portfolio π in proportion of wealth, we define returns for futures over the period
t to t+Δt as

(3.1) Rt = sgn(πt)
St+Δt − St

I
(componentwise).

In contrast to portfolio optimization approaches for the stock market, it is an important
feature of futures that long and short positions can be held equally well. But since the initial
margin is dependent only on the absolute contract size, our portfolio constraints will change,
and the absolute weights of the components should sum up to one:

(3.2)

d∑
i=1

|πi(t)| = 1 ∀t ∈ [0, T ].

Given suitable estimates Σ, μ for covariances and means of returns, the portfolio problem is
posed as

(3.3) πTΣπ → min
π
, with ‖π‖1 = 1, πTμ ≥ C,

for a chosen target mean return C. Since this is not yet (as in classical mean variance
optimization) a quadratic minimization problem with linear (or quadratic) constraints, we
use a splitting into long positions and short positions, similar to the idea explained in [9] in
the context of image processing, to get an extended parameter set

(3.4) π̂ = (πlong, πshort)T , Σ̂ =

(
Σ −Σ
−Σ Σ

)
, μ̂ = (μ,−μ)T ,

and we apply a penalty term. We define the extended problem by

(3.5) π̂T
(
Σ̂ + λ

(
0 Id

Id 0

))
π̂ → min

π̂∈R2d
, with π̂T μ̂ ≥ C,

2d∑
i=1

π̂i = 1, π̂i ≥ 0 ∀i
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with the regularization parameter λ > 0. Please note that for sufficiently large λ the part

(3.6) λπ̂T
(

0 Id

Id 0

)
π̂ = 2λ(πlong)Tπshort

and the condition π̂i ≥ 0 ∀i guarantee that for each asset the position is either long or short,
but not both at the same time. Simultaneously, the remainder of the extended problem is just

(3.7) π̂T Σ̂π̂ = (πlong − πshort)TΣπlong − (πlong − πshort)TΣπshort = πΣπ

and

(3.8) μ̂T π̂ = μTπlong − μTπshort = μTπ.

4. Numerical examples. Throughout the first part of this section, we will make use of a
simulated time series. These time series have a length of 1000 with a change point at time
tC = 500. All of the data points are distributed independently according to N (0,Σ), where

(4.1) Σ(t) = αT (t)

[
0.85 0.4
0.4 0.2

]
α(t), α(t) =

⎧⎨⎩
I2, t ≤ 500,[
cos(ρ) − sin(ρ)
sin(ρ) cos(ρ)

]
, t > 500.

As one can see, after the change point at tC = 500, the covariance matrix is just rotated by
some rotation angle ρ.

4.1. Covariance for small samples. As known from the literature, for small sample sizes,
the maximum likelihood estimator 1

k

∑tk
t=t1

xtx
T
t is not robust enough; see, e.g., [30, 4]. This

will lead to numerical biassing when it comes to portfolio optimization [28, 25, 26]. We will
use the Tyler M-estimator (see, e.g., [34, 8]) instead, which is defined by

(4.2) Σ̂k =
d

k

tk∑
t=t1

xtx
T
t

xTt (Σ̂
k)−1xt

.

Although the solution Σ̂k to (4.2) is unique only up to a multiplicative constant, this is not
a problem for the clustering method (2.15), as neither the result of the minimization nor
the eigenvectors (for PCA) is dependent on this constant. For Figure 1, the first 100 points
of 100 time series were used (using the distribution stated above) and for every time step
t ∈ {2, . . . , 100} the maximum likelihood estimator and the Tyler M-estimator were calculated.
Then the largest singular value of the difference (Σ̂−Σ) was used as a distance measure, and
the average and standard deviation were calculated and plotted. As one can see from this
example, the standard deviation of the Tyler M-estimator is much smaller than the one for
the maximum likelihood estimator (although both converge to the same limit).

4.2. Number of clusters. In realistic applications, the optimal number of metastable
clusters is usually a priori unknown. Nevertheless, one can find out the number of statistically
distinguishable clusters (see [16]). Therefore we start the clustering process with a rather
high number of clusters, estimate the cluster parameters, and get the error bounds for these
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Figure 1. Robustness of the maximum likelihood estimator and the Tyler M-estimator for short normally
distributed time series. Parameters as in (4.1).

parameters by bootstrapping the elements of the cluster. If the parameter confidence sets of
different clusters overlap, the statistical difference between those clusters is not high enough;
thus the number of clusters should be reduced and the process should be started over again [22].
Using this technique for different ε leads to a picture like Figure 2. The decrease in the number
of clusters is due to the fact that for the increasing ε the algorithm favors metastable clusters
and merges the rapidly mixing ones together. Thus, while increasing ε, similar clusters will get
merged into one. The plateau results from the high difference between the last two remaining
clusters. For a real data set we will observe similar behavior when we look for the number of
clusters.

4.3. Detecting a change point. Another important problem is to find the actual position
of the change points. The number of detected change points depends on ε as one can see in
Figure 3. However, a high number of change points usually indicates some rapidly mixing
clusters that could be united to a metastable cluster (e.g., using half the data in Figure 3).
Decreasing the number of clusters and increasing ε might help to solve this problem. On
the other hand, a high value for ε will lead to a longer delay between occurrence and online
detection of the change point; this can be seen in Figure 4. The same problem appears when
the rotation angle becomes too small; see Figure 5.
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Figure 2. Number of distinguishable clusters depending on ε2. Parameters as in (4.1); ρ = 90◦.

4.4. Looking at real data. For the calculations in this paper, we used the futures prices
from 2005–2008 for wheat and oil futures (four times to maturity each, quarterly for wheat
and monthly for oil, daily closings) from http://www.kcbt.com/historical data.asp (Kansas
City Board of Trade) and http://tonto.eia.doe.gov/dnav/pet/pet pri fut s1 d.htm (U.S. De-
partment of Energy). For both commodities the four futures with the lowest time to maturity
were taken into account. Applying the introduced clustering algorithm to these data gives the
result shown in Figure 6. Implied by this picture, an optimal number of metastable clusters
to use should be two. Then the cluster allocation for the whole time series (see Figure 7)
produces a kind of seasonal cycle that could be due to a harvest or heating period. The
phases differ in the following points:

• The phase shown in Figure 7, and thus phase 1, is characterized by lesser overall trend
in the price than phase 2.

• The general direction of the maximum volatility (described by the projection opera-
tor Ti from (2.15)) in both phases is similar; the first eigenvectors of the covariance
matrices are nearly equal, and the second eigenvectors span an angle of approximately
5 degrees.
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Figure 3. Number of detected change points depending on ε2 for half of the (artificial) data and the complete
data set. Parameters as in (4.1); K = 2, ρ = 90◦.

The effective investment for each commodity (as the sum of the portfolio weights over the
different maturities) for the phase-dependent portfolio can be seen in Figure 8. The variance
of the positions can be considered as a result of the parameter estimation error. Additionally,
Figure 9 shows box-whisker plots of the relative notionals, defined by

(4.3)
πi(t)∑

i∈Iu |πi(t)|
,

where Iu is the set of indices belonging to one commodity. The online version of the cluster
affiliations is presented; thus the affiliations at time t are calculated “on the fly” using only
the information ∀s, s < t during the portfolio optimization. The high variance in the result-
ing portfolio weights (resp., the relative notionals) is a direct result of nonrobust parameter
estimates. For practical purposes, further steps in creating robust estimates or optimizing
robustly w.r.t. uncertain estimates should be considered in further research.

4.5. Comparing portfolios. When looking at the interest rate for U.S. treasury bonds,
an investment in January 2005 would have given a yearly interest rate of approximately 3.4%.
Thus after four years we have a gain of 14.31% (that is a daily rate of 1.415 bps). We use this
rate as a target rate C (as in (3.5)). As stated earlier, we compare our algorithm with the
Markowitz approach, the FlexM algorithm from [24], and a simple 1

n -portfolio, where half the
assets are bought and the other half sold. For the cluster-based approach, the basis ϕ with
polynomials up to order two was taken. The clustering was done w.r.t. μ and T . The FlexM
algorithm provided by the authors of [24] was used utilizing the parameter demean; thus the
estimation and subtraction of the mean from the data prior to the portfolio optimization is
done by the FlexM function. The 1

n -portfolio was built by buying for 1
8 of the wealth the two
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Figure 4. Relative error in detection time of the single change point depending on ε2. Parameters as in
(4.1); K = 2, ρ = 90◦.

long maturity futures of each commodity and selling the remaining two for each commodity
equally. Additionally, the Markowitz approach was used by estimating mean and covariance
from the whole time series up to the actual point. All algorithms were supplied only with
information available at time t, so no future knowledge is included. In each case, the portfolio
was recalculated and/or rebalanced every 10 business days starting with day 10 of the time
series. As one can see in Figure 10, all algorithms fall short of the target 14.31% mean return.
While the 1

n -portfolio is doing better (in terms of return rate) than the other algorithms, this
comes with a higher risk, as one can see in Figure 11. We define the “intrinsic risk estimate”
for portfolio returns from t to t+Δt by

(4.4) Rt =
√
πTt Cov(Rt)πt,

where the empirical returns Rt are given by (3.1), and the Cov(Rt) is an estimate for the
covariance matrix of the data (based upon data only up to t), which is given by

• a linear combination of the empirical cluster covariance matrices given by (2.18) for
the cluster-based algorithm, and thus



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

764 L. PUTZIG, D. BECHERER, AND I. HORENKO

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

ρ in Degree

R
el

at
iv

e 
er

ro
r 

in
 d

et
ec

tio
n 

of
 c

ha
ng

e 
po

in
t

Detection time of change point depending on ρ

Figure 5. Relative error in detection time of the single change point depending on ρ. Parameters as in
(4.1); K = 2, ε2 = 1.

(4.5) Cov(Rt) =

K∑
i=1

γi(t)Σ
t
i;

• the GARCH(1,1) estimate for the FlexM algorithm (see [24]);
• the standard sample covariance matrix for the Markowitz approach and the 1

n -portfolio.
Although those intrinsic risks shown in Figure 11 are estimates of the instantaneous variance
of the portfolio returns, they are not directly comparable, as the measures differ from each
other and the underlying assumptions are different, so in Figure 12 risk is meant in the sense
of the standard deviation of the daily returns of the portfolios from the empirical mean; the
cluster-based approach still produces the strategy with the lowest risk. And even if we use
the deviation from the target mean return C

(4.6)

√√√√ 1

k − 1

tk−1∑
t=t1

(πTt Rt − C)2

as a risk measure (see the results in Figure 13), the cluster-based approach reaches the best
result. The similarity of this risk measure and the standard deviation is easy to see: If the vari-
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Figure 6. Number of distinguishable clusters depending on ε2. Data set: Prices of oil and wheat futures
from 2005–2008.

ance minimal portfolio does not satisfy the condition π̂Tminμ̂ ≥ C, i.e., the target mean return
is not reached, due to the convexity of the problem the solution of (3.5) will satisfy π̂T μ̂ = C.
This guarantees that for sufficiently large C the expected mean is C, and thus (4.6) would give
the standard deviation. The advantage of (4.6) over the empirical standard deviation is the
fact that the deviation from the target mean return does not depend on the empirical expecta-
tion of the portfolio returns. Indeed, as stated in Table 1, the empirical standard deviation of
the portfolio returns and the empirical deviation from the target mean return are quite close to
each other. The cluster-based approach reaches 69.85% of the performance of the 1

n -portfolio,
while it takes only 40.33% of the risk (in the sense of the empirical standard deviation). Here,
rate of return denotes the total return minus one and average intrinsic is defined by

(4.7)
1

N − 1

tN−1∑
t=t1

Rt.

For different target returns the results are similar, although the cluster-based portfolio is less
sensible to the target return rate (see Figures 14 and 15).
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Figure 7. Cluster allocation for time series of futures; K = 2, ε2 = 1. Data set: Prices of oil and wheat
futures from 2005–2008.

4.6. Adaption for notional neutral investment. A common relevant strategy of portfolio
managers is so-called market neutral investment. The aim is to bet only from views on rela-
tive changes between asset prices but remain neutral w.r.t. overall market moves. To avoid
assumptions about an appropriated market indicator or a market portfolio that characterizes
the whole market, a more pragmatic approach is chosen: We define notional neutral invest-
ments as investments where long and short positions are balanced such that equal notionals
are invested long and short for each security class. This is done by an additional constraint
to ensure that the accrued notional of contracts within each class u (here wheat and oil) is
equal to zero:

(4.8)
∑
i∈Iu

πi = 0 ∀u,

where Iu is an index set combining all assets for each selected class of futures within which
accrued notionals are requested to be zero. For the extended problem, this transforms to

(4.9)
∑
i∈Iu

(π̂i − π̂i+d) = 0 ∀u.
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Figure 8. Effective investments per commodity as proportion of wealth; K = 2, ε2 = 1. Data set: Prices
of oil and wheat futures from 2005–2008.

Thus the notional neutral version of the problem is
(4.10)

π̂T
(
Σ̂+λ

(
0 Id

Id 0

))
π̂ → min

π̂∈R2d
, with π̂T μ̂ ≥ C,

2d∑
i=1

π̂i = 1, π̂i ≥ 0 ∀i,
∑
i∈Iu

(π̂i− π̂i+d) = 0.

The additional constraint was used for all algorithms (except the 1
n -portfolio). As before, the

realized return for each algorithm falls short of the mean target return (see Figure 16), but
the presented cluster-based method produces the result with the least risk (see Figures 17, 18,
and 19) and, for this data, even the best return rate, next to the 1

n -portfolio, where no risk
minimization is done.

5. Conclusion. We adapted and expanded a method for simultaneous clustering, dimen-
sion reduction, and metastability analysis of multidimensional time series to financial data. A
main advantage of the method (compared to standard HMM/GMM methods of phase identi-
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Figure 9. Spread of the relative notionals per commodity and phase; K = 2, ε2 = 1. Data set: Prices of
oil and wheat futures from 2005–2008.

fication [13, 23]) is that no a priori probabilistic assumptions about the hidden and observed
market processes are necessary in the context of the presented method. Furthermore, section 4
indicates that the method is suitable for finding a low-dimensional representation of the data
and estimating mean and variance adaptively while detecting market phases, delivering infor-
mation that can be further used for portfolio optimization. The presented framework allows
one to make use of fast and numerically robust FEM solvers (developed for numerical solution
of partial differential equations) in a new context of computational time series analysis.

The general feasibility of identification of market phases was demonstrated, and it was
shown that an expansion of classical portfolio theory utilizing market phase detection can
be used to further decrease the intrinsic risk. Additionally, the behavior of the change point
detection when applied online to a data stream was demonstrated to be robust enough to
qualify for practical purposes. As a standard stationary risk measure, the standard deviation
of portfolio returns was also used to compare different portfolio optimization strategies on real
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Figure 10. Value evolution of different portfolio-optimization algorithms.

financial data. It was demonstrated that application of the presented numerical scheme based
on the identification of market phases can decrease the risk of resulting portfolios in terms
of this risk measure. Strictly speaking, the empirical standard deviation of portfolio returns
is not an equitable risk measure, in that it assumes the underlying data to be stationary. If
we assume the underlying market process to be nonstationary (as is done in the context of
the presented numerical approach), the evaluation and comparison of risks should be done in
a measure that reflects this. Numerical studies of robust portfolio optimization methods and
empirical quantification of risk by methods that do not rely on stationarity assumptions are
a matter of future research.

Having demonstrated the applicability of the presented computational scheme to a realistic
financial data example, a more extensive online data study is clearly needed for validation.
Also, transaction costs should be included and different risk measures should be taken into
account. In contrast to climatological [14, 17, 15, 18] or biophysical applications [19], repeating
phases seem to be rare in financial time series, and additional time weighting (e.g., exponential
decay) should be further investigated.
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Figure 11. Intrinsic risk (see (4.4)) evolution of different portfolio-optimization algorithms.
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Figure 12. Risk (empirical standard deviation) evolution of different portfolio-optimization algorithms.
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Figure 13. Risk (deviation from target mean return) evolution of different portfolio-optimization algorithms.

Table 1
Rate of return and different risk measures.

Algorithm Rate of return Averaged intrinsic
risk

Standard deviation
of returns

Deviation from tar-
get mean return

Cluster-based 4.01% 1.4164 10−3 2.4613 10−3 2.4619 10−3

FlexM −0.55% 7.5113 10−3 7.8968 10−3 7.8935 10−3

Markowitz 0.30% 1.5180 10−3 3.9324 10−3 3.9325 10−3

1
n
-portfolio 5.74% 3.7022 10−3 6.1033 10−3 6.1003 10−3
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Figure 15. Risk (empirical standard deviation) depending on the yearly target return rate C in (3.5).
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Figure 16. Value evolution of different notional neutral portfolio-optimization algorithms.
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Figure 17. Intrinsic risk (4.4) evolution of different notional neutral portfolio-optimization algorithms.
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Figure 18. Risk (empirical standard deviation) evolution of different notional neutral portfolio-optimization
algorithms.
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Figure 19. Risk (deviation from target mean return) evolution of different notional neutral portfolio-
optimization algorithms.
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weather models I: Simultaneous dimension and model reduction for time series analysis, Multiscale
Model. Simul., 6 (2008), pp. 1125–1145.
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Trend Following Trading under a Regime Switching Model∗
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Abstract. This paper is concerned with the optimality of a trend following trading rule. The idea is to catch
a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of
the subsequent bear market. We characterize the bull and bear phases of the markets mathemati-
cally using the conditional probabilities of the bull market given the up to date stock prices. The
optimal buying and selling times are given in terms of a sequence of stopping times determined by
two threshold curves. Numerical experiments are conducted to validate the theoretical results and
demonstrate how they perform in a marketplace.
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1. Introduction. Trading in organized exchanges has increasingly become an integrated
part of our life. Big moves of market indices of major stock exchanges all over the world
are often the headlines of news media. By and large, active market participants can be
classified into two groups according to their trading strategies: those who trade contra-trend
and those who follow the trend. On the other hand, there are also passive market participants
who simply buy and hold for a long period of time (often indirectly through mutual funds).
Within each group of strategies there are numerous technical methods. Much effort has been
devoted to theoretical analysis of these strategies.

Using optimal stopping time to study optimal exit strategy for stock holdings has become
the standard textbook method. For example, Øksendal [24, Examples 10.2.2 and 10.4.2]
considered optimal exit strategy for stocks whose price dynamics were modeled by a geometric
Brownian motion. To maximize an expected return discounted by the risk-free interest rate,
the analysis in [24] showed that if the drift of the geometric Brownian motion was not high
enough in comparison to the discount of interest rate, then one should sell at a given threshold.
Although the model of a single geometric Brownian motion with a constant drift was somewhat
too simplistic, this result well illustrated the flaw of the so-called buy and hold strategy, which
worked only in limited situations. Stock selling rules under more realistic models have gained
increasing attention. For example, Zhang [31] considered a selling rule determined by two
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threshold levels, a target price and a stop-loss limit. Under a regime switching model, optimal
threshold levels were obtained by solving a set of two-point boundary value problems. In
Guo and Zhang [13], the results of Øksendal [24] were extended to incorporate a model with
regime switching. In addition to these analytical results, various mathematical tools have
been developed to compute these threshold levels. For example, a stochastic approximation
technique was used in Yin, Liu, and Zhang [29]; a linear programming approach was developed
in Helmes [14]; and the fast Fourier transform was used in Liu, Yin, and Zhang [20]. See
also Beibel and Lerche [1] for a different approach to stopping time problems. Furthermore,
consideration of capital gain taxes and transaction costs in connection with selling can be
found in Cadenillas and Pliska [2], Constantinides [3], and Dammon and Spatt [8], among
others.

Recently, there has been an increasing volume of literature concerning trading rules that
involve both buying and selling. For instance, Zhang and Zhang [30] studied the optimal trad-
ing strategy in a mean reverting market, which validated a well-known contra-trend trading
method. In particular, they established two threshold prices (buy and sell) that maximized
overall discounted return if one traded at those prices. In addition to the results obtained
in [30] along this line of research, an investment capacity expansion/reduction problem was
considered in Merhi and Zervos [22]. Under a geometric Brownian motion market model, the
authors used the dynamic programming approach and obtained an explicit solution to the
singular control problem. A more general diffusion market model was treated by Løkka and
Zervos [21] in connection with an optimal investment capacity adjustment problem. More
recently, Johnson and Zervos [16] studied an optimal timing of investment problem under a
general diffusion market model. The objective was to maximize the expected cash flow by
choosing when to enter an investment and when to exit the investment. An explicit analytic
solution was obtained in [16].

However, a theoretical justification of trend following trading methods is missing despite
the fact that they are widely used among professional traders (see, e.g., [26]). It is the
purpose of this paper to fill this void. We adopt a finite horizon regime switching model for
the stock price dynamics. In this model the price of the stock follows a geometric Brownian
motion whose drift switches between two different regimes representing the up trend (bull
market) and down trend (bear market), respectively, and the exact switching times between
the different trends are not directly observable as in the real markets. We model the switching
as an unobservable Markov chain. Our trading decisions are based on current information
represented by both the stock price and the historical information with the probability in the
bull phase conditioning to all available historical price levels as a proxy. Assuming trading one
share with a fixed percentage transaction cost, we show that the strategy that optimizes the
discounted expected return is a simple implementable trend following system. This strategy
is characterized by two time-dependent thresholds for the conditional probability in a bull
regime signaling buy and sell, respectively. The main advantage of this approach is that the
conditional probability in a bull market can be obtained directly using actual historical stock
price data through a differential equation.

The derivation of this result involves a number of different technical tools. One of the
main difficulties in handling the regime switching model is that the Markov regime switching
process is unobservable. Following Rishel and Helmes [25] we use the optimal nonlinear
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filtering technique (see, e.g., [18, 28]) regarding the conditional probability in a bull regime as
an observation process. Combining with the stock price process represented in terms of this
observing process, we obtain an optimal stopping problem with complete observation. Our
model involves possibly infinitely many buy and sell operations represented by sequences of
stopping times, and it is not a standard stopping time problem. As in Zhang and Zhang [30] we
introduce two optimal value functions that correspond to the starting net position being either
flat or long. Using a dynamic programming approach, we can formally derive a system of two
variational inequalities. A verification theorem justifies that the solutions to these variational
inequalities are indeed the optimal value functions. It is interesting that we can show that this
system of variational inequalities leads to a double obstacle problem satisfied by the difference
of the two value functions. Since the solution and properties of double obstacle problems
are well understood, this conversion simplifies the analysis of our problem considerably. An
accompanying numerical procedure is also established to determine the thresholds involved in
our optimal trend following strategy.

Numerical experiments have been conducted for a simple trend following trading strategy
that approximates the optimal one. We test our strategy using both simulation and actual
market data for the NASDAQ, SP500, and DJIA indices. Our trend following trading strategy
outperforms the buy and hold strategy with a huge advantage in simulated trading. This
strategy also significantly prevails over the buy and hold strategy when tested with the real
historical data for the NASDAQ, SP500, and DJIA indices.

The rest of this paper is arranged as follows. We formulate our problem and present its
theoretical solutions in the next section. Numerical results for optimal trading strategy are
presented in section 3. We conduct extensive simulations and tests on market data in section 4
and conclude in section 5. Details of data and results related to simulations and market tests
are collected in the appendix.

2. Problem formulation. Let Sr denote the stock price at time r satisfying the equation

dSr = Sr[μ(αr)dr + σdBr], St = S, t ≤ r ≤ T <∞,
where μ(i) = μi, i = 1, 2, are the expected return rates, αr ∈ {1, 2} is a two-state Markov
chain, σ > 0 is the volatility, Br is a standard Brownian motion, and T is a finite time.

The process αr represents the market mode at each time r: αr = 1 indicates a bull market
and αr = 2 a bear market. Naturally, we assume μ1 > μ2. Let

Q =

( −λ1 λ1
λ2 −λ2

)
(λ1 > 0, λ2 > 0)

denote the generator of αr. We assume that {αr} and {Br} are independent.
Let

t ≤ τ1 ≤ v1 ≤ τ2 ≤ v2 ≤ · · · ≤ T a.s.

denote a sequence of stopping times. Note that one may construct a sequence of stopping times
satisfying the above inequalities from any monotone sequence of stopping times truncated at
time T . A buying decision is made at τn and a selling decision at vn, n = 1, 2, . . . .

We consider the case that the net position at any time can be either flat (no stock holding)
or long (with one share of stock holding). Let i = 0, 1 denote the initial net position. If initially
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the net position is long (i = 1), then one should sell the stock before acquiring any share. The
corresponding sequence of stopping times is denoted by Λ1 = (v1, τ2, v2, τ3, . . .). Likewise, if
initially the net position is flat (i = 0), then one should first buy a stock before selling any
shares. The corresponding sequence of stopping times is denoted by Λ0 = (τ1, v1, τ2, v2, . . .).

Let 0 < K < 1 denote the percentage of slippage (or commission) per transaction. Given
the initial stock price St = S, initial market trend αt = α ∈ {1, 2}, and initial net position
i = 0, 1, the reward functions of the decision sequences, Λ0 and Λ1, are given as follows:

Ji(S, α, t,Λi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et

{ ∞∑
n=1

[
e−ρ(vn−t)Svn(1−K)− e−ρ(τn−t)Sτn(1 +K)

]
I{τn<T}

}
if i = 0,

Et

{
e−ρ(v1−t)Sv1(1−K)

+

∞∑
n=2

[
e−ρ(vn−t)Svn(1−K)− e−ρ(τn−t)Sτn(1 +K)

]
I{τn<T}

}
if i = 1,

where ρ > 0 is the discount factor. Here, term E
∑∞

n=1 ξn is interpreted as lim supN→∞E
∑N

n=1 ξn
for random variables ξn. Our goal is to maximize the reward function.

To exclude trivial cases,1 we always assume

μ2 < ρ < μ1.

Remark 1. Note that the indicator function I{τn<T} is used in the definition of the reward
functions Ji. This is to ensure that if the last buy order is entered at t = τn, then the position
will be sold at vn ≤ T .

The indicator function I confines the effective part of the sum to a finite time horizon so
that the reward functions are bounded above.

Note that only the stock price Sr is observable at time r in the marketplace. The market
trend αr is not directly available. Thus, it is necessary to convert the problem into a completely
observable one. One way to accomplish this is to use the Wonham filter [28]; see also [18, 32]
for recent development and the references therein in connection with Wonham filters.

Let pr = P (αr = 1|Sr) denote the conditional probability of αr = 1 (bull market) given
the filtration Sr = σ{Su : 0 ≤ u ≤ r}. Then we can show (see Wonham [28]) that pr satisfies
the following SDE:

dpr = [− (λ1 + λ2) pr + λ2] dr +
(μ1 − μ2)pr(1− pr)

σ
dB̂r,

where B̂r is the innovation process (a standard Brownian motion; see, e.g., Øksendal [24])
given by

dB̂r =
d log(Sr)− [(μ1 − μ2)pr + μ2 − σ2/2]dr

σ
.

1Intuitively, one should never buy stock if ρ ≥ μ1 and never sell stock if ρ ≤ μ2, which coincides with
Lemma 2.4.
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Given St = S and pt = p, the problem is to choose Λi to maximize the discounted return

Ji(S, p, t,Λi) = Ji(S, α, t,Λi)

subject to ⎧⎨⎩ dSr = Sr [(μ1 − μ2) pr + μ2] dr + SrσdB̂r, St = S,

dpr = [− (λ1 + λ2) pr + λ2] dr +
(μ1 − μ2)pr(1− pr)

σ
dB̂r, pt = p.

Indeed, this new problem is a completely observable one because the conditional probability
can be obtained using the stock price up to time r.

For i = 0, 1, let Vi(S, p, t) denote the value functions with the states (S, p) and net positions
i = 0, 1 at time t. That is,

Vi(S, p, t) = sup
Λi

Ji(S, p, t,Λi).

The following lemma gives the upper bounds of the value functions.
Lemma 2.1. We have

0 ≤ V0(S, p, t) ≤ S[e(μ1−ρ)(T−t) − 1],

0 ≤ V1(S, p, t) ≤ S[2e(μ1−ρ)(T−t) − 1].

Proof. It is clear that the nonnegativity of Vi follows from their definition. It remains to
show their upper bounds. First, given Λ0, we have

e−ρvnSvn − e−ρτnSτn =

∫ vn

τn

e−ρrSr((μ1 − μ2)pr + μ2 − ρ)dr +
∫ vn

τn

e−ρrSrσdB̂r.

Note that

E

[
I{τn<T}

∫ vn

τn

e−ρrSrσdB̂r

]
= E

[
I{τn<T}E

[∫ vn

τn

e−ρrSrσdB̂r

∣∣∣τn]] = 0.

It follows that

E
(
e−ρvnSvn − e−ρτnSτn

)
I{τn<T}

= E

[
I{τn<T}

∫ vn

τn

e−ρrSr((μ1 − μ2)pr + μ2 − ρ)dr
]

≤ (μ1 − ρ)
∫ vn

τn

e−ρrESrdr.

Using the definition of J0(S, p, t,Λ0), we have

J0(S, p, t,Λ0) ≤
∞∑
n=1

E
(
e−ρ(vn−t)(Svn − e−ρ(τn−t)Sτn)

)
I{τn<T}

≤ (μ1 − ρ)
∞∑
n=1

eρtE

∫ vn

τn

e−ρrSrdr

≤ (μ1 − ρ)eρt
∫ T

t
e−ρrESrdr.
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It is easy to see using Gronwall’s inequality that ESr ≤ Seμ1(r−t). It follows that

J0(S, p, t,Λ0) ≤ (μ1 − ρ)eρtS
∫ T

t
e−ρr+μ1(r−t)dr = S[e(μ1−ρ)(T−t) − 1].

This implies that 0 ≤ V0(x) ≤ S[e(μ1−ρ)(T−t) − 1].
Similarly, we have the inequality

J1(S, p, t,Λ1) ≤ Ee−ρ(v1−t)Sv1(1−K) + S[e(μ1−ρ)(T−t) − 1].

Moreover, note that

Ee−ρ(v1−t)Sv1 − S ≤ (μ1 − ρ)eρt
∫ T

t
e−ρrSrdr ≤ S[e(μ1−ρ)(T−t) − 1].

This implies that

V1(S, p, t) ≤ S + 2S[e(μ1−ρ)(T−t) − 1] = S[2e(μ1−ρ)(T−t) − 1].

Therefore, 0 ≤ V1(S, p, t) ≤ S[2e(μ1−ρ)(T−t) − 1]. This completes the proof.
Let

A =
1

2

(
(μ1 − μ2)p(1− p)

σ

)2

∂pp +
1

2
σ2S2∂SS + S [(μ1 − μ2)p(1− p)] ∂Sp

+ [− (λ1 + λ2) + λ2] ∂p + S [(μ1 − μ2) p+ μ2] ∂S − ρ.

Then the HJB equations associated with our optimal stopping time problem can be given
formally as follows:

min{−∂tV0 −AV0, V0 − V1 + S(1 +K)} = 0,

min{−∂tV1 −AV1, V1 − V0 − S(1−K)} = 0
(2.1)

in (0,+∞)× (0, 1) × [0, T ), with the terminal conditions

V0(S, p, T ) = 0,

V1(S, p, T ) = S(1−K).
(2.2)

The terminal condition implies that at the terminal time T the net position must be flat.
Remark 2. In this paper, we restrict the state space of p to (0, 1) because both p = 0 and

p = 1 are entrance boundaries (see Karlin and Taylor [17] for the definition and discussions).
Such boundaries cannot be reached from the interior of the state space. If the process begins
there, it quickly moves to the interior and never returns. We next show that p = 0 is indeed
an entrance boundary. The case when p = 1 is similar. It is easy to see that the speed density
(see [17]) can be given by

m(x) =
σ2

(μ1 − μ2)2x2(1− x)2s(x) ,
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where

s(x) = exp

{
2σ2

(μ1 − μ2)2
[
λ2
x

+
λ1

1− x + (λ2 − λ1) log x

1− x
]}

.

To show that p = 0 is the entrance boundary, it suffices [17] to show that, for any 0 < a < 1,

(2.3) lim
δ→0+

∫ a

δ

(∫ ξ

δ
s(η)dη

)
m(ξ)dξ =∞

and

(2.4) lim
δ→0+

∫ a

δ

(∫ a

ξ
s(η)dη

)
m(ξ)dξ <∞.

Now, (2.3) follows the fact that limδ→0+
∫ ξ
δ s(η)dη = ∞ for any ξ > 0. Moreover, note that

for any A > 0, after a change of variables,∫ a

0

(∫ a

ξ
eA/ηdη

)
e−A/ξ

ξ2
dξ =

∫ ∞

1/a

(∫ 1/a

1/ξ
eA/ηdη

)
e−Aξdξ =

∫ ∞

1/a

(∫ ξ

a

eA/η

η2
dη

)
e−Aξdξ <∞.

Using this estimate, it is not difficult to see (2.4).

It is easy to show that the value functions V0 and V1 are linear in S. This motivates us
to adopt the following transformation: U0(p, t) = V0(S, p, t)/S and U1(p, t) = V1(S, p, t)/S.
Then the HJB equations (2.1) with the terminal condition (2.2) can be reduced to

min {−∂tU0 −LU0, U0 − U1 + (1 +K)} = 0,

min {−∂tU1 −LU1, U1 − U0 − (1−K)} = 0
(2.5)

in (0, 1) × [0, T ), with the terminal conditions

U0(p, T ) = 0,

U1(p, T ) = 1−K,(2.6)

where

L =
1

2

(
(μ1 − μ2)p(1− p)

σ

)2

∂pp

+ [− (λ1 + λ2) p+ λ2 + (μ1 − μ2)p(1− p)] ∂p + (μ1 − μ2) p+ μ2 − ρ.

Thanks to Lemma 2.1, we will focus on the bounded solutions of problem (2.5)–(2.6).

Lemma 2.2. Problem (2.5)–(2.6) has a unique bounded strong solution (U0, U1), where Ui ∈
W 2,1

q ([ε, 1 − ε]× [0, T ]) for any ε ∈ (0, 1/2), q ∈ [1,+∞). Moreover,

−∂tU0 − LU0 = (−∂tZ − LZ)−,(2.7)

−∂tU1 − LU1 = (−∂tZ − LZ)+,(2.8)
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where Z(p, t) ≡ U1(p, t)−U0(p, t) is the unique strong solution to the following double obstacle
problem:

min {max {−∂tZ −LZ,Z − (1 +K)} , Z − (1−K)} = 0

or, equivalently,

−∂tZ − LZ = 0 if 1−K < Z < 1 +K,(2.9)

−∂tZ − LZ ≥ 0 if Z = 1−K,(2.10)

−∂tZ − LZ ≤ 0 if Z = 1 +K(2.11)

in (0, 1) × [0, T ), with the terminal condition Z(p, T ) = 1−K. Furthermore,

(2.12) ∂pZ ≥ 0

and

(2.13) ∂tZ ≤ 0.

Proof. For any strong solution (U0, U1) of problem (2.5)–(2.6), we first show that2 Z(p, t) ≡
U1(p, t)− U0(p, t) satisfies (2.9)–(2.11). Indeed, if 1−K < Z(p, t) < 1 +K, then

−∂tU0 − LU0|(p,t) = −∂tU1 − LU1|(p,t) = 0,

which gives −∂tZ −LZ|(p,t) = 0. If Z(p, t) = 1−K or U1(p, t)−U0(p, t)− (1−K) = 0, then
U0(p, t)−U1(p, t) + 1+K = 2K > 0, from which we infer that −∂tU0−LU0|(p,t) = 0. On the
other hand, we always have −∂tU1 −LU1|(p,t) ≥ 0, so that −∂tZ − LZ|(p,t) ≥ 0. Similarly we
can deduce that −∂tZ − LZ ≤ 0 if Z = 1 +K.

By the penalization method (cf. Friedman [12]), we can show that the double obstacle
problem has a unique strong solution

Z(p, t) ∈W 2,1
q ([ε, 1 − ε]× [0, T ])

for any ε ∈ (0, 1/2), q ∈ [1,+∞). To show the regularity and uniqueness of bounded solution
to problem (2.5)–(2.6), it suffices to show that the solution (U0, U1) to problem (2.5)–(2.6)
satisfies (2.7)–(2.8). Let us prove (2.7) first. When U0(p, t)−U1(p, t) > − (1+K) or Z(p, t) <
1 +K, we have

−∂tU0 −LU0 = 0,

−∂tZ − LZ ≥ 0,

from which we can see that (2.7) holds. As a result, it suffices to show that (2.7) remains valid
when U0(p, t)−U1(p, t) = −Z(p, t) = − (1+K). In this case U1(p, t)−U0(p, t) = Z(p, t) > 1−K
and

−∂tU1 −LU1 = 0,

−∂tZ − LZ ≤ 0.

2After finishing this paper, we found that the connection between a system of variational inequalities and
a double obstacle problem was first revealed in Nakoulima [23].
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It follows that

0 ≥ −∂tZ −LZ = (−∂tU1 −LU1)− (−∂tU0 − LU0)

= − (−∂tU0 − LU0) ,

which implies the desired result (2.7). Equation (2.8) can be proved in a similar way.
Now let us prove (2.12). We need only restrict our attention to

(2.14) NT ≡ {(p, t) ∈ (0, 1) × [0, T ) : 1−K < Z(p, t) < 1 +K} ,
in which −∂tZ − LZ = 0. Differentiating the equation w.r.t. p, we have

−∂t (∂pZ)− T [∂pZ] = (μ1 − μ2)Z,
where T is another differential operator. Owing to (μ1−μ2)Z ≥ 0 in NT and ∂pZ = 0 on the
boundary of NT\{p = 0, 1},3 we then get (2.12) by using the maximum principle. It remains
to prove (2.13). Clearly ∂tZ|t=T ≤ 0, which yields the desired result again by the maximum
principle.

The region NT defined in (2.14) refers to the no-trading region. In terms of the solution
Z(p, t) to the double obstacle problem (2.9)–(2.11), with the terminal condition Z(p, T ) =
1−K, we can define the buying region (BR) and the selling region (SR) as follows:

BR = {(p, t) ∈ (0, 1) × [0, T ) : Z(p, t) = 1 +K} ,
SR = {(p, t) ∈ (0, 1) × [0, T ) : Z(p, t) = 1−K} .

We aim to characterize these regions through the study of the double obstacle problem.
To begin with, we prove the connectivity of any t-section of BR or SR.

Lemma 2.3. For any t ∈ [0, T ), the following hold:
(i) if (p1, t) ∈ BR and p2 ≥ p1, then (p2, t) ∈ BR;
(ii) if (p1, t) ∈ SR and p2 ≤ p1, then (p2, t) ∈ SR.
Proof. We prove only part (i) since the proof of part (ii) is similar. Since Z(p1, t) = 1+K,

we infer by (2.12) that Z(p2, t) ≥ Z(p1, t) = 1 +K. On the other hand, Z(p2, t) ≤ 1 +K. So
we must have

Z(p2, t) = 1 +K,

i.e., (p2, t) ∈ BR, as desired.
The lemma below implies that BR shrinks and SR expands as t approaches the terminal

time T .
Lemma 2.4. For any p ∈ (0, 1), the following hold:
(i) if (p, t1) ∈ BR and t2 ≤ t1, then (p, t2) ∈ BR;
(ii) if (p, t1) ∈ SR and t2 ≥ t1, then (p, t2) ∈ SR.
Moreover,

BR ⊂
{
(p, t) ∈ (0, 1) × [0, T ) : p ≥ ρ− μ2

μ1 − μ2

}
;(2.15)

SR ⊂
{
(p, t) ∈ (0, 1) × [0, T ) : p ≤ ρ− μ2

μ1 − μ2

}
.(2.16)

3On p = 0 or 1, no boundary conditions are required due to the degeneracy of the differential operator.
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Proof. In view of (2.13), the proofs of parts (i) and (ii) are similar to those of Lemma 2.3.
It remains to show (2.15) and (2.16). Due to (2.10), we infer that if (p, t) ∈ BR, then

0 ≤ (−∂t − L) (1−K) = − [(μ1 − μ2) p+ μ2 − ρ] ,
namely,

p ≤ ρ− μ2
μ1 − μ2 ,

which gives (2.15). By (2.11), we can similarly get (2.16).
Combining BR ∩ SR = ∅ with (2.15) and (2.16), we deduce that any t-section of NT is

nonempty. In view of Lemma 2.3, we can define two free boundaries:

p∗s(t) = inf{p ∈ (0, 1) : (p, t) ∈ NT},(2.17)

p∗b(t) = sup{p ∈ (0, 1) : (p, t) ∈ NT}(2.18)

for any t ∈ [0, T ). They are the thresholds for sell and buy, respectively.
Theorem 2.5. Let p∗s(t) and p∗b(t) be as given in (2.17)–(2.18). Then the following hold:
(i) p∗b(t) and p

∗
s(t) are monotonically increasing in t, and

p∗b(t) ≥
ρ− μ2
μ1 − μ2 ≥ p

∗
s(t)

for all t ∈ [0, T ). Moreover, p∗b(t), p
∗
s(t) ∈ C∞(0, T );

(ii) p∗s(T ) := limt→T− p∗s(t) =
ρ−μ2

μ1−μ2
;

(iii) there is a δ > 0 such that (1, t) ∈ NT for all t ∈ (T − δ, T ), namely,

p∗b(t) = 1 for t ∈ (T − δ, T ).
Moreover,

(2.19) δ ≥ 1

μ1 − ρ log
1 +K

1−K .

Proof. The monotonicity in part (i) is a corollary of Lemmas 2.3 and 2.4. The proof for
the smoothness of p∗b(t) and p∗s(t) is somewhat technical and is placed in the appendix. To
show part (ii), we use the method of contradiction. Suppose not. Due to p∗s(t) ≤ ρ−μ2

μ1−μ2
, we

would have

p∗s(T ) <
ρ− μ2
μ1 − μ2 .

Then, for any p ∈ (p∗s(T ),
ρ−μ2

μ1−μ2
),

∂tZ|t=T = −LZ|t=T = −L (1−K) = − [(μ1 − μ2) p+ μ2 − ρ] > 0,

which is in contradiction with (2.13).
It remains to show part (iii). Owing to Z|t=T = 1 −K and (2.12), the existence of δ is

apparent. We need only show (2.19). On p = 1, problem (2.9)–(2.11) is reduced to

(2.20)

{
−Zt + (ρ− μ1)Z|p=1 = −λ1∂pZ if Z < 1 +K,

−Zt + (ρ− μ1)Z|p=1 ≤ −λ1∂pZ if Z = 1 +K
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in t ∈ (0, T ), with the terminal condition Z(1, T ) = 1−K, where we have excluded the lower
obstacle according to (2.16). Due to −λ1∂pZ ≤ 0, problem (2.20) has a supersolution Z(t)
satisfying

(2.21)

{
−Zt + (ρ− μ1)Z = 0 if Z(t) < 1 +K,

−Zt + (ρ− μ1)Z ≤ 0 if Z(t) = 1 +K

in t ∈ (0, T ), with Z(T ) = 1−K. It is easy to verify

Z(t) =

⎧⎪⎪⎨⎪⎪⎩
e(μ1−ρ)(T−t) (1−K) if t > T − 1

μ1 − ρ log
1 +K

1−K ,

1 +K if t ≤ T − 1

μ1 − ρ log
1 +K

1−K .

We then infer that

Z(1, t) ≤ Z(t) = e(μ1−ρ)(T−t) (1−K) < 1 +K for t > T − 1

μ1 − ρ log
1 +K

1−K ,

which implies that (1, t) ∈ NT for any t > T − 1
μ1−ρ log

1+K
1−K . Then (2.19) follows.

Remark 3. Part (iii) indicates that there is a critical time after which it is never optimal
to buy stock. This is an important feature when transaction costs are involved in a finite
horizon model. Similar results were obtained in the study of finite horizon portfolio selection
with transaction costs (cf. [4, 6, 7, 19]). The intuition is that if the investor does not have
a long enough time horizon to recover at least the transaction costs, then she/he should not
initiate a long position (bear in mind that the terminal position must be flat).

Remark 4. Using the maximum principle, it is not hard to show that Z(·, ·;λ1, λ2, ρ) is a de-
creasing function of λ1 and ρ and an increasing function of λ2. As a consequence, p

∗
s(·;λ1, λ2, ρ)

and p∗b(·;λ1, λ2, ρ) are also increasing functions of λ1 and ρ and decreasing functions of λ2.

By Lemma 2.2, the Sobolev embedding theorem (cf. [12]), and the smoothness of free
boundaries, the solutions U0 and U1 of problem (2.5)–(2.6) belong to C1 in (0, 1) × [0, T ).
Furthermore, it is easy to show that the solutions are sufficiently smooth (i.e., at least C2) ex-
cept at the free boundaries p∗s(t) and p∗b(t). These enable us to establish a verification theorem
to show that the solutions U0 and U1 of problem (2.5)–(2.6) are equal to the value functions
V0/S and V1/S, respectively, and sequences of optimal stopping times can be constructed by
using (p∗s, p∗b).

This theorem gives sufficient conditions for the optimality of the trading rules in terms of
the stopping times {τn, vn}. The construction procedure will be used in the next sections to
develop numerical solutions in various scenarios.

Theorem 2.6 (verification theorem). Let (U0, U1) be the unique bounded strong solution to
problem (2.5)–(2.6) and p∗b(t) and p

∗
s(t) be the associated free boundaries. Then, w0(S, p, t) ≡

SU0(p, t) and w1(S, p, t) ≡ SU1(p, t) are equal to the value functions V0(S, p, t) and V1(S, p, t),
respectively.

Moreover, let

Λ∗
0 = (τ∗1 , v

∗
1 , τ

∗
2 , v

∗
2 , . . .),
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where the stopping times τ∗1 = T ∧ inf{r ≥ t : pr ≥ p∗b(r)}, v∗n = T ∧ inf{r ≥ τ∗n : pr ≤ p∗s(r)},
and τ∗n+1 = T ∧ inf{r > v∗n : pr ≥ p∗b(r)} for n ≥ 1, and let

Λ∗
1 = (v∗1 , τ

∗
2 , v

∗
2 , τ

∗
3 , . . .),

where the stopping times v∗1 = T ∧ inf{r ≥ t : p∗r ≤ p∗s(r)}, τ∗n = T ∧ inf{r > v∗n−1 : pr ≥ p∗b(r)},
and v∗n = T ∧ inf{r ≥ τ∗n : pr ≤ p∗s(r)} for n ≥ 2. If v∗n → T a.s., as n→∞, then Λ∗

0 and Λ∗
1

are optimal.
Proof. The proof is divided into two steps. In the first step, we show that wi(S, p, t) ≥

Ji(S, p, t,Λi) for all Λi. Then, in the second step, we show that wi(S, p, t) = Ji(S, p, t,Λ
∗
i ).

Therefore, wi(S, p, t) = Vi(S, p, t) and Λ∗
i is optimal.

Using (−∂twi−Lwi) ≥ 0, Dynkin’s formula, and Fatou’s lemma as in Øksendal [24, p. 226],
we have, for any stopping times t ≤ θ1 ≤ θ2, a.s.,

(2.22) Ee−ρ(θ1−t)wi(Sθ1 , pθ1 , θ1)I{θ1<a} ≥ Ee−ρ(θ2−t)wi(Sθ2 , pθ2 , θ2)I{θ1<a}

for any a and i = 0, 1.
Note that w0 ≥ w1 − S(1 +K). Given Λ0 = (τ1, v1, τ2, v2, . . .), by (2.22), and noting that

w0(S, p, T ) = 0, we have

w0(S, p, t) ≥ Ee−ρ(τ1−t)w0(Sτ1 , pτ1 , τ1)

= Ee−ρ(τ1−t)w0(Sτ1 , pτ1 , τ1)I{τ1<T}
≥ Ee−ρ(τ1−t)(w1(Sτ1 , pτ1 , τ1)− Sτ1(1 +K))I{τ1<T}
= Ee−ρ(τ1−t)w1(Sτ1 , pτ1 , τ1)I{τ1<T} − Ee−ρ(τ1−t)Sτ1(1 +K)I{τ1<T}.

Using (2.22) again with i = 1 and noticing that v1 ≥ τ1 and w1 ≥ w0 + S(1−K), we have

w0(S, p, t) ≥ Ee−ρ(v1−t)w1(Sv1 , pv1 , v1)I{τ1<T} − Ee−ρ(τ1−t)Sτ1(1 +K)I{τ1<T}
≥ Ee−ρ(v1−t)(w0(Sv1 , pv1 , v1) + Sv1(1−K))I{τ1<T}
− Ee−ρ(τ1−t)Sτ1(1 +K)I{τ1<T}

= Ee−ρ(v1−t)w0(Sv1 , pv1 , v1)I{τ1<T}

+ E
[
e−ρ(v1−t)Sv1(1−K)− e−ρ(τ1−t)Sτ1(1 +K)

]
I{τ1<T}

= Ee−ρ(v1−t)w0(Sv1 , pv1 , v1)

+ E
[
e−ρ(v1−t)Sv1(1−K)− e−ρ(τ1−t)Sτ1(1 +K)

]
I{τ1<T}.

Continue this way and recall that wi(S, p, t) ≥ 0 to obtain

w0(S, p, t) ≥ E
N∑

n=1

[
e−ρ(vn−t)Svn(1−K)− e−ρ(τn−t)Sτn(1 +K)

]
I{τn<T}.

Sending N →∞, we have w0(S, p, t) ≥ J0(S, p, t,Λ0) for all Λ0. This implies that w0(S, p, t) ≥
V0(S, p, t). Similarly, we can show that w1(S, p, t) ≥ V1(S, p, t).
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We next establish the equalities. For given t, define

τ∗1 =

{
t if p ≥ p∗b(t),
T ∧ inf{r ≥ t : pr = p∗b(r)} if p < p∗b(t).

Using Dynkin’s formula, we have

w0(S, p, t) = Ee−ρ(τ∗1 −t)w0(Sτ∗1 , pτ∗1 , τ
∗
1 )

= Ee−ρ(τ∗1 −t)w0(Sτ∗1 , pτ∗1 , τ
∗
1 )I{τ∗1<T}

= Ee−ρ(τ∗1 −t)(w1(Sτ∗1 , pτ∗1 , τ
∗
1 )− Sτ∗1 (1 +K))I{τ∗1 <T}

= Ee−ρ(τ∗1 −t)w1(Sτ∗1 , pτ∗1 , τ
∗
1 )I{τ∗1<T} − Ee−ρ(τ∗1 −t)Sτ∗1 (1 +K)I{τ∗1 <T}.

Let v∗1 = T ∧ inf{r ≥ τ∗1 : pr = p∗s(r)}. Noticing that w1(S, p, T ) = S(1−K), we have

Ee−ρ(τ∗1 −t)w1(Sτ∗1 , pτ∗1 , τ
∗
1 )I{τ∗1<T}

= Ee−ρ(v∗1−t)w1(Sv∗1 , pv∗1 , v
∗
1)I{τ∗1 <T}

= Ee−ρ(v∗1−t)w1(Sv∗1 , pv∗1 , v
∗
1)I{τ∗1 <T}I{v∗1<T} + Ee−ρTST−t(1−K)I{τ∗1<T}I{v∗1=T}

= Ee−ρ(v∗1−t)(w0(Sv∗1 , pv∗1 , v
∗
1) + Sv∗1 (1−K))I{τ∗1 <T}I{v∗1<T}

+Ee−ρTST−t(1−K)I{τ∗1 <T}I{v∗1=T}
= Ee−ρ(v∗1−t)w0(Sv∗1 , pv∗1 , v

∗
1)I{τ∗1 <T}I{v∗1<T} + Ee−ρ(v∗1−t)Sv∗1 (1−K)I{τ∗1 <T}I{v∗1<T}

+Ee−ρ(T−t)ST (1−K)I{τ∗1<T}I{v∗1=T}
= Ee−ρ(v∗1−t)w0(Sv∗1 , pv∗1 , v

∗
1) + Ee−ρ(v∗1−T )Sv∗1 (1−K)I{τ∗1 <T}I{v∗1<T}

+Ee−ρ(T−t)ST (1−K)I{τ∗1<T}I{v∗1=T}
= Ee−ρ(v∗1−t)w0(Sv∗1 , pv∗1 , v

∗
1) + Ee−ρ(v∗1−t)Sv∗1 (1−K)I{τ∗1<T}.

It follows that

w0(S, p, t) = Ee−ρ(v∗1−t)w0(Sv∗1 , pv∗1 , v
∗
1)+E

[
e−ρ(v∗1−t)Sv∗1 (1−K)−e−ρ(τ∗1 −t)Sτ∗1 (1+K)

]
I{τ∗1<T}.

Continue the procedure to obtain

w0(S, p, t) = Ee−ρ(v∗n−t)w0(Sv∗n , pv∗n , v
∗
n)

+ E

n∑
k=1

[
e−ρ(v∗k−t)Sv∗k(1−K)− e−ρ(τ∗k−t)Sτ∗k (1 +K)

]
I{τ∗k<T}.

Similarly, we have

w1(S, p, t) = Ee−ρ(v∗n−t)w0(Sv∗n , pv∗n , v
∗
n)

+ Ee−ρ(v∗1−t)Sv∗1 (1−K)

+ E

n∑
k=2

[
e−ρ(v∗k−t)Sv∗k(1−K)− e−ρ(τ∗k−t)Sτ∗k (1 +K)

]
I{τ∗k<T}.

Recall that v∗n → T . Sending n → ∞ and noticing w0(S, p, T ) = 0, we obtain the equalities.
This completes the proof.
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Table 1
Parameter values.

λ1 λ2 μ1 μ2 σ K ρ

0.36 2.53 0.18 −0.77 0.184 0.001 0.0679
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Figure 1. Optimal trading strategy.

3. Numerical results for optimal trading strategy. The theoretical analysis in section 2
shows that p∗s(t) and p∗b(t) are thresholds for the optimal trend following trading strategy: buy
the stock when pt crosses p

∗
b(t) from below and sell the stock when pt crosses p

∗
s(t) from above.

Knowing the parameters of our regime switching model, we can numerically solve the double
obstacle problem (2.9)–(2.11) to derive approximations of those thresholds. To do that, we em-
ploy the penalization method with a finite difference discretization (see Dai, Kwok, and You [5]
and Forsyth and Vetzal [11]). The penalized approximation to the double obstacle problem is

−∂tZ − LZ = β (1−K − Z)+ − β (Z − 1−K)+ ,

where β is the penalty parameter. In our numerical examples, we choose β = 107. The right-
hand side of the approximation is linearized by using a nonsmooth version of the Newton iter-
ation. Then the resulting equations are discretized by the standard finite difference method.

We take T = 1 and use the model parameters in Table 1 based on the statistics for DJIA.
Figure 1 represents p∗s(·) and p∗b(·) as functions of time t. We see that p∗s(t) approaches the
theoretical value (ρ − μ2)/(μ1 − μ2) = (0.0679 + 0.77)/(0.18 + 0.77) = 0.882 as t → T = 1.
Also, we observe that there is a δ > 0 such that p∗b(t) = 1 for t ∈ [T − δ, T ], which indicates
that it is never optimal to buy stock when t is very close to T . Using Theorem 2.5, the lower
bound of δ is estimated as 1

μ1−ρ log
1+K
1−K = 1

0.18−0.0679 log
1.001
0.999 = 0.0178, which is consistent

with the numerical result.
Figure 2 illustrates the impact of parameters λ and ρ on the optimal thresholds p∗s(·) and

p∗b(·). We can see that they are increasing functions of ρ and decreasing functions of λ2 as
indicated in Remark 2. Moreover, properties (i)–(iii) of p∗s(·) and p∗b(·) stated in Theorem 2.5
are also visible.
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Figure 2. Effects of parameters λ and ρ on optimal trading strategy.
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Figure 3. Effects of transaction cost K on optimal trading strategy.

In Figure 3, we examine the impact of transaction cost K on the optimal thresholds. It is
observed that the no-trading regions expands as we increase the transaction cost from 0.001
to 0.005. This is consistent with our intuition that increasing transaction costs can decrease
trading frequency.

4. Simulations and market tests. To evaluate how well our trend following trading strat-
egy would work in practice, we conduct experiments using both simulations and market his-
torical data. The tests are oriented towards the practicality of using pt to detect the regime
switches. Thus, we focus on an implementable trend following strategy that approximates the
optimal one and test its robustness.

4.1. Method. From Figures 1–3 we can see that the thresholds p∗s(·) and p∗b(·) are almost
constant except when t gets very close to the terminal time T . In our experiments, T is
always more than 10 years, which is relatively large. As a result, the contribution of the
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trading near T to the reward function is small. Thus, we will approximate p∗s(·) and p∗b(·)
with two constant threshold values p∗s = limt→0+ p

∗
s(t) and p∗b = limt→0+ p

∗
b(t). Then we

estimate pt, the conditional probability in a bull market at time t, and check it against the
thresholds to determine whether to buy, hold, or sell. The trend following trading strategy
we will use is to buy the stock when pt crosses p

∗
b from below for the first time and convert to

the bond when pt crosses p
∗
s from above for the first time. Moreover, we always liquidate our

holdings of stock or bond at T .
Some qualitative analysis of pt is helpful before experiments. Using the observation SDE

equations, we see that pt is related to the stock price St by

(4.1) dpt = f(pt)dt+
(μ1 − μ2)pt(1− pt)

σ2
d log(St),

where f is a third-order polynomial of pt given by

f(pt) = − (λ1 + λ2) pt + λ2 −
(μ1 − μ2)pt(1− pt)

(
(μ1 − μ2)pt + μ2 − σ2/2

)
σ2

.

It is easy to check that f(0) = λ2 > 0 and f(1) = −λ1 < 0. Moreover, as pt approaches ±∞, so
does f(pt). Thus, f has exactly one root ξ in [0, 1]. When the stock prices stay constant, pt is
attracted to ξ. This attractor is an unbiased choice for p0. Since (μ1 − μ2)pt(1− pt)/σ2 ≥ 0,
pt moves in the same direction as the stock prices. This is also intuitive since the stock
price movements indicate trends. The magnitude of the impact varies, though. Fixing all the
parameters, the impact of stock price movement becomes relatively small when pt is getting
close to 0 or 1. Among the parameters μ1, μ2, and σ the latter has a larger impact since it
appears in a square in the formula. A smaller σ magnifies the impact of stock movement and
tends to cause more frequent trading, and a larger σ does the opposite. We will estimate pt
simply by replacing the differential in (4.1) with a difference using the trading day as the step
size on a finite time horizon [0, Ndt]:

pt+1 = pt + f(pt)dt+
(μ1 − μ2)pt(1− pt)

σ2
log

(
St+1

St

)
,

where dt = 1/250 and t = 0, dt, 2dt, . . . , Ndt.
If everything changes continuously, then pt ∈ [0, 1]. Indeed, simply changing the differ-

ential equation to a difference equation works extremely well for simulated paths. However,
this could be violated in the approximation when St jumps. This would happen, for example,
in testing the SP500: during the 1987 crash on the downside and recently on the upside.
We have to restrict pt ∈ [0, 1] in implementing the approximation. Thus, in simulation and
testing, we calculate pt iteratively with

pt+1 = min

(
max

(
pt + f(pt)dt+

(μ1 − μ2)pt(1− pt)
σ2

log

(
St+1

St

)
, 0

)
, 1

)
.

4.2. Simulation. In our analysis the choice of the objective function is partly due to
tractability. Nevertheless, this gives us a way of recognizing trends by relatively high prob-
abilities in the bull or bear regimes, respectively. How effective is this trend recognizing
method? We check it by simulation. We use the same parameter values as in Table 1.
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Figure 4. Sample path.

Table 2
Simulation results.

No. of simulations TF BH TF/BH No. of trades

1000 77.28 6.04 12.79 37.56

2000 73.97 6.00 12.33 37.66

5000 75.48 5.64 13.38 37.56

10000 73.6 5.45 13.50 37.64

50000 74.5 5.59 13.33 37.56

Numerically solving the obstacle problem for t → 0+ yields thresholds p∗s = 0.768 and
p∗b = 0.934 for down and up trends, respectively. Assuming no prior knowledge on the trend
of the market, we set p0 = 0.8 roughly in the middle of the two thresholds. A typical 20-year
sample path is given in Figure 4, in which for the prices Sr when we are long the stocks
according to our strategy (p(t) ∈ BR ∪NT after crossing p∗b from below) are marked in blue
and those when we are flat (p(t) ∈ SR∪NT after crossing p∗s from above) in red. We can see
that on this typical path the signals are quite effective in detecting the regime switching.

A natural trading strategy of using these signals is to buy stock in the beginning of an
up trend as signaled by pt crossing the upper threshold p∗b from below and switch to bond
when pt crosses the lower threshold p∗s from above. We simulate this trend following strategy
against the buy and hold strategy by using a large number of simulated paths. Again we use
p0 = 0.8. The average returns of the trend following (TF) strategy on one unit invested on
simulation paths are listed in Table 2 along with the average number of trades on each path.
We also list the average return of the buy and hold (BH) strategy for comparison.

Judging from the ratio TF/BH, the simulation tends to stabilize around 5000 rounds. We
run the 5000-round simulation 10 times and summarize the mean and standard deviation in
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Table 3
Statistics of 10 5000-round simulations.

TF BH No. of trades

Mean 74.6 5.72 37.55

Stdev 1.64 0.31 0.15

Table 4
Thresholds corresponding to different parameters.

λ1 λ2 μ1 μ2 σ ρ p∗s p∗b
0.36 2.53 0.18 −0.77 0.184 0.067 0.768 0.934

0.36 2.53 0.18 −0.77 0.184 0.062 0.761 0.931
0.36 2.53 0.18 −0.77 0.184 0.072 0.775 0.938

0.36 2.53 0.18 −0.77 0.174 0.067 0.762 0.936
0.36 2.53 0.18 −0.77 0.194 0.067 0.773 0.933

0.36 2.53 0.17 −0.71 0.184 0.067 0.774 0.935
0.36 2.53 0.19 −0.83 0.184 0.067 0.762 0.934

0.36 2 0.18 −0.77 0.184 0.067 0.769 0.935
0.36 3 0.18 −0.77 0.184 0.067 0.767 0.935
0.3 2.53 0.18 −0.77 0.184 0.067 0.767 0.934
0.42 2.53 0.18 −0.77 0.184 0.067 0.769 0.935

Table 5
Shifting the thresholds.

p∗s p∗b TF BH TF/BH No. of trades

0.75900 0.92500 74.407 5.6478 13.174 37.039
0.76300 0.92900 76.523 5.9231 12.919 37.139
0.76700 0.93300 75.467 5.8328 12.938 37.371
0.77100 0.93700 74.232 5.6367 13.169 37.648
0.77500 0.94100 75.986 5.5975 13.575 37.766
0.77900 0.94500 77.029 6.0613 12.708 37.923

Table 3, which confirms our observation.

These simulations show that the trend following strategy has a distinctive advantage over
the buy and hold strategy and is quite stable in both return and trading frequency. What
if the parameters are perturbed? It turns out that the thresholds are not sensitive to the
parameters as summarized in Table 4.

Next we test the robustness of the trend following trading strategy against the perturbation
of the thresholds. This is important because we are using the limits of the optimal thresholds
p∗s(·) and p∗b(·) as t→ 0+ to approximate them. We perturb the constant thresholds p∗s and p∗b
both by shifting and by altering the spreads. The results are summarized in Tables 5 and 6.

We can see from Table 5 that shifting the thresholds has little impact. Table 6 shows that
the average number of trades in the trend following trading strategy is inversely correlated to
the spreads of the thresholds. However, the relative advantage of the trend following strategy
over the buy and hold strategy is not sensitive to the perturbation of the thresholds.

In the tests discussed above, the trading cost K = 0.001 is fixed. Increasing K, the spread
of the optimal thresholds will also increase as indicated in Figure 3. Simulations summarized in
Table 6 indicate that this will reduce the trading frequency, which is consistent with intuition.
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Table 6
Changing the spreads of the thresholds.

p∗s p∗b TF BH TF/BH No. of trades

0.75900 0.94500 74.892 6.1736 12.131 34.148
0.76300 0.94100 73.561 5.4182 13.577 35.591
0.76700 0.93700 75.480 5.7035 13.234 36.743
0.77100 0.93300 77.059 6.0427 12.753 38.122
0.77500 0.92900 74.010 5.5380 13.364 39.861
0.77900 0.92500 76.442 5.7994 13.181 41.375

Table 7
Changing the trading cost.

K p∗s p∗b TF BH No. of trades

0.001 0.768 0.934 75.8 5.9 37.3
0.005 0.64 0.954 55.77 5.75 20.93
0.01 0.545 0.962 43.37 5.9 15.88
0.02 0.422 0.969 30.6 5.25 11.92

Table 8
Statistics of bull and bear markets.

Index λ1 λ2 μ1 μ2 σ1 σ2 σ

SP500 (62–08) 0.353 2.208 0.196 −0.616 0.135 0.211 0.173

DJIA (62–08) 0.36 2.53 0.18 −0.77 0.144 0.223 0.184

NASDAQ (91–08) 2.158 2.3 0.875 −1.028 0.273 0.35 0.31

Simulating 5000 rounds for each of the trading cost levels K = 0.005, 0.01, 0.02 shows that
the advantage of the trend following methods decreases as K increases as expected. However,
even at K = 0.02, the advantage is still quite obvious. The testing results are summarized in
Table 7.

The simulations convince us that the trend following trading system of using pt crossing
the constant thresholds p∗s and p∗b to detect the trend of the stock price movement in a regime
switching model is effective and robust.

4.3. Testing in stock markets. Does this trend following strategy work in real markets?
We test it on the historical data of the SP500, DJIA, and NASDAQ indices. The SP500 index
started active trading in 1962 and NASDAQ in 1991, and we test them up to the end of 2008.
We also test DJIA from 1962–2008.

First we need to determine the parameters. We regard a decline of more than 19% as a
bear market and a rally of 24% or more as a bull market. Statistics of bull and bear markets
for SP500 index and DJIA in the 47 years from 1962–2008 and NASDAQ from 1991–2008 (see
Tables 11, 12, and 13 in the appendix) are shown in Table 8. Here σ1 and σ2 are the average
annualized standard deviation corresponding to the bull and bear markets, respectively, and
σ = (σ1 + σ2)/2. Currently, retail discount brokers usually charge $2.5–10 per trade for
unlimited number of shares (e.g., Just2Trade $2.5 per trade, ScotTrade $7 per trade, ETrade
$10 per trade, and TDAmeritrade $10 per trade). For professional traders who deal with
clearing houses directly, trading a $100000 standard lot usually cost less than $1. Assuming
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Table 9
Thresholds for indices.

Index Lower thresholds Upper thresholds

SP500 σ1 0.69 0.91

SP500 σ2 0.74 0.90

DJIA σ1 0.74 0.94

DJIA σ2 0.78 0.93

NASDAQ σ1 0.43 0.69

NASDAQ σ2 0.45 0.67

$10 per trade for an account of size $10000, we choose K = 0.001 to simulate our strategy.
This is close to the actual cost for a typical individual investor now or for a professional trader
before the emergence of online discount brokers. We choose 10-year treasury bonds as the
alternative risk-free investment instrument and use the annual yield released on the Federal
Reserve Statistical Release web site [10]. This gives us an average yield of 6.7% per year from
1962–2008 and 5.4% from 1991–2008. However, to be more realistic we use the actual yield
(see Table 14 in the appendix) when holding the bonds. We also take advantage of knowing
σ1 and σ2 for the bull and bear markets. Solving the obstacle problems we derive for each
index two sets of thresholds corresponding to σ1 and σ2, respectively, as listed in Table 9.
Since when holding bonds and looking for a signal to switch to a stock position, we anticipate
entering a bull market whose volatility is better represented by σ1. Therefore, it is reasonable
to choose the upper threshold related to σ1. Similarly, for a signal to exit a stock position, we
should use the lower threshold corresponding to σ2. Thus, in conducting our test, we use the
boldfaced thresholds in Table 9.

The discussions so far are based on the raw index values. This is appropriate since when
pursuingmarket trend the raw price is what market agents can directly observe and react upon.
However, for a long investment horizon, we also need to consider the effect of dividend. In this
aspect the three indices are different. DJIA already includes dividend in its computation while
NASDAQ and SP500 do not. The dividend paid by companies listed on NASDAQ is small;
for example, the estimated 2009 average dividend for the 100 largest companies (who usually
pay more dividend compared to smaller ones) listed in NASDAQ is only 0.68% (see [15]).
Moreover, NASDAQ is tested for a shorter period of time. Thus, omitting dividend in the
test for the NASDAQ index does not skew the comparison much. This is not the case for the
SP500 index, which averages an annual dividend of about 2%. We use the annual dividend
compiled in [9] to compensate the raw gains for using the trend following strategy to trade
the SP500 index.

The testing results for trading the NASDAQ, SP500, and DJIA indices are summarized in
Table 10, and the trading details for the trend following strategy are contained in Tables 15,
16, and 17 in the appendix, respectively. Taking NASDAQ as an example, using our trend
following trading strategy, one dollar invested in the beginning of 1991 returns 8.82 at the
end of 2008. By comparison, one dollar invested in the NASDAQ index using the buy and
hold strategy in the same period returns only 4.24 while when invested in 10-year bonds it
returns 2.63. The stories for the SP500 and DJIA are similar.

The average percentage gains per trade listed in Table 10 indicate that there is room for
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Table 10
Testing results for trend following trading strategies. Legend: TF—trend following, BH—buy and hold,

and G—average % gain per trade.

Index (time frame) TF BH 10y bonds No. trades G

NASDAQ (1991–2008) 8.82 4.24 2.63 66 3.35

SP500 (1962–2008) 64.98 33.5 23.44 80 5.36

DJIA (1962–2008) 26.03 12.11 23.44 80 4.16

the trend following method to absorb a higher trading cost and still outperform the buy and
hold method. Using the NASDAQ test as an example, the same 66 trades with a trading
cost of 1% per trade, the total return of the trend following method will be 4.64, still higher
than the 4.24 from the buy and hold method. In theory, changing K to recalculate the buy
and sell thresholds will yield even better returns, and this is confirmed also by the simulation
reported in Table 7. However, this not the case here. In fact, using thresholds corresponding to
K = 0.01 to test the NASDAQ data, we get a total return of only 4.04 with 22 trades. On the
other hand, the same test with K = 0.0001 yields a total return of 10.8 with 130 trades. This
corresponds to an average gain of 1.847% per trade. Had a 0.001 trading cost been charged
on these same trades, we would have ended up with a total return of 9.5, which is higher
than the return of 8.82 tested with the “optimized” thresholds corresponding to K = 0.001.
Moreover, the relative advantage of the trend following method over the buy and hold method
in the testing results for the stock indices is not as good as those from the simulations in the
previous subsection. These indicate that the regime switching geometric Brownian motion
model with those parameter values is only an approximation of the real markets.

5. Conclusion. We show that under a regime switching model a trend following trading
system can be justified as an optimal trading strategy with a discounted reward function of
trading one share of stock with a fixed percentage transaction cost. The optimal trading strat-
egy has a simple implementable approximation. Extensive simulations and tests on historical
stock market data show that this “optimal” trend following trading strategy (using constant
thresholds p∗b(t) and p

∗
s(t)) significantly outperforms the buy and hold strategy and is robust

when parameters are perturbed. This investigation provides a useful theoretical framework
for the widely used trend following trading methods.

Appendix.

A.1. The smoothness of the free boundaries p∗
b(t) and p∗

s(t). By changing variables

y = log

(
p

p− 1

)
, w(y, t) = Z(p, t),

the double obstacle problem (2.9)–(2.11) becomes

min {max {−∂tw − L1w,w − (1 +K)} , w − (1−K)} = 0
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in (−∞,+∞)× [0, T ), with the terminal condition w(y, T ) = (1−K), where

L1 = (μ1 − μ2)2
2σ2

∂yy +

[(
μ1 − μ2 − λ2 + λ2 − (μ1 − μ2)2

2σ2

)
+

(μ1 − μ2)2
σ2

ey

ey + 1

]
∂y

+

(
μ1

ey

ey + 1
+ μ2

1

ey + 1
− ρ
)
.

To show the smoothness of the free boundaries, it suffices to verify the so-called cone property
(cf. [6, 27]):

(T − t) ∂tw + C∂yw ≥ 0,

with some constant C > 0, locally uniformly for y ∈ (−∞,+∞). For illustration,4 let us
restrict our attention to the region {(y, t) : 1−K < w(y, t) < 1+K}, in which −∂tw−L1w = 0.
Differentiating the above equation w.r.t. y, we have

(−∂t − L2) (∂yw) = ey

(ey + 1)2

(
(μ1 − μ2)2

σ2
∂yw + (μ1 − μ2)w

)

≥ ey

(ey + 1)2
(μ1 − μ2)(1 −K),

where L2 = L1 − (λ1e
y + λ2e

−y). On the other hand,

(−∂t − L2) ((T − t) ∂tw) =
[(
λ1e

y + λ2e
−y
)
(T − t) + 1

]
∂tw.

It is easy to see that ∂tw is uniformly bounded and ey

(ey+1)2 has a local positive lower bound.

By using the auxiliary function ψ(y, t; y0) = eC1t(y− y0)2, with some positive constant C1, as
adopted in [6, 27], we can infer from the maximum principle that

(T − t) ∂tw + C∂yw + ψ(y, t; y0) ≥ 0

for an appropriate C > 0. The desired result follows by taking y = y0.

4A rigorous proof needs the use of a penalization method (cf. [12]).
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A.2. Statistics for bull and bear markets of NASDAQ, SP500, and DJIA indices.

Table 11
Statistics of NASDAQ bull and bear markets ( 1991–2009).

Top/bottom Index % Move Mean Stdev Duration

08/22/1990 374.84

07/20/1998 2014.25 4.37362608 0.000841593 0.009228481 1998

10/08/1998 1419.12 −0.295459849 −0.005991046 0.024869575 57

03/10/2000 5048.62 2.557570889 0.003450954 0.018083041 358

04/04/2001 1638.8 −0.675396445 −0.004165933 0.032639469 269

05/22/2001 2313.85 0.411917257 0.00953807 0.031383788 33

09/21/2001 1423.19 −0.384925557 −0.005883363 0.020987512 81

01/04/2002 2059.38 0.447016913 0.004609728 0.020812769 72

10/09/2002 1114.11 −0.45900708 −0.003144999 0.021500913 192

01/26/2004 2153.83 0.933229214 0.001980534 0.015351658 325

08/12/2004 1752.49 −0.186337826 −0.00138275 0.011873996 138

10/31/2007 2859.12 0.63146152 0.000581948 0.008861377 811

03/09/2009 1268.64 −0.556283052 −0.002345953 0.024687197 339

Table 12
Statistics of SP500 bull and bear markets ( 1962–2009).

Top/bottom Index % Move Mean Stdev Duration

01/03/1962 71.13

06/26/1962 52.32 −0.264445382 −0.002538268 0.011710656 121

02/09/1966 94.06 0.797782875 0.000639029 0.005328904 913

10/07/1966 73.2 −0.221773336 −0.001460123 0.007778645 167

11/29/1968 108.37 0.480464481 0.000736578 0.005908178 516

05/26/1970 69.29 −0.360616407 −0.00119353 0.007244905 369

01/11/1973 120.24 0.735315341 0.000806951 0.00682808 665

10/03/1974 62.28 −0.482035928 −0.001489909 0.011230379 436

09/21/1976 107.83 0.731374438 0.001067083 0.010019283 497

03/06/1978 86.9 −0.194101827 −0.000549579 0.00600745 366

11/28/1980 140.52 0.61703107 0.00068538 0.008509688 691

08/12/1982 102.6 −0.269854825 −0.000728014 0.008772591 430

08/25/1987 336.77 2.282358674 0.000932206 0.00905962 1274

12/04/1987 223.92 −0.335095169 −0.005525613 0.035700189 71

07/16/1990 368.95 0.647686674 0.000747921 0.009679323 659

10/11/1990 295.46 −0.199186882 −0.003455122 0.012748722 62

07/17/1998 1186.75 3.016618155 0.000699894 0.007671028 1962

08/31/1998 957.28 −0.193360017 −0.006642962 0.017942563 31

03/24/2000 1527.46 0.595625104 0.001002091 0.013475437 395

10/09/2002 776.76 −0.491469498 −0.001059809 0.014432882 637

10/05/2007 1557.59 1.005239714 0.000531502 0.008593452 1256

03/09/2009 676.53 −0.565655917 −0.001833476 0.023888376 357
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Table 13
Statistics of DJIA bull and bear markets ( 1962–2009).

Top/bottom Index % Move Mean Stdev Duration

01/02/1962 724.7

06/26/1962 535.7 −0.260797571 −0.002476914 0.010625788 122

02/09/1966 995.2 0.857756207 0.000674868 0.005654829 914

10/07/1966 744.3 −0.252110129 −0.00170399 0.007878357 167

12/03/1968 985.2 0.323659815 0.000525586 0.006114526 519

05/26/1970 631.2 −0.359317905 −0.001204596 0.007520823 367

01/11/1973 1051.7 0.666191381 0.000742507 0.007302779 665

12/06/1974 577.6 −0.450793953 −0.001389029 0.012603452 481

09/21/1976 1014.8 0.756925208 0.0012054 0.009654537 453

02/28/1978 742.1 −0.268722901 −0.000804275 0.006918213 363

04/27/1981 1024 0.379867942 0.0003929 0.008882315 797

08/12/1982 776.9 −0.241308594 −0.00082839 0.008056537 328

08/25/1987 2722.42 2.504209036 0.000983971 0.009436921 1273

10/19/1987 1738.74 −0.361325585 −0.011256546 0.043065972 38

07/17/1990 2999.75 0.725243567 0.000416497 0.015688021 693

10/11/1990 2365.1 −0.211567631 −0.00383401 0.013142105 61

07/17/1998 9337.97 2.948234747 0.000690436 0.007984466 1962

08/31/1998 7539.07 −0.192643583 −0.006654443 0.016969817 31

01/14/2000 11722.98 0.554963676 0.001079512 0.012092007 347

10/09/2002 7286.27 −0.378462643 −0.000675652 0.014062882 685

10/09/2007 14164.53 0.944002899 0.000504876 0.008380232 1258

03/09/2009 6547.05 −0.537785581 −0.002149751 0.021943976 355

A.3. Yield for 10-year US treasury bonds. Table 14 summarizes the annual yield of
10-year US treasury bonds as released on the Federal Reserve Statistical Release web site [10].

Table 14
Yield of 10-year bonds ( 1962–2008).

Year Yield Year Yield Year Yield

1962 3.95 1978 8.41 1994 7.09

1963 4 1979 9.43 1995 6.57

1964 4.19 1980 11.43 1996 6.44

1965 4.28 1981 13.92 1997 6.35

1966 4.93 1982 13.01 1998 5.26

1967 5.07 1983 11.1 1999 5.65

1968 5.64 1984 12.46 2000 6.03

1969 6.67 1985 10.62 2001 5.02

1970 7.35 1986 7.67 2002 4.61

1971 6.16 1987 8.39 2003 4.01

1972 6.21 1988 8.85 2004 4.27

1973 6.85 1989 8.49 2005 4.29

1974 7.56 1990 8.55 2006 4.8

1975 7.99 1991 7.86 2007 4.63

1976 7.61 1992 7.01 2008 3.66

1977 7.42 1993 5.87
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A.4. Transactions for the trend following strategy on NASDAQ, SP500, and DJIA
indices.

Table 15
NASDAQ investment test ( 1991–2008).

Symbol Buy date Buy price Sell date Sell price Gain

Bond 01/02/1991 1 01/23/1991 1.004522 1.004522

COMPQX 01/23/1991 383.91 06/24/1991 475.23 1.235393

Bond 06/24/1991 1 08/13/1991 1.010767 1.010767

COMPQX 08/13/1991 514.4 03/27/1992 604.67 1.173135

Bond 03/27/1992 1 09/14/1992 1.032841 1.032841

COMPQX 09/14/1992 594.21 10/05/1992 565.21 0.9492933

Bond 10/05/1992 1 11/05/1992 1.005954 1.005954

COMPQX 11/05/1992 614.08 02/16/1993 665.39 1.081389

Bond 02/16/1993 1 05/26/1993 1.015921 1.015921

COMPQX 05/26/1993 704.09 11/22/1993 738.13 1.046249

Bond 11/22/1993 1 08/24/1994 1.053418 1.053418

COMPQX 08/24/1994 751.72 11/22/1994 741.21 0.9840468

Bond 11/22/1994 1 02/09/1995 1.01422 1.01422

COMPQX 02/09/1995 785.44 10/04/1995 1002.27 1.27351

Bond 10/04/1995 1 02/01/1996 1.021173 1.021173

COMPQX 02/01/1996 1069.46 06/18/1996 1183.08 1.104028

Bond 06/18/1996 1 09/13/1996 1.01535 1.01535

COMPQX 09/13/1996 1188.67 02/27/1997 1312.66 1.102101

Bond 02/27/1997 1 05/02/1997 1.011134 1.011134

COMPQX 05/02/1997 1305.33 10/27/1997 1535.09 1.173665

Bond 10/27/1997 1 02/02/1998 1.014123 1.014123

COMPQX 02/02/1998 1652.89 05/26/1998 1778.09 1.073595

Bond 05/26/1998 1 06/24/1998 1.004179 1.004179

COMPQX 06/24/1998 1877.76 08/03/1998 1851.1 0.9838306

Bond 08/03/1998 1 11/04/1998 1.013402 1.013402

COMPQX 11/04/1998 1823.57 05/25/1999 2380.9 1.303015

Bond 05/25/1999 1 06/18/1999 1.003715 1.003715

COMPQX 06/18/1999 2563.44 08/04/1999 2540 0.9888744

Bond 08/04/1999 1 08/24/1999 1.003096 1.003096

COMPQX 08/24/1999 2752.37 10/18/1999 2689.15 0.9750766

Bond 10/18/1999 1 10/28/1999 1.001548 1.001548

COMPQX 10/28/1999 2875.22 04/03/2000 4223.68 1.466056

Bond 04/03/2000 1 07/12/2000 1.016521 1.016521

COMPQX 07/12/2000 4099.59 07/27/2000 3842.23 0.9353486

Bond 07/27/2000 1 08/31/2000 1.005782 1.005782

COMPQX 08/31/2000 4206.35 09/08/2000 3978.41 0.9439188

Bond 09/08/2000 1 05/02/2001 1.032458 1.032458

COMPQX 05/02/2001 2220.6 05/11/2001 2107.43 0.9471381

Bond 05/11/2001 1 05/21/2001 1.001375 1.001375

COMPQX 05/21/2001 2305.59 05/30/2001 2084.5 0.9022987

Bond 05/30/2001 1 10/25/2001 1.020355 1.020355

COMPQX 10/25/2001 1775.47 10/29/2001 1699.52 0.9553082

Bond 10/29/2001 1 11/06/2001 1.0011 1.0011

COMPQX 11/06/2001 1835.08 02/04/2002 1855.53 1.009122
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NASDAQ investment test ( 1991–2008) (continued).

Symbol Buy date Buy price Sell date Sell price Gain

Bond 02/04/2002 1 11/01/2002 1.034101 1.034101

COMPQX 11/01/2002 1360.7 01/27/2003 1325.27 0.9720141

Bond 01/27/2003 1 03/17/2003 1.005383 1.005383

COMPQX 03/17/2003 1392.27 02/23/2004 2007.52 1.43902

Bond 02/23/2004 1 04/05/2004 1.004913 1.004913

COMPQX 04/05/2004 2079.12 04/16/2004 1995.74 0.9579766

Bond 04/16/2004 1 10/01/2004 1.019654 1.019654

COMPQX 10/01/2004 1942.2 01/20/2005 2045.88 1.051276

Bond 01/20/2005 1 05/23/2005 1.014457 1.014457

COMPQX 05/23/2005 2056.65 09/21/2005 2106.64 1.022258

Bond 09/21/2005 1 11/11/2005 1.005994 1.005994

COMPQX 11/11/2005 2202.47 05/11/2006 2272.7 1.029823

Bond 05/11/2006 1 09/05/2006 1.015386 1.015386

COMPQX 09/05/2006 2205.7 02/27/2007 2407.86 1.08947

Bond 02/27/2007 1 07/12/2007 1.017125 1.017125

COMPQX 07/12/2007 2701.73 07/26/2007 2599.34 0.9601779

Bond 07/26/2007 1 09/26/2007 1.007865 1.007865

COMPQX 09/26/2007 2699.03 11/09/2007 2627.94 0.9717135

Bond 11/09/2007 1 04/24/2008 1.016746 1.016746

COMPQX 04/24/2008 2428.92 06/11/2008 2394.01 0.9836561

Bond 06/11/2008 1 08/11/2008 1.006117 1.006117

COMPQX 08/11/2008 2439.95 09/03/2008 2333.73 0.9545534

Bond 09/03/2008 1 12/31/2008 1.011933 1.011933

Table 16
SP500 investment test ( 1962–2008).

Symbol Buy date Buy price Sell date Sell price Gain Dividend

Bond 01/03/1962 1 11/12/1962 1.033873 1.033873

SP500 11/12/1962 59.59 06/09/1965 85.04 1.424231 0.085

Bond 06/09/1965 1 09/10/1965 1.010905 1.010905

SP500 09/10/1965 89.12 03/02/1966 89.15 0.998336 0.021

Bond 03/02/1966 1 11/16/1966 1.034983 1.034983

SP500 11/16/1966 82.37 11/03/1967 91.78 1.112012 0.033

Bond 11/03/1967 1 04/03/1968 1.023487 1.023487

SP500 04/03/1968 93.47 01/07/1969 101.22 1.080748 0.023

Bond 01/07/1969 1 05/05/1969 1.021563 1.021563

SP500 05/05/1969 104.37 06/09/1969 101.2 0.967688 0.003

Bond 06/09/1969 1 08/24/1970 1.088804 1.088804

SP500 08/24/1970 80.99 06/22/1971 97.59 1.202554 0.028

Bond 06/22/1971 1 09/03/1971 1.01232 1.01232

SP500 09/03/1971 100.69 10/20/1971 95.65 0.9480455 0.004

Bond 10/20/1971 1 12/17/1971 1.009789 1.009789

SP500 12/17/1971 100.26 02/27/1973 110.9 1.103912 0.034

Bond 02/27/1973 1 07/24/1973 1.027588 1.027588

SP500 07/24/1973 108.14 08/13/1973 103.71 0.9571165 0.002

Bond 08/13/1973 1 10/05/1973 1.009947 1.009947

SP500 10/05/1973 109.85 11/14/1973 102.45 0.9307701 0.004

Bond 11/14/1973 1 03/13/1974 1.024648 1.024648

SP500 03/13/1974 99.74 03/28/1974 94.82 0.9487704 0.002
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SP500 investment test ( 1962–2008) (continued).

Symbol Buy date Buy price Sell date Sell price Gain Dividend

Bond 03/28/1974 1 01/10/1975 1.063044 1.063044

SP500 01/10/1975 72.61 08/04/1975 87.15 1.197847 0.023

Bond 08/04/1975 1 10/13/1975 1.015323 1.015323

SP500 10/13/1975 89.46 04/06/1977 97.91 1.092267 0.063

Bond 04/06/1977 1 04/14/1978 1.085943 1.085943

SP500 04/14/1978 92.92 10/20/1978 97.95 1.052024 0.028

Bond 10/20/1978 1 01/12/1979 1.021702 1.021702

SP500 01/12/1979 99.93 10/22/1979 100.71 1.00579 0.043

Bond 10/22/1979 1 11/26/1979 1.009043 1.009043

SP500 11/26/1979 106.8 03/17/1980 102.26 0.9555756 0.015

Bond 03/17/1980 1 05/23/1980 1.020981 1.020981

SP500 05/23/1980 110.62 08/27/1981 123.51 1.114292 0.067

Bond 08/27/1981 1 11/03/1981 1.025933 1.025933

SP500 11/03/1981 124.8 11/16/1981 120.24 0.9615346 0.002

Bond 11/16/1981 1 04/23/1982 1.056317 1.056317

SP500 04/23/1982 118.64 05/26/1982 113.11 0.9514816 0.005

Bond 05/26/1982 1 08/20/1982 1.030654 1.030654

SP500 08/20/1982 113.02 02/08/1984 155.85 1.376202 0.067

Bond 02/08/1984 1 08/02/1984 1.060081 1.060081

SP500 08/02/1984 157.99 09/17/1985 181.36 1.145625 0.047

Bond 09/17/1985 1 11/05/1985 1.014257 1.014257

SP500 11/05/1985 192.37 10/16/1987 282.7 1.466625 0.071

Bond 10/16/1987 1 02/29/1988 1.032975 1.032975

SP500 02/29/1988 267.82 08/06/1990 334.43 1.246214 0.089

Bond 08/06/1990 1 12/03/1990 1.027875 1.027875

SP500 12/03/1990 324.1 01/09/1991 311.49 0.95917 0.004

Bond 01/09/1991 1 01/18/1991 1.001938 1.001938

SP500 01/18/1991 332.23 03/30/1994 445.55 1.338407 0.096

Bond 03/30/1994 1 08/24/1994 1.028554 1.028554

SP500 08/24/1994 469.03 07/15/1996 629.8 1.340086 0.045

Bond 07/15/1996 1 08/22/1996 1.006705 1.006705

SP500 08/22/1996 670.68 08/31/1998 957.28 1.424473 0.032

Bond 08/31/1998 1 09/23/1998 1.003314 1.003314

SP500 09/23/1998 1066.09 10/01/1998 986.39 0.9233904 0.000

Bond 10/01/1998 1 10/22/1998 1.003026 1.003026

SP500 10/22/1998 1078.48 08/10/1999 1281.43 1.185805 0.009

Bond 08/10/1999 1 08/25/1999 1.002322 1.002322

SP500 08/25/1999 1381.79 08/30/1999 1324.02 0.9562755 0.000

Bond 08/30/1999 1 10/28/1999 1.009133 1.009133

SP500 10/28/1999 1342.44 10/11/2000 1364.59 1.014467 0.012

Bond 10/11/2000 1 10/31/2000 1.003304 1.003304

SP500 10/31/2000 1429.4 11/10/2000 1365.98 0.9537205 0.000

Bond 11/10/2000 1 01/23/2001 1.010177 1.010177

SP500 01/23/2001 1360.4 02/20/2001 1278.94 0.9382402 0.001

Bond 02/20/2001 1 05/16/2001 1.01169 1.01169

SP500 05/16/2001 1284.99 06/18/2001 1208.43 0.938539 0.001

Bond 06/18/2001 1 11/19/2001 1.02118 1.02118

SP500 11/19/2001 1151.06 07/22/2002 819.85 0.7108319 0.012

Bond 07/22/2002 1 07/29/2002 1.000884 1.000884

SP500 07/29/2002 898.96 09/24/2002 819.29 0.9095526 0.003
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SP500 investment test ( 1962–2008) (continued).

Symbol Buy date Buy price Sell date Sell price Gain Dividend

Bond 09/24/2002 1 10/11/2002 1.002147 1.002147

SP500 10/11/2002 835.32 01/18/2008 1325.19 1.583273 0.096

Bond 01/18/2008 1 03/18/2008 1.006016 1.006016

SP500 03/18/2008 1330.74 07/07/2008 1252.31 0.9391808 0.009

Bond 07/07/2008 1 08/08/2008 1.003209 1.003209

SP500 08/08/2008 1296.31 10/09/2008 909.92 0.700527 0.005

Bond 10/09/2008 1 10/30/2008 1.002106 1.002106

SP500 10/30/2008 954.09 12/31/2008 903.25 0.9467136 0.005

Table 17
DJIA investment test ( 1962–2008).

Symbol Buy date Buy price Sell date Sell price Gain

DJ-30 11/02/1962 604.6 07/22/1963 688.7 1.136822

Bond 07/22/1963 1 09/24/1963 1.007014 1.007014

DJ-30 09/24/1963 746 11/22/1963 711.5 0.9518458

Bond 11/22/1963 1 12/05/1963 1.001425 1.001425

DJ-30 12/05/1963 763.9 06/09/1965 879.8 1.149418

Bond 06/09/1965 1 09/16/1965 1.011609 1.011609

DJ-30 09/16/1965 931.2 03/01/1966 938.2 1.005502

Bond 03/01/1966 1 01/12/1967 1.044033 1.044033

DJ-30 01/12/1967 830 10/31/1967 879.7 1.05776

Bond 10/31/1967 1 04/08/1968 1.024723 1.024723

DJ-30 04/08/1968 884.4 01/08/1969 921.3 1.03964

Bond 01/08/1969 1 05/06/1969 1.021563 1.021563

DJ-30 05/06/1969 962.1 06/06/1969 924.8 0.9593082

Bond 06/06/1969 1 07/17/1970 1.081756 1.081756

DJ-30 07/17/1970 735.1 06/21/1971 876.5 1.18997

Bond 06/21/1971 1 09/07/1971 1.013164 1.013164

DJ-30 09/07/1971 916.5 10/18/1971 872.4 0.9499784

Bond 10/18/1971 1 12/29/1971 1.012151 1.012151

DJ-30 12/29/1971 893.7 02/07/1973 968.3 1.081306

Bond 02/07/1973 1 07/25/1973 1.031529 1.031529

DJ-30 07/25/1973 933 08/10/1973 892.4 0.9545715

Bond 08/10/1973 1 09/24/1973 1.008445 1.008445

DJ-30 09/24/1973 936.7 11/14/1973 869.9 0.9268284

Bond 11/14/1973 1 02/27/1974 1.021748 1.021748

DJ-30 02/27/1974 863.4 07/08/1974 770.6 0.8907329

Bond 07/08/1974 1 01/09/1975 1.040497 1.040497

DJ-30 01/09/1975 645.3 08/05/1975 810.2 1.253029

Bond 08/05/1975 1 10/13/1975 1.015104 1.015104

DJ-30 10/13/1975 837.8 10/12/1976 932.4 1.110689

Bond 10/12/1976 1 12/24/1976 1.01522 1.01522

DJ-30 12/24/1976 996.1 02/08/1977 942.2 0.9439972

Bond 02/08/1977 1 04/14/1978 1.099077 1.099077

DJ-30 04/14/1978 795.1 10/26/1978 821.1 1.030635

Bond 10/26/1978 1 01/15/1979 1.020927 1.020927

DJ-30 01/15/1979 848.7 10/19/1979 814.7 0.9580188

Bond 10/19/1979 1 01/10/1980 1.025992 1.025992
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DJIA investment test ( 1962–2008) (continued).

Symbol Buy date Buy price Sell date Sell price Gain

DJ-30 01/10/1980 858.9 03/10/1980 818.9 0.9515219

Bond 03/10/1980 1 05/20/1980 1.022234 1.022234

DJ-30 05/20/1980 832.5 12/11/1980 908.5 1.089109

Bond 12/11/1980 1 01/05/1981 1.009534 1.009534

DJ-30 01/05/1981 992.7 07/21/1981 934.5 0.9394892

Bond 07/21/1981 1 04/23/1982 1.098377 1.098377

DJ-30 04/23/1982 862.2 05/28/1982 819.5 0.9485745

Bond 05/28/1982 1 08/17/1982 1.028872 1.028872

DJ-30 08/17/1982 831.2 02/03/1984 1197 1.437206

Bond 02/03/1984 1 08/02/1984 1.061788 1.061788

DJ-30 08/02/1984 1166.1 10/16/1987 2246.74 1.92286

Bond 10/16/1987 1 02/29/1988 1.032975 1.032975

DJ-30 02/29/1988 2071.62 08/06/1990 2716.34 1.308593

Bond 08/06/1990 1 12/05/1990 1.028344 1.028344

DJ-30 12/05/1990 2610.4 01/09/1991 2470.3 0.9444374

Bond 01/09/1991 1 01/18/1991 1.001938 1.001938

DJ-30 01/18/1991 2646.78 03/30/1994 3626.75 1.367509

Bond 03/30/1994 1 08/24/1994 1.028554 1.028554

DJ-30 08/24/1994 3846.73 08/31/1998 7539.07 1.955945

Bond 08/31/1998 1 10/15/1998 1.006485 1.006485

DJ-30 10/15/1998 8299.36 02/25/2000 9862.12 1.185922

Bond 02/25/2000 1 03/16/2000 1.003304 1.003304

DJ-30 03/16/2000 10630.6 10/12/2000 10034.58 0.9420457

Bond 10/12/2000 1 12/05/2000 1.008921 1.008921

DJ-30 12/05/2000 10898.72 03/22/2001 9389.48 0.8597984

Bond 03/22/2001 1 04/05/2001 1.001925 1.001925

DJ-30 04/05/2001 9918.05 07/10/2001 10175.64 1.02392

Bond 07/10/2001 1 11/14/2001 1.017467 1.017467

DJ-30 11/14/2001 9823.61 07/22/2002 7784.58 0.7908509

Bond 07/22/2002 1 07/29/2002 1.000884 1.000884

DJ-30 07/29/2002 8711.88 09/24/2002 7683.13 0.8801503

Bond 09/24/2002 1 10/11/2002 1.002147 1.002147

DJ-30 10/11/2002 7850.29 02/12/2003 7758.17 0.9862888

Bond 02/12/2003 1 03/17/2003 1.003626 1.003626

DJ-30 03/17/2003 8141.92 04/15/2005 10087.51 1.236482

Bond 04/15/2005 1 11/11/2005 1.024682 1.024682

DJ-30 11/11/2005 10686.04 01/22/2008 11971.19 1.118024

Bond 01/22/2008 1 03/18/2008 1.005615 1.005615

DJ-30 03/18/2008 12392.66 06/26/2008 11453.42 0.9223616

Bond 06/26/2008 1 08/28/2008 1.006317 1.006317

DJ-30 08/28/2008 11715.18 09/04/2008 11188.23 0.9531099

Bond 09/04/2008 1 09/30/2008 1.002607 1.002607

DJ-30 09/30/2008 10850.66 10/06/2008 9955.5 0.9156668

Bond 10/06/2008 1 12/31/2008 1.008624 1.008624
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Abstract. In this paper we consider the optimal stopping problem for general dynamic monetary utility func-
tionals. Sufficient conditions for the Bellman principle and the existence of optimal stopping times
are provided. Particular attention is paid to representations which allow for a numerical treatment
in real situations. To this aim, generalizations of standard evaluation methods like policy iteration
and dual and consumption based approaches are developed in the context of general dynamic mon-
etary utility functionals. As a result, it turns out that the possibility of a particular generalization
depends on specific properties of the utility functional under consideration.
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1. Introduction. Dynamic monetary utility functionals, or DMU functionals for short, can
be seen as generalizations of the ordinary conditional expectation, the usual functional which
is to be maximized in standard stopping problems, which occur, for instance, in the theory of
pricing of American (Bermudan) options in a complete market. It is well known that in an
incomplete market the price of an American option is determined by the so-called upper and
lower Snell envelopes which in turn are obtained via optimal stopping of the reward process
w.r.t. two particular mutually conjugate DMU functionals (cf., e.g., [17]). From an economic
point of view, DMU functionals may be seen as representations of dynamic preferences in
terms of utilities of financial investors.

By changing sign, a DMU functional becomes a dynamic risk measure (e.g., in [25]) which
represents preferences in terms of losses instead of utilities in fact. Therefore, technically,
the study of DMU functionals is basically equivalent to the study of dynamic risk measures,
which became a growing field of research in recent years. A realistic dynamic risk assessment
of financial positions should allow for updating as time evolves, taking into account new in-
formation. The notion of dynamic risk measures has been established to provide a proper
framework (cf., e.g., [3], [10], [12], [13], [16]). It is based on an axiomatic characterization
extending the classical axioms for the concept of one-period risk measures in [2] to the dy-
namic multiperiod setting. From the very beginning one crucial issue was to find reasonable
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conditions of mutual relationships between the risk functionals, so-called dynamic consistency,
leading to different concepts (cf., e.g., [3], [10], [12], [13], [35], [34], [38], [39]). The most used
one is often called strong time consistency, and it is linked with a technical condition for dy-
namic risk measures known as recursiveness. This condition will play an important technical
role in our investigations.

Recently, DMU functionals (being dynamic risk measures with changed sign) have been
incorporated into different topics, such as, for example, the dynamics of indifference prices
(see [25], [11]) and the pricing of derivatives in incomplete financial markets (cf., e.g., [35], [17],
[32]). In this respect we want to emphasize the contributions in [17], [32] as being the starting
point of this paper. There the superhedging of American options is analyzed as solutions of
optimal stopping problems in the context of coherent DMU functionals. We want to extend
these considerations to more general monetary utility functionals. For instance, we will not
necessarily assume translation invariance, which has recently been questioned as a suitable
condition for risk assessment since it tacitly supposes certainty on discounting factors by the
investors (cf. [15]).

Within a time discrete setting we shall look for a set of conditions for DMU functionals
which is as minimal as possible in a sense, while keeping the presentation compact and such
that solutions for the related optimal stopping problems may be guaranteed. For classical
stopping problems w.r.t. ordinary conditional expectations the starting point for any solu-
tion representation is the Bellman principle. This suggests investigating when the Bellman
principle holds for the general optimal stopping problems. The above-mentioned condition of
recursiveness in connection with a specific regularity condition will turn out to be sufficient.

Beyond the considerations of the general optimal stopping, the main contribution of this
paper is the development of iterative methods and other representations for solving them.
Based on these methods we naturally construct simulation based solution algorithms which
allow for solving such stopping problems in practice. In contrast, meanwhile, to industrial
standard approaches for Bermudan options, and hence the ordinary stopping problem in
discrete time (see, among others, [1], [8], [26], [28], [37]), we have not seen yet a comprehensive
generic approach for treating generalized optimal stopping problems numerically. In this
respect this paper intends to be a first step in this direction.

This paper is organized as follows. In section 2 the concept of DMU functionals is intro-
duced. In section 3 we investigate the Bellman principle and the existence of optimal stopping
strategies. In section 4 a generalization of the policy iteration method of [26] is presented.
Section 5, section 6, and section 7 generalize, respectively, the additive dual method of [33],
[20], the multiplicative dual of [22], and the consumption based approach in [4], [5]. In sec-
tion 8 we shall provide a simulation setting to utilize the results of sections 4, 5, 6, and 7 to
construct approximations to the optimal values of the investigated stopping problems. More
technical proofs are given in the appendix.

2. Dynamic monetary utility functionals. Let
(
Ω, (Ft)t∈{0,...,T},F ,P

)
be a filtered prob-

ability space with {0, 1}-valued P |F0, and let X be a real vector subspace of L0(Ω,F ,P)
containing the indicator mappings 1A of subsets A ∈ F . It is assumed that for any X ∈ X
and A ∈ F it holds that 1AX ∈ X. Moreover, X ∧ Y ∈ X, and X ∨ Y ∈ X is valid for any
X,Y ∈ X. Hence, in particular, X is a vector lattice.

A family of mappings Φ := (Φt)t∈{0,...,T} with Φt : X→ X ∩ L0(Ω,Ft,P) being monotone,
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i.e., Φt(X) ≤ Φt(Y ) for X,Y ∈ X with X ≤ Y P-a.s., is called a dynamic monetary utility
functional or DMU functional for short.

We say that (Φt)t∈{0,...,T} is recursively generated if there is some family (Ψt)t∈{0,...,T} of
mappings Ψt : X ∩ L0(Ω,Ft+1,P)→ X ∩ L0(Ω,Ft,P) with FT+1 := F such that

ΨT = ΦT , and Φt = Ψt ◦Φt+1 for t = 0, . . . , T − 1.

In this case the mappings Ψt will be given the name generators of (Φt)t∈{0,...,T}.
Let us introduce some further notation. Henceforth Tt will stand for the set of finite

stopping times τ with τ ≥ t P-a.s., whereas H will denote the set of adapted processes
Z := (Zt)t∈{0,...,T} such that Zt ∈ X ∩ L0(Ω,Ft,P) for t ∈ {0, . . . , T}.

The following conditions on (Φt)t∈{0,...,T} will play an important role in the context of
optimal stopping of DMU functionals studied later.
(C1) Φt(X) ≤ Φt(Y ) P-a.s. for t ∈ {0, . . . , T − 1}, and X,Y ∈ X with Φt+1(X) ≤ Φt+1(Y )

P-a.s. (time consistency).
(C2) Φt(1AX) = 1AΦt(X) P-a.s. for t ∈ {0, . . . , T}, A ∈ Ft, and X ∈ X (regularity).
(C3) Φt(X + Y ) = Φt(X) + Y P-a.s. for t ∈ {0, . . . , T}, and X,Y ∈ X with Y being

Ft-measurable (conditional translation invariance).
(C4) Φt = Φt ◦Φt+1 P-a.s. for t ∈ {0, . . . , T − 1} (recursiveness).
(C5) Φt(0) = 0 P-a.s. for t ∈ {0, . . . , T} (normalization).
(C6) Φt(Y X) = YΦt(X) P-a.s. for t ∈ {0, . . . , T}, X ∈ X, and Y ∈ X ∩ L0(Ω,Ft,P) with

Y ≥ 0 P-a.s. as well as XY ∈ X (conditional positive homogeneity).
(C7) For each X ∈ X with X ≥ 0 P-a.s. there exists a function g : [0,∞) → R+ such that

limε↓0 g(ε) = 0, and

(2.1) Φt (X ∨ ε) ≤ Φt (X) + g(ε) for t ∈ {0, . . . , T}.

Remark 2.1. The construction of DMU functionals via generators opens up the possibility
of obtaining functionals with desired properties by just imposing them on the generators.

In this paper we frequently use one of the following implications. Their proofs are simple
and therefore omitted.

• Recursiveness implies that (Φt)t∈{0,...,T} is recursively generated, where the generators
are the restrictions Φt|X ∩ L0(Ω,Ft+1,P) for t = 0, . . . , T .

• Let (Φt)t∈{0,...,T} be recursively generated by (Ψt)t∈{0,...,T}. Then the following hold:
– If Φt(X) = X P-a.s. for t ∈ {0, . . . , T} andX ∈ X∩L0(Ω,Ft,P), then (Φt)t∈{0,...,T}

is recursive.
– If Ψt(X) = X P-a.s. for t ∈ {0, . . . , T} andX ∈ X∩L0(Ω,Ft,P), then (Φt)t∈{0,...,T}

is recursive.
– If for any X ∈ X and A ∈ Ft it holds that Ψt(1AX) = 1AΨt(X), then Φ is regular.

Example 2.2. The functional Φ given by the conditional expectations Φt := E[· | Ft],
defined on X := L1(Ω,F ,P), is a basic example for a DMU functional. It satisfies all of the
conditions (C1)–(C7).

It is natural to generalize the usual martingale concept to the notion of “Φ-martingale”
for a given DMU functional Φ as defined below. The notion of Φ-martingales will be used for
different representations of optimal stopping problems in sections 5 and 6.
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Definition 2.3. M := (Mt)t∈{0,...,T} ∈ H is said to be a Φ-martingale if Φt(Mt+1) = Mt

P-a.s. for every t ∈ {0, . . . , T − 1}. Note that for recursive Φ, M ∈ H is a Φ-martingale if
and only if Φt(Ms) =Mt P-a.s. for every s, t ∈ {0, . . . , T − 1} with s > t.

Let us discuss some further examples of DMU functionals. First of all we want to consider
the relationship with the so-called dynamic risk measures.

Remark 2.4. DMU functionals may be viewed as generalizations of dynamic risk measures.
Recall that a family (ρt)t∈{0,...,T} is a dynamic risk measure if and only if (−ρt)t∈{0,...,T} is a
conditionally translation invariant monetary utility functional. The property of translation
invariance suggests restricting considerations to normalized functionals because for a trans-
lation invariant Φ we have Φt(X − Φt(X)) = 0. In the normalized case it then holds that
Φt(Y ) = Y P-a.s. for every t ∈ {0, . . . , T} and any Y ∈ X ∩ L0(Ω,Ft,P), and in view of
Remark 2.1, Φ is recursively generated if and only if it is recursive.

We shall call a normalized conditional translation invariant Φ convex/concave if the map-
pings Φt (t ∈ {0, . . . , T}) are simultaneously convex/concave. If Φ is convex/concave, then

Φt : X→ X ∩ L0(Ω,Ft,P), X �→ −Φt(−X),

defines a concave/convex normalized conditional translation invariant DMU functional called
the conjugate of Φ. The conditions of recursiveness and regularity are satisfied by Φ if and
only if its conjugate Φ fulfills them. Conditional translation invariance of convex/concave Φ
implies the regularity condition for the restriction of Φ to X∩L∞(Ω,F ,P) (cf. [25], where this
restriction is essential for the proof). Moreover, regularity is even valid on the entire space X
if limn→∞Φt ((X − n)+) = 0 P-a.s. for every t ∈ {0, . . . , T} and any nonnegative X ∈ X.
Indeed, one may conclude from Lemma 6.5 along with Proposition 6.6 in [27] that

Φt(X) = ess inf
m∈N

ess sup
n∈N

Φt(X
+ ∧ n−X− ∧m)

holds for t ∈ {0, . . . , T} and X ∈ X.
In the context of dynamic risk measures the property of recursiveness plays an important

role. On the one hand, it is intimately linked with the property of time consistency, which
has a specific meaning in expressing dynamic preferences of investors. For a thorough study
the reader may consult, e.g., [16] or [3]. On the other hand, optimal stopping with dynamic
risk measures may be related to specific financial applications.

In the following we shall give some examples of recursive regular DMU functionals. Let
us start with DMU functionals related to time consistent coherent dynamic risk measures.

Example 2.5 (DMU functionals related to time consistent coherent dynamic risk measures).
A large class of convex, regular, and recursive conditional translation invariant DMU func-
tionals is provided by

Φt(X) := ess sup
Q∈Q

EQ[X|Ft],

where Q denotes a set of probability measures which are equivalent with P, and Q should
be stable in the sense of [17]. In order to keep the presentation compact we here assume for
simplicity that such a DMU functional Φ is defined on X := L∞(Ω,F ,P) (cf. Theorem 6.53
in [17]). Extensions to functionals defined on suitable sets of unbounded random variables
may be found in [32] or [17], and a combination of both results might yield further refinements.
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Notice that in addition Φ fulfills conditional positive homogeneity, which means that
ρ(X) := Φt(−X) defines a so-called coherent dynamic risk measure (ρt)t∈{0,...,T}, which is
time consistent.

We may extend the class of time consistent coherent dynamic risk measures to convex
ones.

Example 2.6 (DMU functionals related to time consistent convex dynamic risk measures).
Let Q be a set of probability measures which are equivalent with P, and let (αt)t∈{0,...,T} be a
family of mappings αt from Q into the space of Ft-measurable random variables with values
in R ∪ {∞} fulfilling ess infQ∈Q αt(Q) = 0 P-a.s. Then we may define on X := L∞(Ω,F ,P) a
DMU functional Φ via the generators (Ψt)t∈{0,...,T} of the following form:

(2.2) Ψt(X) := ess sup
Q∈Q

(EQ[X|Ft]− αt(Q)) .

The obtained DMU functional is normalized, convex, and conditionally translation invariant,
and therefore regular (see Remark 2.4) as well as recursive (cf. Remark 2.1). Moreover, it
defines a time consistent convex dynamic risk measure (ρt)t∈{0,...,T} by ρt(X) := Φt(−X).
Notice, furthermore, that by a standard argument (see the proof of Theorem 1 in [13]) every
generator Ψt of the form (2.2) satisfies Ψt(Xn)↗ Ψt(X) whenever Xn ↗ X P-a.s. From this
we may conclude by routine backward induction that every Φt fulfills Φt(Xn) ↗ Φt(X) for
Xn ↗ X P-a.s., and then in view of Theorem 2.3 from [16] we have the following representation
of Φ:

Φt(X) = ess sup
Q∈Qt

(EQ[X|Ft]− αmin
t (Q)) .

Here Qt denotes the set of all probability measures on F which are absolutely continuous
w.r.t. P and coincide with P on Ft, and α

min
t is a certain mapping from Qt into the space of

Ft-measurable random variables with values in R∪ {∞}, which may generally differ from the
initial αt in the representation of the generator (2.2). In particular the DMU functional Φ
does not in general have the same representation as its generators.

A prominent special case is obtained by using conditional relative entropies as a choice
for the mappings αt; i.e., Q consists of all probability measures Q with some strictly positive
P-Radon–Nikodým derivative dQ

dP satisfying EP

[dQ
dP ln

(dQ
dP

)]
<∞, and

αt(Q) :=

{
1
γ EP

[
dQ
dP ln

(
dQ
dP

) ∣∣Ft

]
: Q |Ft = P |Ft,

∞ : otherwise
for some γ > 0.

This leads to the so-called entropic DMU functional Φ with

Φt(X) :=
1

γ
ln
(
E[ exp(γX) | Ft ]

)
(see [13] along with Theorem 4.5 in [16]). The entropic DMU functional is not conditionally
positive homogeneous like the ones in Example 2.5.

The next large class of DMU functionals concerns the so-called g-expectations. They
are prominent examples of nonlinear functionals satisfying martingale-type properties like
recursiveness but need not be conditionally translation invariant as the examples before.
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Example 2.7. Let (Gs)s≥0 be the augmented filtration on Ω associated with the filtration
generated by a standard d-dimensional Brownian motion (Bs)s≥0 with B0 := 0, and let for
S > 0 the function g : Ω× [0, S]×R×R

d → R satisfy some certain technical conditions such
that it can be used as the driver of a backward stochastic differential equation (BSDE):

Ys = X +

∫ S

s
g(·, r, Yr , Zr) dr −

∫ S

s
Zr dBr for s ∈ [0, S],

where X ∈ L2(Ω,GS ,P) (cf. [29]). Moreover, there always exists a unique couple
(
Y X
s

)
s∈[0,S]

and
(
ZX
s

)
s∈[0,S] of adapted 1- and d-dimensional processes, respectively, with square integrable

paths solving the BSDE (cf. [29] again). Now it is natural to define the family (Eg[·|Gs])s∈[0,S]
via

Eg[· | Gs] : L2(Ω,GS ,P)→ L2(Ω,Gs,P), X �→ Y X
s ,

known as (a family of) conditional g-expectations, where Eg[· | G0] is just called g-expectation.
For g ≡ 0 we retrieve the usual (conditional) expectation of a square integrable random
variable. For applications of conditional g-expectations in finance the reader is referred to
[14], [30].

Let us now pick some observation times 0 =: s0 < s1 < · · · < sT := S, and define(
Ω, (Ft)t∈{0,...,T},F ,P

)
and Φ := (Φt)t∈{0,...,T} by Ft := Gst, F := FT , and Φt := Eg[· | Gst ].

Drawing on basic properties of conditional g-expectation as derived by Peng in [29], Φ is
always a regular recursive DMU functional fulfilling Φt(X) = X P-a.s. for t ∈ {0, . . . , T} and
Ft-measurable X.

Furthermore, Φ is conditional translation invariant if and only if g(ω, s, ·, z) is constant
for every ω ∈ Ω, s ∈ [0, S], and z ∈ R

d (for the if part see [29]; for the only if part cf. [23]). In
this case Φ is even a convex normalized conditionally translation invariant DMU functional if
and only if in addition

g(·, ·, ·, λz1 + (1− λ)z2) ≤ λg(·, ·, ·, z1) + (1− λ)g(·, ·, ·, z2) (P⊗ dt)-a.s.
for z1, z2 ∈ R

d and λ ∈ [0, 1] (cf. [23]). Note that ρt(X) := Φt(−X) defines a convex dynamic
risk measure (ρt)t∈{0,...,T}. The relationship between g-expectations and convex dynamic risk
measures has been observed in [36] too.

We shall finish the section with some simple nonstandard examples.
Examples 2.8. Let X = L∞(Ω,F ,P), and let Q1, . . . ,QK denote probability measures

which are equivalent with P.
1. For strictly increasing U1, . . . , UK : R→ R with U1(0) = · · · = UK(0) = 0 and positive
α1, . . . , αK , let Φ be recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=
K∑
k=1

αkU
−1
k

(
EQk

[Uk(X) | Ft]
)

for t ∈ {0, . . . , T} and X ∈ L∞(Ω,Ft+1,P).

Obviously the functional Φ is regular. Moreover, if
∑K

k=1 αk = 1, it satisfies Φt(X) =
X P-a.s. for X ∈ L∞(Ω,Ft,P), t ∈ {0, . . . , T}; hence Φ is recursive. In the case of
K = α1 = 1, Φt is defined in literally the same way as its generator Ψt, leading to a
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so-called conditional certainty equivalent (cf. [18]) which may be viewed as a dynamic
version of a premium principle for insurance contracts known as mean value premium
principle (cf., e.g., [24]). We note that Φ is not conditionally translation invariant in
general.

2. For nondecreasing U1, . . . , UK : R → R with U1(0) = · · · = UK(0) = 0 and positive
α1, . . . , αK , let Φ be recursively generated with generators (Ψt)t∈{0,...,T} defined by

Ψt(X) :=

K∑
k=1

αk EQk
[Uk(X) | Ft] for t ∈ {0, . . . , T} and X ∈ L∞(Ω,Ft+1,P).

In general, this Φ will be neither recursive nor conditionally translation invariant, but
still regular.

3. The optimal stopping problem. We will study the following stopping problem:

(3.1) Y ∗
t := ess sup

τ∈Tt
Φt(Zτ ), t ∈ {0, . . . , T},

for Z ∈ H. We refer to the process Y ∗ as the (Φ-)Snell envelope of Z. Below we consider two
important aspects. First, we investigate the existence of optimal stopping times and, second,
we try to find Bellman principles. The crucial step for guaranteeing optimal stopping times
is provided by the following lemma.

Lemma 3.1. Let Z := (Zt)t∈{0,...,T} ∈ H, and let for some fixed t ∈ {0, . . . , T − 1} some
τ∗t+1 ∈ Tt+1 exist such that Φt+1(Zτ∗t+1

) = ess supτ∈Tt+1
Φt+1(Zτ ). Defining the event

Bt :=
[
Φt(Zt)− Φt(Zτ∗t+1

) ≥ 0
]

and τ∗t := t1Bt + τ∗t+11Ω\Bt
, we obtain Bt ∈ Ft, τ

∗
t ∈ Tt, and under the conditions of time

consistency and regularity

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨Φt(Zτ∗t+1
).

Proof. Bt ∈ Ft, τ
∗
t ∈ Tt follows from Ft-measurability of the outcomes of Φt. Furthermore,

we may observe Zτ∗t = 1BtZt + 1Ω\Bt
Zτ∗i+1

. Then the application of (C2) yields

Φt(Zτ∗t ) = 1BtΦt(Zτ∗t ) + 1Ω\Bt
Φt(Zτ∗t )

(C2)
= Φ(1BtZt) + Φ(1Ω\Bt

Zτ∗t+1
)

(C2)
= 1BtΦt(Zt) + 1Ω\Bt

Φt(Zτ∗t+1
)

= Φt(Zt) ∨ Φt(Zτ∗t+1
).

Next let us define the mapping σ : Tt → Tt+1 by σ(τ) := (t + 1)1[τ=t] + τ1[τ>t]. Then we
obtain for τ ∈ Tt
Φt(Zτ ) = Φt(1[τ=t]Zt + 1[τ>t]Zσ(τ))

(C2)
= 1[τ=t]Φt(Zt) + 1[τ>t]Φt(Zσ(τ)) ≤ Φt(Zt) ∨ Φt(Zσ(τ)).

By assumption Φt+1(Zσ(τ)) ≤ Φt+1(Zτ∗t+1
) P-a.s. so that condition (C1) implies

Φt(Zτ ) ≤ Φt(Zt) ∨ Φt(Zσ(τ))
P≤ Φt(Zt) ∨ Φt(Zτ∗t+1

) = Φt(Zτ∗t ),

which completes the proof.
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Since τ :≡ T is always the optimal stopping time in FT , we may apply sequentially Lemma
3.1 to obtain the following result concerning the existence of optimal stopping times.

Theorem 3.2. Let Z := (Zt)t∈{0,...,T} ∈ H. Then under conditions of time consistency and
regularity there exists for any t ∈ {0, . . . , T} some τ∗t ∈ Tt such that

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zτ ).

The sequence (τ∗t )t∈{0,...,T} of optimal stopping times may be chosen such that τ∗T = T , and

1[τ∗t >t]τ
∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, . . . , T − 1}.

From now on we consider exclusively recursively generated DMU functionals. The follow-
ing theorem gathers the main results concerning optimal stopping w.r.t. such functionals for
our purposes later.

Theorem 3.3. Let (Φt)t∈{0,...,T} be regular and recursively generated with generators satis-
fying the property Ψt(X) ≤ Ψt(Y ) P-a.s. for t ∈ {0, . . . , T −1} and X,Y ∈ X∩L0(Ω,Ft+1,P)
with X ≤ Y P-a.s. Then Theorem 3.2 may be restated, and we have the Bellman principle,
which means that

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨Ψt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)
is valid for any Z ∈ H and every t ∈ {0, . . . , T −1}. If, moreover, Φ is recursive, then it holds
that

ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
σ∈Tt+1

Φt+1(Zσ)

)
for arbitrary Z ∈ H and t ∈ {0, . . . , T − 1}.

Proof. The assumptions on the generators (Ψt)t∈{0,...,T} imply condition (C1) so that we
may apply Theorem 3.2 immediately, whereas we may conclude directly from Lemma 3.1
that the Bellman principle holds. The last statement of Theorem 3.3 is an easy conse-
quence of the observation that in case of recursive Φ the generators are just the restrictions
Φt|X ∩ L0(Ω,Ft+1,P) for t ∈ {0, . . . , T − 1}.

Example 3.4. Let us consider the optimal stopping problem for the regular and recur-
sively generated DMU functionals from Remark 2.4. There thus exists a family (τ∗t )t∈{0,...,T}
of optimal stopping times as in Theorem 3.2, and the Bellman principle is fulfilled due to
Theorem 3.3. In particular this applies to functionals from Example 2.6, as well as to the
functional

Φt : X→ X ∩ L0(Ω,Ft,P), X �→ ess sup
Q∈Q

EQ[X | Ft],

and its conjugate Φ,
Φt(X) = ess inf

Q∈Q
EQ[X | Ft],

where Q is a stable set of probability measures which are equivalent w.r.t. P, and X :=
L∞(Ω,F ,P) (cf. Example 2.5).

As a special case let Q denote the set of equivalent martingale measures of an arbitrage-
free incomplete financial market with reference measure P. It is known that Q is stable (cf.
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[17, Theorem 6.45]) so that Φ and Φ are recursive. Both DMU functionals play a key role for
the issue of pricing and hedging American contingent claims in the following sense: For any
nonnegative Z ∈ H the stopping problems (3.1) according to Φ and Φ correspond to the upper
and lower Snell envelopes of Z w.r.t. Q, respectively. Moreover, the initial values of the lower
and upper Snell envelopes are just the lower and upper hedging prices, respectively. Further,
the optimal stopping time according to the lower hedging prices corresponds to an optimal
exercise strategy for the buyer of the option. For details see, for example, [17, Theorems 7.13,
7.14].

Example 3.5. Let Φ be a finite subfamily of conditional g-expectations. Then in view of
Example 2.7 combined with Theorem 3.3 we may find for any Z ∈ H some family (τ∗t )t∈{0,...,T}
of stopping times τ∗t ∈ Tt satisfying τ∗T = T as well as 1[τ∗t >t]τ

∗
t = 1[τ∗t >t]τ

∗
t+1, and

Φt(Zτ∗t ) = ess sup
τ∈Tt

Φt(Zτ ) = Φt(Zt) ∨ Φt

(
ess sup
τ∈Tt+1

Φt+1(Zτ )

)
= Φt(Zt) ∨ Φt(Zτ∗t+1

)

for t ∈ {0, . . . , T − 1}.
Example 3.6. The DMU functionals introduced in Examples 2.8 admit families of optimal

stopping times as in Theorem 3.2 and satisfy the Bellman principle due to Theorem 3.3.
Remark 3.7. Stopping problems for certain specific DMU functionals have already been

studied in the literature. Let us give a short review and comment.
Existence of optimal stopping families and the verification of the Bellman principle have

been obtained for recursive DMU functionals Φ of the form Φt(X) := ess supQ∈QEQ[X | Ft] or
Φt(X) := ess infQ∈QEQ[X | Ft], where Q is some stable set of probability measures which are
equivalent with P (see, e.g., [17], [32]). In view of Example 3.4 these results may be extended
to a considerably larger class of conditionally translation invariant DMU functionals.

Recently, Bayraktar and Yao [7] solved the optimal stopping problem for recursive con-
ditionally translation invariant DMU functionals within a time continuous setting w.r.t. a
Brownian filtration. In [6] the studies have been detailed for DMU functionals which are
additionally concave.

Theorem 3.3 applies to DMU functionals which are not necessarily conditionally transla-
tion invariant or even not recursive; see Examples 3.5 and 3.6. We may thus avoid conditions
like conditional translation invariance and recursiveness, which are questioned in the literature
anyway (see, e.g., [15] and, e.g., [16], [34], [38], [39], respectively).

4. Iterative solution of optimal stopping problems. In this section we develop an it-
erative procedure for solving the optimal stopping problem. In fact we shall generalize the
policy iteration method in [26] for classical optimal stopping with conditional expectations
to optimal stopping of regular recursively generated DMU functionals. As such we obtain
a procedure for approximating the optimal stopping time and hence the optimal value from
below.

Throughout we fix a recursively generated regular DMU functional (Φt)t∈{0,...,T} with
generators (Ψt)t∈{0,...,T} satisfying the conditions in Theorem 3.3. So, for any Z ∈ H there
exists a family (τ∗t )t∈{0,...,T} of optimal stopping times τ∗t ∈ Tt satisfying
(4.1) τ∗T = T, and 1[τ∗t >t]τ

∗
t = 1[τ∗t >t]τ

∗
t+1 for any t ∈ {0, . . . , T − 1}
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820 VOLKER KRÄTSCHMER AND JOHN SCHOENMAKERS

and

(4.2) Y ∗
t = ess sup

τ∈Tt
Φt(Zτ ) = Φt(Zτ∗t ) for every t ∈ {0, . . . , T}.

Let us define (τt)t∈{0,...,T} to be a time consistent stopping family if

τt ∈ Tt, τT = T, and 1[τt>t]τt = 1[τt>t]τt+1 for t ∈ {0, . . . , T − 1}.
The policy iteration step starts with any time consistent stopping family (τt)t∈{0,...,T} and

corresponding process (Yt)t∈{0,...,T} with Yt := Φt(Zτt) being an approximation of (Y ∗
t )t∈{0,...,T}.

In order to improve this approximation we consider the process (Ỹt)t∈{0,...,T} defined by

Ỹt := maxt≤s≤T Φt(Zτs) and the new stopping family

(4.3) τ̂T := T, τ̂t := inf

{
s ∈ {t, . . . , T} | Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτu)

}
, 0 ≤ t ≤ T − 1.

Obviously, the stopping family (τ̂t)t∈{0,...,T} is also time consistent. By the next theorem, a

generalization of Theorem 3.1 in [26] in fact, the process (Ŷt)t∈{0,...,T}, defined by Ŷt := Φt(Zτ̂t),
improves the initial approximation (Yt)t∈{0,...,T} of (4.2).

Theorem 4.1. We have the inequalities

Yt ≤ Ỹt ≤ Ŷt ≤ Y ∗
t , t ∈ {0, . . . , T}.

The proof of Theorem 4.1 is similar to the proof of Theorem 3.1 in [26]. However, it has
to be emphasized that it is sufficient that the DMU functional under consideration is regular
and recursively generated. For the convenience of the reader the proof is therefore provided
in the appendix (while also comprising the structure of argumentation in [26] slightly).

In view of Theorem 4.1 the idea is to construct recursively a sequence of pairs(
(τ

(m)
t )t∈{0,...,T}, (Y

(m)
t )t∈{0,...,T}

)
m∈N0

,

where (τ
(m)
t )t∈{0,...,T} is a time consistent stopping family for any m ∈ N0 such that Y

(m)
t =

Φt(Zτ
(m)
t

), and τ
(m+1)
t = inf{s ∈ {t, . . . , T} | Φs(Zs) ≥ maxs+1≤u≤T Φs(Zτ

(m)
u

)} for t ∈
{0, . . . , T − 1}.

Next we start with some time consistent stopping family (τ
(0)
t )t∈{0,...,T}; for example, a

canonical choice is τ
(0)
t := t. Then, due to Theorem 4.1, we have

(4.4) Y
(0)
t ≤ Y (m)

t ≤ Ỹ (m+1)
t ≤ Y (m+1)

t ≤ Y ∗
t for m ∈ N0, t ∈ {0, . . . , T},

where Ỹ
(m+1)
t := maxt≤s≤T Φt(Zτ

(m)
s

).

The iteration procedure may be stopped after at most T iterations, yielding an optimal
stopping family.

Proposition 4.2. For t ∈ {0, . . . , T} we have

Y
(m)
t = Y ∗

t if m ≥ T − t.
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Hence τ
(m)
t is an optimal stopping time for the corresponding stopping problem at time t, if

m ≥ T − t, and in particular (τ
(m)
t )t∈{0,...,T} is an optimal stopping family for m ≥ T .

Proof. The proof may be done by adapting the proof of Proposition 4.4 in [26] in a
way similar to proving Theorem 4.1 and is therefore omitted. Indeed, a closer inspection
of the proof of Proposition 4.4 in [26] shows that only regularity, the fact that the DMU
functional is recursively generated by a monotonic system (Ψt), and the Bellman principle
(see Theorem 3.3) are essential.

Examples 4.3.
1. Referring to Example 3.4, Proposition 4.2 guarantees that the proposed iteration

method provides a scheme to calculate superhedging prices and optimal exercises of
discounted American options.

2. In view of Example 2.7 and Examples 2.8 the associated stopping problems may be
solved iteratively by the introduced method. In particular we have a numerical scheme
for optimal stopping with g-expectations.

5. Additive dual upper bounds. In this section a method for approximating the optimal
value of the stopping problem from above will be developed for DMU functionals Φ which are
regular, conditional translation invariant, and recursive. For such a Φ we propose an additive
dual representation for the stopping problem (3.1), in terms of Φ-martingales introduced in
Definition 2.3. As such this generalization may be seen as a generalization of the representation
of [33], [20] for the standard stopping problem. We first extend the classical additive Doob
decomposition theorem.

Lemma 5.1. Let Φ be a conditional translation invariant DMU functional. Then for any
stochastic process Z := (Zt)t∈{0,...,T} ∈ H there exists a unique pair (M,A) ∈ H × H of a
Φ-martingale M and a predictable process A, such that M0 = A0 = 0, and

(5.1) Zt = Z0 +Mt +At for t ∈ {0, . . . , T} P-a.s.

Proof. Define A recursively by A0 := 0, and At+1 := At + Φt(Zt+1) − Zt for t ∈ {0, . . . ,
T − 1}. Then of course A ∈ H, and A is predictable. Next define M ∈ H via Mt :=
Zt −Z0 −At for t ∈ {0, . . . , T}. Obviously M0 = 0, and by conditional translation invariance
(property (C3)),

Φt(Mt+1)
(C3)
= Φt(Zt+1)−Z0−At+1 = Φt(Zt+1)−Z0−(At+Φt(Zt+1)−Zt) = Zt−Z0−At =Mt.

So M is a Φ-martingale and (5.1) holds. Now let (M ′, A′) ∈ H×H be another pair as stated.
Then for t ∈ {0, . . . , T − 1} we may conclude by conditional translation invariance that

0 = Φt(M
′
t+1 −M ′

t) = Φt(Zt+1)− Zt +A′
t −A′

t+1;

in particular, A′
t+1 = A′

t +Φt(Zt+1)−Zt. Hence by induction A′ = A, and so M ′ =M .

Remark 5.2. The additive Doob decomposition has already been shown for the functional
Φ from Example 3.4 (cf. [32]).

The next lemma may be regarded as a generalization of Doob’s optional sampling theorem.
It is proved in the appendix.
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Lemma 5.3. Let Φ be a regular, conditional translation invariant, and recursive DMU
functional, and let M be any Φ-martingale. Then for every Z := (Zt)t∈{0,...,T} ∈ H, each
t ∈ {0, . . . , T}, and each stopping time τ ∈ Tt, we have

Φt(Zτ ) = Φt(Zτ +MT −Mτ ).

Remark 5.4. Under the assumptions of Lemma 5.3 the statement

Φt(Zτ ) = Φt(Zτ +Mτ )−Mt,

which one might expect at a first glance, does not hold.
The Doob-type lemmas (Lemmas 5.1 and 5.3), and the Bellman principle theorem (The-

orem 3.3), provide the ingredients to establish the following additive dual representation. In
the case of K = α1 = 1, Φt is defined in literally the same way as its generator Ψt leading to
the following result.

Theorem 5.5. Let Φ be a regular, conditional translation invariant, and recursive DMU
functional, and letMΦ

0 be the set of all Φ-martingales M with M0 = 0. For Z := (Zt)t∈{0,...,T}
∈ H let M∗ ∈ MΦ

0 be the Φ-martingale of the decomposition of Y ∗ in (3.1) according to
Lemma 5.1. Then

Y ∗
t = ess sup

τ∈Tt
Φt(Zτ ) = ess inf

M∈MΦ
0

Φt

(
max
t≤j≤T

(Zj −Mj +MT )

)
= Φt

(
max
t≤j≤T

(Zj −M∗
j +M∗

T )

)
for t ∈ {0, . . . , T}.

Proof. Let A∗ := (A∗
t )t∈{0,...,T} denote the predictable part of the decomposition of Y ∗

according to Lemma 5.1. Since M∗ is a Φ-martingale, we have for t ∈ {0, . . . , T}

0 = Φt(M
∗
t+1)−M∗

t
(C3)
= Φt(M

∗
t+1 −M∗

t )
(C3)
= Φt(Y

∗
t+1)− Y ∗

t −
(
A∗

t+1 −A∗
t

)
.

This implies A∗
t+1 − A∗

t = Φt(Y
∗
t+1) − Y ∗

t ≤ 0 due to the Bellman principle. Hence A∗ has
nonincreasing paths. Furthermore, by the Bellman principle, Φt(Zt) = Zt ≤ Y ∗

t holds for
every t ∈ {0, . . . , T}. We thus have

Zt −M∗
t +M∗

T = Zt + Y ∗
T − Y ∗

t +A∗
t −A∗

T ≤ Y ∗
T +A∗

t −A∗
T for t ∈ {0, . . . , T}.

Since A∗ is nonincreasing, Φ is conditional translation invariant and recursive, and M∗ is a
Φ-martingale, it follows that
(5.2)

Φt

(
max
t≤j≤T

(Zj−M∗
j +M

∗
T )

)
(C3)

≤ Φt(Y
∗
T −A∗

T )+A
∗
t
(C3)
= Y ∗

0 +Φt(M
∗
T )+A

∗
t = Y ∗

0 +M
∗
t +A

∗
t = Y ∗

t

for t ∈ {0, . . . , T}. Finally, using Lemma 5.3 and (5.2), we have for any t ∈ {0, . . . , T} and
M ∈ MΦ

0

Y ∗
t = ess sup

τ∈Tt
Φt(Zτ +MT −Mτ ) ≤ ess inf

M∈MΦ
0

Φt

(
max
t≤j≤T

(Zj −Mj +MT )

)
≤ Φt

(
max
t≤j≤T

(Zj −M∗
j +M∗

T )

)
≤ Y ∗

t .
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Remark 5.6. Let us emphasize that the structure of the generalized dual representation
in Theorem 5.5 cannot be obtained by simply replacing conditional expectations with DMU
functionals in the standard dual representation of [33], [20]. This remark applies to the
generalized sampling lemma (Lemma 5.1) as well.

Example 5.7. LetQ denote the set of equivalent martingale measures w.r.t. some arbitrage-
free financial market, and let X := L∞(Ω,F ,P). Fix any nonnegative Z := (Zt)t∈{0,...,T} ∈ H.
It may be viewed as a discounted American option. Then the DMU functionals Φ and Φ from
Example 3.4 meet the requirements of Theorem 5.5, and thus the superhedging price and the
lowest arbitrage-free price of Z may be represented by

inf
X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) +X)

]
and inf

X∈X0

Φ0

[
max

t∈{0,...,T}
(Zt − Φt(X) +X)

]
,

respectively. Here X0 := {X ∈ X | supQ∈QEQ[X] = 0}.
Examples 5.8. Theorem 5.5 may be applied immediately to the following regular, condi-

tional translation invariant, and recursive functionals (see also Remark 2.1):

1. Any family of g-expectations as in Example 2.7 with driver g : Ω× [0, S]×R×R
d → R

such that g(ω, s, ·, z) is constant for (ω, s, z) ∈ Ω× [0, S]× R
d.

2. The DMU functional Φ recursively defined as in Example 2.6.

6. Multiplicative dual upper bounds. The additive dual representation for constructing
upper bounds for the standard stopping problem has a multiplicative version which is due
to [22]. We will develop in this section a multiplicative dual representation for the stopping
problem (3.1) when the DMU functional Φ is recursive and positively homogeneous. Note
that from any positively homogeneous recursively generated DMU functional we may obtain
a recursive one, by multiplication with a constant.

To our aim we need an extension of the multiplicative Doob decomposition theorem. As
we do not want to burden the presentation with too many technicalities, we restrict ourselves
in this section to the case where X = L∞(Ω,F ,P).

Lemma 6.1. Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional.
Let δ > 0, and let Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ δ P-a.s. for any t ∈ {0, . . . , T}. Then
there exists a unique pair (N,U) ∈ H×H of some Φ-martingale N and a predictable process U
such that N0 = U0 = 1 and

Zt = Z0NtUt P-a.s.

for t ∈ {0, . . . , T}.
Proof. Define processes U and N recursively by U0 := N0 := 1 and

Ut+1 := Ut
Φt(Zt+1)

Zt
, Nt+1 := Nt

Zt+1

Φt(Zt+1)
for t ∈ {0, . . . , T − 1}.

Observe that U and N are well defined since by assumption Φt(Zt) ≥ Φt(δ) = δ due to
monotonicity of Φ. Obviously, U is predictable, N is a Φ-martingale, and it follows easily by
induction that Zt = Z0NtUt for all t ∈ {0, . . . , T}.

Now let (N ′, U ′) ∈ H×H be another pair as stated. We will show that N ′
t = Nt, U

′
t = Ut

P-a.s. for t ∈ {0, . . . , T} by induction. The case t = 0 is trivial. So let t ∈ {0, . . . , T − 1} such
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that N ′
t = Nt, U

′
t = Ut P-a.s. First, Φt(Nt+1) = Nt = N ′

t = Φt(N
′
t+1) P-a.s. since N,N ′ are

Φ-martingales. Therefore by conditional positive homogeneity (C6)

Z0Ut+1Nt = Z0Ut+1Φt(Nt+1)
(C6)
= Φt(Zt+1)

(C6)
= Z0U

′
t+1Φt(N

′
t+1) = Z0U

′
t+1Nt.

Thus U ′
t+1 = Ut+1 P-a.s. due to Z0Nt > 0 P-a.s., and

Z0Ut+1Nt+1 = Zt+1 = Z0U
′
t+1N

′
t+1 = Z0Ut+1N

′
t+1 P-a.s.

Since Z0Ut+1 > 0 P-a.s. we have Nt+1 = N ′
t+1 P-a.s.

The next lemma is a multiplicative version of Lemma 5.3. For a proof see the appendix.
Lemma 6.2. Let Φ := (Φt)t∈{0,...,T} be a positively homogeneous recursive DMU functional,

and let Z := (Zt)t∈{0,...,T} ∈ H with Zt ≥ 0 P-a.s. for any t ∈ {0, . . . , T}. If N := (Nt)t∈{0,...,T}
denotes any Φ-martingale satisfying Nt > 0 P-a.s., then

Φt(Zτ ) = Φt

(
ZτNT

Nτ

)
for t ∈ {0, . . . , T} and τ ∈ Tt.

Obviously, under the assumptions of this section, Φ satisfies the Bellman principle (see
Theorem 3.3), which allows us to establish a multiplicative dual representation for the stopping
problem (3.1).

Theorem 6.3. Let the DMU functional Φ be as in Lemma 6.1, let MΦ
+1 be the set of all

Φ-martingales N with N > 0 and N0 = 1, and let Z ∈ H with Z ≥ 0. We then may state for
every t ∈ {0, . . . , T} the following:

(i)

Y ∗
t = ess sup

τ∈Tt
Φt(Zτ ) ≤ inf

N∈MΦ
+1

Φt

(
max
t≤j≤T

ZjNT

Nj

)
.

(ii) If Φ satisfies, in addition, condition (C7), we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max
t≤j≤T

ZjNT

Nj

)
.

(iii) If Z is as in Lemma 6.1, we have

Y ∗
t = ess inf

N∈MΦ
+1

Φt

(
max
t≤j≤T

ZjNT

Nj

)
= Φt

(
max
t≤j≤T

ZjN
∗
T

N∗
j

)
,

where N∗ ∈ MΦ
0 is the Φ-martingale in the multiplicative decomposition of Y ∗ in

Lemma 6.1.
Proof. Statement (i) is an immediate consequence of Lemma 6.2.
For the proof of statement (ii) let us consider an arbitrary ε > 0. The process Zε, defined

by Zε
t := Zt ∨ ε, induces the process Y ε∗ via Y ε∗

t := ess supτ∈Tt Φt(Z
ε
τ ), which fulfills the

assumptions of Lemma 6.1. Therefore we may find a pair (U ε, N ε) consisting of a predictable
process U ε and a Φ-martingale N ε ∈ MΦ

+1 satisfying

Y ε∗
t = Y ε∗

0 N ε
t U

ε
t P-a.s. for t ∈ {0, . . . , T}.
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Due to the conditional positive homogeneity of Φ and the predictability of U ε, and since N ε is
a Φ-martingale, we may conclude that

1 = Φt

(
N ε

t+1

N ε
t

)
= Φt

(
Y ε∗
t+1U

ε
t

Y ε∗
t U ε

t+1

)
=

U ε
t

U ε
t+1

Φt(Y
ε∗
t+1)

Y ε∗
t

for t ∈ {0, . . . , T − 1}.

In view of the Bellman principle this implies

U ε
t+1

U ε
t

=
Φt(Y

ε∗
t+1)

Y ε∗
t

≤ 1 for t ∈ {0, . . . , T − 1}.

Hence U ε has nonincreasing paths. Furthermore, Zε
t = Φt(Z

ε
t ) and so, in particular, Zε

t ≤ Y ε∗
t

due to the Bellman principle. Combining, we obtain for t ∈ {0, . . . , T}

Φt

(
max
t≤j≤T

Zε
jN

ε
T

N ε
j

)
≤ Φt

(
max
t≤j≤T

Y ε∗
j N ε

T

N ε
j

)
= Φt

(
max
t≤j≤T

Y ε∗
T U ε

j

U ε
T

)
≤ U ε

t Φt

(
Y ε∗
T

U ε
T

)
= U ε

t Φt (Y
ε∗
0 N ε

T ) = U ε
t Y

ε∗
0 Φt (N

ε
T ) = Y ε∗

t .(6.1)

Now let a common function g satisfy (2.1) in condition (C7) for all Zε
j , j = 0, . . . , T . By

regularity and condition (C7) it then holds that

Y ε∗
t := ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Z
ε
τ ) = ess sup

τ∈Tt

T∑
j=t

1[τ=j]Φt(Z
ε
j )

≤ ess sup
τ∈Tt

T∑
j=t

1[τ=j] (Φt(Zj) + g(ε)) = Y ∗
t + g(ε).

Hence with (6.1) we obtain

Y ∗
t + g(ε) ≥ ess inf

N∈MΦ
+1

Φt

(
max
t≤j≤T

ZjNT

Nj

)
(i)

≥ Y ∗
t for every t ∈ {0, . . . , T}.

The proof of (ii) is completed by sending ε→ 0.

Now let Z and δ > 0 be as in Lemma 6.1, and take ε such that 0 < ε < δ. We thus have
Zε = Z, and then statement (iii) follows from statement (i) and using (6.1) in the proof of (ii)
(which holds independently of condition (C7)).

Examples 6.4. Theorem 6.3 may be applied in the following situations:

1. Let Q denote the set of equivalent martingale measures w.r.t. some arbitrage-free
financial market, and let Z := (Zt)t∈{0,...,T} be a nonnegative adapted process of
P-essentially bounded random variables. The process Z may be viewed as a dis-
counted American option w.r.t. the recursive conditional positive homogeneous DMU
functional Φt(·) := ess supQ∈QEQ[· | Ft] on L

∞(Ω,F ,P). Furthermore, let us denote
by X+1 the set of X ∈ L∞(Ω,FT ,P) with X > 0 P-a.s. such that supQ∈QEQ[X] = 1.
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Then the superhedging price and the lowest arbitrage-free price of Z may be repre-
sented by

inf
X∈X+1

Φ0

(
max

t∈{0,...,T}
ZtX

Φt(X)

)
and inf

X∈X+1

Φ0

(
max

t∈{0,...,T}
ZtX

Φt(X)

)
,

respectively (see also Example 5.7).
2. Any family of g-expectations as in Example 2.7 with driver g : Ω× [0, S]×R×R

d → R

such that g(ω, s, ·, ·) is homogeneous of degree one for each (ω, s) ∈ Ω× [0, S] (cf. [23]).

7. Consumption based representation. We now propose a representation for the opti-
mal stopping problem (3.1) which can be seen as a generalization of the consumption upper
bound approach in [4], [5]. By this method one may infer from lower approximations upper
approximations, and vice versa. In this context, we assume that Φ is a regular conditional
translation invariant recursive DMU functional.

Using the Bellman principle we may prove the following theorem.

Theorem 7.1. For any Z ∈ H we have

Y ∗
t := ess sup

τ∈Tt
Φt(Zτ ) = Φt

(
ZT +

T−1∑
j=t

(Zj − Φj(Y
∗
j+1))

+

)
, t ∈ {0, . . . , T},

with empty sums being defined by zero.

Proof. We shall proceed by backward induction over t. The case t = T is trivial. So let us
assume for any t ∈ {1, . . . , T} that Y ∗

t = Φt

(
ZT +

∑T−1
j=t (Zj −Φj(Y

∗
j+1))

+
)
is valid. Then due

to the Bellman principle Y ∗
t−1 = (Zt−1−Φt−1(Y

∗
t ))

++Φt−1 (Y
∗
t ), which implies by assumption

and recursiveness property (C4)

Y ∗
t−1 = (Zt−1 − Φt−1(Y

∗
t ))

+ +Φt−1

(
Φt

(
ZT +

T−1∑
j=t

(Zj − Φj(Y
∗
j+1))

+

))

= (Zt−1 − Φt−1(Y
∗
t ))

+ +Φt−1

(
ZT +

T−1∑
j=t

(Zj − Φj(Y
∗
j+1))

+

)
.

Then the application of conditional translation invariance yields

Y ∗
t−1 = Φt−1

(
(Zt−1 − Φt−1(Y

∗
t ))

+ + ZT +

T−1∑
j=t

(Zj − Φj(Y
∗
j+1))

+

)

= Φt−1

(
ZT +

T−1∑
j=t−1

(Zj − Φj(Y
∗
j+1))

+

)
.

The interesting feature of the representation in Theorem 7.1 is that if we replace Y ∗ on
the right-hand side by a lower (upper) approximation, we obtain an upper (lower) bound for
Y ∗ on the left-hand side.
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8. Numerical approaches for optimal stopping of some specific DMU functionals. In
this section we sketch how the different representations developed in sections 4, 5, 6, and 7
may be utilized for constructing (upper and/or lower) approximations to the optimal value
of stopping problem (3.1). In order to enable a feasible algorithm or simulation procedure
for optimal stopping of a particular DMU functional, we naturally presume that we have a
feasible algorithm or simulation procedure for the functional itself at hand. In this respect we
underline that numerical (simulation) methods for specific DMU functionals are an interesting
issue in their own right but considered to be beyond the scope of this article. Another natural
assumption is that we have some underlying process with some kind of Markovian structure
which can be simulated straightforwardly. More specifically, we assume that we are in the
following setting.

Setting for solving general optimal stopping problems by simulation.

(i) The filtration (Ft)t∈{0,...,T} is generated by some underlying stochastic process S :=

(St)t∈{0,...,T} in some multidimensional state space, e.g., Rd.
(ii) The process Z := (Zt)t∈{0,...,T} under consideration satisfies Zt = h(t, St) for some

known nonnegative measurable function h. For ease of exposition, h is assumed to be
bounded.

(iii) The DMU functional Φ = (Φt)t∈{0,...,T} is regular and recursively generated by (Ψt)t∈{0,...,T}
with generators satisfying Ψt(X) = X if X ∈ Ft for any t ∈ {0, . . . , T}. Hence, in
particular, Φ is recursive with Φt(X) = X if X ∈ Ft for t ∈ {0, . . . , T}.

(iv) For any t ∈ {0, . . . , T}, we have Φt(X) being σ{St}-measurable if X is σ{St, . . . , ST }-
measurable (we might think of S being Markovian w.r.t. the functional Φ). This con-
dition is, e.g., guaranteed in the case that for any u, t ∈ {0, . . . , T} with u ≤ t we have
that Ψt(X) is σ{Su, . . . , St}-measurable whenever X is σ{Su, . . . , St+1}-measurable.

(v) For any t ∈ {0, . . . , T}, we may compute Φt(X) ∈ σ{St} if X ∈ σ{St, . . . , ST } by some
kind of simulation method.

In the standard case, where Φ represents the ordinary conditional expectation and S is Mar-
kovian in the ordinary sense, (iii), (iv), and (v) are obviously fulfilled. A canonical way
of evaluating conditional expectations is (Monte Carlo) simulation from a particular state
(t, St) (particularly in higher dimensions). In general there are many interesting examples, for
instance, within the class of g-expectations.

Example 8.1. Let Φ be a family of g-expectations as in Example 2.7 with Brownian motion
B = (Bs)s≥0 and driver g : Ω×[0, S]×R×Rn → R being of the form g(ω, s, y, z) := f(Ss, y, z).
Here f : Rn × R × R

d → R is any Lipschitz function with f(·, 0) ≡ 0, and (Ss)s≥0 is an
n-dimensional diffusion process with dynamics given by the SDE

dSs = μ(Ss) dt+ σ(Ss) dBs.

Under some further conditions of regularity for μ, σ, and f , it may be verified that Φ satisfies
assumption (iv) (cf. [21, Theorem 6.2]). Furthermore, simulation algorithms as required in
assumption (v) are already available (see, e.g., [19], [31]).

Moreover, if f does not depend on y, and is sublinear in z, then there is some set Q of
probability measures which are absolutely continuous w.r.t. P such that Φ admits the following
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robust representation:
Φt(X) = ess sup

Q∈Q
EQ [X | σ{S1, . . . , St}] ,

where the essential supremum is attained (see [9, proof of Theorem 3.1]).
Below we will outline the implementation of the above simulation setting for different

solution representations proposed in sections 4, 5, 6, and 7.

Policy iteration. The policy iteration method in section 4 may be readily applied if the
time consistent stopping family (τt) we start with is such that {τt = t} ∈ σ{St}. For example
we just take the trivial family τt = t, t ∈ {0, . . . , T}. Then the iteration procedure will be
an analogue to the one spelled out in [26]. In short, given an input stopping family (τt),
simulate a set of N (outer) trajectories S(n), n = 1, . . . , N , from t = 0 to T . Determine on
each outer trajectory S(n) the improved stopping time τ̂0. For this, one needs to simulate for

each time s = 0, 1, . . . a set of M (inner) trajectories (mS
(n)
u )u=s,...,T , m = 1, . . . ,M , to check

by simulation whether the event{
Φs(Zs) ≥ max

s+1≤u≤T
Φs(Zτu)

}
in (4.3) is true. If s(n) is the first time where this is true, we put τ̂

(n)
0 = s(n) on trajectory n.

Finally, we compute Φ0(Zτ̂0) from the sample Z
(n)
τ̂0

, n = 1, . . . , N .

Dual upper bounds. We consider the construction of an additive dual upper bound for
a regular, recursive DMU functional, which is translation invariant. Let us assume that we
are given a proxy Yt = U(t, St) of the Snell envelope Y ∗

t = U∗(t, St). Note that the Snell
envelope is indeed of this form due to assumptions (i), (ii), and (iv). For instance, for the
DMU functional in Example 3.4, a proxy may be constructed by approximating the Snell
envelope w.r.t. a simpler functional, replacing the representing set Q of probability measures
by a smaller subset or even a singleton. LetMY be the Doob Φ-martingale of Y , and consider
the upper bound

Y up
0 = Φ0

(
max
0≤t≤T

(
Zt +MY

T −MY
t

))
= Φ0

(
max
0≤t≤T

(
h(t, St) +

T−1∑
s=t

[U(s+ 1, Ss+1)− Φs (U(s+ 1, Ss+1))]

))
.

Similarly as in [1] we are going to construct an approximation of this upper bound by a
nested simulation. We simulate N (outer) trajectories S(n), n = 1, . . . , N , from t = 0 to T ,
and for each outer trajectory n, and time s, s < T , a set of M (inner) two step trajectories

(mS
(n)
u )u=s,s+1,m = 1, . . . ,M . On a fixed outer trajectory S(n) we then construct for each s an

approximation of Φ
(n)
s (U(s+1, Ss+1)) by the inner sample U(s+1, 1S

(n)
s+1), . . . , U(s+1,MS

(n)
s+1)

and next determine

ζ(n) := max
0≤t≤T

(
h(t, S

(n)
t ) +

T−1∑
s=t

[
U(s + 1, S

(n)
s+1)−Φ(n)

s (U(s+ 1, Ss+1))
])

.
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We thus end up with the sample ζ(1), . . . , ζ(N) of the random variable ζ := max0≤t≤T

(
Zt +

MY
T −MY

t

)
, from which finally Y up

0 = Φ0(ζ) may be estimated.

Multiplicative and consumption upper bounds. From the simulation methods sketched
above it will be clear in principle how to construct a multiplicative upper bound for a positively
homogeneous DMU functional, and how to construct an upper (lower) bound due to the
consumption representation in Theorem 7.1 for a translation invariant functional when a
lower (upper) bound of the Snell envelope is given.

Concluding remark. In this article different representations for the optimal stopping prob-
lem w.r.t. general DMU functionals are presented. It is shown that these representations allow
for a numerical treatment of the generalized stopping problem. A detailed analysis of the nu-
merical algorithms sketched in section 8, which will depend on particular properties of the
functional under consideration, remains to be done in future work.

Appendix.
Proof of Theorem 4.1. The inequalities Yt ≤ Ỹt and Ŷt ≤ Y ∗

t are obvious for any t ∈
{0, . . . , T}. So inequality Ỹt ≤ Ŷt is left to show. We shall use backward induction.

Due to the definitions of Ỹ and Ŷ , we have ỸT = ŶT = ΦT (ZT ). Suppose that Ỹt ≤ Ŷt
holds for any t ∈ {1, . . . , T}. We then have to show that Ỹt−1 ≤ Ŷt−1. For this we first show
sequentially the following:

(1) 1[τ̂t−1=t−1]Ŷt−1 = 1[τ̂t−1=t−1]Φt−1(Zt−1).

(2) 1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1] maxt≤s≤T Φt−1(Zτs).
(3) Φt−1(Zτt−1) ≤ max {Φt−1(Zt−1),maxt≤s≤T Φt−1(Zτs)}.

Due to the definition of τ̂t−1, we have, on the set {τ̂t−1 = t−1}, Φt−1(Zt−1) ≥ maxt≤s≤T Φt−1(Zτs)
and, on the set {τ̂t−1 > t − 1}, Φt−1(Zt−1) < maxt≤s≤T Φt−1(Zτs). Thus we may conclude
immediately from (1)–(3) that

Ŷt−1 ≥ max

{
Φt−1(Zt−1), max

t≤s≤T
Φt−1(Zτs)

}
≥ max

{
Φt−1(Zτt−1), max

t≤s≤T
Φt−1(Zτs)

}
= Ỹt−1,

as required.
Proof of (1). By regularity condition (C2) we may find sequentially

1[τ̂t−1=t−1]Ŷt−1 = Φt−1(1[τ̂t−1=t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1=t−1]Zt−1) = 1[τ̂t−1=t−1]Φt−1(Zt−1),

which proves (1).
Proof of (2). 1[τ̂t−1>t−1]Zτ̂t−1 = 1[τ̂t−1>t−1]Zτ̂t due to the time consistency of (τ̂t)t∈{0,...,T}.

Hence the regularity condition implies

1[τ̂t−1>t−1]Ŷt−1 = Φt−1(1[τ̂t−1>t−1]Zτ̂t−1) = Φt−1(1[τ̂t−1>t−1]Zτ̂t) = 1[τ̂t−1>t−1]Φt−1(Zτ̂t)

= 1[τ̂t−1>t−1]Ψt−1(Ŷt).

By the induction hypothesis we have Ŷt ≥ Ỹt, so we may conclude by monotonicity of Ψt−1

that

1[τ̂t−1>t−1]Ŷt−1 ≥ 1[τ̂t−1>t−1]Ψt−1(Ỹt) ≥ 1[τ̂t−1>t−1] max
t≤s≤T

Ψt−1(Φt(Zτs))

= 1[τ̂t−1>t−1] max
t≤s≤T

Φt−1(Zτs).
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Thus (2) is shown.
Proof of (3). Using regularity condition (C2) we obtain

Φt−1(Zτt−1) = 1[τt−1=t−1]Φt−1(Zτt−1) + 1[τt−1>t−1]Φt−1(Zτt−1)

= Φt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt−1).

1[τt−1>t−1]Zτt−1 = 1[τt−1>t−1]Zτt due to the time consistency of (τt)t∈{0,...,T}. Hence the appli-
cation of regularity again yields

Φt−1(Zτt−1) = Φt−1(1[τt−1=t−1]Zt−1) + Φt−1(1[τt−1>t−1]Zτt)

= 1[τt−1=t−1]Φt−1(Zt−1) + 1[τt−1>t−1]Φt−1(Zτt),

obviously implying (3), and hence completing the proof.
Proof of Lemma 5.3. We shall show the statement of Lemma 5.3 via backward induction.

The case t = T is trivial since TT = {T}. So let us assume that for any t ∈ {1, . . . , T} we have
Φt(Zσ) = Φt(Zσ +MT −Mσ) for every σ ∈ Tt. Let us fix an arbitrary τ ∈ Tt−1 and define
σ(τ) := t1[τ=t−1] + τ1[τ>t−1] ∈ Tt. Then by assumption Φt(Zσ(τ)) = Φt(Zσ(τ) +MT −Mσ(τ)),
which implies, via regularity and recursiveness,

1[τ>t−1]Φt−1(Zτ ) = 1[τ>t−1]Φt−1(Zσ(τ)) = 1[τ>t−1]Φt−1 ◦Φt(Zσ(τ))

= 1[τ>t−1]Φt−1

(
Φt(Zσ(τ) +MT −Mσ(τ))

)
= 1[τ>t−1]Φt−1(Zσ(τ) +MT −Mσ(τ))

(C2)
= 1[τ>t−1]Φt−1(Zτ +MT −Mτ ).

Moreover, by regularity, conditional translation invariance, and the Φ-martingale property of
M , we have

1[τ=t−1]Φt−1(Zτ +MT −Mτ )
(C2)
= 1[τ=t−1]Φt−1(Zt−1 +MT −Mt−1)

(C3)
= 1[τ=t−1] (Zt−1 −Mt−1 +Φt−1(MT ))

= 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zt−1),

which completes the proof.
Proof of Lemma 6.2. We shall show the statement of the lemma by backward induction.

The case t = T is trivial since TT = {T}. Let us assume that for t ∈ {1, . . . , T} the equality
Φt(Zτ ) = Φt

(
ZτNT
Nτ

)
is valid for every τ ∈ Tt.

Consider an arbitrary τ ∈ Tt−1, and define σ(τ) := 1τ=t−1t + 1τ>t−1τ ∈ Tt. By the

induction assumption we have Φt

(Zσ(τ)NT

Nσ(τ)

)
= Φt(Zσ(τ)), so that regularity condition (C2)

and recursiveness imply

1[τ>t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ>t−1]Φt−1

(
Zσ(τ)NT

Nσ(τ)

)
= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)NT

Nσ(τ)

))
= 1[τ>t−1]Φt−1

(
Φt

(
Zσ(τ)

))
= 1[τ>t−1]Φt−1

(
Zσ(τ)

)
(C2)
= 1[τ>t−1]Φt−1 (Zτ ) .
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Moreover, by regularity (C2), conditional positive homogeneity (C6), and the fact that N is
a Φ-martingale, it holds that

1[τ=t−1]Φt−1

(
ZτNT

Nτ

)
(C2)
= 1[τ=t−1]Φt−1

(
Zt−1NT

Nt−1

)
(C6)
= 1[τ=t−1]

Zt−1

Nt−1
Φt−1(NT ) = 1[τ=t−1]Zt−1 = 1[τ=t−1]Φt−1(Zτ ).
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Parametrix Approximation of Diffusion Transition Densities∗
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Abstract. A new analytical approximation tool, derived from the classical PDE theory, is introduced in order
to build approximate transition densities of diffusions. The tool is useful for approximate pricing
and hedging of financial derivatives and for maximum likelihood and method of moments estimates
of diffusion parameters. The approximation is uniform with respect to time and space variables.
Moreover, easily computable error bounds are available in any dimension.

Key words. diffusions, transition densities, option pricing, analytic approximations, parabolic equations, para-
metrix method
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1. Introduction and motivation. The ability of approximating, with some explicit mea-
sure of error, the fundamental solution of a parabolic partial differential equation (PDE) has
become of paramount relevance for economical and financial applications. The origin of this
can be traced back to the 1960s with the widespread introduction of diffusion-based modeling.
In financial applications, transition densities play a central role in several instances from pric-
ing and hedging of financial derivatives to parameter estimation and calibration (by likelihood
or moment method based techniques) and solution of optimal control problems.

The early examples of diffusion models considered only very simple specifications, usually
in the class of linear diffusions, for which explicit transition densities are known. However,
the requirement of more statistical realism and the need for a multidimensional framework
stimulated more complex models whose explicit solutions are unavailable. This favored the im-
plementation of standard (in other fields) numerical procedures, e.g., finite differences or finite
elements methods, and the development of a number of very useful Monte Carlo techniques.

An alternative or, more precisely, a complement to the use of numerical methods is given
by the powerful machinery of analytical approximations. These, in fields like physics and
engineering, are the tools of choice for the study of the qualitative properties of a model and
for comparison between models. Moreover, these techniques provide the basis for efficient
numerical algorithms specific to each model. Today the literature concerning asymptotic
expansions and singular perturbation theory applied to finance is vast. We quote, among
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(paolo.foschi2@unibo.it).
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others, the papers by Whalley and Wilmott [34] in the study of transaction costs; Hagan and
Woodward [19] and Hagan et al. [18] for the implied volatility in CEV and SABR models;
Fouque, Papanicolaou, and Sircar [15], Fouque et al. [16], Howison [21], Widdicks et al. [35],
and Svoboda-Greenwood [32] for other local and stochastic volatility models; Barone-Adesi
and Elliott [3], Broadie and Detemple [5], and Kuske and Keller [27] in the study of Amer-
ican options; Widdicks et al. [36] in multiasset option pricing; Turnbull and Wakeman [33],
Zhang [37], and Dewynne and Shaw [10] concerning average (Asian) options; and Broadie,
Glasserman, and Kou [6] in the study of discrete barrier options. For other analytical or
partially analytical approximation methods we refer the reader to Aı̈t-Sahalia [1] and [2].

In this paper we propose a new technique, the parametrix method, for the analytical
approximation of the fundamental solution of a general parabolic PDE. As far as we know,
contrary to perturbation techniques, the parametrix has not been previously examined as a
numerical method, nor has it been already employed for approximation purposes in finance
or other fields. Indeed, the classical parametrix technique was introduced by Levi [28] as a
theoretical method to prove the existence of the fundamental solution of a parabolic PDE:1 as
such, it is not optimized for the purpose of numerical computation of solutions.

The first main contribution of this paper is the conversion and adjustment of this classical
tool in PDE analysis as a numerical method. In particular, we modify the parametrix tech-
nique to yield an approximation useful for computational purposes. Moreover, we introduce
the new concept of the backward parametrix and we show how it is both more appropri-
ate for computations and more useful for model interpretation purposes than the standard
parametrix. As we will see, the backward parametrix lends itself to a direct probabilistic
interpretation which is not readily available for the standard parametrix. This interpretation
is very useful when the backward parametrix is applied to the problem of pricing financial
derivatives as it allows a financial interpretation of the leading and the correction terms in
the expansion.

The second main contribution is the derivation, in the new context, of easy-to-compute,
a priori (i.e., independent of the solution), uniform bounds on the approximation error both for
the PDE solution and for its derivatives. The hypotheses under which the series approximation
uniformly converges and under which the evaluation of the error term for a truncated series
holds are very general. They can be checked by the sole knowledge of some general property
of the diffusion model and are substantially the same hypotheses commonly required for a
diffusion problem and a parabolic problem to be equivalent. While perhaps the most easy to
check, these hypotheses are not the most general. Indeed the proposed method also works
in cases where these hypotheses are not true: we show an example of this in section 3. The
results of the paper are then applied to a number of relevant particular cases and compared
with other numerical and seminumerical evaluation procedures known in the literature.

The rest of the paper is organized as follows. In section 2, we derive and slightly generalize
the classical parametrix expansion in the one-dimensional setting; moreover, we introduce the

1A comprehensive presentation of the classic parametrix method for uniformly parabolic PDEs can be
found, for instance, in [17]. We also quote the papers [11] and [26], where the parametrix method is applied to
a wider class of (possibly degenerate) equations that includes the pricing PDEs for Asian options. While well
known in the classical theory of parabolic PDEs, the parametrix series is, as far as we know, rather unknown
in the field of mathematical finance with the exception of [4] and of a quotation in [1].
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new backward parametrix. We also give a financial interpretation of the derivation of the
parametrix. In section 3 we find closed form approximate solutions in a general local volatility
model. In section 4 we perform some numerical tests and compare the performance of the
parametrix with other known approximate methods. In section 5, we derive a priori bounds
on the approximation error for both the forward parametrix and the backward parametrix.
The appendix contains a number of lemmas used in the proofs.

2. Forward and backward parametrix approximations. The aim of this section is to give
the main ideas by presenting our results in the simple case of a one-dimensional model. In
section 5 the parametrix is derived in its full generality and complete proofs are given. Our
contribution is twofold: first, we compute explicit error bounds for the classical parametrix
(hereafter called the forward parametrix ) approximation introduced by Levi [28]; second, we
introduce the so-called backward parametrix, an alternative expansion that is more significant
for the financial interpretation and from the computational point of view.

In what follows we denote by z = (x, t), ζ = (ξ, τ), and w = (y, s) the points in R×R and
consider the parabolic PDE

(2.1) Lu(z) := a(z)∂xxu(z) + b(z)∂xu(z) + c(z)u(z) − ∂tu(z) = 0.

The fundamental solution Γ = Γ(z; ζ) of L is a function such that the following hold:

(i) LΓ(·; ζ) = 0 in R
2 \ {ζ} for any ζ;

(ii) for every bounded and continuous function ϕ = ϕ(x) and τ ∈ R, a classical solution
to the Cauchy problem

(2.2)

{
Lu(x, t) = 0, x ∈ R, t > τ,

u(x, τ) = ϕ(x), x ∈ R,

is given by

(2.3) u(x, t) =

∫
R

Γ(x, t; ξ, τ)ϕ(ξ)dξ.

Under the assumption that L is uniformly parabolic (i.e., the coefficient a is greater than a
constant a0 > 0) and has bounded and Hölder continuous coefficients, it is well known that
a fundamental solution for L exists: this theoretical result can be proved by the parametrix
method. We now aim to investigate the potentiality of the parametrix as a numerical method.

Coming back to the financial interpretation, formula (2.3) gives the forward price at time
to maturity t−τ of a European option with payoff ϕ. Suppose now that problem (2.2) cannot
be solved explicitly. It is then inviting to find an approximation formula for (2.3) whose
principal term is given by (or is at least similar to) the Black–Scholes formula. This is what
the parametrix method allows us to do.

2.1. Forward parametrix. The classical forward parametrix method is based on two ideas.
The first is to approximate Γ(z; ζ) by the so-called parametrix defined by

Z(z; ζ) = Γζ(z; ζ),
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where, for fixed w ∈ R
2 and for b̄, c̄ arbitrarily fixed real constants, Γw is the fundamental

solution to the constant coefficient operator

(2.4) Lwu(z) := a(w)∂xxu(z) + b̄∂xu(z) + c̄u(z)− ∂tu(z).

Note that Lw is a heat operator and the explicit expression of Γw is known:

Γw(z; ζ) =
1√

4πa(w)(t − τ) exp
(
− (x− ξ)2
4a(w)(t− τ) −

b̄

2a(w)
(x− ξ)−

(
b̄2

4a(w)
− c̄
)
(t− τ)

)(2.5)

for t > τ .

In the standard parametrix method (cf., for instance, [17]) the constants b̄ and c̄ are chosen
to be null. However, the context of this paper suggests using as a parametrix the fundamental
solution of the heat equation which is “most similar” to the equation under analysis. This
flexibility in the choice of the operator may result in considerably sharp approximations; see,
for instance, section 4, where the some local volatility models are examined.

The second idea is that of supposing that the fundamental solution Γ of L is in the form

(2.6) Γ(z; ζ) = Z(z; ζ) +

∫ t

τ

∫
R

Z(z;w)Φ(w; ζ)dw.

In view of the financial applications, in what follows we assume ζ = (ξ, 0). In order to identify
Φ in (2.6), we notice that, since

LΓ(·; ζ) = 0 in R× ]0,+∞[

for any ζ, we get

(2.7) 0 = LZ(z; ζ) + L

∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw.

But formally we have

L

∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw =

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw − ∂t
∫ t

0

∫
R

Z(z;w)Φ(w; ζ)dw

=

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw − Φ(z; ζ)

(2.8)

so that

(2.9) Φ(z; ζ) = LZ(z; ζ) +

∫ t

0

∫
R

LZ(z;w)Φ(w; ζ)dw.

Notation 2.1. To avoid confusion, when necessary, we write L(z) instead of L in order to
indicate that the operator L is acting in the variable z.
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Formula (2.9) can be solved iteratively and yields

(2.10) Γ(z; ζ) =
+∞∑
n=0

Zn(z; ζ),

with Z0(z; ζ) = Z(z; ζ) and

Zn(z; ζ) =

∫ t

0

∫
R

Z(z;w)(LZ)n(w; ζ)dw, n ∈ N,

where, recalling the notation w = (y, s),

(LZ)1(w; ζ) = L(w)Z(w; ζ),

(LZ)n+1(w; ζ) =

∫ s

0

∫
R

L(w)Z(w; z0)(LZ)n(z0; ζ)dz0, n ∈ N.

As we foretold, our first main result consists in the computation of explicit global error bounds
of the parametrix approximation. These bounds, provided in Theorem 5.2, are of the following
form: for any T > 0 there exist two positive constants C,M such that

(2.11)

∣∣∣∣∣Γ(z; ζ)−
n∑

k=0

Zk(z; ζ)

∣∣∣∣∣ ≤ C (t− τ)n
2(

n
2

)
!

ΓM (z; ζ), n ≥ 0,

for any z, ζ ∈ R
2 such that 0 < t− τ < T , where ΓM is the fundamental solution of the heat

operator
M∂xx − ∂t.

Moreover, the constants C and M can be explicitly estimated.

2.2. Backward parametrix. Before examining the financial interpretation, we introduce
what we call the backward parametrix, which is based on the use of the adjoint operator
of L. As we shall see shortly, the backward parametrix is more convenient than the forward
parametrix from several points of view: first, it allows us to derive an approximating expansion
whose first term is given exactly by the Black–Scholes formula, while the subsequent terms can
be expressed as solutions to suitable Cauchy problems related to constant coefficient operators
that have a clear financial interpretation as well. Second, the approximating terms generated
in this way are convolutions of a Gaussian function, and this is convenient from a numerical
point of view since we may rely upon several known efficient numerical techniques.

Remark 2.2. The backward parametrix method does not simply consist in the standard para-
metrix method applied to the backward PDE: indeed, that would give the same problems as in
the forward case. On the contrary, the idea is to use the backward parametrix as an approxi-
mation for the forward PDE.

The formal adjoint operator of L in (2.1), acting in the variable ζ, is defined as

(2.12) L̃(ζ) = a(ζ)∂ξξ + b̃(ζ)∂ξ + c̃(ζ) + ∂τ ,

where
b̃(ζ) = −b(ζ) + 2∂ξa(ζ), c̃(ζ) = c(ζ) + ∂ξξa(ζ)− ∂ξb(ζ).
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It is known that, under suitable assumptions, L̃ has a fundamental solution Γ̃ and the following
duality formula holds:

Γ̃(ζ; z) = Γ(z; ζ);

in particular, L̃(ζ)Γ(z; ζ) = 0 for z �= ζ. We define the backward parametrix as the fundamental
solution of a constant coefficient dual operator: more precisely, for w ∈ R

2 we set

(2.13) L̃(ζ)
w = a(w)∂ξξ + b̄∂ξ + c̄+ ∂τ ,

where b̄ and c̄ are arbitrarily fixed constants, and consider its fundamental solution

Γ̃w(ζ; z) =
1√

4πa(w)(t − τ) exp
(
− (x− ξ)2
4a(w)(t− τ) +

b̄

2a(w)
(x− ξ)−

(
b̄2

4a(w)
− c̄
)
(t− τ)

)(2.14)

for t > τ . Then we define the backward parametrix as

P (z; ζ) = Γ̃z(ζ; z),

so that in particular we have

(2.15) L̃(ζ)
z P (z; ζ) = 0.

As before, we set τ = 0 so that ζ = (ξ, 0), and, proceeding as in the forward case, we have

(2.16) Γ(z; ζ) = Γ̃(ζ; z) = P (z; ζ) +

+∞∑
n=1

∫ t

0

∫
R

P (w; ζ)(L̃P )n(z;w)dw,

where, recalling the notation w = (y, s),

(L̃P )1(z;w) = L̃(w)P (z;w),

(L̃P )n+1(z;w) =

∫ t

s

∫
R

L̃(w)P (z0;w)(LZ)n(z; z0)dz0, n ≥ 1.

In Theorem 5.7 we give explicit global error estimates, completely analogous to (2.11), for the
backward approximation truncated at the nth term.

2.3. Parametrix expansions. In section 5, Theorems 5.4 and 5.7, we prove that the so-
lution to the Cauchy problem (2.2) has “forward and backward” expansions of the following
form.

• The expansion obtained using the forward parametrix is given by

(2.17) u(z) =

∞∑
n=0

un(z),

where

(2.18) u0(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ,
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and, in general, for n ∈ N,

(2.19) un(z) =

∫ t

0

∫
R

Z(z; ζ)LUn−1(ζ)dζ, Un−1(z) :=

n−1∑
k=0

uk(z).

• Similarly the expansion obtained using the backward parametrix is of the form (2.17),
where now

(2.20) ũ0(z) =

∫
R

P (z; ξ, 0)ϕ(ξ)dξ,

and, in general, for n ∈ N,

(2.21) ũn(z) =

∫ t

0

∫
R

P (z; ζ)LŨn−1(ζ)dζ, Ũn−1(z) :=

n−1∑
k=0

uk(z), n ∈ N.

The main differences between the two parametrix expansions hinted at before are now
clear. Each term in the expansion is an “expected value” with respect to the distributions
with density Z(z; ζ) or P (z; ζ). But, while P (z; ζ) is the same Gaussian density for each value
of the integration variable (z is frozen and the integration is performed varying ζ) and so is a
true PDF, Z(z; ζ) is a different Gaussian (different variance) for each value of the integration
variable ζ.

More precisely, let us examine the first term of the expansion for the forward parametrix Z:

(2.22) u0(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ.

Since the explicit expression of Z(z; ξ, 0) = Γ(ξ,0)(z; ξ, 0) is known, we see that u0 in (2.22)
is very similar to the solution of a Cauchy problem for a constant coefficient operator. On
the other hand, the integration in (2.22) is performed with respect to the variable ξ which
also appears in L(ξ,0) as the point where the operator L is frozen. Hence, roughly speaking,
the first term of the expansion is an “expected value” of the terminal payoff which uses as
density a Gaussian with a different volatility (corresponding to the “true” diffusion coefficient)
for each point in the integration range. This seems a quite sensible starting point and can
obviously be compared with standard “implied volatility” approximations where a different
Gaussian distribution (for log S) for each strike is used. Here the suggestion is to use the same
distribution but with a different volatility for each terminal value of the stock.

Let us now pass to the backward parametrix expansion zero order term:

ũ0(z) =

∫
RN

P (z; ξ, 0)ϕ(ξ)dξ.

Here the interpretation is straightforward: the zero order term is simply a Black–Scholes
option price. Indeed, since

P (z; ζ) = Γ̃z(ζ; z),
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the parametrix P (z; ζ) is the terminal log-price density corresponding to starting point (x, t).
Notice, however, that a different “volatility” value is used for each initial pair (x, t). Accord-
ingly, if we compute the derivative of the option with respect to the price S = ex, we have
that the Delta for the zero order approximation is given, with the obvious notation, by

Δ = ΔBS + vega ∗ ∂σ
∂S

.

This Delta computation derived from the parametrix expansion is interesting because it is a
direct reinterpretation of one of the ad hoc modifications of the Black–Scholes model used by
practitioners in order to get the “correct” answer from the “wrong” model. In fact, this is an
example of a “skew correction” for the computation of Delta.

This correction, which can take various shapes (see, e.g., [9]), tries to account for the
change of implied volatility which may accompany the change in moneyness of a given option.
In a particular specification, often termed “sticky delta,” if ΔBS is the Black–Scholes delta,
vega is the standard Black–Scholes vega, and σ(K/S)S is the derivative, with respect to the
price, of the volatility used for evaluating the option with strike K with moneyness K/S, then
we have a skew corrected delta computed as

Δ = ΔBS + vega ∗ σ(K/S)S .

Strictly speaking, this correction is inconsistent as it implies different risk neutral dis-
tributions for different strikes at the same date. However, if we read this correction in the
framework of the parametrix, we can justify it consistently as an approximation of the “true”
delta by a truncated expansion.

Next we consider the subsequent terms in the expansions. Both expansions are similar in
that each new term can be interpreted approximately as an expected value. The difference that
makes the backward parametrix more readable is that each term in the backward expansion
is a true expected value (with respect to the same Gaussian function P (z; ζ)), while in the
case of the standard parametrix, Z(z; ξ, 0) does not correspond to a real density.

Since each new term can be read as the value (exact or approximate) of a new option in
a Black–Scholes world, it is interesting to understand the meaning of such options. To this
end, it suffices to recall (2.19) and (2.21) and note that the operator L in the term of order n
acts on the “option approximation” derived up to order n − 1. Therefore, each action of the
L operator can be interpreted as a check of the fact that the approximation of order n − 1
satisfies

(2.23) LŨn−1 = 0.

In other words LŨn−1 is a measure of the error implied in supposing that Ũn−1 satisfies
(2.23). This error term is known (as it depends on the n− 1 approximation) and if added to
the original PDE as an inhomogeneous term makes the n − 1 approximation exact. In the
classic literature concerning parabolic equations and, in particular, the heat equation, such
terms model the existence of additional heat sources (or sinks). In financial theory similar
terms may arise as the result of transaction costs: we refer, for instance, to the asymptotic
expansion setting for optimal hedging under transaction costs in [34].
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We see how the parametrix expansion partitions the value of a given option computed in
a non–Black–Scholes world into a series of option values each computed in the Black–Scholes
world. This is exact in the case of the backward parametrix and approximately exact, if we
recall that Z is not a density, in the classical forward parametrix case. In section 5 we prove
how it is possible to bound the overall error derived by truncating the series at the nth term
with explicit and easily computable bounds uniformly decreasing as n goes to infinity and as
time to maturity decreases.

2.4. Computing the second term in the backward parametrix expansion. Formula
(2.14) gives the first term of the backward approximation of the fundamental solution of
L in (2.1). We now illustrate a method for approximating the second term of the expansion
(2.16). Recalling that ζ = (ξ, 0), we have

P1(z; ζ) :=

∫ t

0

∫
R

P (w; ζ)L̃(w)P (z;w)dw.

It turns out that a convenient choice of the coefficients b̄, c̄ in (2.13) is

(2.24) b̄ = −b(z), c̄ = c(z),

and therefore we set

(2.25) L̃(ζ)
z = a(z)∂ξξ − b(z)∂ξ + c(z) + ∂τ .

Note that, by (2.24), L̃
(ζ)
z is the adjoint of the frozen (forward) operator

(2.26) L(ζ)
z = a(z)∂ξξ + b(z)∂ξ + c(z) − ∂τ .

This fact will be used in section 3. We also performed numerical tests that show that, for a
local volatility model, the choice (2.24) is indeed optimal in the sense that it minimizes the
pricing error among all other possible choices of b̄, c̄.

Recalling the notation w = (y, s) and setting

(2.27) I(s) =

∫
R

P (y, s; ζ)L̃(y,s)P (z; y, s)dy,

the idea is to use the trapezoidal method to approximate

P1(z; ζ) =

∫ t

0
I(s)ds � t

2
(I(0) + I(t)) .

This allows us to exploit the fact that

I(0) = L̃(ζ)P (z; ζ)

since P (y, 0; ζ) is a Dirac delta centered at ζ. Note that this approximation avoids the compu-
tation of the spatial integral I(s) in (2.27) for any s: this results in a significant simplification
especially for high dimensional models.
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By (2.15) we have

L̃(y,s)P (z; y, s) =
(
L̃(y,s) − L̃(y,s)

z

)
P (z; y, s)

for t > s; then

I(s) =

∫
R

P (w; ζ)
(
L̃(w) − L̃(w)

z

)
P (z;w)dy

(by parts, for L
(w)
z as in (2.26))

=

∫
R

P (z;w)
(
L(w) − L(w)

z

)
P (w; ζ)dy,

and, passing to the limit as s goes to t, thanks to the choice (2.24), we obtain

I(t) = 0.

In conclusion, we have the following explicit formula for the backward parametrix approxi-
mation with two terms:

(2.28) Γ(z; ζ) � P (z; ζ) + P1(z; ζ) � P (z; ζ) + t− τ
2

L̃(ζ)P (z; ζ).

By using this technique, it is not difficult to determine explicit expressions for higher order
approximations. However, we do not report them here since the preliminary experiments we
performed in local volatility models (cf. section 4) show a negligible contribution of the terms
of order higher than two.

3. Analytic formulae in local volatility models. By using the parametrix method, in this
section we derive analytic (closed form) approximation formulae for one-dimensional local
volatility models. This result seems significant on its own; however, we would like to emphasize
that analogous results are valid for general local or stochastic volatility models even in high
dimensions and possibly in a degenerate setting (i.e., for instance, for Asian options): we refer
the reader to the forthcoming paper [12] for more results in this direction.

Let us consider a local volatility model where the dynamic of the underlying asset is given
by the SDE

(3.1) dSt = μ(St, t)Stdt+ σ(St, t)StdWt,

where W is a one-dimensional Brownian motion and μ, σ are sufficiently regular coefficients.
Assuming a constant riskless interest rate r, the price V (S, t) of a European call option with
strike K and maturity T is the solution to the Cauchy problem

(3.2)

{
σ2(S,t)S2

2 ∂SSV (S, t) + rS∂SV (S, t)− rV (S, t) + ∂tV (S, t) = 0, S > 0, t ∈ ]0, T [ ,

V (S, T ) = (S −K)+, S > 0.

By the standard change of variables

(3.3) V (S, t) = e−r(T−t)u(r(T − t) + log S, T − t),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETRIX APPROXIMATION OF TRANSITION DENSITIES 843

we have that V solves (3.2) if and only if u solves

(3.4)

{
a(x, t)(∂xxu(x, t)− ∂xu(x, t))− ∂tu(x, t) = 0, x ∈ R, t ∈ ]0, T [ ,

u(x, 0) = (ex −K)+ , x ∈ R,

where

(3.5) a(x, t) =
1

2
σ2
(
ex−rt, T − t) .

In particular, the option price at t = 0 is given by

(3.6) V (S, 0) = e−rTu(rT + logS, T ),

where

(3.7) u(x, T ) =

∫
R

(
eξ −K

)+
Γ (x, T ; ξ, 0) dξ

and Γ is the fundamental solution of the PDE in (3.4).
Proceeding as in subsection 2.4, we consider the frozen operator corresponding to (2.25)

(3.8) L̃(ζ)
z = a(z)(∂ξξ + ∂ξ) + ∂τ .

Then the related backward parametrix is given by

(3.9) P (x, t; ξ, τ) =
1√

4πa(x, t)(t − τ) exp
(
− (x− ξ)2
4a(x, t)(t − τ) +

1

2
(x− ξ)− 1

4
a(x, t)(t− τ)

)
for t > τ .

With this choice the first term in the backward parametrix expansion (2.20)–(2.21) cor-
responds exactly to the Black–Scholes price computed with (constant) volatility:

(3.10) ũ0(x, t) =

∫
R

(
eξ −K

)+
P (x, t; ξ, 0) dξ = exΦ(d+)−KΦ(d−),

where

d± =
x− logK ± a(x, t)t√

4a(x, t)t

and

(3.11) Φ(x) =
1√
π

∫ x

−∞
e−y2dy.

Next we derive the explicit expression of the backward expansion with two terms.
Theorem 3.1. The second order parametrix approximation of the call price in (3.6) in the

local volatility model (3.1) is given by

(3.12) u(x, t) � ũ0(x, t) + tK

2

(
a(logK, 0) − a(x, t))P (x, t; logK, 0),

where a is as in (3.5) and ũ0 is as defined in (3.10).
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Proof. By (2.28) we have

Γ(x, t; ξ, τ) � P (x, t; ξ, τ) + t− τ
2

L̃(ζ)P (x, t; ξ, τ),

where L̃(ζ) is the adjoint operator of L, acting in the variable ζ = (ξ, τ), and P is the backward
parametrix in (3.9). We first remark that

(3.13)
(
L(ζ) − L(ζ)

z

)(
eξ −K

)
= (a(ζ)− a(z)) (∂ξξ − ∂ξ)

(
eξ −K

)
= 0.

Then, recalling the notation z = (x, t), the second term in the parametrix expansion (2.21) is

u1(x, t) =
t

2

∫
R

(
eξ −K

)+
L̃(ζ)P (x, t; ξ, 0)dξ

(by (2.15))

=
t

2

∫ +∞

logK

(
eξ −K

)(
L̃(ζ) − L̃(ζ)

z

)
P (x, t; ξ, 0)dξ

(integrating by parts)

=
t

2

∫ +∞

logK

(
L(ζ) − L(ζ)

z

)(
eξ −K

)
P (x, t; ξ, 0)dξ

− t

2

[
P (z, ζ)∂ξ

(
(a(ζ)− a(z))

(
eξ −K

))]ξ=+∞
ξ=logK

(by (3.13))

= − t
2

[
P (z, ζ)

(
eξ (a(ζ)− a(z)) + ∂ξa(ζ)

(
eξ −K

))]ξ=+∞
ξ=logK

=
tK

2

(
a(logK, 0) − a(x, t))P (x, t; logK, 0).

4. Numerical experiments. Although the results of this paper, i.e., the introduction of
the backward parametrix and the estimation of error bounds, are mainly theoretical, in this
section we aim to present some numerical experiment which should convince the reader of
the effectiveness of the parametrix method. While more complicated models could have been
considered, here we aim only to present some preliminary tests and refer the reader to a
forthcoming paper for a more detailed and extensive analysis of the numerical efficiency of
the parametrix method for computing option prices and the related sensitivities or Greeks.

In this section we consider the parametrix approximation with only two terms and evaluate
its performance by comparing it with several other numerical and analytical approximations
in some local volatility models. Specifically we consider three classes of models:

• the constant elasticity of variance (CEV) model by Cox and Ross [8];
• local volatility (LV) models of quadratic and hyperbolic form (cf., for instance, Iacus

[23], Jäckel [24], and Kahl and Jäckel [25]); and
• the path-dependent (two-dimensional) Hobson–Rogers model [20].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETRIX APPROXIMATION OF TRANSITION DENSITIES 845

4.1. CEV model. We first consider a particular one-dimensional local volatility model,
the well-known CEVmodel, where the dynamics of the underlying asset, under the risk neutral
measure, is given by

(4.1) dSt = rStdt+ σS1−α
t dWt.

Here r and σ are constants and α ∈ [0, 1]. Then (4.1) corresponds to (3.1) with μ(S, t) ≡ r
and σ(S, t) = σS−α: in this particular case we have

(4.2) a(x, t) =
σ2e−2α(x−rt)

2

in the approximation formula (3.12).
We opted for this model since there is a vast literature concerning the approximation of

CEV option prices so that we may compare the parametrix performance with several other
techniques. Moreover, very accurate formulae are available, and therefore we have reference
numbers for an (almost) exact comparison with our approximation. Let us remark explicitly
that the CEV pricing PDE is not uniformly parabolic, and, in particular, it does not satisfy the
nondegeneracy condition (5.3); nevertheless, at least formally, the parametrix method applies,
and we shall see that, as a matter of fact, for a wide range of values of the parameters, it
provides very accurate approximations.

We compare the parametrix with six different approximation techniques: note that some
of these techniques were introduced specifically for the CEV model, while the parametrix is a
quite general method.

We distinguish numerical from closed form approximations. In the first group we consider
• Cox [7] (see also Hsu, Lin, and Lee [22]; Cox and Ross [8]; and Schroder [30]);
• Shaw [31] (cf. Chapter 28); and
• Monte Carlo (MC).

In the second group, that of analytic approximations, we consider
• Hagan and Woodward [19] (see also Obloj [29]);
• Howison [21]; and
• Svoboda-Greenwood [32].

We aim to compare the performance of the parametrix with respect to the above methods in
the pricing of European call options for different values of the parameters α, σ, T , and K:
typically we consider α ranging from 1

4 to 3
4 and the maturity T from one week to one year.

We also consider different values of the strike price K, from 1 to 100.
Remark 4.1. In the CEV model, the strike K and the volatility coefficient σ are inversely

correlated. Indeed, by the transformation Yt =
St
K , from (4.1) we get

dYt = rYtdt+
σ

Kα
Y 1−α
t dWt,

which shows that K and σ are inversely proportional quantities: increasing the value of the
strike corresponds to decreasing the value of the volatility.

Regarding the numerical approximations, we recall that the formulae by Cox [7] express
the price of a call option as the sum of a series of Gamma cumulative distribution functions.
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0.20
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Option Price

Figure 1. CEV-expansion option price by Cox [7] in the case α = 1
4
and T = 1

3
with a number n of terms

in the series expansion equal to n = 400, 420, 440, 460.

It is known that these formulae give a good local (at-the-money) approximation of the option
price. For instance, Figure 1 shows the Cox option prices in the case α = 1

4 and T = 1
3 with

a number n of terms in the series expansion equal to n = 400, 420, 440, 460: it is evident that
for far-from-the-money options this approximation gives wrong prices unless we consider a
high number of terms in the series expansion. This is particularly sensible for short times to
maturity.

On the other hand, the approximation by Shaw [31] expresses the payoff random variable
in terms of Bessel functions and then uses numerical integration to provide the option price.
Since it is an adaptive method, the representation of prices is valid globally even if the method
may become computationally expensive when we have to compute deep out-of- or in-the-
money option prices. We implemented both methods and found that in most cases they are
essentially equivalent and provide reliable reference prices. However, as we shall see shortly,
the approximation by Hagan and Woodward [19] also seems to be very accurate for all the
values of the parameters: since this last approximation gives closed form solutions, we decided
to use it to produce the reference values for the computation of the errors.

Concerning Monte Carlo (MC), it seems that it is not competitive with any of the other
approximations. In particular, the parametrix and the other analytic approximations we
considered, when suitably used, are generally much more accurate than MC solutions, and,
what is more, they give explicit algebraic formulae for option prices. For instance, in Figure 2
we represent the Hagan–Woodward price, obtained by (4.4), minus the MC price (continuous
line) and the parametrix price minus the MC price (dashed line) scaled to the at-the-money
price in the CEV model with α = 1

4 (left) and α = 1
2 (right). In the experiments, 500.000 MC

simulations, combined with an Euler discretization of the SDE with 100 steps, are performed.
The values of the other parameters are T = 0.25, σ = 30%, r = 5%, and K = 1. We
marked by green (respectively, red) the confidence regions where prices differ no more than
2 (respectively, 2.57) standard deviations from the simulated MC prices: this means that
with probability 95% (respectively, 99%) the true price (scaled to the at-the-money price)
belongs to the green (respectively, red) region. According to the standard interpretation of a



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETRIX APPROXIMATION OF TRANSITION DENSITIES 847

0.4 0.6 0.8 1.0 1.2 1.4 1.6

�0.006

�0.004

�0.002

0.002

0.004

0.006
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Figure 2. Hagan–Woodward minus MC price (continuous line) and parametrix minus MC price (dashed
line) scaled to the at-the-money price in the CEV model with α = 1

4
(left) and α = 1

2
(right). A 100-step

Euler discretization of the SDE and an MC with N = 500.000 simulations have been used. Moreover, T = 0.25,
σ = 20%, r = 5%, and K = 1. The 95% and 99% confidence regions for MC estimates are marked, respectively,
by green and red.

confidence interval, any price inside the bands can be the true price and is compatible (at the
given level of confidence) with the MC estimate.

Next we consider the analytic approximations. We recall that Hagan and Woodward in
[19], by using singular perturbation techniques, obtain explicit formulae for the approximated
implied volatility σB in a local volatility model where the forward price Ft of the asset obeys
an SDE of the form

(4.3) dFt = γ(t)A (Ft) dWt

for some deterministic and suitably regular functions γ and A. Equation (4.1) can be reduced
to (4.1) through the transformation Ft = er(T−t)St: in this case we also have

γ(t) = σerα(T−t) and A(F ) = F 1−α.

Therefore, the Hagan–Woodward approximation formula reads

(4.4) σB =
a

fα

(
1 +

1

24
α(3 − α)

(
erTS0 −K

f

)2

+
1

24

α2a2T

f2α

)
,

where

a =

√
1

T

∫ T

0
γ(t)2dt = σ

√
e2rαT − 1

2rαT
and f =

erTS0 +K

2
.

It is then sufficient to insert the implied volatility σB into the Black–Scholes formula to get
the option prices. Figure 3 shows the Hagan–Woodward call value minus the Cox call value,
scaled with the at-the-money value, as a function of S for different times to maturity and
values of α. Since the Hagan–Woodward approximation seems to be quite accurate, hereafter,
as already mentioned, we shall use it for computing the “true” (or reference) values in the
experiments.
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Figure 3. Hagan–Woodward approximate value minus Cox approximate value (with n = 1000 terms in the
series expansion), scaled with the at-the-money value, as a function of S, for T = 2, 6, 12 months and α = 1

4

(left), α = 3
4
(right), σ = 30%, r = 5%, and K = 1.
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Figure 4. Scaled errors of the parametrix approximation, as a function of S ∈ [0, 2], for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 1

4
, σ = 30%, r = 5%, and K = 1.
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Figure 5. Scaled errors of the parametrix approximation as a function of S ∈ [0.2, 2] for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 3

4
, σ = 30%, r = 5%, and K = 1.

We next test the computational performance of the parametrix approximation. Figure 4
compares the error relative to the at-the-money option value (in short, the scaled error) in the
case α = 1

4 for different times to maturity: T = 7, 15, 45 days in the left panel and T = 4, 8, 12
months in the right panel.

Figure 5 exhibits analogous results for α = 3
4 : in this case, we have bigger errors than in the

case α = 1
4 which is “closer” to the standard Black–Scholes model. For α = 3

4 , we also separate
the case S ∈ [ 2

10 , 2
]
from the case S ∈ [0, 2

10

]
, which we represent in Figure 6. The reason

is that, as previously remarked, the CEV diffusion operator is not uniformly parabolic and
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Figure 6. Scaled errors of the parametrix approximation as a function of S ∈ [0, 0.2] for T = 7, 15, 45 days
(left) and T = 4, 8, 12 months (right). α = 3

4
, σ = 30%, r = 5%, and K = 1.
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Figure 7. Relative errors as a function of K ∈ [1, 10] (left) and K ∈ [10, 100] (right) of the at-the-money
prices in the parametrix approximation. Here T = 1

2
, σ = 30%, r = 5%, and α = 1

4
, 1
2
, 3
4
.

degenerates at the boundary. In particular, in this case, the price process reaches the origin
with positive probability and this can be difficultly captured by a nondegenerate diffusion.
However, as reported in Figure 6, this fact seems to produce relevant errors only for extremely
out-of-the-money options; that is, S ∼ 1

100 when K = 1.
Finally, we examine the accuracy of the parametrix approximation as the strike K varies

or, equivalently, by Remark 4.1, the volatility σ varies. Figure 7 shows the relative errors,
defined as

CHW − CP

CHW
,

where CP , CHW are, respectively, the call prices given by the parametrix expansion and by
the Hagan–Woodward formula. Here we consider at-the-money options prices as functions
of K ∈ [10, 100]. Moreover, T = 1

2 , σ = 30%, r = 5%, and the values of α = 1
4 ,

1
2 ,

3
4

are considered. Experiments with other choices of the parameters give essentially the same
results and show that the parametrix prices basically coincide with the Hagan–Woodward
prices for K large (or σ small): in this case the approximation for α = 3

4 is even better than
it is for α = 1

4 .
Next we consider the matched asymptotic expansion (MAE) proposed by Howison [21].

In this case we can directly employ the approximation formula in [21, page 392] to compute
option prices. We also consider the recent paper by Svoboda-Greenwood [32], where another
approximated formula for CEV prices is obtained by performing a small time expansion of
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Figure 8. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (continuous
line) as a function of S, with α = 1

4
; at-the-money volatility is σ = 30% (left) and σ = 15% (right). Moreover,

T = 0.25, r = 5%, and K = 1.

1.0 1.5 2.0
S

�0.002

0.002

0.004

Scaled Error

1.0 1.5 2.0
S

�0.004

�0.002

0.002

Scaled Error

Figure 9. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (continuous
line) as a function of S, with α = 1

2
; at-the-money volatility is σ = 30% (left) and σ = 15% (right). Moreover,

T = 0.25, r = 5%, and K = 1.

the option prices around the forward-at-the-money value of the underlying. More precisely,
we consider the SDE

dYt = γ(t)f(Yt)dWt,

which corresponds to (4.1) after the transformation Yt = e−rtSt, with γ(t) = σe−rαt and
f(Y ) = Y 1−α. Actually, in [32], only the case of time independent γ = γ(t) is considered.
However, by using the same technique we generalize the result in [32, section 2.2] and obtain
the following formula for the approximated call option price with strike K and maturity T :

C(S, T ) ∼ (S − y0)Φ
(
S − y0
y1−α
0 σ0

)
+

((
1 +

(S − y0)1−α

2y0

)
y1−α
0 σ0 +

(1− α)2
4

(S − y0)4
σ0y

3−α
0

+
1

6
(S − y0)2 σ0y−1−α

0 (1 + α(2α − 3)) +
1

12
σ30y

1−3α
0 (1− α) (9α − 8)

)
Φ′
(
S − y0
y1−α
0 σ0

)
,

where y0 = Ke−rt, σ0 = σ
√

1−e−2rαT

2rα , and Φ is the standard normal cumulative density

function in (3.11).
In Figures 8, 9, and 10 we compare the scaled errors of the parametrix (dashed line),

MAE (thick line), and Svoboda-Greenwood (continuous line) approximations. It turns out
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Figure 10. Scaled errors of parametrix (dashed line), MAE (thick line), and Svoboda-Greenwood (contin-
uous line) as a function of S with α = 3

4
; at-the-money volatility is σ = 30% (left) and σ = 15% (right).

Moreover, T = 0.25, r = 5%, and K = 1.

that, at least for α ≤ 2
3 , the parametrix gives the best results: this is confirmed also by other

experiments that we do not report here. For α = 3
4 , parametrix and Svoboda-Greenwood

errors are of the same order even if the latter seems slightly better. In general the MAE is not
competitive with the other two approximations; this is particularly evident when σ is small
or K is large. We also remark that the MAE is not correct asymptotically for large S (see
also Figure 3 in [21]).

4.2. Parabolic and hyperbolic LV models. We consider two specifications of the volatility
function in the general local volatility (LV) model

dSt = rStdt+ σ(St, t)StdWt,

namely, the quadratic LV

σ(S, t) = σ0min
{
2,
√

1 + (S − β)2
}

and the hyperbolic LV, as defined in [24],

σ(S, t) = σ0

(
1− β + β2

β
S +

β − 1

β

(√
S2 + β2(1− S)2 − β

))
,

where σ0 and β are suitable parameters.

We remark that, if r is strictly positive, then both models cannot be reduced in the form
(4.3) where the coefficient A is independent of time. Consequently in this case the Hagan–
Woodward and Svoboda-Greenwood approximations do not apply. Therefore, we compare
the parametrix with an accurate MC method.

In Figure 11 the black line represents the parametrix call price minus an MC call price,
scaled to the at-the-money price, in the quadratic LV model (left) and hyperbolic LV model
(right). We set T = 0.25, r = 5%, and K = 1. Moreover, in the quadratic LV, we put β = 1
and σ0 = 20% so that in this model the volatility varies from the minimum 20% at-the-money
to the maximum 40%. In the hyperbolic LV, we consider the typical values (cf. [24]) σ = 20%
and β = 1

2 .
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Figure 11. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the quadratic (left) and hyperbolic (right) local volatility models. The 95%
and 99% MC confidence regions are marked, respectively, by green and red. A 100-step Euler discretization of
the SDEs and an MC with 500.000 simulations have been used. Moreover, T = 0.25, r = 5%, and K = 1.

In the experiments, a 100-step Euler discretization of the SDEs and an MC with 500.000
simulations have been used. As before, we marked by green (respectively, red) the confidence
regions where prices differ no more than 2 (respectively, 2.57) standard deviations from the
simulated MC prices; in other words, the true price (scaled to at-the-money price) belongs to
the green (red) region with probability 95% (99%).

Since in Figure 11 some errors appear corresponding to in-the-money options, for a more
comprehensive comparison, we report in Table 1 the MC and parametrix prices (not scaled)
for S ∈ {1.2; 1.3; 1.4; 1.5; 1.6}.

Table 1
MC and parametrix call prices in quadratic and hyperbolic LV models with σ0 = 20%, T = 0.25, r = 5%,

and K = 1. Moreover, β = 1 in the quadratic LV and β = 1
2
in the hyperbolic LV.

Call prices

Quadratic LV Hyperbolic LV

MC Parametrix MC Parametrix

S = 1.2 0.21352 0.213547 0.318564 0.318545
S = 1.3 0.312533 0.312535 0.417773 0.417748
S = 1.4 0.412432 0.412433 0.517571 0.517548
S = 1.5 0.512423 0.512423 0.61752 0.617503
S = 1.6 0.612422 0.612422 0.717507 0.717495

Clearly, in view of an extensive use of the parametrix approximation, a deeper analysis
of the performance for a wide range of parameters is in order. However, these preliminary
results seem promising.

4.3. Hobson–Rogers model. The Hobson–Rogers model [20] was introduced as an ex-
tension of the local volatility. In this model the volatility is defined as a function of the whole
trajectory of the underlying asset and not only in terms of the spot price. The model was fur-
ther generalized to a more flexible path dependent volatility model by two of the authors [13].
The main feature is that it generally leads to a complete market. We refer the reader to [14]
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for an empirical analysis which shows the effectiveness of the model and compares the hedging
performance with respect to standard stochastic volatility models.

We consider an average weight ψ that is a nonnegative, piecewise continuous, and inte-
grable function on ]−∞, T ]. We assume that ψ is strictly positive in [0, T ], and we set

Ψ(t) =

∫ t

−∞
ψ(s)ds.

Then we define the average process as

At =
1

Ψ(t)

∫ t

−∞
ψ(s)Zsds, t ∈ ]0, T ],

where Zt = log(e−rtSt) denotes the log-discounted price process. The standard Hobson–
Rogers model corresponds to the specification ψ(t) = eλt for some positive parameter λ.
Then by the Itô formula we have

dAt =
ϕ(t)

Φ(t)
(Zt −At) dt.

In a path dependent volatility model the log-price Zt = log St has the dynamics

dZt = μ(Zt −At)dt+ ν(Zt −At)dWt,

where μ = μ(·) and ν = ν(·) are suitable functions. Then, by usual no-arbitrage arguments,
we obtain the pricing operator

(4.5) Lu =
ν2(z − a)

2
(∂zzu− ∂zu) + ϕ(t)

Φ(t)
(z − a)∂au+ ∂tu, (t, z, a) ∈ ]0, T [ × R

2.

We remark that L is not uniformly parabolic (i.e., does not satisfy condition (5.3) in R
2).

However, if we assume that ν is smooth and bounded from above and below by positive
constants, then L is a hypoelliptic operator belonging to the general class of Kolmogorov
operators for which the parametrix method has been successfully employed in [11] to construct
a fundamental solution. Therefore, it is possible to extend all the theoretical results of this
paper to include L in (4.5).

As in the previous examples, we tested the parametrix against the MC method, and in the
experiments a 100-step Euler discretization of the SDEs and 500.000 simulations have been
used. In Figure 12 we compare the parametrix and MC approximations for typical values of
the parameters, assuming different values for the initial average A0—specifically A0 = Z0 in
the left panel and A0 = Z0 − 1

5 in the right panel. In Table 2 we also report some of the
corresponding MC and parametrix prices.

The last experiment in Figure 13 is similar, but we consider different maturities, namely,
1 month in the left panel and 6 months in the right panel.
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Figure 12. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the Hobson–Rogers model for S0 ∈ [

7
10
, 13
10

]

and ψ(t) = et, ν(x) = σ
√
2x2 + 1,

σ = 20%, T = 0.25, r = 5%, and K = 1. The 95% and 99% MC confidence regions are marked, respectively,
by green and red. A 100-step Euler discretization of the SDEs and an MC with 500.000 simulations have been
used. Moreover, A0 = Z0 (left) and A0 = Z0 − 1

5
(right).

Table 2
MC and parametrix call prices in the Hobson–Rogers model with ψ(t) = et, ν(x) = σ

√
2x2 + 1, σ = 20%,

T = 0.25, r = 5%, and K = 1 in the case A0 = Z0 (left) and A0 = Z0 − 1
5
(right).

Call prices

A0 = Z0 A0 = Z0 − 1
5

MC Parametrix MC Parametrix

S = 0.8 0.000646705 0.000679473 0.000612704 0.000696547
S = 0.9 0.00820041 0.00819487 0.00904307 0.00926125
S = 1 0.0400307 0.0399139 0.0430224 0.0429977
S = 1.1 0.0998243 0.0998026 0.102566 0.102507
S = 1.2 0.168063 0.168108 0.16929 0.169278
S = 1.3 0.230935 0.230946 0.231299 0.231269

0.90 0.95 1.00 1.05 1.10 1.15 1.20
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�0.003
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Figure 13. The black line represents the difference, scaled to the at-the-money price, between the parametrix
call price and an MC call price in the Hobson–Rogers model for S0 ∈ [

8
10
, 12
10

]

and ψ(t) = et, ν(x) = σ
√
2x2 + 1,

σ = 10%, A0 = Z0, r = 5%, and K = 1. The 95% and 99% MC confidence regions are marked, respectively,
by green and red. A 100-step Euler discretization of the SDEs and an MC with 500.000 simulations have been
used. Moreover, T = 1

12
(left) and T = 6

12
(right).
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5. Error bounds. In this section we present the parametrix expansion in its full generality
and derive easily computable error estimates. We consider a parabolic differential equation in
the form

(5.1) Lu :=
N∑

i,j=1

aij(z)∂xixju+
N∑
i=1

bi(z)∂xiu+ c(z)u − ∂tu = 0, z = (x, t) ∈ R
N × R,

where A(z) = (aij(z)) is a symmetric and positive definite matrix. Throughout this section
we systematically denote by z = (x, t) and ζ = (ξ, τ) the points in R

N+1. We also denote by
λ1(z), . . . , λN (z) the eigenvalues of A(z) and set2

m := inf
i=1,...,N
z∈RN+1

λi(z), M := sup
i=1,...,N
z∈RN+1

λi(z)μ(z).

Our main hypotheses are the following.
[H1] m,M are positive and real numbers.
[H2] The coefficients of L are bounded functions and

(5.2) |aij(x, t)− aij(ξ, τ)| ≤ α
(
|x− ξ|+ |t− τ | 12

)
, (x, t), (ξ, τ) ∈ R

N+1,

for i, j = 1, . . . , N and for some positive constant α.
As a consequence of [H1] we have the usual uniform parabolicity condition:

(5.3) m|ξ|2 ≤
N∑

i,j=1

aij(z)ξiξj ≤M |ξ|2, ξ ∈ R
N , z ∈ R

N+1.

5.1. Forward parametrix. In this section for brevity we consider only the classical case,
corresponding to b̄ = c̄ = 0 in (2.4). Given w ∈ R

N+1, we denote by Γw(z; ζ) the fundamental
solution to the frozen operator Lw defined by

(5.4) Lw =

N∑
i,j=1

aij(w)∂xixj − ∂t.

We recall that Γw(z; ζ) = Γw(z − ζ), where

(5.5) Γw(x, t) := Γw(x, t; 0, 0) =
(4πt)−

N
2√

detA(w)
exp

(
−〈A

−1(w)x, x〉
4t

)
, x ∈ R

N , t > 0.

We define the forward parametrix

(5.6) Z(z; ζ) = Γζ(z; ζ).

2Equivalently we may use m := infz∈RN+1 μ(z) and M := supz∈RN+1 μ(z), where μ(z) is the Euclidean
norm of A(z) in R

N+1 × R
N+1 (and also equal to the Euclidean norm of (λ1(z), . . . , λN(z)), the vector of the

eigenvalues of A(z)). This gives less precise, but more easily computable, estimates.
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We recall Notation 2.1 and remark explicitly that

(5.7) L
(z)
ζ Z(z; ζ) = 0 for z �= ζ.

The following classical result (cf., for instance, Theorem 1.4 in [11]) states the existence of a
fundamental solution Γ of operator L.

Theorem 5.1. Assume hypotheses [H1] and [H2]. Then for every ζ ∈ R
N+1, the function

defined by

(5.8) Γ(z; ζ) = Z(z; ζ) +

+∞∑
n=1

∫ t

τ

∫
RN

Z(z;w)(LZ)n(w; ζ)dw, t > τ,

is a fundamental solution of L in (5.1). In (5.8) we have

(LZ)1(w; ζ) = L(w)Z(w; ζ), w = (y, s),

(LZ)n+1(w; ζ) =

∫ s

τ

∫
RN

L(w)Z(w; z0)(LZ)n(z0; ζ)dz0, n ≥ 1,

and, for every T > 0, the series

(5.9) Φ(w; ζ) :=

+∞∑
n=1

(LZ)n(w; ζ)

converges uniformly for w ∈ R
N × ]τ, τ + T [.

Our first result is the following global estimate for the parametrix approximation truncated
at the nth term.

Theorem 5.2. Under the assumptions of Theorem 5.1, for every positive ε we have∣∣∣∣∣Γ(z; ζ)− Z(z; ζ)−
n−1∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣∣
≤
√

2

π

(
M + ε

m

)N
2

fn

(
ηε,T

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(5.10)

for t ∈ ]τ, τ + T [, where ΓM+ε is the Gaussian density defined in (A.1)–(A.2), ηε,T is the
constant defined in (A.7), and

(5.11) fn(η) = e
η2

2 (η + 1)

(
η2

2

)[n+1
2 ][

n+1
2

]
!
,

with [a] denoting the integer part of a ∈ R.
Remark 5.3. We remark explicitly that when η = ηε,T

√
2π(t− τ) < 1 in (5.11),

fn(η) ≤ C ηn(
n
2

)
!
, n ∈ N,
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for some positive constant C so that the convergence of the parametrix approximation is ex-
tremely fast. This is the case, for instance, when t− τ � 1, i.e., for short time to maturity.
Also note that (5.10) is a global estimate with respect to the spatial variables.

Proof of Theorem 5.2. Theorem 5.2 is based on several results whose proofs are postponed
to the appendix. We have∣∣∣∣∣Γ(z; ζ)− Z(z; ζ)−

n−1∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣∣ ≤
∞∑
k=n

∫ t

τ

∫
RN

Z(z;w) |(LZ)k(w; ζ)| dw

(by Lemma A.1, estimate (A.8), and the reproduction property)

≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)
∞∑

k=n

∫ t

τ

ΓE

(
1
2

)k
ΓE

(
k
2

) ηkε,T

(s− τ)1− k
2

ds

(using the properties of the Gamma function3)

(5.12) =

(
M + ε

m

)N
2

ΓM+ε(z; ζ)

√
2

π

∞∑
k=n

(
ηε,T

√
2π(t− τ)

)k
k!!

.

Then estimate (5.10) follows from some elementary computation. Indeed, if n is even, then[
n+1
2

]
= n

2 and we have

∞∑
k=n

ηk

k!!
=

∞∑
k=n

2

η2k

(2k)!!
+

∞∑
k=n

2
+1

η2k−1

(2k − 1)!!
≤

∞∑
k=n

2

η2k

(2k)!!
+

∞∑
k=n

2
+1

η2k−1

(2k − 2)!!

(since (2k)!! = 2kk!)

≤
∞∑

k=n
2

1

k!

(
η2

2

)k

+

∞∑
k=n

2

η2k+1

2kk!
= fn(η),

with fn as in (5.11) and using the fact that

∞∑
k=n

ηk

k!
=
eηηn

n!
.

The case of n odd can be treated analogously and is omitted.

From Theorem 5.2 we deduce the following forward parametrix expansion for solutions to
the Cauchy problem for L.

3Recall that
ΓE

(

1
2

)k

ΓE

(

k
2

) =
(2π)

k−1
2

(k − 2)!!
,

where n!! is the double factorial defined by n!! = 2 · 4 · 6 · · ·n if n is even and n!! = 1 · 3 · 5 · · ·n if n is odd.
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Theorem 5.4. The solution to the Cauchy problem

(5.13)

{
Lu(x, t) = 0, x ∈ R

N , t > 0,

u(x, 0) = ϕ(x), x ∈ R
N ,

has an expansion of the form (2.17)–(2.18)–(2.19).
Proof. For simplicity let us consider only the one-dimensional case. By formulae (2.3) and

(5.8) we have

u(z) =

∫
R

Z(z; ξ, 0)ϕ(ξ)dξ +

+∞∑
n=1

∫
R

(∫ t

τ

∫
R

Z(z;w)(LZ)n(w; ξ, 0)dw

)
ϕ(ξ)dξ.

Using the expression of (LZ)1 in (5.1), we have

u1(z) =

∫
R

ϕ(ξ)

∫ t

0

∫
R

Z(z; z0)LZ(z0; ξ, 0)dz0dξ =

∫ t

0

∫
R

Z(z; z0)L

∫
R

ϕ(ξ)Z(z0; ξ, 0)dξ︸ ︷︷ ︸
=u0(z0)

dz0.

Moreover,

u2(z) =

∫
R

ϕ(ξ)

∫ t

0

∫
R

Z(z; z1)

∫ t1

0

∫
R

LZ(z1; z0)LZ(z0; ξ, 0)dz0dz1dξ

(changing the order of integration)

=

∫ t

0

∫
R

Z(z; z1)

∫ t1

0

∫
R

LZ(z1; z0)L

∫
R

ϕ(ξ)Z(z0; ξ, 0)dξ︸ ︷︷ ︸
=u0(z0)

dz0dz1

=

∫ t

0

∫
R

Z(z; z1)

(
L

∫ t1

0

∫
R

Z(z1; z0)Lu0(z0)dz0︸ ︷︷ ︸
=u1(z1)

+Lu0(z1)

)
dz1,

and this proves (2.19) for n = 2. The general case can be proved by induction.
As a byproduct of the parametrix method, we also obtain the following upper Gaussian

estimate of the fundamental solution.
Corollary 5.5. For every ε, T > 0, we have

Γ(z; ζ) ≤
(
M + ε

m

)N
2 (

1 + ηε,T
√

2π(t− τ)
)
eπ(t−τ)η2ε,T ΓM+ε(z; ζ)

for z, ζ ∈ R
N+1, t ∈ ]τ, τ + T [, where ΓM+ε is the Gaussian density defined in (A.1)–(A.2)

and ηε,T is the constant in (A.7).
Proof. By Theorem 5.2 we have

Γ(z; ζ) = Z(z; ζ) +
∞∑
k=1

∫ t

τ

∫
RN

Z(z;w)(LZ)k(w; ζ)dw;
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therefore, as in (5.12), we get

Γ(z; ζ) ≤
(
M + ε

m

)N
2

ΓM+ε(z; ζ)

∞∑
k=0

(
ηε,T

√
2π(t− τ)

)k
k!!

,

and the thesis follows since ∞∑
k=0

ηk

k!!
≤ (1 + η)e

η2

2

for η > 0.

5.2. Backward parametrix. We assume the following additional hypothesis, which allows
us to introduce the adjoint operator of L.
[H3] The derivatives ∂xiaij, ∂xixjaij , ∂xibi are bounded functions.

We define the adjoint operator L̃ of L as usual:

(5.14) L̃u =
N∑

i,j=1

aij∂xixju+
N∑
i=1

b̃i∂xiu+ c̃u+ ∂tu,

where

(5.15) b̃i = −bi + 2

N∑
j=1

∂xiaij, c̃ = c+

N∑
i,j=1

∂xixjaij −
N∑
i=1

∂xibi.

Thus we have ∫
RN+1

ϕLψ =

∫
RN+1

ψL̃ϕ, ϕ, ψ ∈ C∞
0 (RN+1),

and the following classical result holds (cf., for instance, [17, Chap. 1, Theor. 15]).

Theorem 5.6. There exists a fundamental solution Γ̃ of L̃, and we have

(5.16) Γ(z; ζ) = Γ̃(ζ; z), z, ζ ∈ R
N+1, z �= ζ.

For fixed w ∈ R
N+1, we define the frozen operator

L̃(ζ)
w =

N∑
i,j=1

aij(w)∂ξiξj + ∂τ

and denote by P (z; ζ) the backward parametrix defined as the fundamental solution of L̃
(ζ)
w

with w = z, or, more precisely,

(5.17) P (z; ζ) = Γ̃z(ζ; z) = Γz(z − ζ)

for Γz as in (5.5). Analogously to (5.7), we have

L̃(ζ)
z P (z; ζ) = 0 for z �= ζ.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

860 F. CORIELLI, P. FOSCHI, AND A. PASCUCCI

Our main result reads as follows.

Theorem 5.7. Assume hypotheses [H1], [H2], and [H3]. Then, for every ζ ∈ R
N+1, the

following expansion of the fundamental solution Γ holds:

(5.18) Γ(z; ζ) = P (z; ζ) +

∫ t

τ

∫
RN

P (z;w)Ψ(w; ζ)dw, t > τ,

where

(5.19) Ψ(z; ζ) =
+∞∑
k=1

(LP )k(z; ζ),

with

(LP )1(z; ζ) = L(z)P (z, ζ),

(LP )k+1(z; ζ) =

∫ t

τ

∫
RN

L(z)Z(z;w)(LP )k(w; ζ)dw,

and, for every T > 0, the series in (5.9) converges uniformly in the strip R
N × ]τ, τ + T [.

Moreover, for every positive ε, we have the following estimate for the approximation truncated
at the nth term: ∣∣∣∣∣Γ(z; ζ)− P (z; ζ)−

n−1∑
k=1

∫ t

τ

∫
RN

P (z;w)(LP )k(w; ζ)dw

∣∣∣∣∣
≤
√

2

π

(
M + ε

m

)N
2

fn

(
η̃ε,T

√
2π(t− τ)

)
ΓM+ε(z; ζ)

(5.20)

for t ∈ ]τ, τ + T [, where η̃ε,T is defined in (A.10) and fn in (5.11). As a consequence, the
solution to the Cauchy problem (5.13) has an expansion of the form (2.17)–(2.20)–(2.21).

Proof. Proceeding as in the forward case, one can prove that

(5.21) Γ(z; ζ) = Γ̃(ζ; z) = Γ̃z(ζ; z) +

∫ t

τ

∫
RN

Γ̃w(ζ;w)Φ̃(w; z)dw, t > τ,

where

(5.22) Φ̃(ζ; z) =

+∞∑
k=1

Ik(ζ; z),

with

I1(ζ; z) = L̃(ζ)Γ̃z(ζ; z),

Ik+1(ζ; z) =

∫ t

τ

∫
RN

L̃(ζ)Γ̃w(ζ;w)Ik(w; z)dw,
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and the series converges uniformly on the strips. Moreover, error estimate (5.20) holds true.
In order to conclude the proof, it suffices to invoke Theorem 5.6 to prove that the terms of
the expansions (5.18)–(5.19) and (5.21)–(5.22) coincide, that is,

(5.23)

∫ t

τ

∫
RN

P (z;w)(LP )k(w; ζ)dw =

∫ t

τ

∫
RN

Γ̃w(ζ;w)Ik(w; z)dw

for every k ∈ N.

For k = 1, recalling (5.17), we have∫ t

τ

∫
RN

Γ̃w(ζ;w)I1(w; z)dw =

∫ t

τ

∫
RN

P (w; ζ)L̃(w)P (z;w)dw,

so that the thesis follows immediately by integrating by parts since we have no contribution
at borders. Indeed, denoting w = (y, s), formally we have∫ t

τ

∫
RN

Γw(w; ζ)∂sΓz(z;w)dw = Ī −
∫ t

τ

∫
RN

∂sΓw(w; ζ)Γz(z;w)dw,

where

Ī =

∫
RN

Γ(y,t)(y, t; ξ, τ)Γ(x,t)(x, t; y, t)dy −
∫
RN

Γ(y,τ)(y, τ ; ξ, τ)Γ(x,t)(x, t; y, τ)dy = 0

since Γ(x,t)(x, t; y, t) = δx(y) and Γ(y,τ)(y, τ ; ξ, τ) = δξ(y). On the other hand, the above
argument can be made rigorous by performing the integration by parts on a thinner strip
Sτ+δ,t−δ and then applying the dominated convergence theorem as δ → 0+ combined with the
summability estimate (A.9).

For k = 2, we have∫ t

τ

∫
RN

Γz0(z0; ζ)

∫ t

t0

∫
RN

L̃(z0)Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫
RN

Γz0(z0; ζ)

(
L̃(z0)

∫ t

t0

∫
RN

Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1

+

∫
RN

Γ(y,t0)(y, t0; z0)L̃
(y,t0)Γz(z; y, t0)dy

)
dz0 ≡ J1 + J2,

where, using again that Γ(y,t0)(y, t0; z0) = δx0(y), we get

J2 =

∫ t

τ

∫
RN

Γz0(z0; ζ)L̃
(z0)Γz(z; z0)dz0

(proceeding as in the case k = 1)

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)Γz(z; z0)dz0;
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on the other hand,

J1 =

∫ t

τ

∫
RN

Γz0(z0; ζ)L̃
(z0)

∫ t

t0

∫
RN

Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

(by parts as before)

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)

∫ t

t0

∫
RN

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0

−
∫
RN

Γ(y,τ)(y, τ ; ξ, τ)

∫ t

τ

∫
RN

L(z1)Γz1(z1; y, τ)Γz(z; z1)dz1dy

(since Γ(y,τ)(y, τ ; ξ, τ) = δξ(y))

=

∫ t

τ

∫
RN

L(z0)Γz0(z0; ζ)

∫ t

t0

∫
RN

L(z1)Γz1(z1; z0)Γz(z; z1)dz1dz0

−
∫ t

τ

∫
RN

L(z1)Γz1(z1; ζ)Γz(z; z1)dz1.

Combining the expressions of J1 and J2, eventually we obtain∫ t

τ

∫
RN

Γz0(z0; ζ)

∫ t

t0

∫
RN

L̃(z0)Γz1(z1; z0)L̃
(z1)Γz(z; z1)dz1dz0

=

∫ t

τ

∫
RN

L(z0)P (z0; ζ)

∫ t

t0

∫
RN

L(z1)P (z1; z0)P (z; z1)dz1dz0,

which concludes the proof. As before, the previous argument should be made rigorous by
some approximating procedure. The general case can be achieved by induction.

Appendix. We collect several lemmas that are preliminary to the proofs of Theorems 5.2
and 5.7. These lemmas are essentially estimates of Γw in (5.5) and its derivatives in terms of
the fundamental solution of the heat equation.

Given a constant μ > 0, we denote by Γμ the fundamental solution to the heat operator

(A.1) μ
N∑
i=1

∂xixi − ∂t.

Lemma A.1. For every z, ζ, w ∈ R
N+1 with z �= ζ, we have

(m
M

)N
2
Γm(z; ζ) ≤ Γw(z; ζ) ≤

(
M

m

)N
2

ΓM (z; ζ).

Proof. We prove only the second inequality in the case ζ = 0. Keeping in mind formula
(5.5), we see that the thesis follows directly from condition (5.3). Indeed, we have

(A.2) Γw(z) ≤ 1

(4πtm)
N
2

exp

(
− |x|

2

4tM

)
=

(
M

m

)N
2

ΓM (z).
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Lemma A.2. For every ε, μ > 0 and n ∈ N ∪ {0} we have( |x|√
t

)n

Γμ(x, t) ≤
(n
ε

)n
2
(μ + ε)n

(
μ+ ε

μ

)N
2

Γμ+ε(x, t)

for any x ∈ R
N and t > 0.

Proof. Setting a = |x|√
t
, we have( |x|√

t

)n

Γμ(z, 0) = an(4πμt)−
N
2 exp

(
− a

2

4μ

)
≤ (4πμt)−

N
2 exp

(
− a2

4(μ + ε)

)
sup
R+

G,

where

(A.3) G(a) = an exp

(
−
(

1

4μ
− 1

4(μ+ ε)

)
a2
)
.

The thesis follows by a straightforward computation, since G attains a global maximum at

ā =

√
2nμ(μ+ε)

ε and

G(ā) =

(
2nμ(μ+ ε)

eε

)n
2

≤
(n
ε

)n
2
(μ+ ε)n.

Lemma A.3. For every ε > 0 and i, j = 1, . . . , N we have

|∂xiΓw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ),(A.4)

∣∣∂xixjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)
(
M + ε

m

)N
2
+2

ΓM+ε(z; ζ)(A.5)

for any z, ζ, w ∈ R
N+1 with t > τ .

Proof. For the sake of simplicity, we prove the above estimates in the case ζ = 0. We have

|∂xiΓw(z)| = 1

2

∣∣(A−1(w)x
)
i

∣∣
t

Γw(z)

(by Lemma A.1)

≤ 1

2m
√
t

(
M

m

)N
2 |x|√

t
ΓM (z),

and (A.5) follows by applying Lemma A.2 with μ =M and n = 1.
Moreover,

∣∣∂xixjΓw(z)
∣∣ = 1

2t

∣∣∣∣A−1(w)ij +
1

2t

(
A−1(w)x

)
i

(
A−1(w)x

)
j

∣∣∣∣Γw(z) ≤ 1

2t

(
1

m
+
|x|2
2m2t

)
Γw(z),

and (A.4) easily follows by Lemmas A.1 and A.2 with μ =M .
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Lemma A.4. For every positive ε and T , we have

(A.6)
∣∣∣L(z)Z(z; ζ)

∣∣∣ ≤ ηε,T√
t− τ ΓM+ε(z; ζ), z, ζ ∈ R

N+1, t ∈ ]τ, τ + T [ ,

where

ηε,T := αN2

(
2

ε

) 3
2
(
M + ε

m

)N
2
+2(

M + ε+

√
ε

2

)
+ β

N

2
√
ε

(
M + ε

m

)N
2
+1

+ γ

(
M + ε

m

)N
2 √

T

(A.7)

and
β := sup

i=1,...,N
z∈RN+1

|bi(z)|, γ := sup
z∈RN+1

|c(z)|,

and α is the constant in (5.2).
Proof. For t > τ , we have

|LZ(z; ζ)| = |(L− Lζ)Z(z; ζ)| ≤ I1 + I2 + I3,

where

I1 =

N∑
i,j=1

|aij(z)− aij(ζ)|
∣∣∂xixjZ(z; ζ)

∣∣
(by (5.2))

≤ αN2
(|x− ξ|+√t− τ )max

i,j

∣∣∂xixjZ(z; ζ)
∣∣

(by Lemma A.3)

≤ αN2

ε

(
M + ε

m

)N
2
+2(

1 +
|x− ξ|√
t− τ

)
ΓM+ε(z; ζ)

(by Lemma A.2)

≤ αN2

ε

(
M + ε

m

)N
2
+2(M + 2ε

M + ε

)N
2
(
1 +

M + 2ε√
ε

)
ΓM+2ε(z; ζ)

≤ αN2

ε
3
2

(
M + 2ε

m

)N
2
+2 (

M + 2ε+
√
ε
)
ΓM+2ε(z; ζ).

Moreover, by Lemma A.3, we have

I2 =

N∑
i=1

|bi(z)| |∂xiZ(z; ζ)| ≤ β
N

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ);

finally, by Lemma A.1, we have

I3 = |c(z)|Z(z; ζ) ≤ γ
(
M + ε

m

)N
2

ΓM+ε(z; ζ).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETRIX APPROXIMATION OF TRANSITION DENSITIES 865

Lemma A.5. For every ε > 0 and k ≥ 1 the following estimate for the term (LZ)k in (5.9)
holds:

(A.8) |(LZ)k(z; ζ)| ≤
ΓE

(
1
2

)k
ΓE

(
k
2

) ηkε,T

(t− τ)1− k
2

ΓM+ε(z; ζ), z, ζ ∈ R
N+1, t > τ,

where ηε,T is defined in (A.7) and ΓE denotes Euler’s Gamma function.
Proof. We prove (A.8) by induction on k. The case k = 1 was proved in Lemma A.4. Let

us now assume that (A.8) holds for k and prove it for k + 1. We have

|(LZ)k+1(z; ζ)| =
∣∣∣∣∫ t

τ

∫
RN

L(z)Z(z;w)(LZ)k(w; ζ)dw

∣∣∣∣
(by Lemma A.4, the inductive hypothesis, and denoting (y, s) = w)

≤ ηk+1
ε,T

ΓE

(
1
2

)k
ΓE

(
k
2

) ∫ t

τ

1
√
t− s(s− τ)1− k

2

∫
RN

ΓM+ε(x, t; y, s)ΓM+ε(y, s; ξ, τ)dyds

(by the reproduction property4 for ΓM+ε and by the change of variable s = (1− r)τ + rt)

=
ηk+1
ε,T

(t− τ)1− k+1
2

ΓE

(
1
2

)k
ΓE

(
k
2

) ∫ 1

0

1

r1−
k
2
√
1− r

dr ΓM+ε(z; ζ),

and the thesis follows by the known properties5 of Euler’s Gamma function.
Finally, we recall Notation 2.1 and state the dual version of Lemmas A.3 and A.4. Proofs

are omitted since they are analogous.
Lemma A.6. For every ε > 0 and i, j = 1, . . . , N we have

|∂ξiΓw(z; ζ)| ≤ 1

2
√
ε(t− τ)

(
M + ε

m

)N
2
+1

ΓM+ε(z; ζ),

∣∣∂ξiξjΓw(z; ζ)
∣∣ ≤ 1

ε(t− τ)
(
M + ε

m

)N
2
+2

ΓM+ε(z; ζ)

for any z, ζ, w ∈ R
N+1 with t > τ .

Lemma A.7. Under hypotheses [H1]–[H3], for every positive ε, we have

(A.9)
∣∣∣L̃(ζ)P (z; ζ)

∣∣∣ ≤ η̃ε,T√
t− τ ΓM+ε(z; ζ), z, ζ ∈ R

N+1, t > τ,

4For every x, ξ ∈ R
N and τ < s < t, we have

∫

RN

ΓM+ε(z; y, s)ΓM+ε(y, s; ζ)dy = ΓM+ε(z; ζ).

5It holds that
∫ 1

0

1

r1−
k
2
√
1− r

dr =
ΓE

(

1
2

)

ΓE

(

k
2

)

ΓE

(

k+1
2

) .
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where

η̃ε,T := αN2

(
2

ε

) 3
2
(
M + ε

m

)N
2
+2(

M + ε+

√
ε

2

)
+ β̃

N

2
√
ε

(
M + ε

m

)N
2
+1

+ γ̃

(
M + ε

m

)N
2 √

T ,

(A.10)

where

β̃ := sup
i=1,...,N
z∈RN+1

|̃bi(z)|, γ̃ := sup
z∈RN+1

|c̃(z)|.
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Exact and Efficient Simulation of Correlated Defaults∗
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Abstract. Correlated default risk plays a significant role in financial markets. Dynamic intensity-based models,
in which a firm default is governed by a stochastic intensity process, are widely used to model corre-
lated default risk. The computations in these models can be performed by Monte Carlo simulation.
The standard simulation method, which requires the discretization of the intensity process, leads
to biased simulation estimators. The magnitude of the bias is often hard to quantify. This paper
develops an exact simulation method for intensity-based models that leads to unbiased estimators of
credit portfolio loss distributions, risk measures, and derivatives prices. In a first step, we construct
a Markov chain that matches the marginal distribution of the point process describing the binary
default state of each firm. This construction reduces the original estimation problem to one involving
a Markov chain expectation. In a second step, we estimate the Markov chain expectation using a
simple acceptance/rejection scheme that facilitates exact sampling. To address rare event situations,
the acceptance/rejection scheme is embedded in an overarching selection/mutation scheme, in which
a selection mechanism adaptively forces the chain into the regime of interest. Numerical experiments
demonstrate the effectiveness of the method for a self-exciting model of correlated default risk.

Key words. portfolio credit risk, Markovian projection, rare-event simulation, acceptance/rejection, selec-
tion/mutation

AMS subject classifications. 60G55, 60J27, 60J75, 90-08, 65C05

DOI. 10.1137/090778055

1. Introduction. Correlated default risk is one of the most pervasive threats in financial
markets. Confronting this threat is a daily business for credit investors such as banks making
loans to individuals and corporations or fixed income managers allocating assets in the credit
markets. These investors must measure the aggregate default risk in their asset portfolios
and devise strategies to mitigate that risk. These tasks typically involve estimating the risk
capital, to cushion potential default losses at high confidence levels, and estimating the prices
of portfolio credit derivatives, which are financial instruments that provide insurance against
correlated default risk.

Risk management and derivatives pricing applications require a stochastic model of cor-
related default timing. Intensity-based models are widely used for this purpose. In these
models, a portfolio constituent firm defaults at an inaccessible stopping time whose stochas-
tic structure is governed by an intensity, or conditional default rate. The intensity follows
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a stochastic process that reflects the information revealed over time, including the value of
exogenous risk factors and the state of other firms in the economy. The intensity processes are
correlated across firms, to incorporate the dependence between firm defaults. While many in-
tensity models have been developed in the literature, model computation remains challenging.
The scope of semianalytical transform methods is limited, including mainly doubly stochastic
models. In these models, firm intensities are driven by common risk factors. Conditional on
a realization of these factors, default times are independent of one another.

Monte Carlo simulation is an alternative tool for performing computations in intensity-
based models. It can be applied to models outside the scope of transform methods or to
address applications for which transform methods are unsuitable. A standard simulation
method, which applies to most intensity models and is thus widely used, exploits a time-
change result for point processes due to [58]. Meyer showed that a nonexplosive counting
process can be transformed into a standard Poisson process by a change of time given by
the counting process compensator, or cumulative intensity. This implies that the first jump
time of the process is equal in law to the first hitting time of the compensator process to a
standard exponential variable. This insight provides a recipe for simulating a default time with
given intensity process: generate a path of the cumulative intensity and record its first hitting
time to a level drawn independently from a standard exponential distribution. The resulting
default times have the correct joint distribution, as implied by the correlated evolution of firm
intensity processes.

While widely applicable, the time-scaling scheme may lead to biased simulation estima-
tors. This is because it may not be possible to construct the full path of the continuous-time
stochastic process followed by the time integral of the intensity. Often, the path must be
approximated on a discrete-time grid. Further, it may be difficult to draw exact samples of
the values of the integrated intensity at the grid points, because the joint distribution of the
integrated intensities across firms, from which one needs to sample, is rarely computationally
tractable. In this case, the values of an integrated intensity must be approximated by first
simulating the continuous-time intensity process on the discrete-time grid, and then integrat-
ing the discretized values. If the intensity values cannot be sampled from their joint transition
law, then the SDEs that describe the joint dynamics must be discretized by the Euler or some
higher order scheme. Due to the multiple layers of approximations, it is hard to quantify the
magnitude of the discretization bias in the resulting simulation estimators. While the bias can
be reduced by increasing the number of discretization time steps, this comes at the expense of
increasing the time required to generate a replication. Since the additional computational ef-
fort per firm replication is scaled by the number of firms in the portfolio, this can quickly lead
to a computational burden that is prohibitive for the large portfolios that occur in practice.

This paper develops an exact sampling method that leads to unbiased simulation estima-
tors for intensity-based models. The scope of the method is more limited than that of the
time-scaling method but wider than that of the transform methods. It comprises a broad
range of models proposed in the literature, including doubly stochastic and self-exciting for-
mulations. The method has two parts. We first construct an inhomogeneous, continuous-time
Markov chain M whose value at t has the same distribution as the value at t of the point
process N describing the binary default state of each portfolio constituent. The construction
reduces the problem of estimating the expectation of f(Nt) to that of estimating the expec-
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tation of f(Mt). Unlike N , the mimicking chain M has deterministic interarrival intensities,
and this facilitates the exact sampling of M using a simple acceptance/rejection scheme. As
a result, we obtain an unbiased estimator of the expectation of f(Mt).

For portfolios of high-quality names, most replications produce few if any defaults, so
the computational effort required to obtain accurate estimators may be very large. This is
especially true for estimators of large loss probabilities or tail risk measures, which are at the
center of risk management applications. To address this problem, we embed the acceptance/
rejection scheme in an overarching selection/mutation scheme developed by [21]. On a discrete-
time grid we evolve a collection of particles, i.e., copies of the mimicking Markov chain M ,
using the acceptance/rejection scheme. At each time step, particles are randomly selected
by sampling with replacement, placing more weight on particles with a larger number of
transitions in the previous period. The new generation of selected particles is then evolved
over the next period, at whose end a selection takes place again. The selection procedure
adaptively forces the chain into the regime of interest and therefore reduces variance. The
resulting estimators inherit the unbiasedness of the plain acceptance/rejection estimators.

Numerical experiments demonstrate the effectiveness of the method for a portfolio of
100 names. We analyze a self-exciting model, in which firm intensities follow correlated
Feller jump-diffusion processes that jump whenever a default event occurs. We find that the
exact method requires significantly less computation time than the conventional time-scaling
method, for all levels of accuracy. The root mean square errors of the simulation estimators
converge much faster for the exact method. The selection/mutation scheme is found to offer
substantial variance reduction.

1.1. Related literature. While many alternative intensity-based models of correlated de-
fault risk have been developed in the literature, there is surprisingly little work on simulation
methods for these models. The authors of [27] review time-scaling and other approaches.
[24] provides an inverse transform method for simulating the first to occur of a given set of
events. This scheme is exact and can be used to sample the default times sequentially; it leads
to unbiased estimators of an expectation of a function of the vector of default times of the
constituent names. The method developed in this paper leads to unbiased estimators of an
expectation of a function of the future value of the vector point process indicating the default
state of the constituent names.

Giesecke, Kakavand, and Mousavi [38] develop an exact method for the related problem
of simulating a one-dimensional, real-valued point process. They project the point process
onto its own filtration and then sample it in this coarser filtration. The sampling is based on
the intensity in the subfiltration, which is deterministic between arrival times and therefore
facilitates the use of exact schemes. This projection method leads to unbiased estimators of
an expectation of a function of the path of the one-dimensional point process and a skeleton
of the driving state process.

Bassamboo and Jain [5] propose an asymptotically optimal importance sampling scheme
to estimate the probability of large portfolio losses in a doubly stochastic intensity model
with affine risk factor processes. Their approach exploits the conditional independence of firm
defaults in the doubly stochastic setting. The implementation of the estimators relies on the
time-scaling scheme.

Carmona, Fouque, and Vestal [11] use a selection/mutation scheme to estimate the distri-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT SIMULATION OF CORRELATED DEFAULTS 871

bution of portfolio loss in a structural model of correlated default risk. Here, a firm defaults
when its market value hits a given barrier. Firm values follow correlated stochastic volatility
processes. Carmona and Crepey [10] numerically contrast the performance of the selection/
mutation and importance sampling schemes when estimating the distribution of portfolio loss
in a Markov chain model.

There are several papers on variance reduction schemes for copula-based models of cor-
related default risk. In a copula-based model the firm dependence structure is specified by a
copula function that maps firm-level default probabilities to the joint default probability. [6],
[14], [49], [40], [42] develop importance sampling schemes that exploit the conditional inde-
pendence of firm defaults that is also a feature of the copula models. Glasserman and Li [41]
examine a related scheme for a mixed Poisson model of portfolio credit risk.

1.2. Structure of this article. Section 2 formulates the problem, reviews conventional
simulation approaches, and outlines the exact method. Section 3 discusses the construction of
the mimicking Markov chain. Section 4 develops two algorithms for estimating expectations
associated with the mimicking chain. Section 5 constructs the mimicking Markov chain for a
broad range of models proposed in the literature. Section 6 provides a numerical case study
that demonstrates the effectiveness of the method. An appendix contains the proofs.

2. Preliminaries.

2.1. Default point processes. Consider a portfolio of n firms that are subject to default
risk. The random default times of these firms are modeled by almost surely distinct stopping
times τ i > 0, which are defined on a complete probability space (Ω,F , P ) with right-continuous
and complete information filtration F = (Ft)t≥0. In risk management applications, P is the
statistical probability, while in derivatives pricing applications, P is a risk-neutral pricing
measure. Associated with the τ i are indicator processes N i given by N i

t = I(τ i ≤ t), where
I(A) is the indicator function of an event A ∈ F . For each i, there is a strictly positive,
integrable, and progressively measurable process λi such that the variables

(1) N i
t −

∫ t

0
I(τ i > s)λisds

form a martingale relative to F. This means that λit is the Ft-conditional default rate of firm
i at time t < τ i, measured in events per unit of time. We refer to the process λi as the default
intensity of firm i, recognizing that this may involve an innocuous abuse of terminology, as
λi need not drop to 0 at τ i. The intensities follow correlated stochastic processes that need not
be specified at this point. The correlation among the intensities reflects the default dependence
structure of the portfolio constituent firms.

Our goal is to calculate E[f(NT )] for a suitable real-valued function f on {0, 1}n and a
horizon T > 0, where N = (N1, . . . , Nn) is the vector of firm default indicator processes. Ex-
amples include the single-name probabilities P (τ i > T ), joint probabilities P (∩i∈S{τ i > T})
for subsets S of firms, the distribution P (CT = k) of the default counting process C = 1n ·N ,
where 1n is an n-vector of ones, and the option E[(CT − K)+]. If taken under the statis-
tical probability measure, P (CT = k) is the fundamental quantity for the risk management
of portfolios of corporate debt. If evaluated under a risk-neutral pricing measure, the option



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

872 K. GIESECKE, H. KAKAVAND, M. MOUSAVI, H. TAKADA

E[(CT −K)+] is a key quantity required to price portfolio credit derivatives, as illustrated in
[31].

For clarity in the exposition, our formulation has not made explicit the role of the finan-
cial loss at a default. This is without loss of generality in case the loss � = (�1, . . . , �n) is
deterministic as in [5], [6], [10], [11], [14], [15], [49], [40] and others. In that case, � can be
incorporated into the function f , to express the probability that the portfolio loss � ·NT at T
exceeds a level, or an option on � · NT , as E[f(NT )]. To treat a loss � that is random but
independent of N as in [42], the algorithms developed below require only minor modifications.
Independence is a reasonable assumption for lack of data bearing on the correlation between
� and N .

2.2. Conventional simulation schemes. To estimate E[f(NT )] by simulation, we need to
sample the variable NT . This is straightforward if the intensity λ is deterministic and N is a
Poisson process. It is also straightforward if λ follows a stochastic process that is adapted to
the subfiltration of F generated by N , in which case λ is deterministic between default times.
In these cases, the classical thinning, or acceptance/rejection (A/R) scheme of [54], can be used
to sample the jump times of N exactly. This scheme leads to unbiased simulation estimators
of E[f(NT )]. It involves the sampling of candidate arrival times from a dominating Poisson
process, and an acceptance test. However, if λ is not adapted to the filtration generated
by N , then it evolves randomly also between events, and a dominating Poisson process may
not exist. In this case, one may be able to use an inverse transform scheme to sample the
default times exactly. This requires an explicit expression of the probabilities P (τ i > T ). It
may also be possible to apply the inverse scheme sequentially, as in [24] and [27]. This requires
that the conditional distributions of the interarrival times of C and the defaulter identities be
tractable and also the ability to sample the state variables determining these distributions.

A more widely applicable method exploits a time-change result for point processes due
to [58]. Consider a counting process Z with jumps of size one and compensator Ẑ that is
continuous and increases to ∞ almost surely. Meyer proved that Z is a standard Poisson
process under a change of time defined by Ẑ, relative to the time-changed filtration. Thus,
the first jump time of Z is equal in law to inf{t : Ẑt ≥ E}, where E is a standard exponential
random variable. This provides a recipe for simulating the first jump time of Z: generate a
path of Ẑ and record its hitting time to the level E , drawn independently from a standard
exponential distribution. To apply this recipe to generating a path of N i for a given λi, we let
Z be a counting process with compensator Ẑt =

∫ t
0 λ

i
sds and set N i = min(Z, 1). We generate

a path of
∫ t
0 λ

i
sds and draw E to obtain a sample of τ i as the hitting time inf{t : ∫ t

0 λ
i
sds ≥ E}.

As the λi are correlated across i, the
∫ t
0 λ

i
sds must be drawn from the appropriate joint

distribution.
While the time-scaling scheme has a wide scope, it suffers from an important shortcoming:

it usually leads to biased estimators of E[f(NT )]. This is because, aside from very special
cases, it is impossible to generate the full path of the continuous-time stochastic process∫ t
0 λ

i
sds. The path must be approximated on a discrete-time grid. Even worse, it may not

be possible to draw exact samples of the values of
∫ t
0 λ

i
sds at the grid points, because the

distribution of (
∫ t
0 λ

1
sds, . . . ,

∫ t
0 λ

n
s ds) from which one needs to sample is rarely known or

computationally tractable. This forces one to approximate the values of
∫ t
0 λ

i
sds by first
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approximating the continuous-time intensity process λi on the discrete-time grid and then
integrating the discretized values. If the intensity values cannot be sampled exactly from
their joint transition law, then the SDE that describes the dynamics of (λ1, . . . , λn) must be
discretized by the Euler or some other scheme.

Due to the multiple approximations and the multiple dimensions n of N , it is hard to
quantify the magnitude of the discretization bias in the estimators of E[f(NT )]. The bias can
be reduced by increasing the number of discretization time steps, but this also increases the
computational cost of a replication. Reducing the bias to an acceptable level may require a
prohibitively large computational effort, since the dimension n of N is often large in practice,
and the effort scales with n. Further, it is hard to determine the optimal trade-off between
the number of discretization time steps and the number of simulation trials because the
convergence rate of the bias is unknown.

2.3. Exact simulation. Below we develop an alternative simulation method that elimi-
nates the need to discretize the vector process (λ1, . . . , λn) and that leads to unbiased esti-
mators of E[f(NT )]. The method has two parts. We first construct a time-inhomogeneous
continuous-time Markov chainM = (M1, . . . ,Mn) ∈ {0, 1}n with the property thatMT = NT

in distribution for each fixed T . This construction is explained in section 3. It reduces the
problem of estimating the general point process expectation E[f(NT )] to the simpler problem
of estimating the Markov chain expectation E[f(MT )]. Estimators of E[f(MT )] are obtained
by exact sampling of MT using a thinning scheme, as explained in section 4.

3. Mimicking Markov chain.

3.1. Construction. Throughout, we let 0n denote an n-vector of zeros.

Proposition 3.1. Suppose that the default indicator process N has intensity λ. Let M be a
Markov chain on [0,∞) that takes values in {0, 1}n, starts at 0n, has no joint transitions in
any of its components, and whose ith component has transition rate hi(·,M), where

(2) hi(t, B) = E(λitI(τ
i > t) |Nt = B), B ∈ {0, 1}n.

Then MT = NT in distribution for each T ≥ 0.
Proposition 3.1 shows that a component transition function hi(t, B) of the mimicking

Markov chain M is given by the projection of the primitive firm intensity λitI(τ
i > t) onto the

value of the default process Nt = B, which indicates the state at time t of each firm in the
portfolio. The indicator I(τ i > t) guarantees that hi(t, B) vanishes if Bi = 1, i.e., in a state
where firm i is in default. In the special case where N is a priori a Markov point process,
λit = qi(t,Nt) for some function qi on R+×{0, 1}n, and hi(t, B) = qi(t, B)(1−Bi). In general,
N is not a priori a Markov point process. Then the conditional expectation (2) is nontrivial,
and further steps are required to calculate it for the given process λ; see section 5. In any case,
Proposition 3.1 leads to a Markov point process M whose value at t has the same distribution
as Nt.

The fact that the construction leads to a Markov process is a consequence of the condi-
tioning set in the conditional expectation (2). Rather than conditioning on the sigma-field
σ(Ns : s ≤ t) generated by the path of N during [0, t], which seems natural at first, the con-
ditional expectation (2) is taken with respect to the final value Nt only. The conditioning on
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the path does not in general produce a Markov point process. Nevertheless, the conditional
expectation E(λitI(τ

i > t) |σ(Ns : s ≤ t)) is meaningful: it defines the intensity of N i in
the subfiltration generated by N . As shown in [38], this observation can be used to develop
an alternative projection scheme for the exact simulation of a point process. That scheme
samples a point process in its own filtration, based on the intensity in the subfiltration. It is
appropriate for estimating an expectation E[g(Ut : t ≤ T )] that involves the path of a univari-
ate point process U ∈ R. For computational reasons, the scheme is less well suited to sampling
a vector point process such as N = (N1, . . . , Nn) ∈ {0, 1}n. The method developed in this
paper targets the vector process N but is restricted to expectations of the form E[f(NT )].
This is because the auxiliary chain M matches the distribution of NT for fixed T only.

Proposition 3.1 extends a univariate construction in [8, Chapter II, exercise E8], which
is refined and applied by [2], [18], and [56] to the calibration of (univariate) intensity-based,
top-down models of portfolio credit risk. These papers construct a mimicking Markov chain
for a nonterminating counting process taking values in N0. Their setting is different from
ours even if n = 1, because the counting processes N i that we consider take values in {0, 1}.
Lopatin [55] suggests a multivariate version. Bentata and Cont [7] analyze the construction
of a mimicking Markov process for a semimartingale that may be discontinuous.

3.2. Markov point process. To prepare the design of simulation algorithms for M in sec-
tion 4 below, we consider the mimicking chainM as a Markov point process relative to its own
right-continuous and complete filtration G = (Gt)t≥0 generated by M . The construction of M
implies that, for a suitable real-valued function g on {0, 1}n, the process g(M)−∫ ·

0 Asg(Ms)ds
is a martingale in the filtration G, where

Atg(B) =
n∑

i=1

hi(t, B)(g(B[i])− g(B)), B ∈ {0, 1}n,

is the generator of M at t. Here, B[i] denotes the vector B whose ith element Bi is replaced
by 1−Bi. It follows that the process

(3) M i −
∫ ·

0
hi(s,Ms)ds

is a martingale with respect to G. Thus, the component counting process M i has intensity
hi(·,M) in the filtration G. Recall that hi(·, B) vanishes for any B ∈ {0, 1}n whose ith element
is equal to 1, and compare with the Doob–Meyer decomposition (1) of the firm default indicator
process N i in the reference filtration F. By Proposition 3.1, the distributions of N i

t and M i
t

agree, and so do the distributions of Ct = 1n ·Nt and 1n ·Mt. Let h be the n-vector of the
functions hi. From the martingale property of (3),

(4) 1n ·M −
∫ ·

0
1n · h(s,Ms)ds

is a G-martingale as well. Therefore, the counting process 1n ·M has intensity 1n · h(·,M)
relative to the filtration G. As indicated in Table 1, that intensity is the counterpart to the
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Table 1
Indicator and counting processes and their Markovian counterparts.

Filtration Indicator Component Component Counting Counting
process process intensity process intensity

F N N i λi(1−N i) 1n ·N ∑n
i=1 λ

i(1−N i)
G M M i hi(·,M) 1n ·M 1n · h(·,M)

intensity Λ of C = 1n ·N in the reference filtration F, given by

(5) Λ =

n∑
i=1

(1−N i)λi.

We have

(6) 1n · h(t,Mt) = E(Λt |Nt =Mt) =

n−1∑
k=0

H(t, k)I(Tk ≤ t < Tk+1)

almost surely. Here, (Tk)k=0,1,...,n is the sequence of event times of 1n ·M starting at 0, which
is strictly increasing almost surely because there are no joint transitions in M almost surely
(Proposition 3.1), and H(t, k) is the GTk

-measurable interarrival intensity function given by

(7) H(t, k) = 1n · h(t,MTk
), t ≥ Tk, k = 0, 1, . . . , n.

Formula (7) implies that the interarrival intensities of the mimicking Markov counting
process 1n·M evolve deterministically through time. This is a key property that our simulation
algorithms are going to exploit. Note that the original model, which is formulated in the
filtration F, has more complicated interarrival intensity dynamics. This can be seen from
formula (5), which indicates that the interarrival F-intensities of C = 1n ·N follow stochastic
processes whenever the firm F-intensities λi do.

BecauseH(t, k) is GTk
-measurable, the random variable Tk+1−Tk is equal in GTk

-conditional
distribution to the first jump time of a time-inhomogeneous Poisson process starting at Tk
with intensity function H(t, k) for t ≥ Tk. Thus, for all s > 0 the conditional survival function
of the interarrival times of 1n ·M satisfies

P (Tk+1 − Tk > s | GTk
) = P (1n ·MTk+s = k |MTk

)

= exp

(
−
∫ Tk+s

Tk

H(t, k)dt

)
, k = 0, 1, . . . , n− 1.(8)

Let Ik ∈ {1, 2, . . . , n} be the GTk
-measurable random variable identifying the component of

M in which the kth transition takes place, k = 1, . . . , n. Noting that the sigma-field GTk− is
generated by the random variables (Tm, Im)m≤k−1 and Tk, and using an argument similar to
the one applied by [8, Theorem II.15], we see that

(9) P (Ik = i | GTk−) =
hi(Tk,MTk−1

)

H(Tk, k − 1)
, i, k = 1, 2, . . . , n.
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4. Exact simulation algorithms. We wish to evaluate the expectation E[f(NT )] for suit-
able functions f on {0, 1}n and fixed T > 0. The key insight is that Proposition 3.1 reduces
the problem of evaluating E[f(NT )] to the problem of evaluating E[f(MT )] for the mimicking
Markov chain M . Since the number of portfolio constituents n can be 100 or even larger, we
estimate E[f(MT )] by Monte Carlo simulation of M rather than through alternative numeri-
cal methods that would be plagued by the high dimensionality of the state space {0, 1}n. This
section discusses two exact simulation algorithms for this purpose.

4.1. Sequential acceptance/rejection scheme. We simulate the mimicking chain M by
sequentially generating the event times and identities (Tk, Ik) introduced above. The gen-
eration of event times is based on the interarrival intensities (7) of 1n · M , which evolve
deterministically through time. Given an event time, the corresponding identity is drawn
from the discrete distribution (9).

The inverse or time-scaling methods can be used to generate Tk+1 from formula (8) for
the conditional survival function Sk(t) of the interarrival time Tk+1 − Tk. Draw U ∼ U(0, 1)
and calculate the inverse inf{s > 0 : Sk(s) ≤ U}. While allowing for exact sampling, this
procedure requires us to evaluate the function Sk(t) at many points t in order to determine
the inverse at U . Depending on the structure of the function H(s, k), this may be numerically
intensive since Sk(t) involves the time-integral of H(s, k).

We prefer an alternative acceptance/rejection (A/R) scheme, which is based on the clas-
sical A/R, or thinning, scheme of [54]. This scheme requires the evaluation of H(·, k) only at
a set of candidate times for Tk+1. The candidate times are generated from a Poisson process
whose rate dominates H(Tk+ s, k) for s in some interval. A candidate time c is accepted with
a probability given by the ratio of H(Tk+c, k) to the dominating Poisson rate. The tighter the
dominating bound on H(Tk+s, k), the fewer candidate times need to be generated. Therefore,
the dominating Poisson process is redetermined at least at each acceptance or rejection of a
candidate time.

Algorithm 4.1. To generate a sample path of M over [0, T ], perform the following:

1. Initialize t = 0, k = 0, T0 = 0, and M0 = 0n.
2. Stop if t ≥ T .
3. Find J(k) = J(t, k) and K(k) = K(t, k) such that H(t+ s, k) ≤ J(k), 0 ≤ s ≤ K(k).
4. Draw a random variable E from the exponential distribution with parameter J(k).

• If E > K(k), then set t = t+K(k) and go to step 2.
• If E ≤ K(k), then draw U ∼ U(0, 1). If UJ(k) ≤ H(t+ E , k), then set k = k + 1

and t = Tk = t+ E. Else set t = t+ E and go to step 2.
5. Draw a random variable I from the discrete distribution

P (I = i) =
hi(Tk,MTk−1

)

H(Tk, k − 1)
, i = 1, 2, . . . , n,

and let Qk be the n-vector with the Ith component equal to one and the rest equal to
zero. Set MTk

= Q1 + · · · +Qk. Go to step 2.

Algorithm 4.1 is applied to generate a collection of R sample paths M1, . . . ,MR of the
mimicking Markov chain M over [0, T ]. Thanks to Proposition 3.1, for suitable functions f
on {0, 1}n we can estimate the expectation E[f(NT )] by

1
R

∑R
r=1 f(M

r
T ). In particular, the
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distribution of the portfolio default count P (CT = k) is estimated by

(10) PR(CT = k) =
1

R

R∑
r=1

I(1n ·M r
T = k), k = 0, 1, . . . , n.

Algorithm 4.1 also leads to estimators of firm-level probabilities P (τ i > T ) and related
quantities, such as P (∩i∈S{τ i > T}) for subsets S of firms. The setting may simply be n = 1,
with only a single firm of interest. In this case, (10) is an estimator of P (N1

T = k) for k = 0, 1,
while step 5 of the algorithm is redundant. In the general case of n > 1, estimates of P (τ i > T )
are obtained as a byproduct: with ei denoting an n-vector with its ith component equal to
one and the rest equal to zero, we take f(M r

T ) = I(ei ·M r
T = 0).

The estimators E[f(NT )] generated by Algorithm 4.1 are unbiased, because the A/R
scheme generates exact samples of the mimicking chain M , and E[f(NT )] = E[f(MT )]. The
A/R scheme applies to M because this process has deterministic interarrival intensities that
are usually easy to bound. The A/R scheme does not generally apply to the original default
indicator process N , because this process has stochastic interarrival intensities that are usually
not bounded by a constant almost surely.

Algorithm 4.1 may be inefficient in some situations. This occurs, for example, when the
portfolio constituents have small default probabilities, which is typical for investment grade
portfolios of highly rated issuers, and we are interested in estimating tail probabilities of NT .
In this situation, a prohibitively large number of replications may be required to estimate
these probabilities accurately with Algorithm 4.1.

4.2. Selection/mutation scheme. To reduce variance, we embed the sequential thinning
mechanism into a selection/mutation (S/M) scheme. Let T > 0 be the simulation horizon.
Partition the interval [0, T ] into m subintervals of length T/m. Let V be the discrete-time
Markov chain given by

Vp =MpT/m, p = 0, 1, . . . ,m.

We consider a collection of “particles” {V r
p }r=1,2,...,R that are evolved on the discrete-

time grid p = 0, 1, . . . ,m, all starting from the same state 0n at p = 0. At a time step p,
we use the sequential A/R Algorithm 4.1 to independently mutate (evolve) each particle V r

p

during (p, p+1] according to the transition rates determined by Proposition 3.1. Then, before
entering the next mutation step, we select particles according to the number of transitions
during (p, p + 1]. The selection is done probabilistically, by sampling with replacement. The
selection probability increases with the number of transitions during (p, p+1], so the selection
favors particles with transitions. The total number of particles R is kept constant, and the
selected particles are then evolved over the next period. The final estimator “corrects” for the
selections performed at each time step.

Algorithm 4.2. To generate an estimate of P (CT = k), perform the following:
1. Initialize V r

0 =W r
0 = 0n for 1 ≤ r ≤ R.

2. For each 0 ≤ p ≤ m− 1, repeat the following steps:
Selection.
Fix a constant δ > 0. From the set of particles (W r

p , V
r
p )1≤r≤R at p

• Compute the normalizing constant ηp =
1
R

∑R
r=1 exp[δ1n · (V r

p −W r
p )].
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• Select, independently and with replacement, R new particles as follows. Select
particle r with probability

(11)
1

Rηp
exp[δ1n · (V r

p −W r
p )].

Denote the R selected particles by (Ŵ r
p , V̂

r
p )1≤r≤R.

Mutation.
Evolve the particle (Ŵ r

p , V̂
r
p ) to (W r

p+1, V
r
p+1), independently for each 1 ≤ r ≤ R.

• Set W r
p+1 = V̂ r

p .

• Obtain V r
p+1 by generating transitions from V̂ r

p using Algorithm 4.1.
3. For k = 0, 1, . . . , n, calculate the estimator of P (CT = k) as

(12) Pδ,m,R(CT = k) =
η0 · · · ηm−1

R

R∑
r=1

I(1n · V r
m = k) exp (−δ1n ·W r

m) .

Algorithm 4.2 is a variant of an S/M scheme for estimating rare-event probabilities for
time-inhomogeneous Markov chains developed and analyzed by [21]. From their Theorem 2.3
and the fact that the A/R Algorithm 4.1 facilitates exact sampling from the marginal dis-
tribution of M in the mutation step of the scheme, we conclude that the estimator (12) is
unbiased in the sense that E[Pδ,m,R(CT = k)] = P (CT = k) for fixed δ,m,R.

The algorithm requires the selection of the number of particles R, the number of time
steps m, and the value of δ. The parameter δ specifies the exponential weight function
exp[δ1n · (V r

p − W r
p )], which determines the probability distribution used for the sampling

with replacement in the particle selection step of the algorithm.1 Here, 1n · (V r
p −W r

p ) is the
number of transitions (defaults) of the Markov chain particle r during period p. For δ = 0,
each particle has the same probability of being selected. For δ > 0, the selection probability
increases with the number of transitions. The larger δ is, the relatively greater is the focus
on particles with a larger number of transitions. In the extreme case, the particle with the
largest number of transitions is selected R times.

Thus, for a positive δ the selection step favors particles with a greater number of tran-
sitions. It tends to replace particles with few transitions with those that experienced more
transitions. As a result, with each selection step the particles are forced further into the regime
of interest, i.e., a scenario with a large number of defaults during the simulation interval [0, T ].
The number of time steps m determines the number of selections performed during [0, T ]. All
else being equal, the larger the m, the faster the particles transition to the rare event regime.2

The estimator (12) accounts for the selections performed at each time step: compare with the
estimator (10) generated by the A/R scheme. The required adjustment to the estimator (10)
follows from formula (3.13) in [21] and is governed by the form of the weight function.

The parameters δ and m need to be chosen appropriately to guarantee variance reduction
for the event of interest. However, the optimal configuration problem for a general setting

1Other specifications of the weight function can be envisioned. The formulation we adopted from [21] has
computational (memory) advantages: it does not require us to keep track of the full path history of each
particle, since only the most recent transitions are relevant for the selection.

2Note that m, unlike δ, has a direct impact on the memory requirement for the S/M scheme, which is
2Rn+m for our weight function specification.
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has not yet been addressed to our knowledge. In practice, simple experiments can lead to a
reasonable configuration for a given setting. We explain this in the context of our numerical
case study in section 6.

There are alternative approaches to variance reduction. Relative to an importance sam-
pling (IS) scheme, the S/M algorithm eliminates the need to determine and simulate from
an importance measure under which the event of interest is not rare anymore. In the S/M
scheme, we simulate the chain M under the reference measure using the A/R algorithm and
the transition rate functions hi. The chain is adaptively forced into the regime of interest by
the selection mechanism. As shown by [21], the selection mechanism can be interpreted as
a twisting of Feynman–Kac particle path measures, a measure change analogous to the one
underpinning IS.3 An advantage of an IS formulation is that it often enables one to establish
certain asymptotic optimality properties of the IS estimator.4 These properties formally prove
the effectiveness of the estimator in a rare-event regime and lead to an optimal configuration
of the algorithm. However, for the time-inhomogeneous Markov chain considered here, the
optimal IS scheme has not yet been worked out, to our knowledge.5

5. Calculating the projection. The practical implementation of the exact simulation
method requires the construction of the mimicking Markov chain M for the intensity model
λ at hand. This construction amounts to the calculation of the conditional expectation
E(λitI(τ

i > t) |Nt = B) defining the transition rates hi(t, B) of M ; see Proposition 3.1. This
section calculates this expectation for a range of doubly stochastic, frailty, and self-exciting
models and therefore extends the scope of the exact simulation method to many models pro-
posed in the literature. The calculation relies, intuitively speaking, on Bayes’ rule and leads
to an explicit expression for the transition rate hi(t, B) in terms of the transform

φ(t, u, z, Z) = E

[
exp

(
−u
∫ t

0
Zsds− zZt

)]
,

where Z is a nonnegative stochastic process and u and z are reals. This transform can be
computed in closed form for a wide range of processes Z, including affine jump-diffusion
processes. For any choice of Z that we consider below, we assume that ∂zφ(t, u, z, Z)|z=0

exists and is finite. Below, B denotes (B1, . . . , Bn) ∈ {0, 1}n.
5.1. Doubly stochastic models. We begin with a simple model in which firms default

independently of one another. The calculation of the corresponding Markov transition rate
hi(t, B) serves as a stepping stone for the calculation in models with a nontrivial default
dependence structure.

Proposition 5.1. Suppose that N is doubly stochastic6 with intensities λi = Xi for mutually
independent nonnegative adapted processes Xi. Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
.

3Carmona and Crepey [10] discuss this analogy further.
4See [3] for an excellent discussion.
5However, see [43], [44] and the references in these papers for important results in this direction. See [5] for

an optimal IS scheme for doubly stochastic intensity models λ.
6Saying that N is doubly stochastic means that the intensity λ is a function of an adapted process Z and

that, given a path of Z, the components N i are independent inhomogeneous Poisson processes, each stopped
at its first jump time and having (conditionally deterministic) intensity λi.
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We generalize to a model in which a firm is exposed to an idiosyncratic risk factor Xi

and a systematic risk factor Y that is common to all firms. The random variation of Y
generates correlated movements in firms’ conditional default probabilities. Conditional on a
realization of Y , firms default independently of one another. This and related formulations
have been used extensively in theoretical and empirical analyses of correlated default risk; see,
for example, [12], [13], [19], [23], [25], [28], [30], [32], [46], [47], [51], [59], and [60].

Proposition 5.2. Suppose that N is doubly stochastic with intensities λi = Xi + αiY for
mutually independent nonnegative adapted processes X1, . . . ,Xn, Y and nonnegative factor
loadings αi. Then, for Bi = 0, we have

(13) hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
− αi

∑2n−1
k=0 ck(t)∂zφ(t, bk, z, Y )|z=0∑2n−1

k=0 ck(t)φ(t, bk, 0, Y )
,

where the deterministic functions ck(t) and the constants bk are determined by the relation

(14)

2n−1∑
k=0

ck(t)e
−bkv =

n∏
j=1

[
Bj − (2Bj − 1)φ(t, 1, 0,Xj )e−αjv

]
, v > 0.

The multiplication of the n terms on the right-hand side of (14) results in a sum of at
most 2n terms, and typically fewer as Bj = 0 for some j. The ck(t) are the coefficients of
the summands. Each constant bk is a sum of values αj for certain j; note that b0 = 0 and
b2n−1 =

∑n
j=1 α

j . An algorithm for the efficient computation of the ck(t) and the bk is based
on the recursive scheme of [1].

We can extend to a doubly stochastic model with multiple common factors, allowing the
description of a more sophisticated firm dependence structure.

Proposition 5.3. Suppose that N is doubly stochastic with intensities λi = Xi + αi · Y for
mutually independent nonnegative adapted processes X1, . . . ,Xn and Y = (Y1, . . . , Yq) and
nonnegative factor loadings αi = (αi

1, . . . , α
i
q). Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)

−
∑q

l=1 α
i
l

∑2n−1
k=0 ck(t)∂zlφ(t, bk1, z1, Y1) · · · φ(t, bkq, zq, Yq)|z1=z2=···=0∑2n−1

k=0 ck(t)φ(t, bk1, 0, Y1) · · ·φ(t, bkq, 0, Yq)
,(15)

where the deterministic functions ck(t) and the q-vector bk of constants are determined by the
relation (14), where v is a q-vector of positive constants and the products bkv and αjv are
interpreted as dot products.

5.2. Frailty models. Doubly stochastic models ignore the impact of a default on the in-
tensities of the surviving firms. This impact is channeled through the network of informational
and contractual relationships in the economy. For instance, for U.S. corporate defaults, Duffie
et al. [29] find strong evidence for the presence of frailty, or unobservable common or corre-
lated risk factors. The uncertainty about the value of a frailty generates an additional channel
of default correlation, above and beyond the “doubly stochastic channel.” It also leads to ad-
ditional dynamical effects in constituent intensities, in that a default causes a jump in the
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intensities of any other firms that depend on the same frailty. These jump effects are due to
Bayesian learning in the reference filtration F.

We generalize the complete information model of Proposition 5.3 to include a firm’s ex-
posure to unobservable frailty risk factors. This extends the reach of the exact method to the
model specifications in a substantial frailty literature, which includes [16], [22], [29], [34], [35],
[50], [57], [62], and others.

Proposition 5.4. Suppose that, relative to a complete information filtration H ⊃ F, N is
doubly stochastic with intensities Xi + αi · Y for mutually independent nonnegative processes
X1, . . . ,Xn and Y = (Y1, . . . , Yq) that are adapted to H, and nonnegative factor loadings
αi = (αi

1, . . . , α
i
q). Assume that all but one risk factor Ym are adapted to the observation

filtration F.7 Then hi(t, B) satisfies (15).

Proposition 5.4 states that the transition rates of the mimicking Markov chain in a model
with an unobservable common risk factor Ym agree with those in the corresponding complete
information doubly stochastic model. Then, by Proposition 3.1, the distributions of the default
indicator Nt must agree in these two model specifications. This may seem surprising at first:
the specifications generate different intensity processes, so one would expect that they imply
different distributions for Nt. However, while the intensities in the two models are different,
they admit the same projections onto N . This is because the F-intensity λi in the frailty model
is the optional projection onto F of the complete information H-intensity Xi + αi · Y . Now
the conclusion follows from iterated expectations. The proof of Proposition 5.4 formalizes this
intuition.

While the presence of frailty makes no difference for the unconditional distribution P (Nt =
B) of the default indicator Nt, it is important to note that it does influence the conditional
distributions P (Nt = B | Fs) for t > s > 0. The reason is that the sigma-fields Fs representing
the observable information available at time s are different for frailty and complete information
models. In the frailty model of Proposition 5.4, Fs does not contain the path of the frailty
risk factor Ys over [0, s], while in the complete information model of Proposition 5.3 it does.

5.3. Self-exciting models. The impact of a default on the intensities of the surviving firms
can also be attributed to contagion, by which the distress of a firm is propagated to other
firms. The authors of [4] find strong evidence for the presence of contagion in U.S. corporate
defaults, after controlling for other channels of default correlation, including exposure to
observable and unobservable risk factors. This empirical evidence can be addressed with a
self-exciting model, in which the intensity of a firm responds to the default of another firm.
Formulations of this type have been considered by [17], [20], [33], [36], [37], [45], [48], [52],
[53], [55], [63], and others.

Proposition 5.5. Suppose that N has intensities λi = Xi+ci(·, N), where X = (X1, . . . ,X2)
solves dXt = μ(t,Xt)dt + σ(t,Xt)dWt + dJt for a standard Brownian motion W , a point
process J with arrival intensity γ(t,Xt), and fixed jump sizes and suitable functions (μ, σ, γ)
such that the Xi are nonnegative and independent, and where c : R+ × {0, 1}n → R+ is a

7Saying that N is doubly stochastic relative to a complete information filtration H means that the doubly
stochastic property holds if one artificially enlarges the reference observation filtration F to make all risk factor
processes adapted. Note that N is not F-doubly stochastic.
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bounded function. Assume that φ(t,−1, 0,Xi) is finite. Then, for Bi = 0, we have

hi(t, B) = −∂zφ(t, 1, z,X
i)|z=0

φ(t, 1, 0,Xi)
+ ci(t, B).

The impact function ci specifies the dependence of firm i’s intensity on the state of the
other firms in the portfolio. By convention, ci(·, B) = gi(·, B1, . . . , Bi−1, Bi+1, . . . , Bn) for
some bounded gi : R+ × {0, 1}n−1 → R+. Examples of the impact function include ci(t, B) =∑

j �=i β
ij(t)Bj for nonnegative, deterministic, and bounded functions βij(t) that model the

impact on firm i of firm j’s default. A parsimonious “mean-field” model is obtained by
setting βij(t) = 1

n−1 . To allow for nonlinear dependence on events, we can specify a bounded

nonnegative function ϕi and take ci(t, B) = ϕi(
∑

j �=i β
ij(t)Bj) for deterministic functions

βij(t) that are not required to be nonnegative.
The proof of Proposition 5.5 indicates that we can also treat an alternative multiplicative

formulation λi = Xici(·, N). In this case the impact function acts as a scaling to the “baseline
hazard” Xi. We could take, for instance, ci(t, B) = exp(

∑
j �=i β

ij(t)Bj) for deterministic

real-valued functions βij(t).

6. Numerical results. This section demonstrates the utility of the exact method through
numerical experiments. We consider a variant of the self-exciting model treated by Proposition
5.5.

6.1. Model. For nonnegative constants βij , consider the specification

(16) λit = Xi
t +

∑
j �=i

βijN j
t ,

where the risk factors Xi follow mutually independent Feller diffusions:

(17) dXi
t = κi(θi −Xi

t)dt+ σi

√
Xi

tdW
i
t , Xi

0 > 0.

Here, κi is a parameter controlling the speed of mean-reversion of Xi, θi is the level of mean
reversion, and σi controls the diffusive volatility ofXi. The process (W 1, . . . ,W n) is a standard
Brownian motion. The parameter βij determines the impact on firm i of firm j’s default. The
corresponding jump terms generate correlation between the firm intensities. The matrix (βij)
governs the default dependence structure.

For each constituent firm i = 1, . . . , n, we initialize the risk factor Xi
0 at its long-run

mean θi. The parameters are selected randomly. We draw κi from U [0.5, 1.5] and θi from
U [0.001, 0.051]. We take σi = min(

√
2κiθi, σ̄i), where σ̄i is drawn from U [0, 0.2]. We draw βij

from U [0, 0.01] for each j = 1, . . . , n. In practice, the parameters are calibrated from market
rates of derivatives referenced on the constituent issuers and on the portfolio, as in [30] or [59].

The formulation (16)–(17) generalizes the specifications in [48], [53], and [63] to include a
diffusion term that modulates the intensity of a firm between arrivals. In the absence of the
diffusion term, the intensity is piecewise deterministic, so that N can be simulated exactly
using the classical A/R scheme of [54]. The exact method developed here extends the reach
of this scheme to the richer model (16)–(17).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT SIMULATION OF CORRELATED DEFAULTS 883

6.2. Mimicking chain. Proposition 5.5 determines the rate hi(t, B) of the mimicking
Markov chain in terms of the risk factor transform φ, its partial derivative ∂zφ, and the
parameters βij . The transform φ takes the well-known exponentially affine form

(18) φ(t, u, z,Xi) = exp(ai(t, u, z) + bi(t, u, z)Xi
0),

where, for γi =
√
κ2i + 2σ2i u, the coefficient functions

ai(t, u, z) =
2u(1 − exp(γit))− z(γi + κi + (γi − κi) exp(γit))
σ2i z(exp(γit)− 1) + γi − κi + (γi + κi) exp(γit)

,(19)

bi(t, u, z) =
2κiθi
σ2i

log
2γi exp((γi + κi)t/2)

σ2i z(exp(γit)− 1) + γi − κi + (γi + κi) exp(γit)
.(20)

The derivative ∂zφ of φ is also available in closed form. Proposition 5.5 then implies, for
Bi = 0 and evaluating γi at u = 1, the formula

hi(t, B) =
4Xi

0γ
2
i exp(γit)

(γi − κi + (γi + κi) exp(γit))2
− θiκi

σ2i

(κ2i − γ2i )(exp(γit)− 1)

γi − κi + (γi + κi) exp(γit)
+
∑
j �=i

βijBj.

With parameter values selected as explained above, the function hi(t, ·) is decreasing.
This suggests an adaptive rule for setting the bound J(k) and the interval length K(k) in
step 3 of Algorithm 4.1. The first candidate time S for Tk+1 is generated using H(Tk, k) =∑n

i=1 h
i(Tk,MTk

) as a bound, where the interval length is taken to be the time to the simu-
lation horizon. If that time is rejected, we generate the next candidate time using the value
H(S, k) as a bound, taking the interval length to be the remaining time to the simulation
horizon. The value H(S, k) is computed in any case for the acceptance test. We proceed
according to this rule until a candidate time is accepted.

6.3. Estimators. We contrast the estimators generated by the exact scheme with those
generated by the time-scaling method described in section 2.2. The time-scaling method
requires paths of the continuous-time stochastic processes

∫ t
0 λ

i
sds for i = 1, . . . , n, where

the λi follow jump-diffusion processes that are correlated through common jumps. We must
discretize the time interval and simulate the joint integral process dynamics on this discrete-
time grid. Since the joint law of the integrals is not known, we first simulate the joint
intensity dynamics on the discrete-time grid and then integrate. To generate the values of λi,
we generate the values of Xi by sampling from the noncentral chi-squared distribution that
describes the transition law of Xi, and add the value βij when another firm j defaults. While
the sampling from the chi-squared distribution leads to exact values of the Xi, it tends to
be more time-consuming than an alternative Euler scheme. On the other hand, the Euler
scheme introduces additional discretization bias because it does not facilitate exact sampling.
To analyze the trade-off between computation time and bias, we implement both the exact
sampling from the chi-squared transition law and the modified Euler scheme in [39, (3.66)].

To compare the estimators generated by the different simulation methods, we consider the

root mean square error (RMSE), given by
√

SE2 +Bias2. The standard error SE is estimated
as the sample standard deviation of the simulation output divided by the square root of the
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Table 2
Simulation results under the self-exciting model (16)–(17) for E[(C1 − 3)+]. “Time-scaling (χ2)” refers

to the time-scaling method using the exact sampling of the values of Xi from the noncentral transition law.
“Time-scaling (Euler)” refers to the time-scaling method using the modified Euler scheme to sample the Xi.
The true value was estimated to be 1.0145, based on 5,000,000 trials with the exact scheme.

Method Trials Steps Estimate Bias SE RMSE Time (min)

5K N/A 1.0394 0 0.0239 0.0239 0.10
7.5K N/A 1.0247 0 0.0193 0.0193 0.15

Exact 10K N/A 0.9854 0 0.0165 0.0165 0.20
A/R 50K N/A 1.0161 0 0.0073 0.0073 1.01

100K N/A 1.0083 0 0.0052 0.0052 2.03
1M N/A 1.0138 0 0.0016 0.0016 20.29

1K 32 0.8744 0.0893 0.0650 0.1104 21.20
Time- 2.5K 50 0.9400 0.0796 0.0420 0.0899 85.30
scaling 5K 71 1.0538 0.0735 0.0246 0.0775 257.30
(χ2) 7.5K 87 1.0873 0.0697 0.0199 0.0725 483.50

10K 100 1.0805 0.0660 0.0171 0.0682 767.60

1K 32 0.8570 0.2094 0.0474 0.2147 4.83
Time- 2.5K 50 0.8448 0.1763 0.0277 0.1785 12.27
scaling 5K 71 0.9254 0.1324 0.0232 0.1344 36.57
(Euler) 7.5K 87 0.9394 0.1070 0.0193 0.1087 86.54

10K 100 0.9354 0.0860 0.0186 0.0880 194.27

number of trials. The bias is given by the difference between the expectation of the estimator
and the true value. The bias of the estimator generated by the exact method is zero. The bias
of the estimator generated by the time-scaling method with a specific number of time steps
can be estimated using a large number of trials to estimate the expectation of the estimator,
and then taking the difference with the true value, estimated using the exact method with a
large number of trials.

We estimate the (undiscounted) value of a call E[(CT −K)+] on the default count at T .
This option is a basic building block for the valuation of portfolio credit derivatives; see [31].
We take the number of reference names n = 100, which is the standard portfolio size for many
traded portfolio derivatives, T = 1 year, and K = 3. Table 2 reports the simulation results.
The bias in the table is estimated using 50,000 trials. The number of discretization time steps
in the time-scaling method is set equal to the square-root of the number of simulation trials.8

The experiments were performed on a desktop PC with an Intel 3.4 GHz processor and 1 GB
of RAM, running Windows XP Professional. The methods were implemented in Matlab.

Figure 1, which shows the convergence of the RMSE graphically, indicates the substan-
tial performance advantages of the exact method. The exact method requires the shortest
computation time to achieve a given accuracy. It also has the fastest convergence rate. This
rate is of order O(1/

√
t), where t is the computation time, the optimal rate of unbiased

schemes.

8It is unclear how to allocate the computational budget of the time-scaling method between the number of
time steps and the number of replications. The square-root rule is adopted from [9] and others. It is motivated
by the results in [26], which show that for first order methods it is asymptotically optimal to increase the
number of time steps in a manner proportional to the square root of the number of replications. However, the
optimal constant of proportionality is not known.
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Figure 1. Convergence of the RMSEs of the exact A/R and time-scaling methods under the self-exciting
model (16)–(17) for E[(C1 − 3)+].

There is an alternative exact scheme for the model (16)–(17). This scheme is based on the
repeated application of the first-to-default time and identity simulation algorithm developed by
[24]. This scheme requires greater computational effort than the A/R scheme, which is easily
explained in case n = 2. In the first-to-default scheme, one starts by generating T1 = τ1 ∧ τ2
by the inverse transform method from P (T1 > t) = φ(t, 1, 0,X1)φ(t, 1, 0,X2). Given T1,
one then samples the identity of the first defaulter from the discrete distribution defined by
γ(T1, i)/(γ(T1, 1) + γ(T1, 2)) for i = 1, 2. Here γ(t, 1) = −φ(t, 1, 0,X2)∂zφ(t, 1, z,X

1)|z=0; a
similar expression holds for γ(t, 2). This second step is similar to step 5 in Algorithm 4.1.
In a third step, one draws the second default time T2. To do this, note that, given FT1 , the
time T2 − T1 is equal in law to the first jump time of a doubly stochastic Poisson process
started at T1, with F-intensity (X2

t + β21)t≥T1 (this assumes T1 = τ1). Thus one needs to

sample from P (T2 − T1 > t | FT1) = E(exp(− ∫ T1+t
T1

(X2
s + β21)ds) |X2

T1
, T1). This can be

done by the inverse method, once X2
T1

is drawn from the conditional distribution of X2
t given

T1 = τ1 = t. However, as shown by [24], this conditional distribution is known only in terms
of its transform, making it relatively costly to sample from it. The A/R scheme avoids this
third step and also tends to require less computational effort to generate the Ti.

6.4. Variance reduction. We demonstrate the effectiveness of the S/M Algorithm 4.2 for
variance reduction under the self-exciting model (16)–(17). We estimate P (CT = k) for the
test portfolio described in section 6.1. To measure the variance reduction offered by Algorithm
4.2, we compute variance ratios for each of several values of k. Each variance ratio is calculated
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by estimating the variance of the estimator generated by the plain A/R Algorithm 4.1 and
dividing it by the estimated variance of the estimator generated by Algorithm 4.2. The
variance is estimated by the sample variance of the simulation output.9

To run Algorithm 4.2, we need to select the number of particles R, the number of selections
m performed during [0, T ], and the parameter δ of the selection probability (11). The number
of particles R is analogous to the number of trials in a standard simulation. In practice, this
quantity is determined by the desired accuracy of the estimator, or the available computa-
tional budget, for fixed m. However, the theoretically optimal allocation of the computational
budget between m and R has not yet been worked out to our knowledge. Therefore, we
will illustrate the influence of R and m on the estimator through experiments, treating each
variable separately.

Also the choice of δ is difficult. Intuitively, we want to pick δ so as to minimize the relative
error of the estimator, given by the variance of the estimator divided by the product of the
estimator and the square root of the number of simulation trials. Again, the theoretically
optimal choice of δ has not yet been worked out, to our knowledge. Therefore, we approximate
the optimal δ through experiments. Specifically, we discretize a range of values of δ, run the
simulation for each grid value using a small number of particles, and select the value of δ that
produces the smallest relative error. The δ so chosen increases with the target event count k,
because the selections must place greater weight on particles with transitions, the smaller the
probability of interest.

Table 3 shows the results for T = 1, m = 4 selections, and R = 10,000 particles. Table
4 reports the results when only R = 1,000 particles are used. To provide a meaningful
comparison between the two methods, the number of trials in the estimation using the plain
A/R Algorithm 4.1 is chosen such that the total time required to estimate P (CT = k) is
approximately the same as that required by the S/M Algorithm 4.2 for the given R and m
(excluding the fixed time it takes to select δ). We see that the smaller the probability, the
larger the variance ratio. Further, for sufficiently small probabilities, the smaller the number
of particles R, the higher the variance ratio. Figure 2 graphs the estimated probabilities
P (C1 = k) reported in Tables 3 and 4. It indicates the relative benefits of the S/M scheme
for each value of R.

Next we analyze the role of the number of selections m. Figure 3 graphs the estimated
variance ratios for each of several values of m, fixing the number of particles R = 1,000.
The variance ratio increases with the number of selections if the probability of interest is
only moderately small. For smaller event probabilities, this may not be the case anymore.
The intuition is as follows. The computation time required by the S/M scheme increases
with m. The increase in computation time is relatively larger the larger k becomes, i.e., the
smaller the probability of interest. Now, by the design of our experiments, the number of
trials that can be completed by the plain A/R scheme increases with m and k, so that the
absolute variance of the corresponding estimator may decrease faster than the variance of the
estimator generated by the S/M scheme. However, note that, for a fixed number of particles,
increasing m always reduces the variance of the simulation estimator in absolute terms. This

9In the case of Algorithm 4.2, the sample variance is a biased estimator of the variance. This is because
the samples are not independent due to the selections performed in the scheme.
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Table 3
Variance reduction ratios for estimating P (C1 = k) under the self-exciting model (16)–(17). In the S/M

Algorithm 4.2, m = 4, and δ is chosen such that the relative error of the simulation estimator is minimized.
The number of trials in the estimation using the plain A/R Algorithm 4.1 is chosen such that the total time
required to estimate P (CT = k) is approximately the same as that required by the S/M scheme, excluding the
fixed time it takes to select δ. (*) indicates that the event of interest was not observed in any of the trials.

S/M scheme Plain A/R scheme

k δ Particles Estimate SE Trials Estimate VarRatio

8 0.55 10,000 0.02364596 0.00096165 15,806 0.02240 2.54
9 0.7 10,000 0.01253552 0.00065596 16,452 0.01349 3.08
10 0.75 10,000 0.00587429 0.00044357 16,452 0.00626 3.16
11 0.8 10,000 0.00337833 0.00020285 17,742 0.00293 7.10
12 0.8 10,000 0.00162340 0.00014706 17,742 0.00220 10.14
13 0.85 10,000 0.00068818 0.00007336 18,065 0.00066 12.33
14 0.85 10,000 0.00029433 0.00002062 18,387 0.00027 63.88
15 1.05 10,000 0.00016310 0.00001609 19,032 0.00011 121.80
16 1.05 10,000 0.00006790 0.00000471 19,032 0.00005 236.92
17 1.15 10,000 0.00002597 0.00000352 19,355 (*)
18 1.15 10,000 0.00000970 0.00000171 19,355 (*)
19 1.15 10,000 0.00000500 0.00000054 19,355 (*)
20 1.15 10,000 0.00000203 0.00000020 19,355 (*)
21 1.15 10,000 0.00000106 0.00000008 19,355 (*)
22 1.3 10,000 0.00000039 0.00000005 19,677 (*)

Table 4
Variance reduction ratios for estimating P (C1 = k) under the self-exciting model (16)–(17). In the S/M

Algorithm 4.2, m = 4, and δ is chosen such that the relative error of the simulation estimator is minimized.
The number of trials in the estimation using the plain A/R Algorithm 4.1 is chosen such that the total time
required to estimate P (C1 = k) is approximately the same as that required by the S/M scheme, excluding the
fixed time it takes to select δ. (*) indicates that the event of interest was not observed in any of the trials.

S/M scheme Plain A/R scheme

k δ Particles Estimate SE Trials Estimate VarRatio

8 0.55 1,000 0.02433732 0.00310121 1,343 0.02010 2.05
9 0.7 1,000 0.01110821 0.00156666 1,407 0.00498 2.02
10 0.75 1,000 0.00738774 0.00108022 1,439 0.00625 5.33
11 0.8 1,000 0.00340511 0.00083321 1,600 0.00500 7.16
12 0.8 1,000 0.00156213 0.00029693 1,600 0.00125 14.16
13 0.85 1,000 0.00073482 0.00019565 1,600 0.00125 32.62
14 0.85 1,000 0.00024352 0.00005751 1,600 0.00188 565.20
15 1.05 1,000 0.00009061 0.00001921 1,726 0.00058 1562.75
16 1.05 1,000 0.00009384 0.00001385 1,759 0.00057 2951.99
17 1.15 1,000 0.00006344 0.00000372 1,790 (*)
18 1.15 1,000 0.00002131 0.00000152 1,823 (*)
19 1.15 1,000 0.00000971 0.00000091 1,887 (*)
20 1.15 1,000 0.00000041 0.00000014 1,887 (*)
21 1.15 1,000 0.00000082 0.00000008 1,918 (*)
22 1.3 1,000 0.00000031 0.00000004 1,983 (*)

is indicated by Figure 4, which graphs the estimated probabilities P (C1 = k) for each of
several values of m, for fixed R = 1,000.
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Figure 2. Estimated probabilities P (C1 = k) under the self-exciting model (16)–(17) for each of several
values of R. The number of selections m = 4.

Figure 3. Estimated variance reduction ratios under the self-exciting model (16)–(17) for each of several
values of m. The number of particles R = 1,000.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EXACT SIMULATION OF CORRELATED DEFAULTS 889

Figure 4. Estimated probabilities P (C1 = k) under the self-exciting model (16)–(17) for each of several
values of m. The number of particles R = 1,000.

6.5. Potential extensions. There are several potential variations and extensions of the
formulation (16)–(17). As explained in section 5.3, the additive specification of the feedback
term in the intensity dynamics (16) could be replaced by a multiplicative specification. This
would lead to different self-exciting dynamics and a greater degree of flexibility in designing
the feedback behavior, without reducing the analyticity of hi. The Feller diffusion risk factor
dynamics (17) could be extended to include a compound Poisson jump term. This extension
would allow for discontinuous movements of the intensity between defaults, while requiring
only a minor modification of the coefficient functions (20) and (19) based on the results of
[25]. The rate hi would still take a closed form. More generally, the Feller diffusion dynamics
(17) could be replaced by more general affine jump-diffusion dynamics. The transform (18)
would remain exponentially affine in the state, while the coefficient functions would be given
as solutions to a system of ODEs.

7. Conclusion. This paper develops a simulation method for dynamic intensity-based
models of correlated default risk. The method generates unbiased estimators of credit port-
folio loss distributions, risk measures, and prices of derivative securities that are referenced
on a portfolio of defaultable assets. It reduces the simulation problem to one of a simple
Markov chain expectation. This problem can be treated with exact methods. An overarching
selection/mutation scheme reduces variance in rare-event situations. The method is widely
applicable to many intensity models in the literature. Numerical experiments demonstrate its
effectiveness and highlight its advantages over alternative methods.
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The simulation method has potential applications in other areas that deal with the arrival
of correlated events. These include, in particular, applications in reliability, where intensity-
based models have long been used to analyze the reliability of systems of interdependent
components whose failure times are correlated.

Appendix. Proofs.
Proof of Proposition 3.1. For all B ∈ {0, 1}n and t > 0, we have

I(Nt = B) = I(N0 = B) +
∑

0<s≤t

[
I(Ns = B)− I(Ns− = B)

]
= I(N0 = B) +

n∑
i=1

∫ t

0

[
I(Ns = B)− I(Ns− = B)

]
dN i

s

= I(N0 = B) +

n∑
i=1

∫ t

0

[
I(Ns− + ei = B)I(Bi = 1)− I(Ns− = B)

]
dN i

s,(21)

where ei is an n-vector with ith component equal to 1 and the rest equal to 0. Next we recall
the Doob–Meyer decomposition (1) of the submartingale N i into the sum of a martingale M i

and a process
∫ ·
0 λ

i
s(1−N i

s)ds. Since the integrand in the integral∫ t

0

[
I(Ns− + ei = B)I(Bi = 1)− I(Ns− = B)

]
dM i

s

is bounded and predictable, the integral defines a martingale with initial value equal to zero.
Thus, after we take expectation on both sides of (21) and apply Fubini’s theorem, we obtain

P (Nt = B) = P (N0 = B)+

n∑
i=1

∫ t

0
E
([
I(Ns = B− ei)I(Bi = 1)− I(Ns = B)

]
λis(1−N i

s)
)
ds.

Now we differentiate both sides of this equation with respect to t. By the definition of the
deterministic functions hi(t, B), we obtain

∂tP (Nt = B) =

n∑
i=1

I(Bi = 1)P (Nt = B − ei)hi(t, B − ei)−
n∑

i=1

P (Nt = B)hi(t, B).

But this equation coincides with the backward Kolmogorov equation,

∂tP (Mt = B) =

n∑
i=1

I(Bi = 1)P (Mt = B − ei)hi(t, B − ei)−
n∑

i=1

P (Mt = B)hi(t, B),

which describes the time evolution of the distribution of the Markov chain M with transition
rates hi(t, B). Thus, the probabilities P (Mt = B) and P (Nt = B) satisfy the same ODE.
Since the solution to this ODE is unique and M0 = N0 = 0n by construction, we conclude
that Mt and Nt must have the same distribution for all t ≥ 0.

Proof of Proposition 5.1. By the independence of the random variables τ i, we get

hi(t, B) = E(Xi
t (1−N i

t ) |N i
t = Bi) = (1−Bi)E(Xi

t | τ i > t).
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By Bayes’ formula and iterated expectations,

(22) E(Xi
t | τ i > t) =

E(Xi
tI(τ

i > t))

P (τ i > t)
=
E(Xi

tP (τ
i > t | (Xi

s)s≤t))

E(P (τ i > t | (Xi
s)s≤t))

.

The doubly stochastic property of τ i implies that

P (τ i > t | (Xi
s)s≤t) = exp

(
−
∫ t

0
Xi

sds

)
,

whose expectation equals φ(t, 1, 0,Xi). This gives the denominator of the right-hand side of
(22). For the numerator,

E(Xi
tP (τ

i > t | (Xi
s)s≤t)) = E

(
Xi

t exp

(
−
∫ t

0
Xi

sds

))
= −∂zφ(t, 1, z,Xi)|z=0,

and this completes the proof.

Proof of Proposition 5.2. By the independence of the idiosyncratic factors Xi,

hi(t, B) = (1−Bi)E(Xi
t | τ i > t) + (1−Bi)αiE(Yt |Nt = B),

where the first summand is treated as in the proof of Proposition 5.1. It remains to calculate
the second summand. By Bayes’ formula and iterated expectations,

E(Yt |Nt = B) =
E(YtI(Nt = B))

P (Nt = B)
=
E(YtP (Nt = B | (Ys)s≤t))

E(P (Nt = B | (Ys)s≤t))
.

Given a path of the common factor Y , the intensities λi are independent of one another, and
so are the components N i of the process N . Thus,

P (Nt = B | (Ys)s≤t) =

n∏
j=1

P (N j
t = Bj | (Ys)s≤t)

=

n∏
j=1

[
Bj − (2Bj − 1)P (τ j > t | (Ys)s≤t)

]
.(23)

By iterated expectations, the doubly stochastic property, and the independence of the pro-
cesses Y and Xj , we get

P (τ j > t | (Ys)s≤t) = E

[
exp

(
−
∫ t

0
(αjYs +Xj

s )ds

) ∣∣∣ (Ys)s≤t

]
= exp

(
−αj

∫ t

0
Ysds

)
E

[
exp

(
−
∫ t

0
Xj

sds

)]
= exp

(
−αj

∫ t

0
Ysds

)
φ(t, 1, 0,Xj).(24)
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Now, expanding the n-fold product on the right-hand side of (23) and using (24), we see that
there are deterministic functions ck(t) and constants bk satisfying (14) such that

P (Nt = B | (Ys)s≤t) =

2n−1∑
k=0

ck(t) exp

(
−bk

∫ t

0
Ysds

)
.

Taking expectation on both sides of this equation leads to

P (Nt = B) =

2n−1∑
k=0

ck(t)φ(t, bk, 0, Y ).

A similar argument is applied to E(YtP (Nt = B | (Ys)s≤t)).
Proof of Proposition 5.3. Apply the argument used in the proof of Proposition 5.2.
Proof of Proposition 5.4. For clarity in the exposition, we consider the case q = 2 and

suppose that the observation filtration F is the right-continuous and complete filtration gen-
erated by the processes X1, . . . ,Xn, N , and Y1. Thus, the common factor Y1 is observable
(adapted to the filtration F), while the common factor Y2 is a frailty (not adapted to F). An
intensity λi of N i relative to the observation filtration F is given by the optional projection
(see [61, Chapter VI, p. 375]) of the complete information intensity Xi + (αi

1, α
i
2) · (Y1, Y2)

onto F. Since Xi and Y1 are adapted to F, we have

λit = Xi
t + αi

1Y1t + αi
2E(Y2t | Ft)

almost surely, for each t ≥ 0. Then

hi(t, B) = (1−Bi)
{
E(Xi

t |Nt = B) + αi
1E(Y1t |Nt = B) + αi

2E(Ut |Nt = B)
}
,

where Ut = E(Y2t | Ft). Since the Xi are independent of one another, the first expectation
on the right-hand side of this equation can be analyzed as in the proof of Proposition 5.1.
The second expectation is treated as in the proof of Proposition 5.2, by conditioning on the
path of Y = (Y1, Y2) over [0, t] and using the doubly stochastic property of N in the complete
information filtration. The third expectation can be calculated by an analogous conditioning
argument by noting that

E(Ut |Nt = B) = E(E(Y2t | Ft) |Nt = B) = E(Y2t |Nt = B)

since σ(Nt) ⊂ Ft. The sum of these three expectations gives (15) for q = 2.
Proof of Proposition 5.5. We have

hi(t, B) = (1−Bi){E(Xi
t |Nt = B) + ci(t, B)}.

To calculate the conditional expectation, we apply a measure change argument developed by
[17]. For clarity in the exposition, we consider the case n = 2 and take ci(·, 02) = 0. The
general case can be treated by the same argument. We have

E(Xi
t |Nt = 02) =

E(Xi
tI(Nt = 02))

P (Nt = 02)
=
E∗(Xi

t exp(−
∫ t
0 (λ

1
s + λ2s)ds))

E∗(exp(− ∫ t
0 (λ

1
s + λ2s)ds))

,
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where E∗ denotes the expectation operator relative to the absolutely continuous probability
measure P ∗ on Ft defined by the density

dP ∗

dP
= I(Nt = 02) exp

(∫ t

0
(λ1s + λ2s)ds)

)
.

The condition φ(t,−1, 0,Xi) < ∞ guarantees that P ∗ is well-defined. Under P ∗, the event
{Nt = 02} has measure 1. Girsanov’s theorem for absolutely continuous measure changes as
in [61, Chapter III.8, Theorem 41] along with Lévy’s theorem imply that the standard P -
Brownian motion W driving the Xi’s remains a standard Brownian motion under P ∗ on [0, t],
relative to the filtration F augmented by the P ∗-null sets. The intensity of the point process J
remains γ(t,Xt) relative to P ∗ and the augmented filtration, because the components of J do
not have jumps in common with the components of N almost surely. Therefore, the dynamics
of the Xi are invariant under the measure change. Taking i = 1, it follows that

E∗
(
X1

t exp

(
−
∫ t

0
(λ1s + λ2s)ds

))
= E

(
X1

t exp

(
−
∫ t

0
X1

s ds

))
E

(
exp

(
−
∫ t

0
X2

s ds

))
= −∂zφ(t, 1, z,X1)|z=0φ(t, 1, 0,X

2).

An analogous expression holds for i = 2. Similarly,

E∗
(
exp

(
−
∫ t

0
(λ1s + λ2s)ds

))
= φ(t, 1, z,X1)φ(t, 1, 0,X2),

implying that

(25) E(Xi
t |Nt = 02) = −∂zφ(t, 1, z,X

i)|z=0

φ(t, 1, 0,Xi)
.

Next, we use a similar argument to calculate

E(Xi
t |N i

t = 0) =
E(Xi

tI(N
i
t = 0))

P (N i
t = 0)

=
Ei(Xi

t exp(−
∫ t
0 λ

i
sds))

Ei(exp(− ∫ t
0 λ

i
sds))

,

where Ei denotes the expectation operator relative to the absolutely continuous probability
measure P i on Ft defined by the density

dP i

dP
= I(N i

t = 0) exp

(∫ t

0
λisds

)
.

Under P i, the event {N i
t = 0} has measure 1. As reasoned in the case of P ∗, Girsanov’s the-

orem implies that the dynamics of (X1,X2) are invariant under the measure change. Taking
i = 1 and recalling that c1(s,Ns) takes the form g1(s,N2

s ),

E1

(
X1

t exp

(
−
∫ t

0
λ1sds

))
= E1

(
X1

t exp

(
−
∫ t

0
X1

s ds−
∫ t

0
c1(s,Ns)ds

))
= −∂zφ(t, 1, z,X1)|z=0E

1

(
exp

(
−
∫ t

0
g1(s,N2

s )ds

))
.
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An analogous expression holds for i = 2. Applying a similar argument to the expectation
Ei(exp(− ∫ t

0 λ
i
sds)), we find that E(Xi

t |N i
t = 0) = E(Xi

t |Nt = 02). Bayes’ rule, along with
this relation, then shows that also E(X1

t |Nt = (0, 1)) = E(X1
t |N1

t = 0) and E(X2
t |Nt =

(1, 0)) = E(X2
t |N2

t = 0). Thus, we have shown that

E(Xi
t |Nt = B) = −∂zφ(t, 1, z,X

i)|z=0

φ(t, 1, 0,Xi)

for all B ∈ {0, 1}2 with Bi = 0.
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Optimal Portfolio Liquidation with Execution Cost and Risk∗

Idris Kharroubi† and Huyên Pham‡

Abstract. We study the optimal portfolio liquidation problem over a finite horizon in a limit order book
with bid-ask spread and temporary market price impact penalizing speedy execution trades. We
use a continuous-time modeling framework, but in contrast with previous related papers (see,
e.g., [L. C. G. Rogers and S. Singh, Math. Finance, 20 (2010), pp. 597–615] and [A. Schied and
T. Schöneborn, Finance Stoch., 13 (2009), pp. 181–204]), we do not assume continuous-time trad-
ing strategies. We consider instead real trading that occur in discrete time, and this is formulated
as an impulse control problem under a solvency constraint, including the lag variable tracking the
time interval between trades. A first important result of our paper is to prove rigorously that nearly
optimal execution strategies in this context actually lead to a finite number of trades with strictly in-
creasing trading times, and this holds true without assuming ad hoc any fixed transaction fee. Next,
we derive the dynamic programming quasi-variational inequality satisfied by the value function in
the sense of constrained viscosity solutions. We also introduce a family of value functions which
converges to our value function and is characterized as the unique constrained viscosity solutions
of an approximation of our dynamic programming equation. This convergence result is useful for
numerical purpose but is postponed until a companion paper [F. Guilbaud, M. Mnif, and H. Pham,
Numerical Methods for an Optimal Order Execution Problem, preprint, 2010].

Key words. optimal portfolio liquidation, execution trade, liquidity effects, order book, impulse control, vis-
cosity solutions
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1. Introduction. Understanding trade execution strategies is a key issue for financial
market practitioners and has attracted growing attention from the academic researchers. An
important problem faced by stock traders is how to liquidate large block orders of shares.
This is a challenge due to the following dilemma. By trading quickly, the investor is subject
to higher costs due to market impact reflecting the depth of the limit order book. Thus, to
minimize price impact, it is generally beneficial to break up a large order into smaller blocks.
However, more gradual trading over time results in higher risks since the asset value can vary
more during the investment horizon in an uncertain environment. There has recently been
considerable interest in the literature in such liquidity effects, taking into account permanent
and/or temporary price impacts, and problems of this type were studied in [7], [1], [3], [9],
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[22], [16], [29], [20], [28], and [10], to mention just a few.

There are essentially two popular formulation types for the optimal trading problem in
the literature: discrete-time versus continuous-time. In the discrete-time formulation, we may
distinguish papers considering that trading takes place at fixed deterministic times (see [7]),
at exogenous random discrete times given, for example, by the jumps of a Poisson process (see
[26], [5]), or at discrete times decided optimally by the investor through an impulse control
formulation (see [16], [20]). In this last case, one usually assumes the existence of a fixed
transaction cost paid at each trading in order to ensure that strategies do not accumulate in
time and really occur at discrete points in time (see, e.g., [18] or [23]). The continuous-time
trading formulation is not realistic in practice, but is commonly used (as in [9], [29], or [28]),
due to the tractability and powerful theory of the stochastic calculus typically illustrated
by Itô’s formula. In a perfectly liquid market without transaction cost and market impact,
continuous-time trading is often justified by arguing that it is a limit approximation of discrete-
time trading when the time step goes to zero. However, one may question the validity of such
an assertion in the presence of liquidity effects.

In this paper, we propose a continuous-time framework taking into account the main
liquidity features and risk/cost tradeoff of portfolio execution: there is a limit order book
with bid-ask spread and temporary market price impact penalizing rapid execution trades.
However, in contrast with previous related papers ([29] or [28]), we do not assume continuous-
time trading strategies. We consider instead real trading that take place in discrete time,
and without assuming ad hoc any fixed transaction cost, in accordance with the practitioner
literature. Moreover, a key issue in line with the banking regulation and solvency constraints
is to define in an economically meaningful way the portfolio value of a position in stock at
any time, and this is addressed in our modeling. These issues are formulated conveniently
through an impulse control problem including the lag variable tracking the time interval
between trades. Thus, we combine the advantages of the stochastic calculus techniques and
the realistic modeling of portfolio liquidation. In this context, we study the optimal portfolio
liquidation problem over a finite horizon: the investor seeks to unwind an initial position in
stock shares by maximizing his expected utility from terminal liquidation wealth and under a
natural economic solvency constraint involving the liquidation value of a portfolio.

A first important result of our paper is to show that nearly optimal execution strategies in
this modeling actually lead to a finite number of trading times. Actually, most models dealing
with trading strategies via an impulse control formulation assumed a priori that admissible
trades occur only finitely many times (see, e.g., [21]) or required fixed transaction cost in
order to justify a posteriori the discrete nature of trading times. In this paper, we prove
that discrete-time trading appears endogenously as a consequence of liquidity features repre-
sented by temporary price impact and bid-ask spread. Moreover, the optimal trading times
are strictly increasing. To the best of our knowledge, the rigorous proof of these properties is
new. Next, we derive the dynamic programming quasi-variational inequality (QVI) satisfied
by the value function in the sense of constrained viscosity solutions in order to handle state
constraints. There are some technical difficulties related to the nonlinearity of the impulse
transaction function induced by the market price impact and the nonsmoothness of the sol-
vency boundary. In particular, since we do not assume a fixed transaction fee, which precludes
the existence of a strict supersolution to the QVI, we cannot prove directly a comparison prin-
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ciple (hence a uniqueness result) for the QVI. However, by using a utility penalization method
with small costs, we can prove that the value function is characterized as the minimal viscosity
solution to its QVI. We next consider an approximation problem with fixed small transaction
costs and whose associated value functions are characterized as unique constrained viscosity
solutions to their dynamic programming equations. We then prove the convergence of these
value functions to our original value function by relying on the finiteness of the number of
trading strategies. This convergence result is new and useful for numerical purpose and is
postponed until a further study.

The plan of this paper is organized as follows. Section 2 presents the details of the model
and formulates the liquidation problem. In section 3, we show some interesting economical
and mathematical properties of the model, in particular the finiteness of the number of trad-
ing strategies under illiquidity costs. Section 4 is devoted to the dynamic programming and
viscosity properties of the value function of our impulse control problem. We prove in par-
ticular that our value function is characterized as the minimal constrained viscosity solution
to its dynamic programming QVI. We propose in section 5 an approximation of the original
problem by considering a small fixed transaction fee.

2. The model and liquidation problem. We consider a financial market where an investor
has to liquidate an initial position of y > 0 shares of risky asset (or stock) by time T . He
faces with the following risk/cost tradeoff: if he trades rapidly, this results in higher costs
for quickly executed orders and market price impact; he can then split the order into several
smaller blocks but is then exposed to the risk of price depreciation during the trading horizon.
These liquidity effects recently received considerable interest starting with the papers [7] and
[1] in a discrete-time framework and further investigated, among others, in [22], [29], and
[28] in a continuous-time model. These papers assume continuous trading with instantaneous
trading rate inducing price impact. In a continuous time market framework, we propose here
a more realistic modeling by considering that trading takes place at discrete points in time
through an impulse control formulation, and with a temporary price impact depending on the
time interval between trades, and including a bid-ask spread.

We present the details of the model. Let (Ω,F ,P) be a probability space equipped with
a filtration F = (Ft)0≤t≤T satisfying the usual conditions and supporting a one-dimensional
Brownian motion W on a finite horizon [0, T ], T < ∞. We denote by Pt the market price of
the risky asset, by Xt the amount of money (or cash holdings), by Yt the number of shares in
the stock held by the investor at time t, and by Θt the time interval between time t and the
last trade before t. We set R∗ = R \ {0}, R∗

+ = (0,∞), and R
∗− = (−∞, 0).

• Trading strategies. We assume that the investor can trade only discretely on [0, T ]. This
is modeled through an impulse control strategy α = (τn, ζn)n≥0: τ0 ≤ · · · ≤ τn ≤ · · · ≤ T are
nondecreasing stopping times representing the trading times of the investor, and ζn, n ≥ 0,
are Fτn−measurable random variables valued in R and giving the number of stocks purchased
if ζn ≥ 0 or sold if ζn < 0 at these times. We denote by A the set of trading strategies. The
sequence (τn, ζn) may be a priori finite or infinite. Notice also that we do not assume a priori
that the sequence of trading times (τn) is strictly increasing. We introduce the lag variable
tracking the time interval between trades:

Θt = inf
{
t− τn : τn ≤ t}, t ∈ [0, T ],
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which evolves according to

(2.1) Θt = t− τn, τn ≤ t < τn+1,Θτn+1 = 0, n ≥ 0.

The dynamics of the number of shares invested in stock is given by

(2.2) Yt = Yτn , τn ≤ t < τn+1, Yτn+1 = Yτ−n+1
+ ζn+1, n ≥ 0.

• Cost of illiquidity. The market price of the risky asset process follows a geometric
Brownian motion:

(2.3) dPt = Pt(bdt+ σdWt),

with constants b and σ > 0. We do not consider a permanent price impact on the price, i.e.,
the lasting effect of a large trader, but focus here on the effect of illiquidity, that is, the price
at which an investor will trade the asset. Suppose now that the investor decides at time t to
make an order in stock shares of size e. If the current market price is p and the time lag from
the last order is θ, then the price he actually get for the order e is

(2.4) Q(e, p, θ) = pf(e, θ),

where f is a temporary price impact function from R× [0, T ] into R+ ∪ {∞}. The impact of
liquidity modeled in (2.4) is like a transaction cost combining nonlinearity and proportionality
effects. The nonlinear costs come from the dependence of the function f on e and θ, and we
assume the following natural condition:

(H1) f(0, θ) = 1, and f(., θ) is nondecreasing for all θ ∈ [0, T ].
Condition (H1) means that no trade incurs any impact on the market price, i.e., Q(0, p, θ) = p,
and a purchase (resp., a sale) of stock shares induces a cost (resp., gain) greater (resp., smaller)
than the market price, which increases (resp., decreases) with the size of the order. In other
words, we have Q(e, p, θ)≥ (resp., ≤) p for e≥ (resp., ≤) 0, andQ(., p, θ) is nondecreasing. The
proportional transaction cost effect is realized by considering a bid-ask spread, i.e., assuming
the following condition:

(H2) κb := supθ∈[0,T ] κb(θ) := supθ∈[0,T ] f(0
−, θ) < 1, and

κa := infθ∈[0,T ] κa(θ) := infθ∈[0,T ] f(0
+, θ) > 1.

The term κb(θ) (resp., κa(θ)) may be interpreted as the relative bid price (resp., ask price)
given a time lag from last order θ, and condition (H2) means that, given a current market or
midprice p at time t, κbp is the largest bid price, κap is the lowest ask price, and (κa − κb)p
is the bid-ask spread. In a typical example (see (2.6)), κa(θ) and κb(θ) do not depend on θ,
i.e., κa(θ) = κa, and κb(θ) = κb. On the other hand, this transaction cost function f can
be determined implicitly from the impact of a market order placed by a large trader in a
limit order book (LOB), as explained in [22], [29], or [28]. Indeed, suppose that there is some
midprice p at current time t and an order book of quotes posted on either side of the midprice.
To fix the ideas, we consider the upper half of the LOB, and we denote by ρa(k, θ) the density
of quotes to sell at relative price k ≥ κa(θ) when the time lag from the last market order of
the large trader is θ. Similarly as in [22] or [12], we considered that the LOB may be affected
by the past trades of the large investor through, e.g., its last trading time. If the large investor
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places a buy market order for e > 0 shares of the asset, this will consume all shares in the
LOB located at relative prices between κa(θ) and k̂ = k̂(e, θ) determined by∫ k̂

κa(θ)
ρa(k, θ)dk = e.

Consequently, the cost paid by the large investor to acquire e > 0 units of the asset through
the LOB is

(2.5) Q(p, e, θ) = p

∫ k̂

κa(θ)
kρa(k, θ)dk = pf(e, θ).

Therefore, the shape function ρa of the LOB for sell quotes determines via the relation (2.5)
the temporary market impact function f for buy market order. Similarly, the shape function
ρb of the LOB for buy quotes determines the price impact function f for sell market order,
i.e., f(e, .) for e < 0. Notice in particular that the dependence of f in θ is induced by the
dependence of ρa and ρb on θ. Such an assumption is also made in the seminal paper [1], where
the price impact function penalizes high trading volume per unit of time e/θ. We assume that
f satisfies the following condition:

(H3) (i) f(e, 0) = 0 for e < 0, and (ii) f(e, 0) = ∞ for e > 0.
Condition (H3) expresses the higher costs for immediacy in trading: indeed, the immediate
market resiliency is limited, and the faster the investor wants to liquidate (resp., purchase)
the asset, the deeper into the LOB he will have to go, and the lower (resp., higher) will be the
price for the shares of the asset sold (resp., bought), with a zero (resp., infinite) limiting price
for immediate block sale (resp., purchase). If the investor speeds up his buy trades, he will
deplete the short-term supply and increase the immediate cost for additional trades. As more
time is allowed between trades, supply will gradually recover. Moreover, the intervention of a
large investor in an illiquid market has an important impact on the order book. His trading
will execute the majority of orders on standby and so clear out the order book. Condition
(H3) also prevents the investor from passing orders at immediate consecutive times, which is
the case in practice. Notice that if we consider a market impact function f(e), which does
not depend on θ, then the strict increasing monotonicity of trading times is not guaranteed
a priori by a fixed transaction fee ε > 0. Indeed, suppose, for example, that the investor
wants to buy e shares of stock, given the current market price p. Then, in the case where
e1pf(e1)+ e2pf(e2) + ε < epf(e), for some positive e1, e2 such that e1+ e2 = e, it is better to
split the number of shares and trade separately the smaller quantities e1 and e2 at the same
time.

We also assume some technical regularity conditions on the temporary price impact func-
tion, which shall be used later in Theorem 3.1.

(H4) (i) f is continuous on R
∗ × (0, T ];

(ii) f is C1 on R
∗− × [0, T ], and x �→ ∂f

∂θ is bounded on R
∗− × [0, T ].

A usual form (see, e.g., [19], [2]) of temporary price impact function f (which includes here a
transaction cost term as well) suggested by empirical studies is

(2.6) f(e, θ) = exp
(
λ
∣∣∣e
θ

∣∣∣β sgn(e)).(κa1e>0 + 1e=0 + κb1e<0

)
,
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with the convention f(0, 0) = 1. Here 0 < κb < 1 < κa, κa − κb is the (relative) bid-ask
spread parameter, λ > 0 is the temporary price impact factor, and β > 0 is the price impact
exponent. The price impact function f depends on e and θ through the volume per unit of
time ϑ = e/θ, and the penalization of quick trading, i.e., when θ goes to zero, is formulated by
condition (H3), which is satisfied in (2.6). The power functional form in e/θ for the logarithm
of the price impact function fits well with the statistical properties of order books (see [27]),
and the parameters λ, β can be determined by regressions on data. In particular, empirical
observations suggest a value β = 1/2. Notice that in the limiting case λ = 0 the function
f is constant on (0,∞) and (−∞, 0), with a jump at 0, which means that one ignores the
nonlinear costs, keeping only the proportional costs.

In our illiquidity model, we focus on the cost of trading fast (that is, the temporary price
impact) and ignore as in [9] and [28] the permanent price impact of a large trade. This last
effect could be included in our model, by assuming a jump of the price process at the trading
date, depending on the order size; see, e.g., [16] and [20].
• Cash holdings. We assume a zero risk-free return, so that the bank account is constant

between two trading times:

(2.7) Xt = Xτn , τn ≤ t < τn+1, n ≥ 0.

When a discrete trading ΔYt = ζn+1 occurs at time t = τn+1, this results in a variation of
the cash amount given by ΔXt := Xt − Xt− = −ΔYt.Q(ΔYt, Pt,Θt−) due to the illiquidity
effects. In other words, we have

Xτn+1 = Xτ−n+1
− ζn+1Q(ζn+1, Pτn+1 ,Θτ−n+1

)

= Xτ−n+1
− ζn+1Pτn+1f(ζn+1, τn+1 − τn), n ≥ 0.(2.8)

Notice that, similarly as in the above cited papers dealing with continuous-time trading, we do
not assume fixed transaction fees to be paid at each trading. They are practically insignificant
with respect to the price impact and bid-ask spread. We can then not exclude a priori trading
strategies with immediate trading times; i.e., Θτ−n+1

= τn+1 − τn = 0 for some n. However,

notice that under condition (H3) an immediate sale does not increase the cash holdings, i.e.,
Xτn+1 = Xτ−n+1

= Xτn , while an immediate purchase leads to a bankruptcy, i.e., Xτn+1 = −∞.

Remark 2.1. Although assumption (H3) induces the worst gains for immediate successive
trading, its does not prevent continuous-time trading at the limit. To see this, let us consider
a market impact function f(e, θ) = f̄(e/θ) depending on e, θ through the volume per unit
of time e/θ, as in (2.6), and define the continuous-time (deterministic) strategy (Yt)t with
constant slope starting from Y0 = y > 0 and ending at YT = 0 at the liquidation date T .
Consider now a uniform time discretization of the interval [0, T ] with time step h = T/N , and
define the discrete-time strategy αh = (τhn , ζ

h
n)1≤n≤N by

τhn = nh and ζhn = Yτhn − Yτhn−1
= − y

N
, n ≥ 1,

with τh0 = 0. This strategy αh à la Almgren and Chriss is a uniform discrete-time approxi-
mation of Y . From (2.8), the cash holdings associated with this strategy, and starting from
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an initial capital x, are then given at terminal date T by

Xh
T = x−

N∑
n=1

ζhnPτhn
f̄

(
ζhn

τhn − τhn−1

)

= x+
N∑

n=1

y

T
hPτhn

f̄
(
− y

T

)
−→ x+

y

T
f̄
(
− y

T

) ∫ T

0
Ptdt

when h goes to zero. Thus, we see that the execution cost for the continuous-time limit strategy
is also finite. Actually, the above argument shows more generally that any continuous-time
finite variation strategy (Yt) with continuous instantaneous trading rate process ηt = dYt/dt
can be approximated by a discrete-time trading strategy αh = (τhn , ζ

h
n)1≤n≤N , with τhn = nh, ζhn

= Yτhn −Yτhn−1
, such that the corresponding execution cost Xh

T converges to x− ∫ T
0 Ptf̄(ηt)dYt

as h = T/N goes to zero.
• Liquidation value and solvency constraint. A key issue in portfolio liquidation is to

define in an economically meaningful way what the portfolio value of a position on cash and
stocks is. In our framework, we impose a no-short selling constraint on the trading strategies,
i.e.,

Yt ≥ 0, 0 ≤ t ≤ T.
This constraint is consistent with the bank regulations following the financial crisis. We
consider the liquidation function L(x, y, p, θ) representing the net wealth value that an investor
with a cash amount x would obtain by liquidating his stock position y ≥ 0 by a single block
trade when the market price is p and given the time lag θ from the last trade. It is defined
on R× R+ ×R

∗
+ × [0, T ] by

L(x, y, p, θ) = x+ ypf(−y, θ),
and we impose the following liquidation constraint on trading strategies:

L(Xt, Yt, Pt,Θt) ≥ 0, 0 ≤ t ≤ T.
We have L(x, 0, p, θ) = x, and under condition (H3)(ii) we notice that L(x, y, p, 0) = x for y
≥ 0. We naturally introduce the liquidation solvency region:

S =
{
(z, θ) = (x, y, p, θ) ∈ R×R+ × R

∗
+ × [0, T ] : y > 0 and L(z, θ) > 0

}
.

We denote its boundary and its closure by

∂S = ∂yS ∪ ∂LS and S̄ = S ∪ ∂S,
where

∂yS =
{
(z, θ) = (x, y, p, θ) ∈ R× R+ × R

∗
+ × [0, T ] : y = 0 and x = L(z, θ) ≥ 0

}
,

∂LS =
{
(z, θ) = (x, y, p, θ) ∈ R× R+ × R

∗
+ × [0, T ] : L(z, θ) = 0

}
.
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Figure 1. Domain S in the nonhatched zone for fixed p = 1 and θ evolving from 1.5 to 0.1. Here κb = 0.9
and f(e, θ) = κb exp(

e
θ
) for e < 0. Notice that when θ goes to 0, the domain converges to the open orthant

R
∗
+ × R

∗
+.

We also denote by D0 the corner line in ∂S:
D0 = {0} × {0} ×R

∗
+ × [0, T ] = ∂yS ∩ ∂LS.

We represent in Figure 1 the graph of S in the plane (x, y), in Figure 2 the graph of S in the
space (x, y, p), and in Figure 3 the graph of S in the space (x, y, θ).
• Admissible trading strategies. Given (t, z, θ) ∈ [0, T ]×S̄, we say that the impulse control

strategy α = (τn, ζn)n≥0 is admissible, denoted by α ∈ A(t, z, θ), if τ0 = t − θ, τn ≥ t, n ≥
1, and the process {(Zs,Θs) = (Xs,Ys, Ps,Θs), t ≤ s ≤ T} solution to (2.1)–(2.2)–(2.3)–(2.7)–
(2.8), with an initial state (Zt− ,Θt−) = (z, θ) (and the convention that (Zt,Θt) = (z, θ) if τ1
> t), satisfies (Zs,Θs) ∈ [0, T ] × S̄ for all s ∈ [t, T ]. As usual, to alleviate notation, we omit
the dependence of (Z,Θ) in (t, z, θ, α) when there is no ambiguity.
• Portfolio liquidation problem. We consider a utility function U from R+ into R that is

nondecreasing and concave, with U(0) = 0, and such that there exist K ≥ 0 and γ ∈ [0, 1):

0 ≤ U(x) ≤ Kxγ ∀x ∈ R+.(H5)

The problem of optimal portfolio liquidation is formulated as

(2.9) v(t, z, θ) = sup
α∈A�(t,z,θ)

E
[
U(XT )

]
, (t, z, θ) ∈ [0, T ]× S̄,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL PORTFOLIO LIQUIDATION WITH EXECUTION COST AND RISK 905

Figure 2. Lower bound of the domain S for fixed θ = 1. Here κb = 0.9 and f(e, θ) = κb exp(
e
θ
) for e < 0.

Notice that when p is fixed, we obtain Figure 1.

Figure 3. Lower bound of the domain S for fixed p with f(e, θ) = κb exp(
e
θ
) for e < 0 and κb = 0.9. Notice

that when θ is fixed, we obtain Figure 1.
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where A	(t, z, θ) =
{
α ∈ A(t, z, θ) : YT = 0

}
. Notice that this set is nonempty. Indeed,

let (t, z, θ) ∈ [0, T ] × S̄, and consider the impulse control strategy α̃ = (τn, ζn)n≥0, τ0 =
t − θ, consisting in liquidating all the stock shares immediately and then no longer doing
transactions, i.e., (τ1, ζ1) = (t,−y), and ζn = 0, n ≥ 2. The associated state process (Z =
(X,Y, P ),Θ) satisfies Xs = L(z, θ), Ys = 0, which shows that L(Zs,Θs) = Xs = L(z, θ) ≥
0, t ≤ s ≤ T , and thus α̃ ∈ A	(t, z, θ) �= ∅. Observe also that for α ∈ A	(t, z, θ), XT =
L(ZT ,ΘT ) ≥ 0, so that the expectations in (2.9) and the value function v are well defined in
[0,∞]. Moreover, by considering the particular strategy α̃ described above, which leads to a
final liquidation value XT = L(z, θ), we obtain a lower bound for the value function:

(2.10) v(t, z, θ) ≥ U(L(z, θ)), (t, z, θ) ∈ [0, T ]× S̄.

Remark 2.2. We can shift the terminal liquidation constraint in A	(t, z, θ) to a terminal
liquidation utility by considering the function UL defined on S̄ by

UL(z, θ) = U(L(z, θ)), (z, θ) ∈ S̄.

Then, problem (2.9) is written equivalently as

(2.11) v̄(t, z, θ) = sup
α∈A(t,z,θ)

E

[
UL(ZT ,ΘT )

]
, (t, z, θ) ∈ [0, T ]× S̄.

Indeed, by observing that for all α ∈ A	(t, z, θ) we have E[U(XT )] = E[UL(ZT ,ΘT )], and since
A	(t, z, θ) ⊂ A(t, z, θ), it is clear that v ≤ v̄. Conversely, for any α ∈ A(t, z, θ) associated with
the state controlled process (Z,Θ), consider the impulse control strategy α̃ = α ∪ (T,−YT )
consisting in liquidating all the stock shares YT at time T . The corresponding state process
(Z̃, Θ̃) clearly satisfies (Z̃s, Θ̃s) = (Zs,Θs) for t ≤ s < T , and X̃T = L(ZT ,ΘT ), ỸT = 0, and
so α̃ ∈ A	(t, z, θ). We deduce that E[UL(ZT ,ΘT )] = E[U(X̃T )] ≤ v(t, z, θ), and so since α
is arbitrary in A(t, z, θ), v̄(t, z, θ) ≤ v(t, z, θ). This proves the equality v = v̄. Actually, the
above arguments also show that supα∈A�(t,z,θ)U(XT ) = supα∈A(t,z,θ) UL(ZT ,ΘT ).

Remark 2.3. Following Remark 2.1, we can formulate a continuous-time trading version
of our illiquid market model with stock price P and temporary price impact f̄ . The trading
strategy is given by an F-adapted process η = (ηt)0≤t≤T representing the instantaneous trading
rate, which means that the dynamics of the cumulative number of stock shares Y is governed
by dYt = ηtdt. The cash holdings X are

dXt = −ηtPtf̄(ηt)dt.

Notice that in a continuous-time trading formulation the time interval between trades is Θt

= 0 at any time t. Under condition (H3), the liquidation value is then given at any time t by

L(Xt, Yt, Pt, 0) = Xt, 0 ≤ t ≤ T,

and does not take into account the position in stock shares, which is economically undesirable.
On the contrary, by explicitly considering the time interval between trades in our discrete-time
trading formulation, we take into account the position in stock.
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3. Properties of the model. In this section, we show that the illiquid market model pre-
sented in the previous section displays some interesting and economically meaningful proper-
ties on the admissible trading strategies and the optimal performance, i.e., the value function.
Let us consider the impulse transaction function Γ defined on R× R+ ×R

∗
+ × [0, T ]×R into

R ∪ {−∞} × R× R
∗
+ by

Γ(z, θ, e) =
(
x− epf(e, θ), y + e, p

)
for z = (x, y, p) and set Γ̄(z, θ, e) =

(
Γ(z, θ, e), 0

)
. This corresponds to the value of the state

variable (Z,Θ) immediately after a trading at time t = τn+1 of ζn+1 shares of stock, i.e.,
(Zτn+1 ,Θτn+1) =

(
Γ(Zτ−n+1

,Θτ−n+1
, ζn+1), 0

)
. We then define the set of admissible transactions:

C(z, θ) =
{
e ∈ R :

(
Γ(z, θ, e), 0

) ∈ S̄}, (z, θ) ∈ S̄.

This means that for any α = (τn, ζn)n≥0 ∈ A(t, z, θ) with associated state process (Z,Θ) we
have ζn ∈ C(Zτ−n ,Θτ−n ), n ≥ 1. We define the impulse operator H by

Hϕ(t, z, θ) = sup
e∈C(z,θ)

ϕ(t,Γ(z, θ, e), 0), (t, z, θ) ∈ [0, T ]× S̄.

We also introduce the liquidation function corresponding to the classical Merton model
without market impact:

LM (z) = x+ py ∀z = (x, y, p) ∈ R× R× R
∗
+.

For (t, z, θ) ∈ [0, T ] × S̄, with z = (x, y, p), we denote by (Z0,t,z,Θ0,t,θ) the state process
starting from (z, θ) at time t and without any impulse control strategy: it is given by(

Z0,t,z
s ,Θ0,t,θ

s

)
= (x, y, P t,p

s , θ + s− t), t ≤ s ≤ T,

where P t,p is the solution to (2.3) starting from p at time t. Notice that (Z0,t,z,Θ0,t,θ) is
the continuous part of the state process (Z,Θ) controlled by α ∈ A(t, z, θ). The infinitesimal
generator L associated with the process (Z0,t,z,Θ0,t,θ) is

Lϕ+
∂ϕ

∂θ
= bp

∂ϕ

∂p
+

1

2
σ2p2

∂2ϕ

∂p2
+
∂ϕ

∂θ
.

We first prove a useful result on the set of admissible transactions.
Lemma 3.1. Assume that (H1), (H2), and (H3) hold. Then, for all (z, θ) ∈ S̄, with z =

(x, y, p), the set C(z, θ) is compact in R and satisfies

(3.1) C(z, θ) ⊂ [−y, ē(z, θ)],
where −y ≤ ē(z, θ) <∞ is given by

ē(z, θ) =

{
sup

{
e ∈ R : epf(e, θ) ≤ x

}
if θ > 0,

0 if θ = 0.
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For θ = 0, (3.1) becomes an equality: C(z, 0) = [−y, 0].
The set function C is continuous with respect to the Hausdorff metric; i.e., if (zn, θn)

converges to (z, θ) in S̄, and (en) is a sequence in C(zn, θn) converging to e, then e ∈ C(z, θ).
Moreover, if e ∈ R �→ ef(e, θ) is strictly increasing for θ ∈ (0, T ], then for (z, θ) ∈ ∂LS with
θ > 0 we have ē(z, θ) = −y, i.e., C(z, θ) = {−y}.

Proof. By definition of the impulse transaction function Γ and the liquidation function L,
we immediately see that the set of admissible transactions is written as

C(z, θ) =
{
e ∈ R : x− epf(e, θ) ≥ 0, and y + e ≥ 0

}
=
{
e ∈ R : epf(e, θ) ≤ x

}
∩ [−y,∞) =: C1(z, θ) ∩ [−y,∞).(3.2)

It is clear that C(z, θ) is closed and bounded and thus a compact set. Under (H1) and (H2),
we have lime→∞ epf(e, θ) = ∞. Hence we get ē(z, θ) < ∞ and C1(z, θ) ⊂ (−∞, ē(z, θ)]. From
(3.2), we get (3.1). Suppose θ = 0. Under (H3), using (z, θ) ∈ S̄, we have C1(z, θ) = R−.
From (3.2), we get C(z, θ) = [−y, 0].

Let us now prove the continuity of the set of admissible transactions. Consider a sequence
(zn, θn) in S̄, with zn = (xn, yn, pn), converging to (z, θ) ∈ S̄ and a sequence (en) in C(zn, θn)
converging to e. Suppose first that θ > 0. Then, for n large enough, θn > 0 and, by observing
that (z, θ, e) �→ Γ̄(z, θ, e) is continuous on R × R+ × R

∗
+ × R

∗
+ × R, we immediately deduce

that e ∈ C(z, θ). In the case θ = 0, writing xn − enf(en, θn) ≥ 0, using (H3)(ii), and sending
n to infinity, we see that e should necessarily be nonpositive. By writing also that yn + en ≥
0, we get by sending n to infinity that y + e ≥ 0, and therefore e ∈ C(z, 0) = [−y, 0].

Suppose finally that e ∈ R �→ ef(e, θ) is increasing, and fix (z, θ) ∈ ∂LS, with θ > 0.
Then, L(z, θ) = 0, i.e., x = −ypf(−y, θ). Set ē = ē(z, θ). By writing that ēpf(ē, θ) ≤ x =
−ypf(−y, θ), and ē ≥ −y, we deduce from the increasing monotonicity of e �→ epf(e, θ) that
ē = −y.

Remark 3.1. The previous lemma implies in particular that C(z, 0) ⊂ R−, which means
that an admissible transaction after an immediate trading should necessarily be a sale. In
other words, given α = (τn, ζn)n≥0 ∈ A(t, z, θ), (t, z, θ) ∈ [0, T ] × S̄, if Θτ−n = 0, then ζn ≤
0. The continuity property of C ensures that the operator H preserves the lower and upper
semicontinuity (see (A.3) in Appendix A). This lemma also asserts that, under the assumption
of increasing monotonicity of e �→ ef(e, θ), when the state is in the boundary L = 0, the only
admissible transaction is to liquidate all stock shares. This increasing monotonicity means
that the amount traded is increasing with the size of the order. Such an assumption is satisfied
in the example (2.6) of temporary price impact function f for β = 2, but it is not fulfilled for
β = 1. In this case, the presence of illiquidity cost implies that it may be more advantageous
to split the order size.

We next state some useful bounds on the liquidation value associated with an admissible
transaction.

Lemma 3.2. Assume that (H1) holds. Then, we have for all (t, z, θ) ∈ [0, T ]× S̄
0 ≤ L(z, θ) ≤ LM (z),(3.3)

LM (Γ(z, θ, e)) ≤ LM (z) ∀e ∈ R,(3.4)

sup
α∈A(t,z,θ)

L(Zs,Θs) ≤ LM (Z0,t,z
s ), t ≤ s ≤ T.(3.5)
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Furthermore, under (H2), we have for all (z, θ) ∈ S̄, z = (x, y, p)

(3.6) LM (Γ(z, θ, e)) ≤ LM (z)−min(κa − 1, 1 − κb)|e|p ∀e ∈ R.

Proof. Under (H1), we have f(e, θ) ≤ 1 for all e ≤ 0, which clearly shows (3.3). From the
definition of LM and Γ, we see that for all e ∈ R

(3.7) LM (Γ(z, θ, e)) − LM (z) = ep
(
1− f(e, θ)

)
,

which yields the inequality (3.4). Fix some arbitrary α = (τn, ζn)n≥0 ∈ A(t, z, θ) associated
with the controlled state process (Z,Θ). When a transaction occurs at time s = τn, n ≥ 1,
the jump of LM(Z) is nonpositive by (3.4):

ΔLM (Zs) = LM (Zτn)− LM (Zτ−n ) = LM (Γ(Zτ−n ,Θτ−n , ζn))− LM (Zτ−n ) ≤ 0.

We deduce that the process LM (Z) is smaller than its continuous part equal to LM (Z0,t,z),
and we then get (3.5) with (3.3). Finally, under the additional condition (H2), we easily obtain
inequality (3.6) from relation (3.7).

We now check that our liquidation problem is well-posed by stating a natural upper bound
on the optimal performance, namely, that the value function in our illiquid market model is
bounded by the usual Merton bound in a perfectly liquid market.

Proposition 3.1. Assume that (H1) and (H5) hold. Then, for all (t, z, θ) ∈ [0, T ] × S̄, the
family {UL(ZT ,ΘT ), α ∈ A(t, z, θ)} is uniformly integrable, and we have

v(t, z, θ) ≤ v0(t, z) := E

[
U
(
LM

(
Z0,t,z
T

))]
, (t, z, θ) ∈ [0, T ]× S̄

≤ Keρ(T−t)LM (z)γ ,(3.8)

where ρ is a positive constant such that

(3.9) ρ ≥ γ

1− γ
b2

2σ2
.

Proof. From (3.5) and the nondecreasing monotonicity of U , we have for all (t, z, θ) ∈
[0, T ]× S̄

sup
α∈A�(t,z,θ)

U(XT ) = sup
α∈A(t,z,θ)

UL(ZT ,ΘT ) ≤ U(LM (Z0,t,z
T )),

and all the assertions of the proposition will follow once we prove the inequality (3.8). For
this, consider the nonnegative function ϕ defined on [0, T ] × S̄ by

ϕ(t, z, θ) = eρ(T−t)LM (z)γ = eρ(T−t)
(
x+ py

)γ
,

and notice that ϕ is smooth C2 on [0, T ] × (S̄ \D0). We claim that, for ρ > 0 large enough,
the function ϕ satisfies

−∂ϕ
∂t
− ∂ϕ

∂θ
− Lϕ ≥ 0 on [0, T ]× (S̄ \D0).
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Indeed, a straightforward calculation shows that for all (t, z, θ) ∈ [0, T ] × (S̄ \D0)

−∂ϕ
∂t

(t, z, θ)− ∂ϕ

∂θ
(t, z, θ)−Lϕ(t, z, θ)

= eρ(T−t)LM (z)γ−2

[(√
ρLM(z) +

bγ

2
√
ρ
yp

)2

+

(
γ(1− γ)σ2

2
− b2γ2

4ρ

)
y2p2

]
,(3.10)

which is nonnegative under condition (3.9).
Fix some (t, z, θ) ∈ [0, T ]×S̄ . If (z, θ) = (0, 0, p, θ) ∈ D0, then we clearly have v0(t, z, θ) =

U(0), and inequality (3.8) is trivial. Otherwise, if (z, θ) ∈ S̄\D0, then the process (Z0,t,z,Θ0,t,θ)
satisfies LM (Z0,t,z,Θ0,t,θ) > 0. Indeed, denote by (Z̄t,z, Θ̄t,θ) the process starting from (z, θ)
at t and associated with the strategy consisting in liquidating all stock shares at t. Then we
have (Z̄t,z

s , Θ̄t,θ
s ) ∈ S̄ \D0 for all s ∈ [t, T ] and hence LM (Z̄t,z

s , Θ̄t,θ
s )> 0 for all s ∈ [t, T ]. Using

(3.5) we get LM (Z0,t,z
s ,Θ0,t,θ

s ) ≥ LM (Z̄t,z
s , Θ̄t,θ

s ) > 0.

We can then apply Itô’s formula to ϕ(s, Z0,t,z
s ,Θ0,t,θ

s ) between t and TR = inf{s ≥ t : |Z0,t,z
s |

≥ R} ∧ T :

E[ϕ(TR, Z
0,t,z
TR

,Θ0,t,θ
TR

)] = ϕ(t, z) + E

[∫ TR

t

(
∂ϕ

∂t
+
∂ϕ

∂θ
+ Lϕ

)
(s, Z0,t,z

s ,Θ0,t,θ
s )ds

]
≤ ϕ(t, z).

(The stochastic integral term vanishes in expectation since the integrand is bounded before
TR.) By sending R to infinity, we get by Fatou’s lemma and since ϕ(T, z, θ) = LM (z)γ

E

[
LM (Z0,t,z

T )γ
]
≤ ϕ(t, z, θ).

We conclude with the growth condition (H5).
As a direct consequence of the previous proposition, we obtain the continuity of the value

function on the boundary ∂yS, i.e., when we start with no stock shares.
Corollary 3.1. Assume that (H1) and (H5) hold. Then, the value function v is continuous

on [0, T ]× ∂yS, and we have

v(t, z, θ) = U(x) ∀t ∈ [0, T ], (z, θ) = (x, 0, p, θ) ∈ ∂yS.
In particular, we have v(t, z, θ) = U(0) = 0 for all (t, z, θ) ∈ [0, T ] ×D0.

Proof. From the lower bound (2.10) and the upper bound in Proposition 3.1, we have for
all (t, z, θ) ∈ [0, T ]× S̄

U
(
x+ ypf

(− y, θ)) ≤ v(t, z, θ) ≤ E
[
U(LM (Z0,t,z

T ))
]
= E

[
U(x+ yP t,p

T )
]
.

These two inequalities imply the required result.
The following result states the finiteness of the total number of shares and amount traded.
Proposition 3.2. Assume that (H1) and (H2) hold. Then, for any α = (τn, ζn)n≥0 ∈

A(t, z, θ), (t, z, θ) ∈ [0, T ]× S̄, we have∑
n≥1

|ζn| < ∞,
∑
n≥1

|ζn|Pτn < ∞, and
∑
n≥1

|ζn|Pτnf
(
ζn,Θτ−n

)
< ∞ a.s.
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Proof. Fix (t, z, θ) ∈ [0, T ] × S̄, and α = (τn, ζn)n≥0 ∈ A(t, z, θ). Observe first that the
continuous part of the process LM (Z) is LM(Z0,t,z), and we denote its jump at time τn by
ΔLM(Zτn) = LM (Zτn)−LM(Zτ−n ). From the estimates (3.3) and (3.6) in Lemma 3.2, we then
have a.s. for all n ≥ 1

0 ≤ LM (Zτn) = LM (Z0,t,z
τn ) +

n∑
k=1

ΔLM (Zτk)

≤ LM (Z0,t,z
τn )− κ̄

n∑
k=1

|ζk|Pτk ,

where we set κ̂ = min(κa − 1, 1− κb) > 0. We deduce that for all n ≥ 1

n∑
k=1

|ζk|Pτk ≤
1

κ̂
sup

s∈[t,T ]
LM (Z0,t,z

s ) =
1

κ̂

(
x+ y sup

s∈[t,T ]
P t,p
s

)
< ∞ a.s.

This shows the almost sure convergence of the series
∑

n |ζn|Pτn . Moreover, since the price
process P is continuous and strictly positive, we also obtain the convergence of the series∑

n |ζn|. Recalling that f(e, θ) ≤ 1 for all e ≤ 0 and θ ∈ [0, T ], we have for all n ≥ 1

n∑
k=1

|ζk|Pτkf
(
ζk,Θτ−k

)
=

n∑
k=1

ζkPτkf
(
ζk,Θτ−k

)
+ 2

n∑
k=1

|ζk|Pτkf
(
ζk,Θτ−k

)
1ζk≤0

≤
n∑

k=1

ζkPτkf
(
ζk,Θτ−k

)
+ 2

n∑
k=1

|ζk|Pτk .(3.11)

On the other hand, we have

0 ≤ LM (Zτn) = Xτn + YτnPτn

= x−
n∑

k=1

ζkPτkf
(
ζk,Θτ−k

)
+

(
y +

n∑
k=1

ζk

)
Pτn .

Together with (3.11), this implies that for all n ≥ 1

n∑
k=1

|ζk|Pτkf
(
ζk,Θτ−k

) ≤ x+

(
y +

n∑
k=1

|ζk|
)

sup
s∈[t,T ]

P t,p
s + 2

n∑
k=1

|ζk|Pτk .

The convergence of the series
∑

n |ζn|Pτnf
(
ζn,Θτ−n

)
follows therefore from the convergence of

the series
∑

n |ζn| and
∑

n |ζn|Pτn .
As a consequence of the above results, we can now prove that in the optimal portfolio liq-

uidation it suffices to restrict to a finite number of trading times, which are strictly increasing.
Given a trading strategy α = (τn, ζn)n≥0 ∈ A, let us denote by N(α) the process counting the
number of intervention times:

Nt(α) =
∑
n≥1

1τn≤t, 0 ≤ t ≤ T.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

912 IDRIS KHARROUBI AND HUYÊN PHAM

We denote by Ab
	(t, z, θ) the set of admissible trading strategies in A	(t, z, θ) with a finite

number of trading times such that these trading times are strictly increasing, namely,

Ab
	(t, z, θ) =

{
α = (τn, ζn)n≥0 ∈ A	(t, z, θ) : NT (α) <∞ a.s.

and τn < τn+1 a.s., 0 ≤ n ≤ NT (α)− 1
}
.

For any α = (τn, ζn)n ∈ Ab
	(t, z, θ), the associated state process (Z,Θ) satisfies Θτ−n+1

> 0, i.e.,

(Zτ−n+1
,Θτ−n+1

) ∈ S̄∗ := {(z, θ) ∈ S̄ : θ > 0}. We also set ∂LS∗ = ∂LS ∩ S̄∗.
Theorem 3.1. Assume that (H1), (H2), (H3), (H4), and (H5) hold. Then, we have

(3.12) v(t, z, θ) = sup
α∈Ab

�(t,z,θ)

E
[
U(XT )

]
, (t, z, θ) ∈ [0, T ]× S̄.

Moreover, we have

(3.13) v(t, z, θ) = sup
α∈Ab

�+
(t,z,θ)

E
[
U(XT )

]
, (t, z, θ) ∈ [0, T ]× (S̄ \ ∂LS),

where Ab
	+
(t, z, θ) = {α ∈ Ab

	(t, z, θ) : (Zs,Θs) ∈ (S̄ \ ∂LS), t ≤ s < T}.
Proof. Step 1. Fix (t, z, θ) ∈ [0, T ] × S̄, and denote by Āb

	(t, z, θ) the set of admissible
trading strategies in A	(t, z, θ) with a finite number of trading times:

Āb
	(t, z, θ) =

{
α = (τk, ζk)k≥0 ∈ A	(t, z, θ) : NT (α) is bounded a.s.

}
.

Given an arbitrary α = (τk, ζk)k≥0 ∈ A	(t, z, θ) associated with the state process (Z,Θ) =
(X,Y, P,Θ), let us consider the truncated trading strategy α(n) = (τk, ζk)k≤n ∪ (τn+1,−Yτ−n+1

),

which consists in liquidating all stock shares at time τn+1. This strategy α
(n) lies in Ā	(t, z, θ)

and is associated with the state process denoted by (Z(n),Θ(n)). We then have

X
(n)
T −XT =

∑
k≥n+1

ζkPτkf
(
ζk,Θτ−k

)
+ Yτ−n+1

Pτn+1f
(− Yτ−n+1

,Θτ−n+1

)
.

Now, from Proposition 3.2, we have∑
k≥n+1

ζkPτkf
(
ζk,Θτ−k

) −→ 0 a.s. when n→∞.

Moreover, since 0 ≤ Yτ−n+1
= Yτn goes to YT = 0 as n goes to infinity, by definition of α ∈

A	(t, z, θ), and recalling that f is smaller than 1 on R− × [0, T ], we deduce that

0 ≤ Yτ−n+1
Pτn+1f

(− Yτ−n+1
Θτ−n+1

) ≤ Yτ−n+1
sup

s∈[t,T ]
P t,p
s

−→ 0 a.s. when n→∞.
This proves that X

(n)
T −→ XT a.s. when n goes to infinity. From Proposition 3.1, the sequence

(U(X
(n)
T ))n≥1 is uniformly integrable, and we can apply the dominated convergence theorem
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to get E
[
U(X

(n)
T )

] −→ E
[
U(XT )

]
when n goes to infinity. Since α is arbitrary in A	(t, z, θ),

this shows that

v(t, z, θ) ≤ v̄b(t, z, θ) := sup
α∈Āb

�(t,z,θ)

E
[
U(XT )

]
,

and actually the equality v = v̄b since the other inequality v̄b ≤ v is trivial from the inclusion
Āb

	(t, z, θ) ⊂ A	(t, z, θ).

Step 2. Denote by vb the value function in the right-hand side (r.h.s.) of (3.12). It is clear
that vb ≤ v̄b = v since Ab

	(t, z, θ) ⊂ Āb
	(t, z, θ). To prove the reverse inequality we need first

to study the behavior of optimal strategies at time T . Introduce the set

Ãb
	(t, z, θ) =

{
α = (τk, ζk)k ∈ Ab

	(t, z, θ) : #{k : τk = T} ≤ 1
}
,

and denote by ṽb the associated value function. Then we have ṽb ≤ v̄b. Indeed, let α = (τk, ζk)k
be some arbitrary element in Āb

	(t, z, θ), (t, z = (x, y, p), θ) ∈ [0, T ] × S̄. If α ∈ Ãb
	(t, z, θ),

then we have ṽb(t, z, θ) ≥ E[UL(ZT ,ΘT )], where (Z,Θ) denotes the process associated with α.
Suppose now that α /∈ Ãb

	(t, z, θ). Set m = max{k : τk < T}. Then define the stopping time
τ ′ := τm+T

2 and the Fτ ′-measurable random variable ζ ′ := argmax{ef(e, T−τm) : e ≥ −Yτm}.
Define the strategy α′ = (τk, ζk)k≤m ∪ (τ ′, Yτm − ζ ′)∪ (T, ζ ′). From the construction of α′, we
easily check that α′ ∈ Ãb(t, z, θ) and E[UL(ZT ,ΘT )] ≤ E[UL(Z

′
T ,Θ

′
T )], where (Z

′,Θ′) denotes
the process associated with α′. Thus, ṽb ≥ v̄b.

We now prove that vb ≥ ṽb. Let α = (τk, ζk)k be some arbitrary element in Ãb
	(t, z, θ),

(t, z = (x, y, p), θ) ∈ [0, T ]× S̄. Denote by N = NT (α) the a.s. finite number of trading times
in α. We set m = inf{0 ≤ k ≤ N − 1 : τk+1 = τk} and M = sup{m+ 1 ≤ k ≤ N : τk = τm}
with the convention that inf ∅ = sup ∅ = N + 1. We then define α′ = (τ ′k, ζ

′
k)0≤k≤N−(M−m)+1

∈ A by

(τ ′k, ζ
′
k) =

⎧⎪⎪⎨⎪⎪⎩
(τk, ζk) for 0 ≤ k < m,

(τm = τM ,
∑M

k=m ζk) for k = m and m < N,
(τk+M−m, ζk+M−m) for m+ 1 ≤ k ≤ N − (M −m) and m < N,

(τ ′,
∑M

l=m+1 ζl) for k = N − (M −m) + 1,

where τ ′ = τ̂+T
2 with τ̂ = max{τk : τk < T}, and we denote by (Z ′ = (X ′, Y ′, P ),Θ′) the

associated state process. It is clear that (Z ′
s,Θ

′
s) = (Zs,Θs) for t ≤ s < τm, and so X ′

(τ)′− =

X(τ ′)− , Θ
′
(τ ′)− = Θ(τ ′)− . Moreover, since τm = τM , we have Θτ−k

= 0 for m+1 ≤ k ≤M . From

Lemma 3.1 (or Remark 3.1), this implies that ζk ≤ 0 for m+1 ≤ k ≤M , and so ζ ′N−(M−m)+1

=
∑M

k=m+1 ζk ≤ 0. We also recall that immediate sales does not increase the cash holdings,
so that Xτk = Xτm for m+ 1 ≤ k ≤M . We then get

X ′
T = XT − ζ ′N−(M−m)+1Pτ ′f

(
ζ ′N−(M−m)+1,Θ

′
(τ ′)−

) ≥ XT .

Moreover, we have Y ′
T = y+

∑N
k=1 ζk = YT = 0. By construction, notice that τ ′0 < · · · < τ ′m+1.

Given an arbitrary α ∈ Āb
	(t, z, θ), we can then construct by induction a trading strategy α′ ∈
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Ab
	(t, z, θ) such that X ′

T ≥ XT a.s. By the nondecreasing monotonicity of the utility function
U , this yields

E[U(XT )] ≤ E[U(X ′
T )] ≤ vb(t, z, θ).

Since α is arbitrary in Ãb
	(t, z, θ), we conclude that ṽb ≤ vb, and thus v = v̄b = ṽb = vb.

Step 3. Fix now an element (t, z, θ) ∈ [0, T ] × (S̄ \ ∂LS), and denote by v+ the r.h.s of
(3.13). It is clear that v ≥ v+. Conversely, take some arbitrary α = (τk, ζk)k ∈ Ab

	(t, z, θ),
associated with the state process (Z,Θ), and denote by N = NT (α) the finite number of
trading times in α. Consider the first time before T when the liquidation value reaches zero;
i.e., τα = inf{t ≤ s ≤ T : L(Zs,Θs) = 0} ∧ T with the convention inf ∅ = ∞. We claim that
there exists 1 ≤ m ≤ N + 1 (depending on ω and α) such that τα = τm, with the convention
that m = N + 1, τN+1 = T if τα = T . On the contrary, there would exist 1 ≤ k ≤ N such
that τk < τα < τk+1, and L(Zτα ,Θτα) = 0. Between τk and τk+1, there is no trading, and so
(Xs, Ys) = (Xτk , Yτk), Θs = s− τk for τk ≤ s < τk+1. We then get

(3.14) L(Zs,Θs) = Xτk + YτkPsf
(− Yτk , s − τk), τk ≤ s < τk+1.

Moreover, since 0 < L(Zτk ,Θτk) = Xτk , and L(Zτα ,Θτα) = 0, we see with (3.14) for s = τα

that YτkPταf
(−Yτk , τα− τk) should necessarily be strictly negative: YτkPταf

(−Yτk , τα− τk)
< 0, a contradiction with the admissibility conditions and the nonnegative property of f .

We then have τα = τm for some 1 ≤ m ≤ N+1. Observe that ifm≤N , i.e., L(Zτm ,Θτm) =
0, then U(L(ZT ,ΘT )) = 0. Indeed, suppose that Yτm > 0 and m ≤ N . From the admissibility
condition, and by Itô’s formula to L(Z,Θ) in (3.14) between τα and τ−m+1, we get

0 ≤ L(Zτ−m+1
,Θτ−k+1

) = L(Zτ−m+1
,Θτ−m+1

)− L(Zτα ,Θτα)

=

∫ τm+1

τα
YτmPs

[
β(Yτm , s − τm)ds+ σf

(− Yτk , s− τm)dWs

]
,(3.15)

where β(y, θ) = bf(−y, θ)+ ∂f
∂θ (−y, θ) is bounded on R+×[0, T ] by (H4)(ii). Since the integrand

in the above stochastic integral with respect to the Brownian motion W is strictly positive,
and thus nonzero, we must have τα = τm+1. Otherwise, there is a nonzero probability that
the r.h.s. of (3.15) becomes strictly negative, a contradiction with the inequality (3.15).

Hence we get Yτm = 0, and thus L(Zτ−m+1
,Θτ−m+1

) = Xτm = 0. From the Markov feature

of the model and Corollary 3.1, we then have

E

[
U
(
L(ZT ,ΘT )

)∣∣∣Fτm

]
≤ v(τm, Zτm ,Θτm) = U(Xτm) = 0.

Since U is nonnegative, this implies that U
(
L(ZT ,ΘT )

)
= 0. Let us next consider the trading

strategy α′ = (τ ′k, ζ
′
k)0≤k≤(m−1) ∈ A consisting in following α until time τα and liquidating all

stock shares at time τα = τm−1 and defined by

(τ ′k, ζ
′
k) =

{
(τk, ζk) for 0 ≤ k < m− 1,(

τm−1,−Yτ−
(m−1)

)
for k = m− 1,
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and we denote by (Z ′,Θ′) the associated state process. It is clear that (Z ′
s,Θ

′
s) = (Zs,Θs) for

t ≤ s < τm−1, and so L(Z ′
s,Θ

′
s) = L(Zs,Θs) > 0 for t ≤ s ≤ τm−1. The liquidation at time

τm−1 (for m ≤ N) yields Xτm−1 = L(Zτ−m−1
,Θτ−m−1

) > 0, and Yτm−1 = 0. Since there is no

more trading after time τm−1, the liquidation value for τm−1 ≤ s ≤ T is given by L(Zs,Θs)
= Xτm−1 > 0. This shows that α′ ∈ Ab

	+
(t, z, θ). When m = N + 1, we have α = α′, and so

X ′
T = L(Z ′

T ,Θ
′
T ) = L(ZT ,ΘT ) = XT . For m ≤ N , we have U(X ′

T ) = U(L(Z ′
T ,Θ

′
T )) ≥ 0 =

U(L(ZT ,ΘT )) = U(XT ). We then get U(X ′
T ) ≥ U(XT ) a.s., and so

E[U(XT )] ≤ E[U(X ′
T )] ≤ v+(t, z, θ).

Since α is arbitrary in Āb
	(t, z, θ), we conclude that v ≤ v+, and thus v = v+.

Remark 3.2. If we suppose that the function e ∈ R �→ ef(e, θ) is increasing for θ ∈ (0, T ],
we get the value of v on the bound ∂LS∗: v(t, z, θ) = U(0) = 0 for (t, z = (x, y, p), θ) ∈
[0, T ]× ∂LS∗. Indeed, fix some point (t, z = (x, y, p), θ) ∈ [0, T ]× ∂LS∗, consider an arbitrary
α = (τk, ζk)k ∈ Ab

	(t, z, θ) with state process (Z,Θ), and denote by N the number of trading
times. We distinguish two cases: (i) If τ1 = t, then by Lemma 3.1 the transaction ζ1 is equal
to −y, which leads to Yτ1 = 0, and a liquidation value L(Zτ1 ,Θτ1) = Xτ1 = L(z, θ) = 0. At the
next trading date τ2 (if it exists), we get Xτ−2

= Yτ−2
= 0 with liquidation value L(Zτ−2

,Θτ−2
)

= 0, and by again using Lemma 3.1 we see that after the transaction at τ2 we shall also obtain
Xτ2 = Yτ2 = 0. By induction, this leads at the final trading time to XτN = YτN = 0 and finally
to XT = YT = 0. (ii) If τ1 > t, we claim that y = 0. On the contrary, by arguing similarly
as in (3.15) between t and τ−1 , we have then proved that any admissible trading strategy α ∈
Ab

	(t, z, θ) provides a final liquidation value XT = 0, and so

(3.16) v(t, z, θ) = U(0) = 0 ∀(t, z, θ) ∈ [0, T ] × ∂LS∗.
Comments on Theorem 3.1. The representation (3.12) of the optimal portfolio liquida-

tion reveals interesting economical and mathematical features. It shows that the liquidation
problem in a continuous-time illiquid market model with discrete-time orders and temporary
price impact with the presence of a bid-ask spread as considered in this paper leads to nearly
optimal trading strategies with a finite number of orders and with strictly increasing trading
times. While most models dealing with trading strategies via an impulse control formulation
assumed fixed transaction fees in order to justify the discrete nature of trading times, we
prove rigorously in this paper that discrete-time trading appears naturally as a consequence
of temporary price impact and bid-ask spread. Although the result is quite intuitive, its proof
uses technical arguments. In particular the separation of intervention times in Step 2 could
not be done in a single step. Indeed, the natural idea consisting in replacing the sequence
(τk−1, τk, τk+1) with τk−1 = τk < τk+1 by (τk−1, τ

′
k =

τk−1+τk+1

2 , τk+1) is not possible since
τk−1+τk+1

2 is not necessarily a stopping time. We therefore gather all the cumulated orders at

the terminal time and construct a stopping time of the form τN+T
2 , where τN is the last time

intervention such that τN < T . This allows us to obtain a strategy, which provides a better
gain and for which the intervention times are separated. We mention a recent related paper
[21], which considers an impulse control problem with subadditive transaction costs where the
investor can trade only finitely many times during the trading horizon [0, T ]. In this case, the
authors prove that the number of trading times has finite expectation.
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The representation (3.13) shows that when we are in an initial state with strictly positive
liquidation value we can restrict in the optimal portfolio liquidation problem to admissible
trading strategies with strictly positive liquidation value up to time T−. The relation (3.16)
means that when the initial state has a zero liquidation value, which is not a result of an
immediate trading time, the liquidation value will stay at zero until the final horizon.

4. Dynamic programming and viscosity properties. In what follows, conditions (H1),
(H2), (H3), (H4), and (H5) stand in force and are not recalled in the statement of theorems
and propositions.

We use a dynamic programming approach to derive the equation satisfied by the value
function of our optimal portfolio liquidation problem. The dynamic programming principle
(DPP) for impulse controls was frequently used starting from the works in [6] and then con-
sidered, e.g., in [32], [24], [20], or [30]. In our context (recall the expression (2.11) of the value
function), this is formulated as follows.

DPP. For all (t, z, θ) ∈ [0, T ]× S̄, we have

(4.1) v(t, z, θ) = sup
α∈A(t,z,θ)

E[v(τ, Zτ ,Θτ )],

where τ = τ(α) is any stopping time valued in [t, T ] eventually depending on the strategy α
in (4.1).

The corresponding dynamic programming Hamilton–Jacobi–Bellman (HJB) equation is a
quasi-variational inequality (QVI) written as

(4.2) min

[
−∂v
∂t
− ∂v

∂θ
− Lv , v −Hv

]
= 0 in [0, T ) × S̄,

together with the relaxed terminal condition

(4.3) min
[
v − UL , v −Hv

]
= 0 in {T} × S̄.

The rigorous derivation of the HJB equation satisfied by the value function from the DPP
is achieved by means of the notion of viscosity solutions and is by now rather classical in
the modern approach of stochastic control (see, e.g., the books [13], [25]). There are some
specific features here related to the impulse control and the liquidation state constraint, and we
recall in Appendix A definitions of (discontinuous) constrained viscosity solutions for parabolic
QVIs. The first result of this section is stated as follows.

Proposition 4.1. The value function v is a constrained viscosity solution to (4.2)–(4.3).

The proof of Proposition 4.1 is quite routine, following, for example, arguments in [25] or
[8], and is omitted here.

In order to have a complete characterization of the value function through its HJB equa-
tion, we usually need a uniqueness result and thus a comparison principle for the QVI (4.2)–
(4.3). A key argument originally due to [17] for getting a uniqueness result for variational
inequalities with impulse parts is to produce a strict viscosity supersolution. However, in our
model, this is not possible. Indeed, suppose we can find a strict viscosity l.s.c. supersolution
w to (4.2), so that (w − Hw)(t, z, θ) > 0 on [0, T ) × S. But for z = (x, y, p) and θ = 0, we
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have Γ(z, 0, e) = (x, y + e, p) for any e ∈ C(z, 0). Since 0 ∈ C(z, 0) we have Hw(t, z, 0) =
supe∈[−y,0]w(t, x, y + e, p, 0) ≥ w(t, z, 0) > Hw(t, z, 0), a contradiction. Actually, the main
reason why one cannot obtain a strict supersolution is the absence of fixed cost in the impulse
function Γ or in the objective functional.

However, we can prove a weaker characterization of the value function in terms of minimal
solution to its dynamic programming equation. The argument is based on a small perturbation
of the gain functional. The proof is postponed until Appendix B.

Proposition 4.2. The value function v is the minimal constrained viscosity solution in
Gγ([0, T ] × S̄) to (4.2)–(4.3) satisfying the boundary condition

(4.4) lim
(t′,z′,θ′)→(t,z,θ)

v(t′, z′, θ′) = v(t, z, θ) = U(0) ∀(t, z, θ) ∈ [0, T ]×D0.

5. An approximating problem with fixed transaction fee. In this section, we consider a
small variation of our original model by adding a fixed transaction fee ε > 0 at each trading.
This means that given a trading strategy α = (τn, ζn)n≥0, the controlled state process (Z =
(X,Y, P ),Θ) jumps at time τn+1 are defined now by

(5.1) (Zτn+1 ,Θτn+1) =
(
Γε(Zτ−n+1

,Θτ−n+1
, ζn+1), 0

)
,

where Γε is the function defined on R× R+ × R
∗
+ × [0, T ]× R into R ∪ {−∞} × R× R

∗
+ by

Γε(z, θ, e) = Γ(z, θ, e)− (ε, 0, 0) =
(
x− epf(e, θ)− ε, y + e, p

)
for z = (x, y, p). The dynamics of (Z,Θ) between trading dates is given as before. We also
introduce a modified liquidation function Lε defined by

Lε(z, θ) = max[x,L(z, θ)− ε], (z, θ) = (x, y, p, θ) ∈ R× R+ × R
∗
+ × [0, T ].

The interpretation of this modified liquidation function is the following. Due to the presence
of the transaction fee at each trading, it may be advantageous for the investor not to liquidate
his position in stock shares (which would give him L(z, θ)−ε), and rather bin his stock shares,
by keeping only his cash amount (which would give him x). Hence, the investor chooses the
better of these two possibilities, which induces a liquidation value Lε(z, θ).

We then introduce the corresponding solvency region Sε with its closure S̄ε = Sε ∪ ∂Sε
and boundary ∂Sε = ∂ySε ∪ ∂LSε:

Sε =
{
(z, θ) = (x, y, p, θ) ∈ R× R+ × R

∗
+ × [0, T ] : y > 0 and Lε(z, θ) > 0

}
,

∂ySε =
{
(z, θ) = (x, y, p, θ) ∈ R× R+ × R

∗
+ × [0, T ] : y = 0 and Lε(z, θ) ≥ 0

}
,

∂LSε =
{
(z, θ) = (x, y, p, θ) ∈ R× R+ × R

∗
+ × R+ : Lε(z, θ) = 0

}
.

We also introduce the corner lines of ∂Sε. For simplicity of presentation, we consider a
temporary price impact function f in the form

f(e, θ) = f̃
(e
θ

)
= exp

(
λ
e

θ

)(
κa1e>0 + 1e=0 + κb1e<0

)
1θ>0,
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where 0 < κb < 1 < κa, and λ > 0. A straightforward analysis of the function L shows that
y �→ L(x, y, p, θ) is increasing on [0, θ/λ], that it is decreasing on [θ/λ,∞) with L(x, 0, p, θ)
= x = L(x,∞, p, θ), and that maxy>0 L(x, y, p, θ) = L(x, θ/λ, p, θ) = x + p θ

λ f̃(−1/λ). We
first get the form of the sets C(z, θ): C(z, θ) = [−y, ē(z, θ)], where the function ē is defined
in Lemma 3.1. We then distinguish two cases: (i) If p θ

λ f̃(−1/λ) < ε, then Lε(x, y, p, θ) =

x. (ii) If p θ
λ f̃(−1/λ) ≥ ε, then there exist a unique y1(p, θ) ∈ (0, θ/λ] and a unique y2(p, θ)

∈ [θ/λ,∞) such that L(x, y1(p, θ), p, θ) = L(x, y2(p, θ), p, θ) = x, Lε(x, y, p, θ) = x for y ∈
[0, y1(p, θ)) ∪ (y2(p, θ),∞), and Lε(x, y, p, θ) = L(x, y, p, θ) − ε for y ∈ [y1(p, θ), y2(p, θ)]. We
then denote

D0 = {0} × {0} × R
∗
+ × [0, T ] = ∂ySε ∩ ∂LSε,

D1,ε =

{
(0, y1(p, θ), p, θ) : p

θ

λ
f̃

(−1
λ

)
≥ ε, θ ∈ [0, T ]

}
,

D2,ε =

{
(0, y2(p, θ), p, θ) : p

θ

λ
f̃

(−1
λ

)
≥ ε, θ ∈ [0, T ]

}
.

Notice that the inner normal vectors at the corner lines D1,ε and D2,ε form an acute angle
(positive scalar product), while we have a right angle at the corner D0. We represent in Figure
4 the graph of Sε in the plane (x, y) for different values of ε, in Figure 5 the graph of Sε in
the space (x, y, p), and in Figure 6 the graph of Sε in the space (x, y, θ).

Next, we define the set of admissible trading strategies as follows. Given (t, z, θ) ∈ [0, T ]×
S̄ε, we say that the impulse control α is admissible, denoted by α ∈ Aε(t, z, θ), if τ0 = t−θ, τn
≥ t, n ≥ 1, and the controlled state process (Zε,Θ) solution to (2.1)–(2.2)–(2.3)–(2.7)–(5.1),
with an initial state (Zε

t− ,Θt−) = (z, θ) (and the convention that (Zε
t ,Θt) = (z, θ) if τ1 >

t), satisfies (Zε
s ,Θs) ∈ [0, T ] × S̄ε for all s ∈ [t, T ]. Here, we stress the dependence of Zε =

(Xε, Y, P ) in ε appearing in the transaction function Γε, and we notice that it affects only the
cash component. Notice that Aε(t, z, θ) is nonempty for any (t, z, θ) ∈ [0, T ]× S̄ε. Indeed, for
(z, θ) ∈ S̄ε with z = (x, y, p), i.e., Lε(z, θ) = max(x,L(z, θ)− ε) ≥ 0, we distinguish two cases:
(i) if x ≥ 0, then by doing no transactions, the associated state process (Zε = (Xε, Y, P ),Θ)
satisfies Xε

s = x ≥ 0, t ≤ s ≤ T , and thus this zero transaction is admissible; (ii) if L(z, θ)−ε ≥
0, then by liquidating all the stock shares immediately, and doing nothing else, the associated
state process satisfies Xε

s = L(z, θ) − ε, Ys = 0, and thus Lε(Z
ε
s ,Θs) = Xε

s ≥ 0, t ≤ s ≤ T ,
which shows that this immediate transaction is admissible.

Given the utility function U on R+ and the liquidation utility function defined on S̄ε by
ULε(z, θ) = U(Lε(z, θ)), we then consider the associated optimal portfolio liquidation problem
defined via its value function by

(5.2) vε(t, z, θ) = sup
α∈Aε(t,z,θ)

E
[
ULε(Z

ε
T ,ΘT )

]
, (t, z, θ) ∈ [0, T ]× S̄ε.

Notice that when ε = 0, the above problem reduces to the optimal portfolio liquidation
problem described in section 2, and in particular v0 = v. The main purpose of this section is
to provide a unique PDE characterization of the value functions vε, ε > 0, and to prove that
the sequence (vε)ε converges to the original value function v as ε goes to zero.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL PORTFOLIO LIQUIDATION WITH EXECUTION COST AND RISK 919

Figure 4. Domain Sε in the nonhatched zone for fixed p = 1 and θ = 1 and ε evolving from 0.1 to 0.4.
Here κb = 0.9 and f(e, θ) = κb exp

(

e
θ

)

for e < 0. Notice that for ε large enough, Sε is equal to open orthant
R

∗
+ × R

∗
+.

We define the set of admissible transactions in the model with fixed transaction fee by

Cε(z, θ) =
{
e ∈ R :

(
Γε(z, θ, e), 0

)
∈ S̄ε

}
, (z, θ) ∈ S̄ε.

A calculation similar to that in Lemma 3.1 shows that for (z, θ) ∈ S̄ε, z = (x, y, p),

Cε(z, θ) =
{

[−y, ēε(z, θ)] if θ > 0 or x ≥ ε,
∅ if θ = 0 and x < ε,

where ē(z, θ) = sup{e ∈ R : epf̃(e/θ) ≤ x− ε} if θ > 0 and ē(z, 0) = 0 if x ≥ ε. Here, the set
[−y, ēε(z, θ)] should be viewed as empty when ē(z, θ) < y, i.e., x + pyf̃(−y/θ) − ε < 0. We
also easily check that Cε is continuous for the Hausdorff metric. We then consider the impulse
operator Hε defined by

Hεw(t, z, θ) = sup
e∈Cε(z,θ)

w(t,Γε(z, θ, e), 0), (t, z, θ) ∈ [0, T ]× S̄ε,

for any locally bounded function w on [0, T ]×S̄ε, with the convention that Hεw(t, z, θ) = −∞
when Cε(z, θ) = ∅.
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Figure 5. Lower bound of the domain Sε for fixed θ = 1 and f(e, θ) = κb exp
(

e
θ

)

for e < 0. Notice that
when p is fixed, we obtain Figure 4.

Figure 6. Lower bound of the domain Sε for fixed p = 1 and ε = 0.2. Here κb = 0.9 and f(e, θ) = κb exp
(

e
θ

)

for e < 0. Notice that when θ is fixed, we obtain Figure 4.
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Next, consider again the Merton liquidation function LM , and observe similarly as in (3.7)
that

LM (Γε(z, θ, e)) − LM (z) = ep
(
1− f(e, θ))− ε

≤ −ε ∀(z, θ) ∈ S̄ε, e ∈ R.(5.3)

This implies, in particular, that

(5.4) HεLM < LM on S̄ε.
Since Lε ≤ LM , we observe from (5.3) that if (z, θ) ∈ Nε := {(z, θ) ∈ S̄ε : LM (z) < ε},
then Cε(z, θ) = ∅. Moreover, we deduce from (5.3) that for all α = (τn, ζn)n≥0 ∈ Aε(t, z, θ)
associated with the state process (Z,Θ), (t, z, θ) ∈ [0, T ]× S̄ε

0 ≤ LM (ZT ) = LM (Z0,t,z
T ) +

∑
n≥0

ΔLM (Zτn)

≤ LM (Z0,t,z
T )− εNT (α),

where we recall that NT (α) is the number of trading times over the whole horizon T . This
shows that

NT (α) ≤ 1

ε
LM (Z0,t,z

T ) < ∞ a.s.

In other words, we see that, under the presence of fixed transaction fee, the number of inter-
vention times over a finite interval for an admissible trading strategy is finite a.s.

The dynamic programming equation associated with the control problem (5.2) is

min

[
−∂w
∂t
− ∂w

∂θ
− Lw , w −Hεw

]
= 0 in [0, T )× S̄ε,(5.5)

min
[
w − ULε , w −Hεw

]
= 0 in {T} × S̄ε.(5.6)

The main result of this section is stated as follows.
Theorem 5.1. (1) The sequence (vε)ε is nonincreasing and converges pointwise on [0, T ]×

(S̄ \ ∂LS) towards v as ε goes to zero.
(2) For any ε > 0, the value function vε is continuous on [0, T ) × Sε, and is the unique

(in [0, T ) × Sε) constrained viscosity solution to (5.5)–(5.6), satisfying the growth condition

(5.7) |vε(t, z, θ)| ≤ K(1 + LM (z)γ) ∀(t, z, θ) ∈ [0, T ]× S̄ε
for some positive constant K and the boundary condition

lim
(t′,z′,θ′)→(t,z,θ)

vε(t
′, z′, θ′) = v(t, z, θ)

= U(0) ∀(t, z = (0, 0, p), θ) ∈ [0, T ]×D0.(5.8)

We first prove rigorously the convergence of the sequence of value functions (vε). The
proof relies, in particular, on the discrete-time feature of nearly optimal trading strategies for
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the original value function v; see Theorem 3.1. There are technical difficulties related to the
dependence on ε of the solvency constraint via the liquidation function Lε when passing to
the limit ε → 0.

Proof of Theorem 5.1. (1) Notice that for any 0 < ε1 ≤ ε2, we have Lε2 ≤ Lε1 ≤ L,
Aε2(t, z, θ) ⊂ Aε1(t, z, θ) ⊂ A(t, z, θ), for t ∈ [0, T ], (z, θ) ∈ S̄ε2 ⊂ S̄ε1 ⊂ S̄, and for α ∈
Aε2(t, z, θ), Lε2(Z

ε2 ,Θ) ≤ Lε2(Z
ε1 ,Θ) ≤ Lε1(Z

ε1 ,Θ) ≤ L(Z,Θ). This shows that the sequence
(vε) is nonincreasing, and is upper bounded by the value function v without transaction fee,
so that

(5.9) lim
ε↓0

vε(t, z, θ) ≤ v(t, z, θ) ∀(t, z, θ) ∈ [0, T ]× S̄.

Fix now some point (t, z, θ) ∈ [0, T ]×(S̄ \∂LS). From the representation (3.13) of v(t, z, θ),

there exists, for any n ≥ 1, an 1/n-optimal control α(n) = (τ
(n)
k , ζ

(n)
k )k ∈ Ab

	+
(t, z, θ) with asso-

ciated state process (Z(n) = (X(n), Y (n), P ),Θ(n)) and number of trading times N (n):

(5.10) E
[
U(X

(n)
T )

] ≥ v(t, z, θ) − 1

n
.

We denote by (Zε,(n),Θ(n)) = (Xε,(n), Y (n), P ),Θ(n)) the state process controlled by α(n) in
the model with transaction fee ε (only the cash component is affected by ε), and we observe
that for all t ≤ s ≤ T

(5.11) Xε,(n)
s = X(n)

s − εN (n)
s ↗ X(n)

s as ε goes to zero.

Given n, we consider the family of stopping times

σ(n)ε = inf
{
s ≥ t : L(Zε,(n)

s ,Θ(n)
s ) ≤ ε} ∧ T, ε > 0.

Let us prove that

(5.12) lim
ε↘0

σ(n)ε = T a.s.

Observe that for 0 < ε1 ≤ ε2, X
ε2,(n)
s ≤ X

ε1,(n)
s , and so L(Z

ε2,(n)
s ,Θs) ≤ L(Z

ε1,(n)
s ,Θs) for

t ≤ s ≤ T . This clearly implies that the sequence (σ
(n)
ε )ε is nonincreasing. Since this sequence

is bounded by T , it admits a limit, denoted by σ
(n)
0 = limε↓0 ↑ σ(n)ε . Now, by definition of

σ
(n)
ε , we have L(Z

ε,(n)

σ
(n)
ε

,Θ
(n)

σ
(n)
ε

) ≤ ε for all ε > 0. By sending ε to zero, we then get with (5.11)

L

(
Z

(n)

σ
(n),−
0

,Θ
(n)

σ
(n),−
0

)
= 0 a.s.

Recalling the definition of Ab
	+
(t, z, θ), this implies that σ

(n)
0 = τ

(n)
k for some k ∈ {1, . . . , N (n)+

1} with the convention τ
(n)

N(n)+1
= T . If k ≤ N (n), arguing as in (3.15), we get a contradiction

with the solvency constraints. Hence we get σ
(n)
0 = T .
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Consider now the trading strategy α̃ε,(n) ∈ A consisting in following α(n) until time σ
(n)
ε

and liquidating all the stock shares at time σ
(n)
ε , i.e.,

α̃ε,(n) = (τ
(n)
k , ζ

(n)
k )1

τk<σ
(n)
ε
∪ (σ(n)ε ,−Y

σ
(n),−
ε

).

We denote by (Z̃ε,(n) = (X̃ε,(n), Ỹ ε,(n), P ), Θ̃ε,(n)) the associated state process in the market

with transaction fee ε. By construction, we have for all t ≤ s < σ
(n)
ε , L(Z̃

ε,(n)
s , Θ̃

ε,(n)
s ) =

L(Z
ε,(n)
s ,Θ

(n)
s ) ≥ ε, and thus Lε(Z̃

ε,(n)
s , Θ̃

ε,(n)
s ) ≥ 0. At the transaction time σ

(n)
ε , we then

have X̃
ε,(n)

σ
(n)
ε

= L(Z̃
ε,(n)

σ
(n),−
ε

, Θ̃
ε,(n)

σ
(n),−
ε

) − ε = L(Z
(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

) − ε, Ỹ ε,(n)

σ
(n)
ε

= 0. After time σ
(n)
ε ,

there are no more transactions in α̃ε,(n), and so

X̃ε,(n)
s = X̃

ε,(n)

σ
(n)
ε

= L
(
Z

(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

)
− ε ≥ 0,(5.13)

Ỹ ε,(n)
s = Ỹ

ε,(n)

σ
(n)
ε

= 0, σ(n)ε ≤ s ≤ T,(5.14)

and thus Lε(Z̃
ε,(n)
s , Θ̃

ε,(n)
s ) = X̃

ε,(n)
s ≥ 0 for σ

(n)
ε ≤ s ≤ T . This shows that α̃ε,(n) lies in

Aε(t, z, θ), and thus by definition of vε

(5.15) vε(t, z) ≥ E
[
ULε

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)]
.

Let us check that, given n,

(5.16) lim
ε↓0

Lε

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)
= X

(n)
T a.s.

To alleviate notation, we set N = N
(n)
T as the total number of trading times of α(n). If the

last trading time of α(n) occurs strictly before T , then we do not trade anymore until the final
horizon T , and so

(5.17) X
(n)
T = X(n)

τN
and Y

(n)
T = Y (n)

τN
= 0 on {τN < T}.

By (5.12), we have for ε small enough σ
(n)
ε > τN , and so X̃

ε,(n)

σ
(n),−
ε

= X
ε,(n)
τN , Ỹ

ε,(n)

σ
(n),−
ε

= Y
(n)
τN =

0. The final liquidation at time σ
(n)
ε yields X̃

ε,(n)
T = X̃

ε,(n)

σ
(n)
ε

= X̃
ε,(n)

σ
(n),−
ε

− ε = X
ε,(n)
τN − ε, and

Ỹ
ε,(n)
T = Ỹ

ε,(n)

σ
(n)
ε

= 0. We then obtain

Lε

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)
= max

(
X̃

ε,(n)
T , L

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)− ε)
= X̃

ε,(n)
T = Xε,(n)

τN − ε on {τN < T}
= X

(n)
T − (1 +N)ε on {τN < T}

by (5.11) and (5.17), which shows that the convergence in (5.16) holds on {τN < T}. If the
last trading of α(n) occurs at time T , this means that we liquidate all stock shares at T , and
so

(5.18) X
(n)
T = L(Z

(n)
T− ,Θ

(n)
T−), Y

(n)
T = 0 on {τN = T}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

924 IDRIS KHARROUBI AND HUYÊN PHAM

On the other hand, by (5.13)–(5.14), we have

Lε

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)
= X̃

ε,(n)
T = L

(
Z

(n)

σ
ε,(n),−
ε

,Θ
(n)

σ
(n),−
ε

)
− ε

−→ L(Z
(n)
T− ,Θ

(n)
T−) as ε goes to zero

by (5.12). Together with (5.18), this implies that the convergence in (5.16) also holds on
{τN = T} and thus a.s. Since 0 ≤ Lε ≤ L, we immediately see by Proposition 3.1 that the

sequence {ULε

(
Z̃

ε,(n)
T , Θ̃

ε,(n)
T

)
, ε > 0} is uniformly integrable, so that by sending ε to zero in

(5.15) and using (5.16) we get

lim
ε↓0

vε(t, z, θ) ≥ E
[
U(X

(n)
T )

] ≥ v(t, z) − 1

n

from (5.10). By sending n to infinity and recalling (5.9), this completes the proof of assertion
(1) in Theorem 5.1.

We now turn to the viscosity characterization of vε. The viscosity property of vε is proved
similarly as for v and is also omitted. From Proposition 3.1, and since 0 ≤ vε ≤ v, we know
that the value functions vε lie in the set of functions satisfying the growth condition in (5.7),
i.e.,

Gγ([0, T ] × S̄ε) =
{
w : [0, T ]× S̄ε → R, sup

[0,T ]×S̄ε

|w(t, z, θ)|
1 + LM (z)γ

< ∞
}
.

The boundary property (5.8) is immediate. Indeed, fix (t, z = (x, 0, p), θ) ∈ [0, T ]× ∂ySε, and
consider an arbitrary sequence (tn, zn = (xn, yn, pn), θn)n in [0, T ]× S̄ε converging to (t, z, θ).
Since 0 ≤ Lε(zn, θn) = max(xn, L(zn, θn) − ε), and yn goes to zero, this implies that for n
large enough, xn = Lε(zn, θn) ≥ 0. By considering from (tn, zn, θn) the admissible strategy
of doing no transactions, which leads to a final liquidation value XT = xn, we have U(xn)
≤ vε(tn, zn, θn) ≤ v(tn, zn, θn). Recalling Corollary 3.1, we then obtain the continuity of vε
on ∂ySε with vε(t, z, θ) = U(x) = v(t, z, θ) for (z, θ) = (x, 0, p, θ) ∈ ∂ySε and, in particular,
(5.8). Finally, we address the uniqueness issue, which is a direct consequence of the following
comparison principle for constrained (discontinuous) viscosity solution to (5.5)–(5.6).

Theorem 5.2 (comparison principle). Suppose u ∈ Gγ([0, T ]× S̄ε) is a u.s.c. viscosity subso-
lution to (5.5)–(5.6) on [0, T ]× S̄ε, and w ∈ Gγ([0, T ]× S̄ε) is an l.s.c. viscosity supersolution
to (5.5)–(5.6) on [0, T ]× Sε such that

(5.19) u(t, z, θ) ≤ lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × Sε

w(t′, z′, θ′) ∀(t, z, θ) ∈ [0, T ]×D0.

Then,

(5.20) u ≤ w on [0, T ]× Sε.

Notice that with respect to usual comparison principles for parabolic PDEs where we
compare a viscosity subsolution and a viscosity supersolution from the inequalities on the
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domain and at the terminal date, we require here in addition a comparison on the boundary
D0 due to the nonsmoothness of the domain S̄ε on this right angle of the boundary. A similar
feature appears also in [20], and we shall emphasize only the main arguments adapted from
[4] for proving the comparison principle.

Proof of Theorem 5.2. Let u and w be as in Theorem 5.2, and (re)define w on [0, T ]× ∂Sε
by

(5.21) w(t, z, θ) = lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × Sε

w(t′, z′, θ′), (t, z, θ) ∈ [0, T ]× ∂Sε.

In order to obtain the comparison result (5.20), it suffices to prove that sup[0,T ]×S̄ε
(u− w) ≤

0, and we shall argue by contradiction by assuming that

(5.22) sup
[0,T ]×S̄ε

(u− w) > 0.

• Step 1. Construction of a strict viscosity supersolution. Consider the function defined
on [0, T ]× S̄ε by

ψ(t, z, θ) = eρ
′(T−t)LM (z)γ

′
, t ∈ [0, T ], (z, θ) = (x, y, p, θ) ∈ S̄ε,

where ρ′ > 0, and γ′ ∈ (0, 1) will be chosen later. The function ψ is smooth C2 on [0, T ) ×
(S̄ε \D0), and by the same calculations as in (3.10) we see that, by choosing ρ′ > γ′

1−γ′
b2

2σ2 ,

(5.23) −∂ψ
∂t
− ∂ψ

∂θ
− Lψ > 0 on [0, T )× (S̄ε \D0).

Moreover, from (5.4), we have

(ψ −Hεψ)(t, z, θ) = eρ
′(T−t)

[
LM (z)γ

′ − (HεLM (z))γ
′]

=: Δ(t, z)(5.24)

> 0 on [0, T ]× S̄ε.
For m ≥ 1, we denote

ũ(t, z, θ) = etu(t, z, θ) and w̃m(t, z, θ) = et
[
w(t, z, θ) +

1

m
ψ(t, z, θ)

]
.

From the viscosity subsolution property of u, we immediately see that ũ is a viscosity subso-
lution to

min

[
ũ− ∂ũ

∂t
− ∂ũ

∂θ
− Lũ , ũ−Hεũ

]
≤ 0 on [0, T ) × S̄ε,(5.25)

min
[
ũ− ŨLε , ũ−Hεũ

] ≤ 0 on {T} × S̄ε,(5.26)

where we set ŨLε(z, θ) = eTULε(z, θ). From the viscosity supersolution property of w and the
relations (5.23)–(5.24), we also derive that w̃m is a viscosity supersolution to

w̃m − ∂w̃m

∂t
− ∂w̃m

∂θ
− Lw̃m ≥ 0 on [0, T )× (Sε \D0),(5.27)

w̃m −Hεw̃m ≥ 1

m
Δ on [0, T ]× Sε,(5.28)

w̃m − ŨLε ≥ 0 on {T} × Sε.(5.29)
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On the other hand, from the growth condition on u and w in Gγ([0, T ]× S̄ε), and by choosing
γ′ ∈ (γ, 1), we have for all (t, θ) ∈ [0, T ]2

lim
|z|→∞

(u− wm)(t, z, θ) = −∞.

Therefore, the u.s.c. function ũ − w̃m attains its supremum on [0, T ] × S̄ε, and from (5.22)
there exist m large enough and (t̄, z̄, θ̄) ∈ [0, T ]× S̄ε such that

(5.30) M̃ = sup
[0,T ]×S̄ε

(ũ− w̃m) = (ũ− w̃m)(t̄, z̄, θ̄) > 0.

• Step 2. From the boundary condition (5.19), we know that (z̄, θ̄) cannot lie in D0, and
we then have two possible cases:

(i) (z̄, θ̄) ∈ Sε \D0.

(ii) (z̄, θ̄) ∈ ∂Sε \D0.

Case (i), where (z̄, θ̄) lies in Sε, is standard in the comparison principle for (nonconstrained)
viscosity solutions, and we focus here on case (ii), which is specific to constrained viscosity
solutions. From (5.21), there exists a sequence (tn, zn, θn)n≥1 in [0, T ) × Sε such that

(tn, zn, θn, w̃m(tn, zn, θn)) −→ (t̄, z̄, θ̄, w̃m(t̄, z̄, θ̄)) as n→∞.

We then set δn = |zn − z̄|+ |θn − θ̄| and consider the function Φn defined on [0, T ]× (S̄ε)2 by

Φn(t, z, θ, z
′, θ′) = ũ(t, z, θ)− w̃m(t, z′, θ′)− ϕn(t, z, θ, z

′, θ′),
ϕn(t, z, θ, z

′, θ′) = |t− t̄|2 + |z − z̄|4 + |θ − θ̄|4

+
|z − z′|2 + |θ − θ′|2

2δn
+

(
d(z′, θ′)
d(zn, θn)

− 1

)4

.

Here, d(z, θ) denotes the distance from (z, θ) to ∂Sε. Since (z̄, θ̄) /∈ D0, there exists an open
neighborhood V̄ of (z̄, θ̄) satisfying V̄ ∩D0 = ∅ such that the function d(.) is twice continuously
differentiable with bounded derivatives. This is well known (see, e.g., [14]) when (z̄, θ̄) lies
in the smooth parts of the boundary ∂Sε \ (D1,ε ∪ D2,ε). This is also true for (z̄, θ̄) ∈ Dk,ε

for k ∈ {1, 2}. Indeed, at these corner lines, the inner normal vectors form an acute angle
(positive scalar product), and thus one can extend from (z̄, θ̄) the boundary to a smooth
boundary so that the distance d is equal, locally on the neighborhood, to the distance to this
smooth boundary. From the growth conditions on u and w in Gγ([0, T ] × S̄ε), there exists

a sequence (t̂n, ẑn, θ̂n, ẑ
′
n, θ̂

′
n) attaining the maximum of the u.s.c. Φn on [0, T ] × (S̄ε)2. By

standard arguments (see, e.g., [4] or [20]), we have

(t̂n, ẑn, θ̂n, ẑ
′
n, θ̂

′
n) −→ (t̄, z̄, θ̄, z̄, θ̄),(5.31)

|ẑn − ẑ′n|2 + |θ̂n − θ̂′n|2
2δn

+

(
d(ẑ′n, θ̂′n)
d(zn, θn)

− 1

)4

−→ 0,(5.32)

ũ(t̂n, ẑn, θ̂n)− w̃m(t̂n, ẑ
′
n, θ̂

′
n) −→ (ũ− w̃m)(t̄, z̄, θ̄).(5.33)
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The convergence in (5.32) shows, in particular, that for n large enough, d(ẑ′n, θ̂′n) ≥ d(zn, θn)/2
> 0, and so (ẑ′n, θ̂′n) ∈ Sε. From the convergence in (5.31), we may also assume that for n
large enough, (ẑn, θ̂n), (ẑ

′
n, θ̂

′
n) lie in the neighborhood V̄ of (z̄, θ̄) so that the derivatives upon

order 2 of d(.) at (ẑn, θ̂n) and (ẑ′n, θ̂′n) exist and are bounded.
• Step 3. By arguments similar to those in [20], we show that for n large enough, t̂n < T ,

and

(5.34) ũ(t̂n, ẑn, θ̂n)−Hεũ(t̂n, ẑn) > 0.

• Step 4. We use the viscosity subsolution property (5.25) of ũ at (t̂n, ẑn, θ̂n) ∈ [0, T )×S̄ε,
which is written by (5.34) as

(5.35)

(
ũ− ∂ũ

∂t
− ∂ũ

∂θ
− Lũ

)
(t̂n, ẑn, θ̂n) ≤ 0.

The above inequality is understood in the viscosity sense, and applied with the test function
(t, z, θ) �→ ϕn(t, z, θ, ẑ

′
n, θ̂

′
n), which is C2 in the neighborhood [0, T ]×V̄ of (t̂n, ẑn, θ̂n). We also

write the viscosity supersolution property (5.27) of w̃m at (t̂n, ẑ
′
n, θ̂

′
n) ∈ [0, T )× (Sε\D0):

(5.36)

(
w̃m − ∂w̃m

∂t
− ∂w̃m

∂θ
−Lw̃m

)
(t̂n, ẑ

′
n, θ̂

′
n) ≥ 0.

The above inequality is again understood in the viscosity sense, and applied with the test func-
tion (t, z′, θ′) �→ −ϕn(t, ẑn, θ̂n, z

′, θ′), which is C2 in the neighborhood [0, T ]×V̄ of (t̂n, ẑ
′
n, θ̂

′
n).

The conclusion is achieved by arguments similar to those in [20]: we invoke Ishii’s lemma,
subtract the two inequalities (5.35)–(5.36), and finally get the required contradiction M̃ ≤ 0
by sending n to infinity with (5.31)–(5.32)–(5.33).

Appendix A. Constrained viscosity solutions to parabolic QVIs. We consider a parabolic
QV inequality in the form

(A.1) min

[
−∂v
∂t

+ F (t, x, v,Dxv,D
2
xv) , v −Hv

]
= 0 in [0, T ) × Ō,

together with a terminal condition

(A.2) min
[
v − g , v −Hv] = 0 in {T} × Ō.

Here, O ⊂ R
d is an open domain, F is a continuous function on [0, T ] × R

d × R × R
d × Sd

(Sd is the set of positive semidefinite symmetric matrices in R
d×d), nonincreasing in its last

argument, g is a continuous function on Ō, and H is a nonlocal operator defined on the set of
locally bounded functions on [0, T ]× Ō by

Hv(t, x) = sup
e∈C(t,x)

[
v(t,Γ(t, x, e)) + c(t, x, e)

]
.

C(t, x) is a compact set of a metric space E, eventually empty for some values of (t, x), in
which case we set Hv(t, x) = −∅, and is continuous for the Hausdorff metric; i.e., if (tn, xn)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

928 IDRIS KHARROUBI AND HUYÊN PHAM

converges to (t, x) in [0, T ] × Ō, and (en) is a sequence in C(tn, xn) converging to e, then e ∈
C(t, x). The functions Γ and c are continuous and such that Γ(t, x, e) ∈ Ō for all e ∈ C(t, x, e).

Given a locally bounded function u on [0, T ] × Ō, we define its l.s.c. envelope u∗ and
u.s.c. envelope u∗ on [0, T ]× S̄ by

u∗(t, x) = lim inf
(t′, x′) → (t, x)

(t′, x′) ∈ [0, T ) × O

u(t′, x′), u∗(t, x) = lim sup
(t′, x′) → (t, x)

(t′, x′) ∈ [0, T ) × O

u(t′, x′).

One can check (see, e.g., Lemma 5.1 in [20]) that the operator H preserves lower and upper
semicontinuity:

(A.3) (i) Hu∗ is lsc, and Hu∗ ≤ (Hu)∗, (ii) Hu∗ is usc, and (Hu)∗ ≤ Hu∗.

We now give the definition of constrained viscosity solutions to (A.1)–(A.2). This notion,
which extends the definition of viscosity solutions of Crandall, Ishii, and Lions (see [11]), was
introduced in [31] for first-order equations for taking into account boundary conditions arising
in state constraints and used in [33] for stochastic control problems in optimal investment.

Definition A.1. A locally bounded function v on [0, T ]×Ō is a constrained viscosity solution
to (A.1)–(A.2) if the two following properties hold:

(i) Viscosity supersolution property on [0, T ] × O: for all (t̄, x̄) ∈ [0, T ] × O, and ϕ ∈
C1,2([0, T ] ×O) with 0 = (v∗ − ϕ)(t̄, x̄) = min(v∗ − ϕ), we have

min

[
− ∂ϕ

∂t
(t̄, x̄) + F (t̄, x̄, ϕ∗(t̄, x̄),Dxϕ(t̄, x̄),D

2
xϕ(t̄, x̄)) ,

v∗(t̄, x̄)−Hv∗(t̄, x̄)
]
≥ 0, (t̄, x̄) ∈ [0, T )×O,

min
[
v∗(t̄, x̄)− g(x̄) , v∗(t̄, x̄)−Hv∗(t̄, x̄)

] ≥ 0, (t̄, x̄) ∈ {T} × O.

(ii) Viscosity subsolution property on [0, T ] × Ō: for all (t̄, x̄) ∈ [0, T ] × Ō, and ϕ ∈
C1,2([0, T ] × Ō) with 0 = (v∗ − ϕ)(t̄, x̄) = max(v∗ − ϕ), we have

min

[
− ∂ϕ

∂t
(t̄, x̄) + F (t̄, x̄, ϕ∗(t̄, x̄),Dxϕ(t̄, x̄),D

2
xϕ(t̄, x̄)) ,

v∗(t̄, x̄)−Hv∗(t̄, x̄)
]
≤ 0, (t̄, x̄) ∈ [0, T )× Ō,

min
[
v∗(t̄, x̄)− g(x̄) , v∗(t̄, x̄)−Hv∗(t̄, x̄)] ≤ 0, (t̄, x̄) ∈ {T} × Ō.
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Appendix B. Proof of Proposition 4.2. We consider a small perturbation of our initial
optimization problem by adding a cost ε to the utility at each trading. We then define the
value function v̄ε on [0, T ]× S̄ by

(B.1) v̄ε(t, z, θ) = sup
α∈Ab

�(t,z,θ)

E

[
UL

(
ZT ,ΘT

)− εNT (α)
]
, (t, z, θ) ∈ [0, T ]× S̄.

Step 1. We first prove that the sequence (v̄ε)ε converges pointwise on [0, T ] × S̄ towards
v as ε goes to zero. It is clear that the sequence (v̄ε)ε is nondecreasing and that v̄ε ≤ v on
[0, T ]×S̄ for any ε > 0. Let us prove that limε↘0 v̄ε = v. Fix n ∈ N

∗ and (t, z, θ) ∈ [0, T ]×S̄ ,
and consider some α(n) ∈ Ab

	(t, z, θ) such that

E

[
UL

(
Z

(n)
T ,Θ

(n)
T

)] ≥ v(t, z, θ) − 1

n
,

where (Z(n),Θ(n)) is the associated controlled process. From the monotone convergence the-
orem, we then get

lim
ε↘0

v̄ε(t, z, θ) ≥ E

[
UL

(
Z

(n)
T ,Θ

(n)
T

)]
≥ v(t, z, θ)− 1

n
.

Sending n to infinity, we conclude that limε v̄ε ≥ v, which ends the proof since we already
have v̄ε ≤ v.

Step 2. The nonlocal impulse operator H̄ε associated with (B.1) is given by

H̄εϕ(t, z, θ) = Hϕ(t, z, θ)− ε,

and we consider the corresponding dynamic programming equation:

min

[
− ∂w

∂t
− ∂w

∂θ
− Lw , w − H̄εw

]
= 0 in [0, T )× S̄,(B.2)

min
[
w − UL , w − H̄εw

]
= 0 in {T} × S̄.(B.3)

One can show by routine arguments that v̄ε is a constrained viscosity solution to (B.2)–
(B.3), and as in section 5, the following comparison principle holds.

Suppose u ∈ Gγ([0, T ] × S̄) is a u.s.c. viscosity subsolution to (B.2)–(B.3) on [0, T ] × S̄,
and w ∈ Gγ([0, T ] × S̄) is an l.s.c. viscosity supersolution to (B.2)–(B.3) on [0, T ] × S, such
that

u(t, z, θ) ≤ lim inf
(t′, z′, θ′) → (t, z, θ)

(t′, z′, θ′) ∈ [0, T ) × S

w(t′, z′, θ′) ∀(t, z, θ) ∈ [0, T ] ×D0.

Then,

(B.4) u ≤ w on [0, T ] × S.

The proof follows the same lines of arguments as in the proof of Theorem 5.2 (the function ψ
is still a strict viscosity supersolution to (B.2)–(B.3) on [0, T ] × S̄), and so we omit it.
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Step 3. Let V ∈ Gγ([0, T ] × S̄) be a viscosity solution in Gγ([0, T ] × S̄) to (4.2)–(4.3)
satisfying the boundary condition (4.4). Since H ≥ H̄ε, it is clear that V∗ is a viscosity
supersolution to (B.2)–(B.3). Moreover, since lim(t′,z′,θ′)→(t,z,θ) V∗(t′, z′, θ′) = U(0) = v(t, z, θ)
≥ v̄∗ε(t, z, θ) for (t, z, θ) ∈ [0, T ] ×D0, we deduce from the comparison principle (B.4) that V
≥ V∗ ≥ v̄∗ε ≥ v̄ε on [0, T ] × S. By sending ε to 0, and from the convergence result in Step 1,
we obtain V ≥ v, which proves the required result.
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Portfolio Selection Using Tikhonov Filtering to Estimate the Covariance Matrix∗
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Abstract. Markowitz’s portfolio selection problem chooses weights for stocks in a portfolio based on an esti-
mated covariance matrix of stock returns. Our study proposes reducing noise in the estimation by
using a Tikhonov filter function. In addition, we prevent rank deficiency of the estimated covariance
matrix and propose a method for effectively choosing the Tikhonov parameter, which determines
the filtering intensity. We put previous estimators into a common framework and compare their
filtering functions for eigenvalues of the correlation matrix. We demonstrate the effectiveness of our
estimator using stock return data from 1958 through 2007.

Key words. Tikhonov regularization, covariance matrix estimate, Markowitz portfolio selection, ridge regres-
sion
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1. Introduction. A stock investor might want to construct a portfolio of stocks whose
return has a small variance because large variance implies high risk. Given a target portfolio
return q, a mean-variance (MV) problem [33] finds a stock weight vector w to determine a
portfolio that minimizes the variance of the return. Let μ be a vector of expected returns for
each of N stocks, and let Σ be an N ×N covariance matrix for the returns. The problem can
be written as

(1.1) min
w

wTΣw subject to wT 1 = 1, wT μ = q,

where 1 is a vector of N ones. On the other hand, a global minimum variance (GMV)
problem finds a portfolio that minimizes the variances of the portfolio returns without the
return constraint:

(1.2) min
w

wTΣw subject to wT 1 = 1.

Even though these optimization problems play a central role in a modern portfolio theory, it
has been observed that the solutions are very sensitive to their input parameters [3, 5, 6, 7].
Thus, in order to construct a good portfolio using these formulations, the covariance matrix
Σ must be well estimated. We let Σ̃ denote an estimate of Σ and Σ̃method denote a resulting
estimate by a particular method.
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Let R = [r(1), . . . , r(T )] be an N×T matrix containing observations on N stocks’ returns
for each of T times. A conventional estimator—a sample covariance matrix Σ̃sample—can be
computed from the stock return matrix R as

(1.3) Σ̃sample =
1

T
R

(
IT − 1

T
11T

)
RT ,

where IT denotes a T × T identity matrix. From classical statistics, Σ̃sample is a consistent
estimate for fixed N ; in our case, since T is fixed and of the same order as N , this result is not
so useful. Moreover, since the stock return matrix R contains noise, the sample covariance
matrix Σ̃sample might not estimate the true covariance matrix well. This paper uses princi-
pal component analysis and reduces the noise in the covariance matrix estimate by using a
Tikhonov regularization method, as summarized in Table 1. We demonstrate experimentally
that this improves the portfolio weight w obtained from (1.1) and (1.2).

Our study is closely related to factor analysis and principal component analysis, which were
previously applied to explain the interdependency of stock returns and classify the securities
into appropriate subgroups. Sharpe [43] first proposed a single-factor model in this context
using market returns. King [26] analyzed stock behaviors with both multiple factors and
multiple principal components. These factor models established a basis for the asset pricing
models CAPM [32, 35, 44, 47] and APT [39, 40].

There have been previous efforts to improve the estimate of Σ. Sharpe [43] proposed a
market-index covariance matrix Σ̃market derived from a single-factor model of market returns.
Ledoit and Wolf [30] introduced a shrinkage method that averages Σ̃sample and Σ̃market. They
in [31] also applied the shrinkage method with a different target, an identity matrix. Later,
it was shown by DeMiguel et al. [10] that their shrinkage methods have the same effect as
adding the constraint ||w||A ≤ δ to the GMV problem (1.2), where A is the shrinkage target
matrix (Σ̃market or IN ) and δ is a given threshold. Elton and Gruber [13] estimated Σ
using a few principal components from a correlation matrix. More recently, Plerou et al. [38],
Laloux et al. [28], Conlon, Ruskin, and Crane [8], and Kwapień, Drożdż, and Oświȩcimka
[27] applied random matrix theory [34] to this problem. They found that most eigenvalues
of correlation matrices from stock return data lie within the bound for a random correlation
matrix and hypothesized that eigencomponents (principal components) outside this interval
contain true information. Bengtsson and Holst [2] generalized the approach of Ledoit and
Wolf [30] by damping all but the k largest eigenvalues by a single rate. In summary, the
estimator of Sharpe [43] uses Σ̃market, the estimator of Ledoit and Wolf [30, 31] takes the
weighted average of Σ̃sample and different target matrices, the estimator of Elton and Gruber
[13] truncates the smallest eigenvalues, the estimators of Plerou et al. [38], Laloux et al. [28],
Conlon, Ruskin, and Crane [8], and Kwapień, Drożdż, and Oświȩcimka [27] adjust principal
components in some interval, and the estimator of Bengtsson and Holst [2] attenuates the
smallest eigenvalues by a single rate.

Jagannathan and Ma [25] showed that a short-sale constraint (w ≥ 0) is equivalent to
shrinking the input covariance matrix Σ by subtracting (λ1T + 1Tλ), where λ is a vector
of Lagrange multipliers for the constraints. DeMiguel et al. [10] showed that adding the
short-sale constraint to GMV is equivalent to adding a 1-norm constraint ||w||1 ≤ 1, and they
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generalized this constraint to ||w||1 ≤ δ for a certain threshold δ which determines a short-sale
budget.

Our study focuses on estimating a good covariance matrix. We propose decreasing the
contribution of the smaller eigenvalues of a correlation matrix gradually by using a Tikhonov
filtering function. To derive the Tikhonov filtering, we construct a linear model based on
principal component analysis and formulate an optimization problem that finds appropri-
ately noise-filtered factors. Using the filtered factor data, we estimate a Tikhonov covariance
matrix.

This paper is organized as follows. In section 2, we introduce Tikhonov regularization
to reduce noise in the stock return data. In section 3, we show that applying Tikhonov
regularization results in filtering the eigenvalues of the correlation matrix for the stock returns.
In section 4, we discuss how we can choose a Tikhonov parameter that determines the intensity
of Tikhonov filtering. In section 5, we put all of the factor-based estimators into a common
framework and compare the characteristics of their filtering functions for the eigenvalues of the
correlation matrix. In section 6, we show the results of numerical experiments comparing the
covariance estimators for portfolio construction using monthly return data of 100 randomly
chosen stocks from the Center for Research in Security Prices. In section 7, we highlight the
differences between Tikhonov filtering and the other methods.

2. Tikhonov filtering. To estimate the covariance matrix, we apply principal component
analysis to find an orthogonal basis that maximizes the variance of the projected data into
the basis. Based on the analysis, we use the Tikhonov regularization method to filter out the
noise from the data. Next, we explain the feature of gradual downweighting, which is the key
difference between Tikhonov filtering and other methods.

2.1. Principal component analysis. First, we establish some notation. We use a 2-norm
|| · || for vectors and a Frobenius norm || · ||F for matrices, defined as

(2.1) ||a||2 = aTa and ||A||2F =

⎛⎝ M∑
i=1

N∑
j=1

a2ij

⎞⎠
for a given vector a and a given matrix A = (aij) ∈ R

M×N .
For a random process x(t), let E[x(t)] ∈ R

N×1, Var[x(t)] ∈ R
N×1, Cov[x(t)] ∈ R

N×N , and
Corr[x(t)] ∈ R

N×N denote a mean, a variance, a covariance matrix, and a correlation matrix.
For a given collection of observations X = [x(1), . . . ,x(T )] for N objects during T times, let
Es[x(t)] ∈ R

N×1, Vars[x (t)] ∈ R
N×1, Covs[x(t)] ∈ R

N×N , and Corrs[x (t)] ∈ R
N×N denote

the corresponding sample statistics, defined, for example, in [21, section 3.3]. An N × N
identity matrix will be denoted by IN .

Now we apply principal component analysis (PCA)1 to the stock return data R. Let
Z = [z(1), . . . , z(T )] be an N ×T matrix of normalized stock returns derived from R, defined
so that

(2.2) Es[z(t)] = 0, Vars[z(t)] = 1,

1In this paper, the term PCA always refers to applying PCA to the matrix R of sample stock returns. For
convergence properties of the sample PCA toward its population PCA, refer to [24, Chapter 4].
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where 0 is a vector of N zeros. We can compute Z as

(2.3) Z = D
− 1

2
V

(
R− 1

T
R11T

)
,

where DV = diag(Vars[r(t)]) ∈ R
N×N is a diagonal matrix containing the N sample variances

for the N stock returns. By using the normalized stock return matrix Z rather than R, we
can make the PCA independent of the different variance of each stock return [24, pp. 64–66].

PCA finds an orthogonal basis U = [u1, . . . ,uk] ∈ R
N×k for Z, where k = rank(Z).

Each basis vector ui maximizes the variance of the projected data uT
i Z, while maintaining

orthogonality to all the preceding basis vectors uj (j < i). By PCA, we can represent the
given data Z = [z(1), . . . , z(T )] as

Z = [u1, . . . ,uk] F = UF,(2.4)

z(t) = U f (t) = [u1, . . . ,uk] f (t) =
k∑

i=1

fi(t)ui,(2.5)

where f (t) = [f1(t), . . . , fk(t)]
T , a column of F, is the projected data at time t, and Vars[f1(t)] ≥

Vars[f2(t)] ≥ · · · ≥ Vars[fk(t)]. The projected data fi(t) is called the ith principal component
in PCA or the ith factor in the factor analysis. Larger Vars[fi(t)] implies that the correspond-
ing f i(t) plays a more important role in representing Z. The orthogonal basis U and the
projected data F can be obtained by the singular value decomposition (SVD) of Z,

(2.6) Z = Uk S k V
T
k ,

where k is the rank of Z,
Uk = [u1, . . . ,uk] ∈ R

N×k is a matrix of left singular vectors,
S k = diag(s1, . . . , sk) ∈ R

k×k is a diagonal matrix of singular values si,
and Vk = [v1, . . . , vk] ∈ R

T×k is a matrix of right singular vectors.

The left and right singular vector matrices Uk and Vk are orthonormal:

(2.7) UT
kUk = Ik and VT

kVk = Ik.

In PCA, the orthogonal basis matrix U corresponds to Uk, and the projected data F
corresponds to (S kV

T
k ) [24, p. 193]. Moreover, the variance of the projected data fi(t) is

proportional to the square of singular value s2i as we now show. Es[z(t)] = 0 means that
Z1 = 0. Therefore, since z(t) = Uf (t),

(2.8) Es[f (t)] = UTZ1 = 0,

so f (t) also has zero-mean. Therefore,

Vars[fi(t)] =
1

T

T∑
t=1

(fi(t)− Es[fi(t)])
2 =

1

T

T∑
t=1

f2i (t).
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Since F is equal to S kV
T
k ,

(2.9) fi(t) = sivi(t),

where vi(t) is the (t, i) element of Vk. Thus,

(2.10) Vars[fi(t)] =
1

T

T∑
t=1

(sivi(t))
2 =

1

T
s2i (v

T
i vi) =

s2i
T

by the orthonormality of vi. Thus, the singular value si determines the magnitude of Vars[fi(t)],
so it measures the contribution of the projected data fi(t) to z(t).

2.2. Tikhonov regularization. U and f (t) in (2.5) form a linear model with a k-dimensional
orthogonal basis for the normalized stock return Z, where k = rank(Z). As mentioned in the
previous section, the singular value si determines how much the principal component fi(t)
contributes to z(t). However, since noise is included in z(t), the k-dimensional model is over-
fitted, containing unimportant principal components possibly corresponding to the noise. We
use a Tikhonov regularization method [36, 46, 49], sometimes called ridge regression [22, 23],
to reduce the contribution of unimportant principal components to the normalized stock re-
turn Z. Eventually, we construct a filtered principal component f̃ (t) and a filtered market
return Z̃.

Originally, regularization methods were developed to reduce the influence of noise when
solving a discrete ill-posed problem b ≈ Ax, where the M × N matrix A has some singular
values close to 0 [18, pp. 71–86]. If we write the SVD of A as

A = USVT = [u1, . . . ,uN ]

⎡⎢⎣ s1
. . .

sN

⎤⎥⎦
⎡⎢⎣ vT1

...
vTN

⎤⎥⎦ ,
then the minimum norm least square solution xLS to b ≈ Af is

(2.11) xLS = A†b = VS †UTb =

rank(A)∑
i=1

uT
i b

si
vi.

If A has some small singular values, then xLS is dominated by the corresponding singular
vectors vi. Two popular methods are used for regularization to reduce the influence of com-
ponents vi corresponding to small singular values: a truncated SVD (TSVD) method [14, 20]
and a Tikhonov method [46]. Briefly speaking, the TSVD simply truncates terms in (2.11)
corresponding to singular values close to 0. In contrast, Tikhonov regularization solves the
least squares problem

(2.12) min
f
||b−Ax||2 + α2||Px||2,

where α and P are predetermined. The penalty term ||Px||2 restricts the magnitude of the
solution x so that the effects of small singular values are reduced.
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Returning to our original problem, we use regularization in order to filter out the noise
from the principal component f (t). We formulate the linear problem to find a filtered principal
component f̃ (t) as

z̃(t) = U f̃ (t),(2.13)

z(t) = z̃(t) + εz(t) = U f̃ (t) + εz(t),(2.14)

where z̃(t) is the resulting filtered data and εz(t) is the extracted noise. f (t) in (2.5) is the
exact solution of (2.14) when εz(t) = 0. By (2.9), we can express f (t) as

f (t) =

⎡⎢⎣ f1(t)
...

fk(t)

⎤⎥⎦ =

⎡⎢⎣ s1 v1(t)
...

skvk(t)

⎤⎥⎦ =

k∑
i=1

(sivi(t))ei,

where ei is the ith column of the identity matrix. Since we expect that the unimportant
principal components fi(t) are more contaminated by the noise, we reduce the contribution
of these principal components. We apply a filtering matrix Φ = diag(φ1, . . . , φk) to f (t) with
each φi ∈ [0, 1] so that

f̃ (t) = Φ f (t).

The element φi should be small when si is small. The resulting filtered data are

(2.15) z̃(t) = U Φ f (t),

(2.16) Z̃ = U ΦF.

We introduce two different filtering matrices, Φtrun(k̂) and Φtikh(α), which correspond
to TSVD and Tikhonov regularization. First, we can simply truncate all but k̂ most im-
portant components as Elton and Gruber [13] did by using a filtering matrix of Φtrun(k̂) =
diag(1, . . . , 1︸ ︷︷ ︸

k̂

, 0, . . . , 0︸ ︷︷ ︸
k−k̂

), so the truncated principal component f̃ trun(t) is

f̃ trun(t) = Φtrun(k̂)f (t).

By (2.15) and (2.16), the resulting filtered data are z̃trun(t) = UΦtrun(k̂)f (t) and Z̃trun =
U Φtrun(k̂)F. Since F = S kV

T
k , we can rewrite Z̃trun as

(2.17) Z̃trun = U Φtrun(k̂)(S kV
T
k ) =

k̂∑
i=1

siuiv
T
i .

From (2.17), we can see that this truncation method corresponds to the TSVD [14, 20].
Second, we can apply the Tikhonov method, and this is our approach to estimating the

covariance matrix. We formulate the regularized least squares problem to solve (2.12) as

(2.18) min
f̃ (t)

M(f̃ (t))
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with

M(f̃ (t)) = ||z(t)−U f̃ (t)||2 + α2||Pf̃ (t)||2,
where α2 is a penalty parameter and P is a penalty matrix. The first term ||z(t)−U f̃ (t)||2
forces f̃ (t) to be close to the exact solution f (t). The second term ||Pf̃ (t)||2 controls the size
of f̃ (t). We can choose, for example,

P = diag(s−1
1 , . . . , s−1

k ).

Let f̃i(t) denote the ith element of f̃ (t). The matrix P scales each f̃i(t) by s−1
i , so the

unimportant principal components corresponding to small si are penalized more than the
more important principal components since we expect that the unimportant principal com-
ponents fi(t) are more contaminated by the noise. Thus, the penalty term prevents f̃ (t) from
containing large amounts of unimportant principal components. As we showed before, s2i is
proportional to the variance of the ith principal component fi(t). Therefore, this penalty
matrix P is statistically meaningful considering that the values of f̃i(t)/si in Pf̃ (t) are in
proportion to the normalized principal components f̃i(t)/

√
Vars[fi(t)].

The penalty parameter α balances the minimization between the error term ||z(t) −
U f̃ (t)||2 and the penalty term ||Pf̃ (t)||2. Therefore, as α increases, the regularized solu-
tion f̃ (t) moves away from the exact solution f (t) but should discard more of f (t) as noise.
We can quantify this property by determining the solution to (2.18). At the minimizer of
(2.18), the gradient of M(f̃ (t)) with respect to each f̃i(t) becomes zero, so

∇M(f̃ (t)) = 2UTU f̃ (t)− 2UT z(t) + 2α2PTP f̃ (t) = 0,

and thus

(UTU+ α2PTP) f̃ (t) = UT z(t).

Since UTU = Ik, P = diag(s−1
1 , . . . , s−1

k ), and z(t) = Uf (t), this becomes(
Ik + α2 diag(s−2

1 , . . . , s−2
k )
)
f̃ (t) = UT (Uf (t)).

Therefore,

diag

(
s21 + α2

s21
, . . . ,

s2k + α2

s2k

)
f̃ (t) = f (t)

and

f̃ (t) = diag

(
s21

s21 + α2
, . . . ,

s2k
s2k + α2

)
f (t).

So, our Tikhonov estimate is

f̃ tikh(t) = Φtikh(α) f (t),

where Φtikh(α), called the Tikhonov filtering matrix, denotes (S 2
k + α2Ik)

−1 S 2
k. Thus, we

can see that the regularized principal component f̃ tikh(t) is the result after filtering the orig-
inal principal component f (t) with the diagonal matrix Φtikh(α), whose diagonal elements

φtikhi (α) =
s2i

s2i+α2 lie in [0, 1]. By (2.15) and (2.16), the resulting filtered data become
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Figure 1. Tikhonov filtering as a function of si for various values of α.

z̃tikh(t) = UΦtikh(α) f (t) and Z̃tikh = UΦtikh(α)F. Let us see how φtikhi (α) changes as
α and si vary. First, as α increases, φtikhi (α) decreases, as illustrated in Figure 1. This is
reasonable since α balances the error term and the penalty term. Later, in section 4, we will
propose how we can determine an appropriate parameter α. Second, φtikhi (α) monotonically
increases as si increases, so the Tikhonov filter matrix reduces the less important principal
components more intensely. The main difference between the Tikhonov method and TSVD
is that Tikhonov preserves some information from the least important principal components
while TSVD discards all of it.

2.3. The relation between filtered PCA and a factor model. Some asset pricing models
(see, e.g., [40, 44]) model asset returns with a factor model:

(2.19) r(t) = E[r(t)] + Bϕ(t) + ε(t).

The assumptions are that

(2.20) E[ϕ(t)] = E[ε(t)] = 0,

(2.21) E(εi(t)εj(t)) = E(εi(t)ϕ�(t)) = E(ϕi(t)ϕj(t)) = 0 for all i �= j,

where ϕ(t) = [ϕ1(t), . . . , ϕ�(t)]
T and ε(t) = [ε1(t), . . . , εN (t)]T . The common factors ϕi(t) are

referred to as systematic factors, and εi(t) is called an unsystematic (idiosyncratic) factor.
The matrix B = (βik) is called a factor-loading matrix, and βik represents the sensitivity of
the ith asset to the kth factor.

We can interpret our linear model (2.14) as a factor model. By (2.3) and (2.14), we have
a linear equation for r(t) as

r(t) = Es[r(t)] +D
1
2
V

(
Uf̃ (t) + εz(t)

)
(2.22)

= Es[r(t)] +Bf̃ (t) + εr(t),(2.23)
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where

(2.24) B = D
1
2
V U and εr(t) = D

1
2
V εz(t).

Comparing (2.19) and (2.23), if we assume that f̃ (t) represents the systematic factors ϕ(t)
well, we can interpret B and εr(t) as estimates of the loading matrix B and the unsystematic
factor ε(t) in (2.19). Since εz(t) = z(t)−Uf̃ (t), εr(t) becomes

(2.25) εr(t) = D
1
2
V εz(t) = D

1
2
V (z(t)−Uf̃ (t)).

Because z(t) = Uf (t) and f̃ (t) = Φf (t), the factor models result in the estimate

(2.26) εr(t) = D
1
2
V (Uf (t)−UΦf (t)) =

(
D

1
2
V U

)
(Ik −Φ)f (t) = B(Ik −Φ)f (t).

3. Estimate of the covariance matrix Σ. In this section we study how filtering changes
the covariance and correlation estimates and the estimate of risk exposure, and how to ensure
that the estimated covariance matrix has full rank.

3.1. A covariance estimate. Now we derive a covariance matrix estimate Σ̃ from (2.23),
respecting the structure of the factor model (2.19). By (2.21), the covariance matrix Σ is

(3.1) Σ = BCov[ϕ(t)]BT +Cov[ε(t)] = Σs +Dε,

where Σs denotes the systematic component BCov[ϕ(t)]BT and Dε denotes the unsystematic
component Cov[ε(t)]. We estimate the systematic part Σs by Σ̃s = BCovs[f̃ (t)]B

T . Because
f (t) has zero-mean, f̃ (t) = Φf (t) also has zero-mean, so

(3.2) Covs[f̃ (t)] =
1

T
(ΦF)(ΦF)T =

1

T
(Φ2S 2

k).

Therefore, the estimate of Σs becomes

(3.3) Σ̃s = BCovs[f̃ (t)]B
T =

1

T
B(Φ2S 2

k)B
T .

The unsystematic part Dε in (3.1) is diagonal since the unsystematic factors εi(t) are mutually
uncorrelated. Thus, we estimate Cov[ε(t)] by the diagonal part of the difference D̃ε between

(3.4) Σ̃sample = Covs[r(t)] =
1

T
BS 2

kB
T

and Σ̃s. Hence,

(3.5) D̃ε = diag
(
Σ̃sample − Σ̃s

)
= diag

(
1

T
(B(Ik −Φ2)S 2

kB
T )

)
.

Finally, the filtered covariance matrix Σ̃ will be

(3.6) Σ̃ = Σ̃s + D̃ε,
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where Σ̃s and D̃ε are defined by (3.3) and (3.5). By the definition of D̃ε, the diagonal of Σ̃
equals Vars[r(t)].

Now we analyze how the filtering functionΦ affects the sample correlation matrix Corrs[r(t)].
By (3.6), the filtered correlation matrix Ω̃ can be calculated as

(3.7) Ω̃ = D
− 1

2
V Σ̃D

− 1
2

V =
1

T
UΦ2S 2

kU
T +D

− 1
2

V D̃εD
− 1

2
V ,

where the second term makes the diagonal elements of Ω̃ equal one. On the other hand, the
sample correlation matrix Corrs[r(t)] can be calculated as

Corrs[r(t)] = D
− 1

2
V Σ̃sampleD

− 1
2

V .

By (2.24) and (3.4), this becomes

Corrs[r(t)] = D
− 1

2
V

(
1

T
BS 2

kB
T

)
D

− 1
2

V =
1

T
US 2

kU
T .(3.8)

Comparing Ω̃ in (3.7) and Corrs[r(t)] in (3.8), we can see that Ω̃ is the result of applying
the filtering matrix Φ2 to S 2

k in Corrs[r(t)] and replacing the diagonal elements with one.
Since each diagonal element of S 2

k corresponds to an eigenvalue of Corrs[r(t)], the filtering
matrix Φ2 attenuates the eigenvalues of Corrs[r(t)]. In the previous section, we introduced
two filtering matrices:

Φtrun(k̂) = diag(1, . . . , 1︸ ︷︷ ︸
k̂

, 0, . . . , 0︸ ︷︷ ︸
k−k̂

)(3.9)

and

Φtikh(α) = diag

(
s21

s21 + α2
, . . . ,

s2k
s2k + α2

)
.(3.10)

Therefore, Φ2
trun(k̂) truncates the eigencomponents corresponding to the (k − k̂) smallest

eigenvalues, and Φ2
tikh(α) downweights all the eigenvalues at a rate (

s2i
s2i+α2 )

2 = ( λi
λi+α2 )

2,

where λi is the ith largest eigenvalue of Covs[z(t)]. Hence, the TSVD filtering functions
φ2trun(λi) for eigenvalues λi become

φ2trun(λi) =

{
1 if i ≤ k̂,
0 otherwise,

and the Tikhonov filtering functions φ2tikh(λi) are

φ2tikh(λi) =

(
λi

λi + α2

)2

.

We let Σ̃trun and Σ̃tikh denote the estimates resulting from applying Φ2
trun(k̂) and Φ2

tikh(α)
to (3.6). Finally, we can summarize the process of estimating the covariance matrix as Table
1.
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Table 1
The algorithm to compute the covariance estimate ˜Σ. For Tikhonov, the filter factors are Φtikh =

diag(
s21

s21+α2 , . . . ,
s2k

s2
k
+α2 ).

Step 1. Estimate the systematic component of the covariance 1
T
B(Φ2S 2

k)B
T ,

where Φ is the diagonal matrix of filter factors.
Step 2. Change the main diagonal to be the sample variances.

3.2. Risk exposure to factors. By (3.1), the variance of a portfolio return can be ex-
pressed as

(3.11) wTΣw = wT (Σs +Dε)w = wTΣsw+wTDεw.

The systematic risk is

(3.12) wTΣsw = wT
(BCov[ϕ(t)]BT )w = wT

(B diag(Var[ϕ(t)])BT )w
because ϕi(t) are mutually uncorrelated by (2.21). This can be expanded as

(3.13) wTΣsw =
k∑

i=1

Var[ϕi(t)](w
Tβi)

2,

where βi is the ith column of B. The ith term in (3.13) represents the risk exposure of the
portfolio to the ith factor.

On the other hand, the estimated matrix Σ̃s in (3.3) can be rewritten as

(3.14) Σ̃s =
1

T
BΦ2S 2

kB
T = BΦ2

(
S 2

k

T

)
BT = BΦ2 diag(Vars[f (t)]) B

T

because Vars[f (t)] = diag(S 2
k/T ) by (2.10). Hence, we can calculate the estimated systematic

risk as

(3.15) wT Σ̃sw =

k∑
i=1

φ2i
(
Vars[f i(t)](w

Tbi)
2
)
,

where bi is the ith column of B. Therefore, we can see that our estimate of the risk exposure
to the ith factor is reduced by φ2i . This equation explains how the estimated covariance matrix

Σ̃ affects the estimated risk measure of a portfolio, downweighting risk factors corresponding
to small values of φi(α).

3.3. Rank deficiency of the covariance matrix. Since the covariance matrix is positive
semidefinite, the MV problem (1.1) and the GMV problem (1.2) always have a minimizer w.
However, when the covariance matrix is rank deficient, the minimizer w is not unique, which
might not be desirable for investors who want to choose one portfolio. The sample covariance
matrix Σ̃sample from (1.3) has rank (T − 1) at most. Therefore, whenever the number of
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observations T is less than or equal to the number of stocks N , Σ̃sample is rank deficient. To
ensure full rank and a high quality estimate, we must have at least (N+1) recent observations
of returns, derived from at least (N + 1) recent trades, and this is not always possible.

Recall that the covariance matrix estimate Σ̃ is the sum of the systematic part Σ̃s and
the unsystematic part D̃ε. By (3.3), we can see that Σ̃s has nonnegative eigenvalues. On the
other hand, by (3.5),

(3.16) (The ith diagonal element of D̃ε) = eTi

(
1

T
B(Ik −Φ2)S 2

kB
T

)
ei.

It is reasonable to assume that eTi B is not zero for any i since it becomes zero only when

the ith stock has zero variance of returns by (2.24). Thus, the diagonal matrix D̃ε is positive
definite whenever all φi < 1. In the case of Tikhonov filtering, whenever α > 0,

φtikhi (α) =
s2i

s2i + α2
< 1,

so D̃ε is positive definite. Therefore, since Σ̃s is positive semidefinite, adding a positive definite
matrix ensures that Tikhonov covariance matrix Σ̃tikh is positive definite and therefore full
rank.

Sharpe [43], Ledoit and Wolf [30], Bengtsson and Holst [2], and Plerou et al. [38] also
overcome the rank-deficiency problem by replacing the diagonals of their estimate with the
sample variances as in Step 2 in Table 1. However, some of their filtering values φi could have
a value of 1 as we will see in section 5. This implies that the resulting estimate Σ̃ could be
rank-deficient or very ill conditioned even after adding D̃ε because D̃ε is positive semidefinite.
In the case that the estimate still has a large condition number even after Step 2, we can fix
the problem by a small modification as follows:

(3.17) Σ̃ii ← Σ̃ii + δi for i = 1, . . . , N ,

where δi is a small positive number.
Theorem 3.1 (condition number modification). Replacing the main diagonal of the covari-

ance estimate Σ̃ as specified in (3.17) guarantees that

cond(Σ̃) ≤ λmax(Σ̃) + max (δi)

min (δi)
,

where λmax(·) is the maximum eigenvalue of the matrix.
Proof. This is a direct consequence of the eigenvalue interlacing theorem [45, p. 203] and

the positive semidefiniteness of Σ̃.
This modification is useful especially for the sample covariance matrix Σ̃sample when T ≤

N , and for the truncation-based estimators whose filtering factors φi equal 1 for some i.

4. Choice of Tikhonov parameter α. So far, we have seen how to filter noise from
the covariance matrix using regularization and how to fix the rank deficiency of the resulting
covariance matrix. In order to use Tikhonov regularization, we need to determine the Tikhonov
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Figure 2. The difference ||Corrs[εr(t)]− IN ||F as a function of log-scaled α where h = max (si).

parameter α. In regularization methods for discrete ill-posed problems, there are intensive
studies about choosing α using methods such as generalized cross-validation [15], L-curves
[17, 19], and residual periodograms [41, 42].

In factor analysis and PCA, there are analogous studies to determine the number of factors
such as Bartlett’s test [1], SCREE test [4], average root [16], partial correlation procedure
[50], and cross-validation [51]. More recently, Plerou et al. [37, 38] applied random matrix
theory, which will be described in section 5.6. In the context of arbitrage pricing theory, some
different approaches were proposed to determine the number of factors: Trzcinka [48] studied
the behavior of eigenvalues as the number of assets increases, and Connor and Korajczyk [9]
studied the probabilistic behavior of noise factors.

The use of these methods requires various statistical properties for εr(t) in the linear model
(2.23). We note that since Es[f (t)] = 0 by (2.8), the noise εr(t) in (2.23) has zero-mean: By
(2.26),

(4.1) Es[εr(t)] = B(Ik −Φ) Es[f (t)] = 0.

For our Tikhonov estimation, we propose a new method adopting a mutually uncorrelated
noise assumption in a factor model (2.21), so Corrs[εr(t)] 	 IN . Hence, as a criterion to
determine an appropriate parameter α, we formulate an optimization problem minimizing the
correlations among the noise,

(4.2) min
α∈[sk,s1]

|| Corrs[εr(t)]− IN ||F ,

where s1 and sk are the largest and the smallest singular values of Z as defined in (2.6). This
is similar to Velicer’s partial correlation procedure [50] to determine the number of principal
components. Figure 2 illustrates an example of ||Corrs[εr(t)]− IN ||F as a function of α in the
range [sk, s1]. The parameter might alternatively be determined by an asymptotic analysis
proposed by Ledoit and Wolf [30, 31] or a cross-validation used by DeMiguel et al. [10].
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5. Comparison to other estimators. In this section, we compare other covariance esti-
mators to our Tikhonov estimator and put them all in a common framework. We summarize
how they filter the eigenvalues of the sample correlation matrix with filtering functions φ2(λi).
Most of these methods use a two-step procedure as shown in Table 1: filter the eigenvalues
and then adjust the main diagonal. We note any exceptions in our descriptions.

5.1. Σ̃sample: Sample covariance matrix. A sample covariance matrix is the filtering
target of most covariance estimators, including our Tikhonov estimator. Thus, the sample
covariance matrix Σ̃sample can be thought of as an unfiltered covariance matrix, so the filtering
function φ2s(λi) for eigenvalues of Covs[z(t)] is

φ2s(λi) = 1 for i = 1, . . . , rank(Σ̃sample).

5.2. Σ̃market from the single market index model [43]. Sharpe [43] proposed a single
index market model

(5.1) r(t) = E[r(t)] + b rm(t) + ε(t),

where r(t) ∈ R
N×1 is stock return at time t,

rm(t) is market return at time t,
ε(t) is zero-mean uncorrelated error at time t,
and b ∈ R

N×1.
Unlike the factor model (2.19), this model assumes that the stock returns r(t) have only one
common factor, the market return rm(t). Interestingly, Plerou et al. [38, p. 8] observed that
the principal component corresponding to the largest eigenvalue of the correlation matrix
Corrs[r(t)](= Covs[z(t)]) is highly correlated with rm(t). This observation is natural in that
most stocks are highly affected by the market situation. Based on their observation, we expect
that the most important principal component f1(t) in (2.5) represents the market return rm(t).
Thus, we can represent the relation between f̃ (t) = [f̃1(t), . . . , f̃k(t)] in (2.23) and rm(t) as

(5.2) f̃i(t) 	
{
C rm(t) when i = 1,
0 otherwise

for some constant C. Hence, the corresponding filtering function φ2m(λi) for Σ̃market becomes

(5.3) φ2m(λi) 	
{

1 if i = 1,
0 otherwise.

Therefore, the filter function implicitly truncates all but the largest eigencomponent of Corrs[r(t)].

5.3. Σ̃s→m: Shrinkage toward Σ̃market [30]. Ledoit and Wolf propose a shrinkage
method from Σ̃sample to Σ̃market as

(5.4) Σ̃s→m = γ Σ̃market + (1− γ)Σ̃sample,

where 0 ≤ γ ≤ 1. Thus, the shrinkage estimator is the weighed average of Σ̃sample and

Σ̃market. In order to find an optimal weight γ, they minimize the distance between Σ̃s→m and
the true covariance matrix Σ:

min
γ
||Σ̃s→m −Σ||2F .
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Since the true covariance matrix Σ is unknown, they use an asymptotic variance to determine
an optimal γ. (Refer to [30, sections 2.5–2.6] for a detailed description.) Considering that
Σ̃market is the result of the implicit truncation method, we can think of this shrinkage method
as implicitly downweighting all eigenvalues but the largest at a rate (1 − γ). Therefore, we
can represent the filtering function φ2s→m(λi) as

(5.5) φ2s→m(λi) 	
{

1 if i = 1,
1− γ, where 0 ≤ γ ≤ 1 otherwise.

5.4. Truncated covariance matrix Σ̃trun [13]. As mentioned in section 3.1, the truncated
covariance matrix Σ̃trun has the filtering function φ2trun(λi) for the eigenvalues λi of Covs[z(t)],
where

(5.6) φ2trun(λi) =

{
1 if i = 1, . . . , k̂,
0 otherwise.

Thus, the model of Elton and Gruber [13] truncates all but the k̂ largest eigencomponents of
Covs[z(t)].

5.5. Σ̃s→trun: Shrinkage toward Σ̃trun [2]. Bengtsson and Holst propose a shrinkage
estimator from Σ̃sample to Σ̃trun as

(5.7) Σ̃s→trun = γ Σ̃trun + (1− γ)Σ̃sample,

where 0 ≤ γ ≤ 1. They determine the parameter γ in a way similar to [30]. (Refer to [2,
sections 4.1–4.2] for a detailed description.) Therefore, Σ̃s→trun is a variant of the shrinkage
method toward Σ̃trun. Because Σ̃trun is the truncated covariance matrix containing the k̂ most
significant eigencomponents of Covs[z(t)], we can regard Σ̃s→trun as damping the smallest
eigenvalues by (1− γ). Thus, the filtering function corresponding to this approach is

(5.8) φ2s→trun(λi) =

{
1 if i = 1, . . . , k̂,
1− γ, where 0 ≤ γ ≤ 1 otherwise.

Rather than removing all the least important principal components as Elton and Gruber
did, Bengtsson and Holst try to preserve the potential information of unimportant principal
components by this single-rate attenuation. Bengtsson and Holst conclude that their shrinkage
matrix Σ̃s→trun performed best in the Swedish stock market when the shrinkage target Σ̃trun

took only the most significant principal component (k̂ = 1). They also mention that the result
is consistent with random matrix theory because only the largest eigenvalue deviates far from
the range of [λmin, λmax], explained in the next section.

5.6. Σ̃RMT :trun truncation by random matrix theory [38]. Plerou et al. apply random
matrix theory (RMT) [34], which shows that the eigenvalues of a random correlation matrix
have a distribution within an interval determined by the ratio of N and T . Let Corrrandom
be a random correlation matrix,

(5.9) Corrrandom =
1

T
AAT ,
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where A ∈ R
N×T contains mutually independent random elements ai,t with zero-mean and

unit variance. When Q = T/N ≥ 1 is fixed, the eigenvalues λ of Corrrandom have a limiting
distribution (as N →∞),

(5.10) f(λ) =

⎧⎪⎪⎨⎪⎪⎩
Q

2πσ2

√
(λmax − λ)(λmin − λ)

λ
λmin ≤ λ ≤ λmax,

0 otherwise,

where σ2 is the variance of the elements of A, λmin ≤ λ ≤ λmax, and λmax
min = σ2(1 + 1

Q ±
2
√

1
Q). By comparing the eigenvalue distribution of Corrs[r(t)] with f(λ), Plerou et al.

show that most eigenvalues are within [λmin, λmax]. They conclude that only a few large
eigenvalues deviating from [λmin, λmax] correspond to eigenvalues of the real correlation matrix,
so the other eigencomponents should be removed from Corrs[r(t)]. Thus, the filtering function
φ2RMT :trun(λi) for the eigenvalue λi of Corrs[r(t)] is

(5.11) φ2RMT :trun(λi) =

{
1 if λi ≥ λmax,
0 otherwise.

5.7. Σ̃RMT :repl replacing the RMT eigenvalues [28]. Laloux et al. apply RMT to this
problem in a way somewhat different from Plerou et al. First, they find the best fitting σ2 in
(5.10) to the eigenvalue distribution of the observed correlation matrix rather than assuming
that σ2 = 1. Second, they replace each eigenvalue in the RMT interval with a constant
value C, chosen so that the trace of the matrix is unchanged. Thus, the filtering function
φ2RMT :repl(λi) for eigenvalues is

(5.12) φ2RMT :repl(λi) =

{
1 if λi ≥ λmax,
C
λi

otherwise.

This approach does not require the application of Step 2 in Table 1 since it replaces the small-
est eigenvalues with a positive constant. The resulting covariance matrix does not preserve
the original variances.

5.8. Σ̃s→I : Shrinkage toward I [31]. Ledoit and Wolf also introduced a shrinkage
method from Σ̃sample to the identity matrix IN as

(5.13) Σ̃s→I = γ (mIN ) + (1− γ)Σ̃sample,

where m =
trace(Σ̃sample)

N and 0 ≤ γ ≤ 1. They provide a method to estimate an optimal γ.
(Refer to [31, section 3] for a detailed description.) There is no simple expression for the filter
factors. In addition, this method does not use Step 2 in Table 1 since its shrinkage target IN
has full rank.
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Table 2
Definition of the filter function φ2(λi) for each covariance estimator, where i = 1, . . . , rank(˜Σsample).

Estimator Filtering function φ2(λi)

˜Σsample φ2
s(λi) = 1

˜Σmarket[43] φ2
m(λi) �

{

1 if i = 1,
0 otherwise.

˜Σs→m[30] φ2
s→m(λi) �

{

1 if i = 1,
1− γ otherwise.

˜Σtrun[13] φ2
trun(λi) =

{

1 if i = 1, . . . ,̂k,
0 otherwise.

˜Σs→trun[2] φ2
s→trun(λi) =

{

1 if i = 1, . . . ,̂k,
1− γ otherwise.

˜ΣRMT :trun[38] φ2
RMT :trun(λi) =

{

1 if λi ≥ λmax,
0 otherwise.

˜ΣRMT :repl[28] φ2
RMT :repl(λi) =

{

1 if λi ≥ λmax,
C
λi

otherwise.

˜Σtikh φ2
tikh(λi) =

(

λi

λi + α2

)2

5.9. Tikhonov covariance matrix Σ̃tikh. As mentioned in section 3.1, the Tikhonov co-
variance matrix Σ̃tikh has the filtering function φ2tikh(λi) for the eigenvalues λi of Covs[z(t)],
where

(5.14) φ2tikh(λi) =

(
λi

λi + α2

)2

,

where the parameter α is determined as described in section 4.

5.10. Comparison. The derivations in section 5 provide the proof of the following theo-
rem.

Theorem 5.1 (filtering functions). The eight covariance estimators are characterized by the
choice of filtering functions specified in Table 2.

Tikhonov filtering preserves potential information from less important principal compo-
nents corresponding to small eigenvalues, rather than truncating them all like Σ̃market, Σ̃trun,
and Σ̃RMT :trun. In contrast to the single-rate attenuation of Σ̃s→m and Σ̃s→trun and the
constant value replacement of Σ̃RMT :repl, Tikhonov filtering reduces the effect of the smallest
eigenvalues more intensely. This gradual downweighting with respect to the magnitude of
eigenvalues is the key difference between the Tikhonov method and other estimators.

In addition, all the estimators except Σ̃s→I and Σ̃RMT :repl overcome the rank deficiency
of the covariance matrix by replacing the diagonal elements with the corresponding variances
after filtering. This is what we did by preserving D̃ε in Step 2 in Table 1. However, most
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estimators have φ2(λi) = 1 for the largest eigenvalues as Table 2 shows, so the resulting
covariance matrix can be still rank deficient as we discussed in section 3.3. During experiments
in section 6, we actually observed the rank deficiency for some estimators even after preserving
diagonal parts. This implies that an extra modification like (3.17) is necessary to overcome
rank deficiency.

6. Experiments. In this section, we evaluate the covariance estimators using return data
from the NYSE, AMEX, and NASDAQ. We collected the monthly data from January 1958 to
December 2007 from the CRSP (Center for Research in Security Prices) database. There are
600 months over 50 years, and we randomly chose 100 stocks among those traded throughout
this period.

Chopra and Ziemba [7] have noted that the MV problem is much more sensitive to errors in
μ than to errors in Σ, and our experience confirms this observation. In fact, uncertainty in the
estimates of μmade the true return quite different from the target return. In addition, recently
DeMiguel, Garlappi, and Uppal [11] showed that some common portfolio strategies do not
yield consistently better Sharpe ratios, certainty-equivalent returns, or turnovers, compared
to a naive 1/N portfolio. The instability of the MV portfolio tends to increase turnover
costs, so recent studies strengthen the stability by formulating new optimization problems
[12]. However, since our study focuses on estimating the covariance matrix Σ, we evaluated
the estimators based on how well they minimize the risk variances in the MV and GMV
portfolios.

First, in section 6.1, we evaluate the risk of the GMV portfolio using the covariance
estimators of Table 2 with various in-sample periods. We then compare the stability and
performance of the Tikhonov estimator to those of the shrinkage estimate Σ̃s→m. Next, in
section 6.2, we perform similar experiments for the MV portfolio, varying the in-sample and
out-of-sample periods as well as the required portfolio returns. We bypass the difficulties
of estimating μ by assuming that it is known so that we can focus just on the effects of the
different covariance estimators. Finally, in section 6.3, we compare the GMV and MV portfolio
returns, and in section 6.4 we compare their predictions of risk.

6.1. GMV portfolio. We simulate portfolio construction under the following scenario.
We solve the GMV problem to construct a portfolio to hold for 1 month, the out-of-sample
period To. We repeat this process for every month until we reach December 2007. Finally, we
evaluate the variance of the out-of-sample returns from the GMV portfolio for each covariance
estimator.

When performing this experiment, the choice of in-sample window size Tw is important.
If Tw is too long, the data may include out-of-date information. On the other hand, if Tw is
too short, the resulting covariance estimate could suffer from lack of information. We vary Tw
from 1 year to 10 years. Later, in section 6.2, we will consider the change of the out-of-sample
period To as well. We start each experiment at January 1968, giving 480 rebalancing steps
for all values of Tw. For each covariance estimator, we perform the simulation for 20 different
choices of 100 stocks.

6.1.1. Covariance estimators in experiments. We perform the experiment above for all
the covariance estimators from section 5.1 to section 5.9 plus two diagonal matrices, Σ̃V and
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Σ̃I, for a total of 11 estimators. Σ̃V has diagonal elements equal to Vars[r(t)], and any
correlations between stocks are neglected. Σ̃I is an N × N identity matrix, which would
yield an evenly distributed portfolio as the solution for the GMV problem (1.2); thus it
is a good benchmark for a well-distributed portfolio. Since Σ̃sample is rank deficient, we
modify it by adding small positive constants δi to its diagonal elements as in (3.17). To
compute Σ̃market and Σ̃s→m, we need the monthly market return data rm(t) in (5.1). In this
experiment, we adopt equally weighted market portfolio returns including distributions from
the CRSP database as rm(t). According to Ledoit and Wolf [30, p. 607], an equally weighted
market portfolio is better than a value-weighted market portfolio for explaining stock market
variances.

The parameter k̂ for Σ̃trun and Σ̃s→trun is static, constant over all time periods. In our
experiment, we perform the experiments with k̂ = 1, 5, 9 for Σ̃trun and k̂ = 1, 2, 3 for Σ̃s→trun.
In contrast, the parameters of γ for Σ̃s→m and Σ̃s→trun, k̂ for Σ̃RMT :trun and Σ̃RMT :repl,

and α for Σ̃tikh have their own parameter choice methods as described in section 5, so we
dynamically determine these parameters each time the portfolio is rebalanced.

Figure 3 shows singular value plots from each estimator, which illustrates the filtering
characteristics for the first in-sample period of Tw = 4 years with a particular set of 100
stocks.

6.1.2. Effect of in-sample period Tw. For each randomly chosen data set (i = 1, . . . , 20),
we calculate (σi)Σ̃, the annualized standard deviation of the sample portfolio return, by multi-

plying the monthly standard deviation by
√
12. The subscript Σ̃ denotes the specific choice of

covariance estimator. Figures 4(a) and 4(b) show the means of (σi)Σ̃ for the static estimators
and the dynamic estimators. The standard deviations of the (σi)Σ̃ from each estimator were

at most 0.56 for all time periods, except for the occurrence of values up to 3.38 for Σ̃sample

and up to 6.50 for Σ̃
s→trun(k̂=3)

, so the results did not seem sensitive to the particular choice

of 100 stocks.

For most estimators, the (σi)Σ̃ decrease until a particular Tw and increase after that point,
showing the advantage of using a sufficient amount of history but not too much out-of-date
information. This is particularly evident for Σ̃sample since it assumes that all of its data are

reliable. At the opposite extreme, (σi)Σ̃market
from Σ̃market increases with Tw, which implies

that the correlation among stocks cannot be fully explained by a single market index. For
small values of k, Σ̃trun behaves like Σ̃market, but performance can be improved by taking
k ≈ 5, making the estimator less sensitive to out-of-date information. The diagonal Σ̃V shows
a better tolerance to out-of-date information than Σ̃sample, which may imply that the sample
variance estimation is less sensitive to the choice of Tw than the sample covariance estimation.
The estimators that dynamically determine the filtering parameters (Σ̃tikh, Σ̃s→m, Σ̃s→I ,
Σ̃

s→trun(k̂=1)
, Σ̃RMT :repl, and Σ̃RMT :trun) also show good tolerance. Therefore, modestly

filtered factor structures are better at filtering the out-of-date information than a single-
factor or full-factor structure, but all estimators benefit from an appropriate choice of window
size.

Compared to the truncation-based estimators like Σ̃RMT :trun and Σ̃trun, Tikhonov gen-
erally performs better when the in-sample period is shorter than its own optimal size, which
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(a) The singular values from truncation-based estimator.
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Figure 3. GMV portfolios: the singular values from each estimator when Tw = 4 years.

is Tw = 4. This result can be explained by the characteristics of their filtering functions.
While φ2tikh(λi) preserves the relative magnitudes of eigenvalues by gradual attenuation,
φ2RMT :trun(λi) or φ2trun(λi) discard them all. Thus, when the smallest eigenvalues are still
important, the Tikhonov filter shows superiority empirically. However, as noise level increases
with longer Tw, the performance reverses.

Compared to the other shrinkage-based estimators, Tikhonov filtering φ2tikh(λi) preserves
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Figure 4. GMV portfolios: the mean of (σi)Σ̃ over different choices of Tw.

the smallest but still informative factors better than a single rate reduction by φ2s→m(λi) and
φ2s→trun(λi) or a replacement with a constant value by φ2RMT :repl(λi) when Tw is relatively short

(Tw < 4). On the other hand, for Tw > 7, it becomes evident that Σ̃s→m, Σ̃s→trun(k̂=1)
, and

Σ̃RMT :repl show better performances than Σ̃tikh. This is because Σ̃tikh has relatively weaker
tolerance to the contamination by out-of-date information.

6.1.3. Stability of Tikhonov parameter choice. In this section, we evaluate the stability
of our parameter choice method from section 4. For a particular choice of 100 stocks, we
observe the change of the dynamic parameters α for Σ̃tikh and γ for Σ̃s→m. In this experiment,
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Figure 5. GMV portfolios: the performance of static and dynamic choices of α and γ in 20 experiments.

we set the window size as Tw = 48 because both estimators have the smallest mean value of
(σi)Σ̃ for that window size.

Figure 5(a) illustrates the change of the ratio of the dynamically chosen Tikhonov param-
eter αD to the largest singular value s1 of Corrs[r(t)] and the change of γD for Σ̃s→m. The
results for 20 choices of the 100 stocks are shown, showing that both parameter choice meth-
ods for αD and γD are quite stable during the whole experiment. The resulting annualized
standard deviations of (σi)Σ̃ range from 10.16% to 10.30% for Σ̃tikh and Σ̃s→m, for both the
static and dynamically determined parameters.

We repeated this numerical experiment keeping the ratio α/s1 and the parameter γ con-
stant over all time periods. (We use the notation αS and γS for this statically determined
parameter.) This static parameter choice may not be practical in real market trading since
we cannot access the future return information when we construct a portfolio. However, we
can find a statically optimal ratio from this experiment for a comparison to αD/s1 and γD.
Figure 5(b) shows how the standard deviation of portfolio returns changes as αS/s1 and γS
increase. The optimal ratio α∗

S/s1 was 0.27 with resulting standard deviation of portfolio re-
turns 10.16%, and the optimal γ∗S was 0.59 with resulting standard deviation 10.27%. These
statically optimal values are represented by dashed lines in Figure 5(a). Therefore, we can see
that both αD/s1 and γD remain near their statically optimal values α∗

S/s1 and γ∗S . Moreover,
the static and varying α values produce similar risk variance.

6.2. MV portfolio. Now, we observe the behavior of the MV portfolio resulting from
each covariance estimator. In this experiment, we vary the out-of-sample period To and the
required portfolio return q as well as the in-sample period Tw. We change To from 2 months
to 6 months,2 Tw from 1 year to 10 years, and q from 0% to 20%. As we mentioned before,
the performance of the MV portfolio is quite sensitive to the estimation of stock returns μ.

2We omit the case of To = 1 month since it gives us a trivial result that the portfolio returns are equal
to the required portfolio return q making (σi)Σ̃ zero for any covariance ˜Σ and any window size Tw. This is
because μ equals the realized stock returns r (t) in the out-of-sample period.
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Figure 6. MV portfolios: the average annualized standard deviations (σi)Σ̃tikh
of portfolio returns as

in-sample period Tw and out-of-sample period To change with different settings of required portfolio return q.

In order to evaluate covariance estimation with no influence of mean estimation, we assume a
perfect prediction of stock returns μ, which means we estimate μ by the average r(t) during
the out-of-sample period.

6.2.1. Effect of out-of-sample period To. The out-of-sample period To determines how
fast we react to the changes in the market. Figure 6 shows how the average (σi)Σ̃tikh

changes

as To and Tw vary for q = 0%, 10%, and 20%. We can see that (σi)Σ̃tikh
has a tendency

to increase as we hold the portfolio for longer To. Similar results were obtained for all other
covariance estimators.

6.2.2. Effect of in-sample period Tw. Similar to Figure 4 for the GMV experiment, we
compared the mean of (σi)Σ̃ for different covariance estimators with varying Tw and q in
Figure 7. Based on the result of section 6.2.1, we fixed To as 2 months in order to compare
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Figure 7. MV portfolios: the mean of (σi)Σ̃ over different choices of Tw and q when To = 2 months.

the smallest standard deviations from the estimators. The behaviors of MV portfolios with
respect to the change of Tw are very similar to GMV portfolios for most covariance estimators.
For example, as we observed for the previous GMV experiments, the MV portfolios in Figure
7 also suffered from lack of information when Tw was too short and suffered from out-of-date
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Figure 8. MV portfolios: the average annualized (σi)Σ̃ versus required return q for each estimator when
To = 2 months and Tw = 3 years.

information when Tw was too long. This implies that the choice of window size Tw is very
important for the MV portfolio as well as the GMV portfolio. Moreover, each estimator shows
very similar shapes of curves for the GMV and the MV problems, except that the curves for
the MV problems tend to shift upward as q increases.

However, in contrast to the GMV problem, where most of the competitive estimators have
optimal Tw around 4 years, the optimal Tw for most estimators was around 3 years for the MV
problem (gray-colored vertical dot-dash lines indicate Tw = 3 years in Figure 7). This may
be because they have different out-of-sample periods: To = 1 month for the GMV problem in
Figure 4 and To = 2 months for the MV problem in Figure 7.

6.2.3. Effect of required portfolio return q. Figure 6(d) summarizes the results from
Figure 6(a) to Figure 6(c). As we can expect, the surfaces of (σi)Σ̃tikh

move upward as q

increases. For all the estimators Σ̃ with particular choices of To = 2 months and Tw = 3
years, Figure 8 also shows that (σi)Σ̃ gradually increases as q increases from 0% to 20%,
which explains a trade-off between risk and return from the MV portfolio.

6.2.4. Efficiency of portfolio. The mean-variance plot shows the efficiency of the MV
portfolios. Let (μi)Σ̃ denote the annualized mean of the realized portfolio returns in the ith
random choice of 100 stocks (i = 1, . . . , 20). In order to evaluate the portfolio efficiency by
each estimator, we compare the change of average (μi)Σ̃ versus the change of average (σi)Σ̃
with varying the required return q from 0% to 20%. Figure 9 presents the average of realized
means and standard deviations of all the estimators for the cases of To = 2 months and Tw = 1
year or 3 years. Curves to the left of and above the others correspond to the more efficient
portfolios.

When Tw = 1 year, where we have insufficient historical data, Σ̃tikh generates the most
efficient portfolios (see Figure 9(b)). The shrinkage estimators with a target of a single factor
like Σ̃s→m and Σ̃s→trun(k=1) are also efficient compared to other dynamic estimators. When

Tw = 3 years, where we have near optimal historical data, Σ̃tikh, Σ̃s→m, Σ̃RMT :repl, and Σ̃s→m

generate relatively efficient portfolios (see Figure 9(d)).
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Figure 9. MV portfolios: the average annualized (μi)Σ̃ versus average annualized (σi)Σ̃.

6.3. Comparison of GMV and MV portfolios. Now we observe how the covariance es-
timators affect the realized portfolio returns at every rebalancing point for the GMV and
the MV problems. For instance, Figure 10 shows the fluctuations of the portfolio returns by
Σ̃sample and Σ̃tikh at the first 100 rebalancing points when Tw = 3 years and To = 2 months.
While the annualized returns of the GMV portfolios fluctuate around 11%, the annualized
returns of the MV portfolios fluctuate around their required return q. Note that the GMV
mean return is greater than that for the MV portfolio with q = 0%. Similarly, the standard
deviations in Figure 4 are greater than the corresponding ones in Figures 7(a) and 7(b).

On the other hand, for both GMV and MV, the Σ̃tikh portfolios have greater mean return
and smaller variance than those from Σ̃sample, which implies more efficient portfolios. This
result is consistent with the plots of means versus standard deviations in Figure 9.

6.4. Risk prediction. Laloux et al. [29] showed empirically that their estimator Σ̃RMT :repl

predicts the risk more accurately than Σ̃sample. They simply divided the dataset into two equal
time periods for in-sample and out-of-sample periods and compared the estimated standard
deviation (wT Σ̃w)

1
2 from (1.1) to the realized standard deviation (σi)Σ̃ for the out-of-sample

period. They assumed perfect prediction for means of stock returns as we did in section 6.2.

We evaluate the accuracy of the risk prediction of each covariance estimator in a similar
way. However, rather than following their equal division of in-sample and out-of-sample
periods, we varied Tw with To = 2 months, and we simulated the rebalancing scenario as
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(b) MV with q = 0%
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Figure 10. GMV and MV portfolios: the annualized portfolio returns at the rebalancing points for the
GMV and the MV problems with different required returns q.

in section 6.2. Finally, we compute the relative difference between the average estimated
standard deviations from (1.1) and the average realized standard deviations for the most
competitive estimators.

Figure 11 shows the relative difference for the cases of Tw = 1 and 3 years, which correspond
to the case of insufficient historical data and the minimizer of average (σi)Σ̃. The realized
standard deviations were greater than the estimated standard deviations for all estimators.
However, it turns out that Σ̃tikh has the smallest difference for both cases, giving us the best
risk prediction.

7. Conclusion. In this study, we applied Tikhonov regularization to improve the covari-
ance matrix estimate used in the Markowitz portfolio selection problem. We put the previous
covariance estimators in a common framework based on the filtering function φ2(λi) for the
eigenvalues of Corrs[r(t)]. The Tikhonov estimator Σ̃tikh attenuates smaller eigenvalues more
intensely, which is a key difference between it and the other filter functions.

In order to choose an appropriate Tikhonov parameter α that determines the intensity
of attenuation, we formulated an optimization problem minimizing the difference between
Corrs[εz(t)] and IN based on the assumption that the unsystematic factors are uncorrelated.

We performed empirical experiments to evaluate covariance estimators. For the GMV
portfolio selection problem, the Tikhonov choice gave the smallest average standard deviation
of the return when the out-of-sample period was 3 or 4 years, and it was not much worse than
competitors for other periods. The choice of parameter was relatively stable. For the MV
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Figure 11. MV portfolios: the relative differences between average estimated risks and average realized risks
by each covariance matrix with varying different required returns q.

portfolio selection problem, the Tikhonov choice was among the most efficient portfolios and
the best estimates of risk. Moreover, the Tikhonov estimator performs relatively well in the
circumstance of insufficient historical data. We believe that this parameter selection method
is quite promising relative to previously proposed methods.

Acknowledgments. We are grateful for the comments of the associate editor and the
referees, who provided additional references and suggestions to make the presentation clearer
and the experiments more convincing.

REFERENCES

[1] M. S. Bartlett, Tests of significance in factor analysis, Br. J. Psych. Stat. Sec., 3 (1950), pp. 77–85.
[2] C. Bengtsson and J. Holst, On portfolio selection: Improved covariance matrix es-

timation for Swedish asset returns, in 31st Meeting of the Euro Working Group
on Financial Modeling, Agia Napa, Cyprus, 2002; also available online from
http://hermes-mba.cc.ucy.ac.cy/conferences/ewgfm/papers/bengtsson holst 20021004.pdf.

[3] M. J. Best and R. R. Grauer, On the sensitivity of mean-variance-efficient portfolios to changes in
asset means: Some analytical and computational results, Rev. Financ. Stud., 4 (1991), pp. 315–342.

[4] R. B. Cattell, The scree test for the number of factors, Mult. Behav. Res., 1 (1966), pp. 245–276.
[5] L. K. C. Chan, J. Karceski, and J. Lakonishok, On portfolio optimization: Forecasting covariances

and choosing the risk model, Rev. Financ. Stud., 12 (1999), pp. 937–974.
[6] V. K. Chopra, C. R. Hensel, and A. L. Turner, Massaging mean-variance inputs: Returns from

alternative global investment strategies in the 1980s, Management Sci., 39 (1993), pp. 845–855.
[7] V. K. Chopra and W. T. Ziemba, The effect of errors in means, variances, and covariances on optimal

portfolio choice, J. Portfolio Management, 19:2 (1993), pp. 6–11.
[8] T. Conlon, H. J. Ruskin, and M. Crane, Random matrix theory and fund of funds portfolio optimi-

sation, Phys. A, 382 (2007), pp. 565–576.
[9] G. Connor and R. A. Korajczyk, A test for the number of factors in an approximate factor model, J.

Finance, 48 (1993), pp. 1263–1291.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

960 SUNGWOO PARK AND DIANNE P. O’LEARY

[10] V. DeMiguel, L. Garlappi, F. J. Nogales, and R. Uppal, A generalized approach to portfolio
optimization: Improving performance by constraining portfolio norms, Management Sci., 55 (2009),
pp. 798–812.

[11] V. DeMiguel, L. Garlappi, and R. Uppal, Optimal versus naive diversification: How inefficient is
the 1/N portfolio strategy?, Rev. Financ. Stud., 22 (2009), pp. 1915–1953.

[12] V. DeMiguel and F. J. Nogales, Portfolio selection with robust estimation, Oper. Res., 57 (2009),
pp. 560–577.

[13] E. J. Elton and M. J. Gruber, Estimating the dependence structure of share prices—implications for
portfolio selection, J. Finance, 28 (1973), pp. 1203–1232.

[14] G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust.
Appl. Math. Ser. B Numer. Anal., 2 (1965), pp. 205–224.

[15] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good
ridge parameter, Technometrics, 21 (1979), pp. 215–223.

[16] L. Guttman, Some necessary conditions for common-factor analysis, Psychometrika, 19 (1954), pp. 149–
161.

[17] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992),
pp. 561–580.

[18] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images: Matrices, Spectra, and Filtering,
SIAM, Philadelphia, 2006.

[19] P. C. Hansen and D. P. O’Leary, The use of the L-curve in the regularization of discrete ill-posed
problems, SIAM J. Sci. Comput., 14 (1993), pp. 1487–1503.

[20] R. J. Hanson, A numerical method for solving Fredholm integral equations of the first kind using singular
values, SIAM J. Numer. Anal., 8 (1971), pp. 616–622.
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