# Integration of Formal Theory and Quantitative Methods

Tara Slough

Methods Workshop

February 4, 2017

#### Links to Discussed Works

Click the titles below to link to electronic versions of these works.

Note: Links work as of 2/4/2017...

- Clarke and Primo (2007). "Modernizing Political Science: A Model Based Aproach"
- Clarke and Primo (2012). A Model Discipline
- Humphreys and Jacobs (2016). "Qualitative Inference from Causal Models"
- Eggers (2016). "Quality-Based Explanations of Incumbency Effects"
- López-Moctezuma (2016). "Sequential Deliberation in Collective Decision-making: The Case of the FOMC"

| Motivation |  |  |
|------------|--|--|
|            |  |  |

## Motivation

## Motivation

- "Fetishized" paper in political science (these days):
  - Some formalized theory (often decision or game theoretic), perhaps relegated to appendix
  - An empirical exercise identifying some type of ATE, ITT, LATE, or ATT, ideally related to the model
- But it is not clear that this research model is as natural of a fit as we may desire
  - What can we learn from the integration of formal models and quantitative methods?
  - Examine some more novel recent attempts to integrate the two.

## A Hypothetical Example

- Lots of foundational work in distributive politics/political economy on who gets the pork
  - Swing/core debate
  - Competitiveness or bias is the fundamental thing that drives distribution in many foundational models
- Say I also want to consider incumbent partisanship in this setting
  - Hard to randomize "partisanship" so let's do an RD
  - Forcing variable: Margin of victory
  - Forcing variable implies conditioning on competitiveness

## A Hypothetical Example, ctd.

• Effect of incumbent partisanship on some politically-motivated transfer in a pork-y place



## Hypothetical relationships-Identifiable by RDD?

• Given some (here hypothetical) theoretical relationship, can we actually generate an estimate of what we want to estimate via RDD?



| A Critique |  |  |
|------------|--|--|
|            |  |  |

## A Critique

## Hypothetico-Deductivism

- Dominant mode of research in our field
- Four steps described by Clarke and Primo (2012, 29):
  - () "Formulate some hypothesis or theory H"
  - "Deduce some prediction or observable claim P [testable implication] from H with other statements, i.e. initial conditions... and *ceteris paribus* clauses"
  - **③** "Test P" (experimentally or observationally)
  - Judge whether H is confirmed or disconfirmed depending on the nature of P and whether P turned out to be true or false"
    - Note difference between 'true' and 'false' and conventional hypothesis tests.

#### But...

Table reproduced from Clarke and Primo (2007, 745):

|                                                          | State 1           | State 2       |  |
|----------------------------------------------------------|-------------------|---------------|--|
| Assumptions                                              | True              | False         |  |
| Predictions                                              | True              | True/False    |  |
| Connections between<br>model and truth of<br>prediction: | Logical Necessity | None          |  |
| Informativeness of data analysis for "truth"             | Uninformative     | Uninformative |  |
| Table 1                                                  |                   |               |  |

• View models as neither true or false; judge based on "usefulness"

## Theoretical + Empirical Models

- Theoretical model (typically general)
- Empirical model  $\Rightarrow$  not the theoretical model with an error term!
  - Some basis in theory
  - Features of the data
- As such we are employing two different models, not necessarily testing one
- Usefulness criteria is rather vague; typology of uses of theoretical/empirical models in the book version

|  | DAGs and Formal Models |  |
|--|------------------------|--|
|  |                        |  |

#### DAGs and Formal Models

#### DAGs and Formal Models

- DAGs may be useful in mapping causal theories (formal models) into implied empirical models
- Humphreys and Jacobs (2016/in progress) provides first treatment that I have seen
- Some question about what should be mapped into a DAG:
  - Extensive form (+ solution concept)
  - Equilibrium conditions
- Simple model proposed by Humphreys and Jacobs/associated DAGs

## Model

- Nature determines:
  - Freedom of the press:  $X \in \{0,1\}$
  - Whether government is sensitive  $S \in \{0,1\}$
- Government chooses to engage in corruption not
- Press reports or doesn't report on corruption
- Voters remove or don't remove the government from office
- Utilities realized

## Mapping to DAG

#### Reflects SPNE solution concept



Lower DAG: Backwards induction in a game with 3 players with one move each

Figure 3

## "Lower Level" Theory

In principle, DAG is not specific to the specific actors, actions, or utilities of the game:



Still lower: Backwards induction, 3 player game with one move for each player

Figure 4

#### Implications

- Yes, you can map a model into a DAG
- Can we then use the DAG for identification analysis?
  - Perhaps-is adjustment criterion satisfied?
  - (Are the treatment, outcome, and all members of the adjustment set measurable?)
  - What do testable implications tell us about the DAG? About the formal model based on the DAG?

|  | Application 1 |  |
|--|---------------|--|
|  |               |  |

## Application 1

## Eggers (2016)

- Cottage industry of RDD papers on incumbency (dis)advantage
  - Conflicting results-advantage in some places, disadvantage in others-remains "puzzling"
- Argument about "selection into marginality"
  - All candidates in an RD bandwidth are marginal (by definition)
  - If marginal candidates are stronger (resp. weaker) than the pool, there will be quality-based incumbency advantage or disadvantage
- Contribution:
  - There is always selection into marginality on the basis of:
    (a) electoral selection; or (b) asymmetries in the distribution of candidate quality

#### Decision Theoretic Model

- Two parties,  $p \in \{a, b\}$
- Voter *i*'s utility for party *p*:



• Voter votes for *a* if:

$$heta_a - heta_b + v_i(a) - v_i(b) + \gamma(I_a - I_b) > 0$$

- Assume  $v_i(p) \sim U[-0.5, 0.5]$
- From best response, vote share for A in election t is:

$$V_t = \frac{1}{2} + \theta_{at} - \theta_{bt} + \gamma (I_{at} - I_{bt})$$

## Mapping to the RDD

• Following Lee (2008), we can express the LATE,  $\tau$  as:

$$\tau = \lim_{V_t \to 0.5^+} \mathbb{E}[V_{t+1}|V_t] - \lim_{V_t \to .5^-} \mathbb{E}[V_{t+1}|V_t]$$

• Define  $p_w$  as the proportion of marginally-elected candidates that run

$$p_w \equiv rac{1}{2} (\lim_{V_t o 0.5^+} \mathbb{E}[I_{a,t+1} - I_{b,t+1} | V_t] - \lim_{V_t \Rightarrow .5^-} \mathbb{E}[I_{a,t+1} - I_{b,t+1} | V_t])$$

• Combining the expressions from the past two slides (algebra suppressed):

$$\tau = 2(\bar{\theta}_I - \bar{\theta}_C + \gamma p_w)$$

## Three Implied Mechanisms

(Schematic by Eggers, colored boxes by me)



Figure 5

#### Results

- Focus only on differential rates of replacement by winning/losing status,  $p_w$  and  $p_l$  from last slide
  - Symmetry in the pdf of candidate quality,  $g(\theta)$ , in an open seat contest is sufficient for the assumption that marginal winners of open seat winners have the same average quality of the candidate pool.
  - If candidates are drawn from some non-degenerate  $g(\theta)$ , then there can be balance on quality following open-seat elections or following winners of open-seat elections, but not both.
    - Follows from a straightforward (but not obvious) application of Bayes' rule-see proof in manuscript
- Indicates quality differences persist even under the literature's favorite "scare-off" mechanism

#### Results-binary case

•  $g(\theta) \sim \text{Bernoulli}(q)$ , where q is  $\Pr(\theta = \text{"strong"})$ 



## Discussion

- Provides a unifying theoretical approach to multiple existing studies
- Utilities are general across races (regardless of margin of victory)
- But, **theoretical results** are scoped to the RDD bandwidth
  - Is this satisfying?
  - Nice example of empirically-motivated deductive theory
  - Hard to distinguish between mechanisms empirically

|  |  | Application 2 |
|--|--|---------------|
|  |  |               |

## Application 2

## López-Moctezuma (2016)

- What is the effect of deliberation (the process) on collective decision making?
- Many models of deliberation, scant empirical evidence because it's hard to do!
- Specifies a theoretical model of deliberation
- Uses minutes from the Federal Open Market Committee (FOMC) at the Fed to compute a structural model
- Compares model fit from his theory to existing theories to justify this approach

#### Model

- Nature specifies inflation state ω<sub>t</sub> ∈ {0,1} (low or high); unobserved to committee members
- T monetary policy meetings, indexed t = 1, ..., T
- *N* committee members at each meeting offering policy recommendation  $r_{it} \in \{0, 1\}$  to chairman
- Chairman proposes a policy directive (on interest rates),  $d_t \in \{0,1\}$
- Utilities to committee members:

$$u_i(d_t, \omega_t) = \begin{cases} 0 & \text{if } \omega_t = d_t \\ -\pi_i & \text{if } \omega_t = 1, d_t = 0 \\ -(1 - \pi_i) & \text{if } \omega_t = 0, d_t = 1 \end{cases}$$

## Sequence

- Inflation state  $\omega_t$  released; Order of speech exogenously given to FOMC members
- Ø Member *i* forms belief:
  - Common prior:  $\rho_t \equiv Pr[\omega_t = 1]$
  - Private signal:  $s_{it}|\omega_t \sim \mathcal{N}(\omega_t, \sigma_i^2)$
  - History of recommendations:

 $x_{n(i)_t,t} = (r_{1,t}, ..., r_{n(i)_t-1,t}) \in \{0,1\}^{n(i)_t-1}$ 

- **3** Strategy for member *i* is mapping  $\gamma(s_{it} = Pr(r_{it} = 1|s_{it});$  equilibrium strategies as cutpoints
- Chairman observes private signal and  $s_{Ct}$  and full vector of reports  $x_{Ct} = (r_{1t}, ..., r_{Nt})$  and makes policy directive  $d_t$

## Equilibrium

- Equilibrium cutpoint,  $s_{it}^*$ , above which  $r_{it} = 1$  and  $r_{it} = 0$  otherwise
  - Relatively "ugly," but follows straightforwardly from normal pdf
- With cutoff pinned,  $s^*_{it}$  we can write the probability of  $r_{it}=1$  given the state  $\omega_t$
- With this probability, we can calculate "value" of deliberation for each member-which comes from the signals in preceding reports
- Construct likelihood of observing the full vector of recommendations at a meeting, *t* (includes Chairman's recommendation)

## Structural Estimation

- Goals:
  - Simulate counterfactuals, i.e. what is the value of deliberation?
  - Comparison across theoretical models (vis a vis earlier models of FOMC behavior)
- Data from FOMC meeting minutes
- Using STAN–Bayesian approach seems novel
- Model is done sequentially at every meeting *t* on the basis of speaking order
- Think in terms of two loops:
  - Inner loop: computes equilibrium condition  $\rightarrow$  likelihood
  - Outer loop: Given likelihood function, estimate posterior distribution of parameters

## Value of Deliberation $\rightarrow$ Clarification

Main result is on value of deliberation, calculated:

- No deliberation condition:
  - Define equilibrium cutpoint  $s_{it}^{**}$  as a function of only bias  $(\pi_i)$ , expertise  $(\sigma_i)$ , and the prior  $\rho_t$
- Deliberation condition:
  - Define equilibrium cutpoitn s<sup>\*</sup><sub>it</sub> as in model, incorporating above parameters as well as history of recommendations (x<sub>it</sub>) and pivotality consideration PIV<sup>i</sup><sub>t</sub>
- Value of deliberation is the probability that decision w/ deliberation  $\neq$  decision w/o deliberation
  - Odd quantity because the histories are of different lengths depending on enforced but not randomly assigned order

#### Results

• Simulated value of deliberation + posterior IQR



#### Results 2

• Correlates of value of deliberation; right panel is counterintuitive to me



Figure 8

## Discussion

- Innovative application of structural estimation
- Model is in some ways quite simple, scoped quite tightly to the data
  - What is the scope for such models in political science generally?
- To what extent is the model comparison helpful?
- Samii (2016) endorses pushing structural estimation further in political science
- Seems like STAN makes such models somewhat easier(?) than conventional methods of structural estimation