
Mini-CCNx: Fast Prototyping for Named Data Networking

Carlos M. S. Cabral, Christian Esteve Rothenberg, Maurício Ferreira Magalhães
Faculty of Electrical and Computer Engineering (FEEC)
University of Campinas (UNICAMP), São Paulo, Brazil

{cabral,chesteve,mauricio}@dca.fee.unicamp.br

ABSTRACT

Experimental research in Information-Centric Networking
(ICN) is crucial to the evaluation of new architectural pro-
posals that bring named pieces of content as the main el-
ement of networks. This paper presents a new fast proto-
typing tool for the NDN (Named Data Networking) model,
Mini-CCNx, that aims at filling an existing gap in gen-
erally available experimental platforms. Using container-
based emulation and resource isolation techniques, Mini-
CCNx appears as a flexible, scalable, high-fidelity, and low-
cost tool that enables rich experimentation with hundreds
of emulated NDN nodes in a commodity laptop.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network com-
munications

Keywords

ICN, NDN, CCN, emulation, prototyping, routing

1. INTRODUCTION AND GOALS
Experimentally driven research in Information-Centric Net-

working (ICN) is crucial to the evaluation of open research
issues in this area, such as routing protocols, forwarding
strategies, caching techniques, content-centric application
development and so on. During our research journey on
new forwarding strategies and probabilistic state reduction
techniques for NDN core nodes, we faced an existing gap in
feature-rich, generally available experimental tools (cf. Table
1). We could not find a low-cost, scalable, high-fidelity, and
sufficiently flexible experimental platform to carry in-depth
evaluation of diverse and customizable NDN scenarios. The
lack of a tool combining all desired factors and the lessons
learned with OpenFlow prototyping motivated the develop-
ments of Mini-CCNx.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ICN’13, August 12, 2013, Hong Kong, China.
ACM 978-1-4503-2179-2/13/08.

Table 1: Summary of NDN experimentation tools.
Simulators Testbeds Emulators

Ex: ndnSIM/ccnSim Testbed NDN Mini-CCNx

Flexibility High Low High
Scalability High Low High

Cost Low High Low
Realism No Yes Yes
Ease of

Medium Low High
Config.

Link
Yes

With
Yes

config. restrictions

2. MINI-CCNx ARCHITECTURE
Mini-CCNx is a fork1 of Mininet-HiFi [4] –originally pro-

posed for OpenFlow networks– augmented with several classes
and mechanisms to build NDN environments based on the
project’s official code base [6]. Mini-CCNx uses container-
based emulation (CBE), a lightweight OS-level virtualiza-
tion technique. Each container allows groups of processes
to have independent views of system resources, such as pro-
cess IDs, file systems and network interfaces while still using
the same kernel. Each container is a NDN node, with its
own network namespace, virtual network interfaces, NDN-
specific data structures (PIT, FIB, and CS) implemented
by the ccnd daemon, and repositories as implemented by
the ccnr daemon. These nodes are connected to each other
using virtual Ethernet links in the kernel space. One major
challenge Mini-CCNx faces is related to performance isola-
tion and the effectiveness of isolation techniques to limit the
resources available for each node and link to guarantee high-
fidelity results. To this end, Linux cgroups [3] are used to
limit CPU bandwidth for each node. Mini-CCNx also adds

1Available at: https://github.com/carlosmscabral/mn-ccnx

Figure 1: Three NDN nodes connected using Mini-
CCNx containers

R
T

T
 (

m
s
)

of Hops

No delay
5ms

10ms
50ms

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

(a) RTT vs # hops for varying link delays

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5 6

D
o
w

n
lo

a
d
 t

im
e
 (

s
)

of Hops

Without caching
With caching

(b) Average download time vs # hops

B
a
n
d
w

id
th

 (
K

b
p
s
)

Time (s)

Content Objects - Real
Content Objects - Mini-CCNx

Interests - Real
Interests - Mini-CCNx

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35

(c) BW comparison with real testbed

Figure 2: Coherence and fidelity analysis

memory limits, a relevant subject for NDN when it comes
to content caching and FIB/PIT scalability. Finally, using
tc, it is possible to configure several link properties such as
bandwidth, delay, and packet loss. Figure 1 illustrates the
CBE and isolation features used by Mini-CCNx.

3. PERFORMANCE AND FIDELITY
We evaluate Mini-CCNx’s fidelity and performance using

a low-cost hardware, largely available to most researchers
and students.2 The CCNx version used in all cases is 0.7.0.
We analyse the following performance dimensions: (i) scala-
bility, (ii) coherence, (iii) fidelity, and (iv) isolation. A more
detailed analysis can be found in the Mini-CCNx technical
report [1].
1) Scalability. Mini-CCNx performs really well, being able
to instantiate hundreds of nodes in different topology ar-
rangements (linear, mesh) in a relatively short time (e.g.
about 5 minutes for 1536 NDN nodes in a linear topology).
2) Coherence. We focus now on how coherent are the
results with regards to experiment parameters such as link
delay, bandwidth, and number of hops. For this analysis, we
investigate two simple NDN scenarios. In the first one, we
measure the RTT using ccnping [6] for varying hop numbers
and link delay values (Fig. 2(a)). As expected, the RTT in-
creases linearly with the number of hops. For different link
delay values, the RTT behavior is consistent. For example,
under 10 ms link delay and for 2 hops, the ping takes 20
ms upstream, plus 20 ms downstream, plus some processing
time per node. In the second scenario, the average down-
load time of a 100MB file was measured for different hop
distances. Two sub-cases were analysed: (1) no-caching,
where Interest messages go all the path until the producer,
and (2) caching, where a first download of the file popu-
lates node caches along the path, and then a second request
may retrieve pieces of content from the caching nodes (de-
fault caching configuration of CCNx was used). As shown in
Fig. 2(b) (with 95% CI), download times increase for larger
distances between client and producer. We can also observe
the expected effects of caching, where the download time
benefits from the amount of cached content in the nodes
closer to the client.
3) Fidelity. As a first assessment on how Mini-CCNx is
able to reproduce real experiments with high-fidelity, we use
a simple topology with two real desktops and native ccnx

installations directly connected via FastEthernet interfaces.

2All the tests were done on a laptop with a typical configu-
ration (Intel Core I5 2410M processor with 4GB RAM).

Using the ccntraffic [2] generator, the first desktop con-
stantly sends Interest messages asking for different contents
while the second desktop answers with 1024-bytes Content
Objects. The same scenario was reproduced using Mini-
CCNx, with 100Mbps and a delay of 200 µs as link param-
eters. Figure 2(c) shows the Interest and Content Objects
(Data) traffic for both cases. Note that the bandwidth con-
sumption in Mini-CCNx follows very closely the real deploy-
ment behavior.
4) Isolation. A thorough isolation analysis can be found
in [1], where we show that the correct resource allocation
using cgroups greatly reduces the effects of the interference
faced by the emulation system (e.g., influence of cross-traffic
on PING RTT measurements).

4. CONCLUSION
Mini-CCNx offers an experimenter-friendly emulation en-

vironment that includes many configuration options (e.g.,
topology, link parameters, FIB manipulation, CCNx apps)
in addition to a GUI and available NDN software artefacts
(e.g., NDNVideo, OSPFN). As detailed in [1], we have been
able to reproduce (with great fidelity) several results from
the NDN literature [5, 7]. We believe that developers and
researchers may benefit from Mini-CCNx for fast prototyp-
ing purposes and to gain early insights on application and
protocol behavior prior to costly and complex testbed de-
ployments.

5. REFERENCES
[1] C. Cabral, C. Esteve Rothenberg, and M. Magalhaes.

Mini-CCNx Tech Report TR-001-Mini-CCNx.
http://github.com/carlosmscabral/mn-ccnx/wiki/Publications ,
Aug. 2013.

[2] CCNx Traffic. CCNx: traffic generation - Wiki.
http://wiki.arl.wustl.edu/onl/index.php/CCNx:_traffic_generation.

[3] cgroups. Linux Control Groups.
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.

[4] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments using
container-based emulation. CoNEXT ’12, page 253, 2012.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard. Networking named
content. In CoNEXT ’09, Dec. 2009.

[6] Named Data Networking. NDN Github Repository.
https://github.com/named-data, April 2013.

[7] NDN Project. NDN Technical Reports.
http://www.named-data.net/techreports.html.

http://github.com/carlosmscabral/mn-ccnx/wiki/Publications
http://wiki.arl.wustl.edu/onl/index.php/CCNx:_traffic_generation
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.named-data.net/techreports.html

	Introduction and Goals
	Mini-CCNx Architecture
	Performance and Fidelity
	Conclusion
	References

