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Abstract This paper presents a novel approach to swarm navigation that combines

hierarchical abstractions, flocking behaviors, and an efficient collision avoidance

mechanism. Our main objective is to keep large groups of robots segregated while

safely navigating in a shared environment. For this, we propose the Virtual Group

Velocity Obstacle, which is an extension of the Velocity Obstacle concept for groups

of robots. By augmenting velocity obstacles with flocking behaviors and hierarchi-

cal abstractions, we are able to navigate robotic swarms in a cohesive and smooth

fashion. A series of simulations and real experiments were performed and the results

show the effectiveness of the proposed approach.

1 Introduction

The use of large groups of robots in the execution of complex tasks has received

much attention in recent years. Generally called Robotic Swarms, these systems em-

ploy a large number of simpler agents to perform different types of tasks, oftentimes

inspired by their biological counterparts.

A basic requirement for most robotic swarms is the ability for safe navigation

in shared environments, i.e., the ability of moving to specific goals while avoiding

collisions with obstacles, teammates, and other groups. A desired property in this

case is to keep robots close to their kins and avoid merging with other groups. This

is called segregation and, as discussed previously [17], is a phenomenon that is seen

in several biological systems.

This paper presents a novel approach to swarm navigation that keeps large groups

of robots segregated while safely navigating in a shared environment. Our approach

consists of extending the concept of Velocity Obstacles [10] with flocking behaviors
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and hierarchical abstractions. Basically, Velocity Obstacles define the set of robot

velocities that would result in a collision between the robot and an obstacle mov-

ing at a given velocity. We first augment this concept with flocking behaviors [23],

which enables different robot groups to avoid collisions and navigate in a cohe-

sive fashion using global perception. But when we restrict the robot’s perception

to a smaller area, this approach is unable to keep groups segregated. To solve this

problem, we employ hierarchical abstractions [12]: we consider a group of robots

as a single entity and make individual robots avoid velocities that would result in

collisions with this entity, i.e., we prevent robots from mingling with other groups.

We call this approach Virtual Group Velocity Obstacles and we present a series of

experiments that show its capability of attaining our goal of safely navigating large

robotic groups while keeping them segregated.

This paper is organized as follows: Section 2 discusses related work in the field of

collision avoidance, swarm navigation, and hierarchical abstractions. The Velocity

Obstacle concept is presented in Section 3. Section 4 introduces our methodology

used to develop the Virtual Group Velocity Obstacle. Experimental results in simu-

lated and real environments are presented in Section 5, while Section 6 brings the

conclusion and directions for future work.

2 Related Work

One of the earliest works that considered the problem of controlling a swarm of

agents was presented by Reynolds [23] with the aim of realistically simulating a

flock of birds, known as boids. In that work, local interactions among agents within

a neighboring area define an emergent behavior for the whole flock. Such interac-

tions can be modeled as a special case of the social potential field method [22],

an extension of the classical artificial potential field technique [16] that specifically

deals with multi-agent systems.

The artificial potential field approach has been widely employed for controlling

multi-robot and swarm systems [24]. Moreover, many works have focused on its

use together with flocking principles in order to obtain specific behaviors, such as

area coverage [15], moving in formation [3], converging into shapes [8], shepherd-

ing [18], segregation [17], and so on. However, it is known that the method is not

oscillation-free and suffers from local minima, which is an intrinsic property that

can arise from the combination of potentials, specially in unknown environments.

Recent work on robot collision avoidance has provided methods that are guaran-

teed to be collision-free and oscillation-free [5, 14, 25], even under nonholonomic

constraints [2]. These methods rely on the concept of Velocity Obstacles [10], which

is an extension of the Configuration Space Obstacle [19] for a time-varying system.

A Velocity Obstacle defines the set of robot velocities that would result in a collision

between the robot and an obstacle moving at a given velocity. Thus, the robot per-

forms an avoidance maneuver at a specific time by selecting velocities that do not

belong to that set. This approach has been widely used and extended for multi-agent
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navigation [1, 5, 6, 14, 25], even when considering uncertainties in position, shape,

and velocity of the obstacles [11, 25]. An important extension was the development

of the Reciprocal Velocity Obstacle [6], which acknowledged that most works on

collision avoidance have not taken into account that obstacles’ motion may be af-

fected by the presence of the agent. That is, they have overlooked the reciprocity

that arises when those obstacles are in fact other agents that can also react according

to the robot’s behavior, which could lead to oscillations in the system.

A different hierarchical paradigm considers the whole group as a single entity,

sometimes called virtual structure [26], which effectively reduces the dimensional-

ity of the control problem. The desired behavior is assigned to this structure, which

implicitly controls the robotic swarm. Based on a mapping of the swarm’s config-

uration space to a lower dimensional manifold, whose dimension is independent of

the number of robots, a formal hierarchical abstraction that allows decoupled con-

trol of the pose and shape of a team of robots, was developed in [4]. This work

was extended in [21], to account for three dimensional swarms. Based on the for-

mer, a hierarchical cooperation mechanism between multiple unmanned aerial and

ground vehicles was developed [7], where UAVs are responsible for estimating the

configuration of the ground robots and for sending control messages to the groups.

In our previous work [12], we have shown that hierarchical abstraction paradigms

can be used in conjunction with simple collision avoidance techniques in order to

achieve complex behaviors for swarm systems. We proposed a mechanism that al-

lows large groups to deviate from each other during navigation and we have applied

it to the problem of traffic control. In the present paper, we propose a different ap-

proach. We take advantage of the robust collision avoidance techniques that have

been developed [6] and use them in conjunction with simple flocking rules and

hierarchical abstractions for swarm navigation. Specifically, our goal is to ensure

greater cohesion between robotic groups that navigate in the same workspace. That

is, robots in the same group must stay together while avoiding merging with distinct

groups. Henceforth, we denote this desired property as a segregative behavior.

3 Velocity Obstacles

Let A and B be two robots moving on the plane. Each robot i is fully actuated with

kinematic model given by ṗi = vi, where pi = [xi,yi]
T is its pose and vi its velocity.

The velocity obstacle VOA
B(vB) of B to A is defined as the set of all velocities vA that

will result in a collision among robots A and B at some instant in time [10]. More

precisely, we define λ (p,v) as a ray starting at p heading in the direction of v and

B⊕−A as the Minkowski sum of B and −A, where −A represents robot A reflected

about its reference point.

λ (p,v) = {p+ tv | t ≥ 0} (1)



4 Vinicius Graciano Santos, Mario F. M. Campos, and Luiz Chaimowicz

(a) (b)

Fig. 1 (a) The Velocity Obstacle VOA
B(vB). (b) The Reciprocal Velocity Obstacle RVOA

B(vB,va).

Given these definitions, we can say that a velocity vA ∈ VOA
B(vB) if and only if the

ray starting at pA heading in the direction vA −vB intersects B⊕−A. Therefore, the

full set of velocities that specifies a Velocity Obstacle can be denoted as:

VOA
B(vB) = {vA |λ (pA,vA −vB)∩ (B⊕−A) 6= /0}. (2)

This set has an interesting property: if A selects a velocity that is outside its Ve-

locity Obstacle induced by B, and if B maintains its current velocity, it is guaranteed

that a collision between them will not occur [10]. Figure 1(a) shows an example of

a Velocity Obstacle in a system with two circular robots. As it can be seen, VOA
B(vB)

is a cone with its apex at (vB).
When dealing with multi-robot systems, navigation based on the original Veloc-

ity Obstacle suffers from oscillation issues. In order to overcome this problem, a

new velocity is chosen such that it is the average of the robot’s current velocity

and a velocity that lies outside the Velocity Obstacle [6]. Formally, the Reciprocal

Velocity Obstacle is defined as:

RVOA
B(vB,vA) = {v′A |2v′A −vA ∈ VOA

B(vB)}. (3)

This new set contains all velocities that are the average of vA and a velocity within

VOA
B(vB), which can be seen as the cone VOA

B(vB) translated such that its apex lies at

the mean of vA and vB, as shown in Figure 1(b). Selecting the velocity which is clos-

est to the robot’s prior velocity and that also lies outside the set RVOA
B(vB,vA), guar-

antees a collision-free and oscillation-free navigation between a pair of robots [6].

Finally, in order to select inputs when dealing with Velocity Obstacles, an opti-

mization problem must be solved. Several different approaches have been proposed

in [5, 6, 10, 14, 25]. In the following section, we discuss how to couple flocking

behaviors with sampling-based velocity selection [6].
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4 Methodology

As mentioned, our main objective is to safely navigate large groups of robots in

a shared environment while maintaining segregation among groups. Our approach

consists of extending the concept of Reciprocal Velocity Obstacles with flocking

behaviors and hierarchical abstractions.

We consider that robots are assembled together into a set of groups Γ =Γ1∪Γ2∪
...∪ΓN , where ∀ j,k : j 6= k →Γj ∩Γk = /0. Let Φk ⊆Γk be the set of robots belonging

to group Γk that are within the neighborhood Ni, thus being perceived by robot i; and

p(Φk), v(Φk) be the average position and velocity of group Φk, respectively.

Flocking behaviors can be achieved by a set of simple rules defined among neigh-

boring robots [23]. Usually, robot controllers are derived by giving feedback on er-

rors, such as relative velocities and relative positions. In our approach, we extend the

velocity selection process presented in [6], which fast samples the set of admissible

velocities and selects the best one according to an utility function.

Let v
pref
i be the preferred velocity of robot i, such as the vector pointing at the

goal’s direction with magnitude that is equal to the maximum allowed speed. In

each iteration, velocities are sampled using a uniform distribution from the set of

admissible velocities AV i(vi), that comprises the possible new velocities given the

kinematic and dynamic constraints:

AV i(vi) = {v′i|‖v′i‖< vmax
i ∧‖v′i −vi‖< amax

i ∆ t}, (4)

where vmax
i and amax

i are the maximum speed and maximum acceleration of robot i,

respectively, and ∆ t is the time step of the system.

Ideally, the selected velocity vnew
i among the sampled set should lie outside the

union of all RVOs generated by other robots and VOs generated by dynamic and

static obstacles. However, as the environment may become crowded to the point that

no admissible velocities will exist, the algorithm is allowed to selected a velocity

that belongs to the generated set of Velocity Obstacles, but it is penalized by this

choice according to the following function:

vflock
i = v

pref
i +α(v(Φk)−vi)+β (p(Φk)−pi) (5)

Pi(v
′
i) =

w

ci(v′i)
+‖vflock

i −v′i‖, (6)

with i∈Γk, where α rules the convergence of the robot’s current velocity to its neigh-

bors’ average velocity, β is the weight that governs the behavior which makes robots

move toward the centroid of their neighboring agents, and w regulates the avoidance

behavior between sluggish and aggressive. Function ci(v
′
i) is the expected time to

collision, which is computed by solving the set of ray intersection equations induced

by (2), (3) and taking their minimum. Note that, by setting α = β = 0, the selection

approach is reduced to the original RVO method [6]. Thus, we select a new veloc-

ity vnew
i that minimizes the penalty function Pi over the sampled set of velocities

S ⊆ AV i(vi). Figure 2 exemplifies this sampling-based selection procedure.
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Fig. 2 Sampling-based velocity selection. Admissible velocities which were sampled are repre-

sented by small circles. The red sample is chosen as it minimizes the penalty function.

vnew
i = argmin

v′i∈S

Pi(v
′
i) (7)

Equation (5) is responsible for the flocking behavior, which can be achieved by

fine tuning its constants. For instance, there are triples of (α,β ,w) that can lead

robots into tightly aggregated groups. In these scenarios, groups moving in opposite

directions show an emerging segregative behavior. That is, they tend to smoothly

avoid each other without merging, as seen in Figure 3.

(a) Four groups.

(b) Ten groups.

Fig. 3 Simulated execution of the flocking algorithm with distinct groups moving in opposite

directions using global sensing.

As groups move toward each other, robots will try to select velocities that lie

outside of the combined RVOs induced by the other group. Since this group is tightly

packed, robots will select velocities that may lead them to avoid the group as a

whole. Given the reciprocity, the other group will select its velocities accordingly.
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Nevertheless, the same behavior cannot be guaranteed when dealing with a small

sensing neighborhood, since robots will not be able to predict incoming groups. In

this case, merging can occur if the robot is not able to correctly maneuver given its

current velocity. To account for this problem, we introduce a virtual Velocity Ob-

stacle that is responsible for blocking velocities which may lead to merging among

groups. Specifically, we denote this virtual obstacle as the Virtual Group Velocity

Obstacle (VGVO), which is shown in Figure 4.

The concept of VGVO is simple: each robot i senses the presence of every robot

j within a neighborhood Ni and builds the shape of each group of robots, but of

its own group. These shapes are considered as virtual obstacles in the workspace

of robot i that move with the average velocity of the respective group that has been

used in the building process. Hence, a virtual Velocity Obstacle can be built for each

shape in order to define the set of velocities that would lead the robot to merge with

a different group if the latter maintains its current average velocity.

Let R(pi) denote all the points that represent robot i in its workspace. Conse-

quently, the Virtual Group Velocity Obstacle of robot i induced by group Φk can be

defined as:

VGVOi
Φk
(v(Φk)) = {v′i |λ (pi,v

′
i −v(Φk))∩C(pi,Φk) 6= /0}, (8)

C(pi,Φk) = Shape(
⋃

j∈Φk

R(p j))⊕−R(pi), (9)

where Shape(Q) is the shape of the set of points Q, which could be represented as the

smallest enclosing disc, the convex hull or the more general class of α-shapes [9].

Equation (9) refers to the idea of the hierarchical abstraction paradigm presented

in Section 2, in which the whole group is considered as a single entity. In every iter-

ation, groups are abstracted into single entities that move according to their average

velocities. In this way, single robots navigate using the RVO in conjunction with the

VGVO, which guarantees a collision-free navigation among groups while maintain-

ing segregation. Furthermore, we can assume that groups will deviate from single

robots given the reciprocity of the RVO. Therefore, we can also specify a Virtual

Group Reciprocal Velocity Obstacle with the following definition:

VGRVOi
Φk
(v(Φk),vi) = {v′′i |2v′′i −vi ∈ VGVOi

Φk
(v(Φk))}. (10)

5 Experiments

To study the feasibility of the proposed approach, we executed a series of simula-

tions and real experiments1. For the simulations, we used Player/Stage [13], a well

known framework for robot programming and simulation. Real experiments were

performed with a dozen e-puck robots, a small-sized differential robot equipped with

1 a video showing the experiments is available at: http://www.youtube.com/watch?v=ylYMbwOduqg
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Fig. 4 The Virtual Group Velocity Obstacle VGVOi
Φk
(v(Φk)).

a ring of 8 IR sensors for proximity sensing and a DS-PIC processor. A bluetooth

wireless interface allows local communication among robots along with a remote

computer.

In all experiments, constants α , β , and w were set manually. When comparing the

behavior of different algorithms, these constants remain the same between execu-

tions. Additionally, the neighborhood area is defined as five times the robot’s radius

in experiments with restricted sensing. Furthermore, we assume that each robot has

the ability to map every other robot to its respective group.

5.1 Simulations

Figure 3 presents the execution of the flocking algorithm in a simulated environment

consisting of 100 virtual robots evenly distributed into four and ten groups that

move in opposite directions. Both simulations rely on global sensing, thus robots can

perceive each other regardless of their relative distances. Through visual inspection

we can see that, robots tend to remain segregated into homogeneous groups using

our approach.

When we restrict robot perception to a local sensing, the flocking approach alone

does not guarantee segregation, as shown in Figure 5(a). On the other hand, as de-

picted in Figure 5(b), the VGRVO is able to keep robots segregated even within a

local sensing scenario. In this case, the virtual obstacle was built upon the groups’

α-shape [9]. Thus, the addition of VGRVOs has led to a successful navigation while

maintaining the desired segregation property.

In a recent work [17], a formal way of measuring segregation among groups of

agents has been proposed. Two groups ΓA and ΓB are said to be segregated if the

average distance between robots in the same group is less than the average distance

between robots in distinct groups. Thus, the following restriction must hold
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(a) Flocking approach alone does not guarantee segregation.

(b) Virtual Group Reciprocal Velocity Obstacle.

Fig. 5 Simulated execution of the segregative behavior algorithm with distinct groups moving in

opposite directions using local sensing.

(dAA
avg < dAB

avg)∧ (dBB
avg < dAB

avg), (11)

where dAB
avg is the average distance between robots in group ΓA and ΓB.

Figure 6 depicts a comparative analysis about the emerging segregative behav-

iors using the proposed algorithms. For these simulations, a scenario consisting of

200 virtual robots evenly divided into two distinct groups was used. Initially, agents

were randomly positioned into a circular area according to a normal distribution.

After that, groups were ordered to swap their positions. Figures 6(a) and 6(b) show

the results for the original RVO approach and our flocking extension, respectively,

while relying on global sensing capabilities for all robots. As it can be seen, con-

straint (11) holds true for all time slices of the second simulation, which indicates

that a segregative behavior has emerged. On the other hand, since the RVO algo-

rithm tends to form merged lanes of moving robots during navigation, (11) will not

hold, as expected. This can be confirmed visually in Figure 6(a), as there exists in-

tersection points between the curve dAB
avg and one of the others. Figures 6(c) and 6(d)

compare our flocking algorithm without and with the use of VGRVO, respectively.

In these simulations, robots had their sensors capabilities constrained into a small

local neighborhood when compared to the size of their own group. Due to this re-

striction, groups were not able to remain segregated during navigation by means of

flocking only, since (11) did not hold for all time steps in Figure 6(c). However, the

use of VGRVOs under these conditions has shown to be effective for maintaining a

segregative behavior throughout the simulation, as shown in Figure 6(d).

Although our flocking mechanism can improve group navigation in terms of co-

hesion and symmetry, specially when dealing with multiple groups, such as in Fig-

ure 3(b), the system’s performance in terms of elapsed time may decrease. For in-

stance, in Figure 6, when curve dAB
avg reaches again its initial value, it means that both

groups have swapped their average positions. Hence, it is easy to see that robots us-

ing the original RVO approach have reached their goals faster than when applying

flocking. Intuitively, the loss in performance happens because the second and third
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Fig. 6 Segregative behavior analysis for 200 robots evenly distributed into two groups that swap

positions. (a) RVO with global sensing. (b) Flocking with global sensing. (c) Flocking with local

sensing. (d) VGRVO with local sensing.

terms of equation (5) may play a damping role. Furthermore, as neighbors get closer

to each other, robots will select safer velocities in order to avoid collisions, while

trying to maintain the flock. Thus, slower speeds will have higher priority during

the selection process.

5.2 Real Robots

Real experiments were conducted indoors using twelve e-puck robots. These ex-

periments are important in order to show the feasibility of the algorithm in real

scenarios, where all uncertainties caused by sensing and actuation errors may have

an important role on the results.

In these experiments, we used a swarm localization framework based on an over-

head camera and fiduciary markers for estimating robot’s pose and orientation. Also,

as the e-puck’s IR sensors have a very small range, we implemented a virtual sensor

based on the localization system to detect neighboring agents. In order to control the

differential drive robots, a damping term based on the current velocity was added

to (4) in order to achieve better stability. To account for nonholonomic constraints,

input velocities were transformed following the approach presented in [20].

Figure 7 shows snapshots from an execution of VGRVO with limited sensing

with two and four groups. We can visually inspect that the behaviors obtained with
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(a) Two robotic groups.

(b) Four robotic groups.

Fig. 7 Real execution of the VGRVO algorithm with different group sizes.

the real robots is pretty similar to the simulation results. In terms of segregation,

the average distances for two groups follow the trend showed in Figure 6(d) for

the simulated experiments: the average distance between robots in the same group

is always less than the average distance between robots in distinct groups. These

proof of concept experiments indicate that the algorithm can work well to coordinate

groups of real robots, allowing them to navigate while maintaining a segregative

behavior in an efficient way.

6 Conclusion

This paper presented an approach that ensures greater cohesion between robotic

groups that navigate in shared environments. That is, robots flock together with

their own group while remaining segregated from others. Our method does not rely

on any communication to achieve coordination and works in a distributed fashion.

We achieve flocking behaviors for robotic swarms using Velocity Obstacles by

choosing a proper utility function for selecting velocities. Results have shown that

segregative behaviors have emerged during our experiments. We realized that this

was not the case when dealing with restricted sensing capabilities. Therefore, we

introduced a novel concept: the Virtual Group Velocity Obstacle, which is a vir-

tual obstacle that is created in order to prevent aggregation between distinct robotic
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groups. The VGVO resembles ideas from the hierarchical abstraction paradigm,

where groups are abstracted into single entities with the aim of reducing the dimen-

sionality of the control problem. Several experiments were performed in simulated

and real scenarios, which demonstrated the effectiveness of the proposed approach.

Despite the good results, there is still room for improvement. For instance, Veloc-

ity Obstacle algorithms are well known for allowing high-speed navigation. How-

ever, our algorithm tends to prioritize slower speeds in order to maintain stable rel-

ative distances and velocities among robots. Furthermore, it is worth noting that the

use of VGVOs is only justifiable in constrained sensing conditions, since the cost

of computing the virtual shape for each group can scale up given larger sensing

neighborhoods. In addition, the conservative nature of the virtual obstacle may pre-

vent feasible velocities from being chosen, which given a larger sensing radius may

turn to be overly conservative. Finally, uncertainty models could be easily included

following the approach presented in [11, 25].

Future work will investigate improvements along these lines, as well as experi-

ments containing static and dynamic obstacles, other methods for selecting veloc-

ities, and different shape descriptors. We believe that velocity obstacle based al-

gorithms have the potential of being easily manipulated in order to couple simple

behavior rules. For example, by specifying velocity obstacles that block undesir-

able velocities, such as the VGVO for segregation. Further investigation may lead

to interesting results that shall further extend the velocity obstacle framework.
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