Integration of Formal Theory and Quantitative Methods

Tara Slough
Methods Workshop

February 4, 2017

Links to Discussed Works

Click the titles below to link to electronic versions of these works.
Note: Links work as of 2/4/2017...

- Clarke and Primo (2007). "Modernizing Political Science: A Model Based Aproach"
- Clarke and Primo (2012). A Model Discipline
- Humphreys and Jacobs (2016). "Qualitative Inference from Causal Models"
- Eggers (2016). "Quality-Based Explanations of Incumbency Effects"
- López-Moctezuma (2016). "Sequential Deliberation in Collective Decision-making: The Case of the FOMC"

Motivation

Motivation

- "Fetishized" paper in political science (these days):
(1) Some formalized theory (often decision or game theoretic), perhaps relegated to appendix
(2) An empirical exercise identifying some type of ATE, ITT, LATE, or ATT, ideally related to the model
- But it is not clear that this research model is as natural of a fit as we may desire
- What can we learn from the integration of formal models and quantitative methods?
- Examine some more novel recent attempts to integrate the two.

A Hypothetical Example

- Lots of foundational work in distributive politics/political economy on who gets the pork
- Swing/core debate
- Competitiveness or bias is the fundamental thing that drives distribution in many foundational models
- Say I also want to consider incumbent partisanship in this setting
- Hard to randomize "partisanship" so let's do an RD
- Forcing variable: Margin of victory
- Forcing variable implies conditioning on competitiveness

A Hypothetical Example, ctd.

- Effect of incumbent partisanship on some politically-motivated transfer in a pork-y place

Figure 1

Hypothetical relationships-Identifiable by RDD?

- Given some (here hypothetical) theoretical relationship, can we actually generate an estimate of what we want to estimate via RDD?

A Critique

Hypothetico-Deductivism

- Dominant mode of research in our field
- Four steps described by Clarke and Primo (2012, 29):
(1) "Formulate some hypothesis or theory H^{\prime} "
(2) "Deduce some prediction or observable claim P [testable implication] from H with other statements, i.e. initial conditions... and ceteris paribus clauses"
3 "Test P" (experimentally or observationally)
(4) "Judge whether H is confirmed or disconfirmed depending on the nature of P and whether P turned out to be true or false"
- Note difference between 'true' and 'false' and conventional hypothesis tests.

But...

Table reproduced from Clarke and Primo (2007, 745):

	State 1	State 2
Assumptions	True	False
Predictions	True	True/False
Connections between model and truth of prediction:	Logical Necessity	None
Informativeness of data analysis for "truth"	Uninformative	Uninformative
	Table 1	

- View models as neither true or false; judge based on "usefulness"

Theoretical + Empirical Models

- Theoretical model (typically general)
- Empirical model \Rightarrow not the theoretical model with an error term!
- Some basis in theory
- Features of the data
- As such we are employing two different models, not necessarily testing one
- Usefulness criteria is rather vague; typology of uses of theoretical/empirical models in the book version

DAGs and Formal Models

DAGs and Formal Models

- DAGs may be useful in mapping causal theories (formal models) into implied empirical models
- Humphreys and Jacobs (2016/in progress) provides first treatment that I have seen
- Some question about what should be mapped into a DAG:
- Extensive form (+ solution concept)
- Equilibrium conditions
- Simple model proposed by Humphreys and Jacobs/associated DAGs

Model

- Nature determines:
- Freedom of the press: $X \in\{0,1\}$
- Whether government is sensitive $S \in\{0,1\}$
- Government chooses to engage in corruption not
- Press reports or doesn't report on corruption
- Voters remove or don't remove the government from office
- Utilities realized

Mapping to DAG

Reflects SPNE solution concept

Lower DAG: Backwards induction in a game with 3 players with one move each

Figure 3

"Lower Level" Theory

In principle, DAG is not specific to the specific actors, actions, or utilities of the game:

Still lower: Backwards induction, 3 player game with one move for each player

Figure 4

Implications

- Yes, you can map a model into a DAG
- Can we then use the DAG for identification analysis?
- Perhaps-is adjustment criterion satisfied?
- (Are the treatment, outcome, and all members of the adjustment set measurable?)
- What do testable implications tell us about the DAG? About the formal model based on the DAG?

Application 1

Eggers (2016)

- Cottage industry of RDD papers on incumbency (dis)advantage
- Conflicting results-advantage in some places, disadvantage in others-remains "puzzling"
- Argument about "selection into marginality"
- All candidates in an RD bandwidth are marginal (by definition)
- If marginal candidates are stronger (resp. weaker) than the pool, there will be quality-based incumbency advantage or disadvantage
- Contribution:
- There is always selection into marginality on the basis of: (a) electoral selection; or (b) asymmetries in the distribution of candidate quality

Decision Theoretic Model

- Two parties, $p \in\{a, b\}$
- Voter i's utility for party p :

$$
u_{i}(p)=\underbrace{\theta_{p}}_{\text {Quality }}+\underbrace{v_{i}(p)}_{\text {Party valuation }}+\gamma \underbrace{I_{p}}_{\text {Incumbent }}
$$

- Voter votes for a if:

$$
\theta_{a}-\theta_{b}+v_{i}(a)-v_{i}(b)+\gamma\left(I_{a}-I_{b}\right)>0
$$

- Assume $v_{i}(p) \sim U[-0.5,0.5]$
- From best response, vote share for A in election t is:

$$
V_{t}=\frac{1}{2}+\theta_{a t}-\theta_{b t}+\gamma\left(I_{a t}-I_{b t}\right)
$$

Mapping to the RDD

- Following Lee (2008), we can express the LATE, τ as:

$$
\tau=\lim _{V_{t} \rightarrow 0.5^{+}} \mathbb{E}\left[V_{t+1} \mid V_{t}\right]-\lim _{V_{t} \Rightarrow .5^{-}} \mathbb{E}\left[V_{t+1} \mid V_{t}\right]
$$

- Define p_{w} as the proportion of marginally-elected candidates that run

$$
\begin{array}{r}
p_{w} \equiv \frac{1}{2}\left(\lim _{V_{t} \rightarrow 0.5^{+}} \mathbb{E}\left[I_{a, t+1}-I_{b, t+1} \mid V_{t}\right]-\right. \\
\left.\lim _{V_{t} \Rightarrow .5^{-}} \mathbb{E}\left[I_{a, t+1}-I_{b, t+1} \mid V_{t}\right]\right)
\end{array}
$$

- Combining the expressions from the past two slides (algebra suppressed):

$$
\tau=2\left(\bar{\theta}_{l}-\bar{\theta}_{C}+\gamma p_{w}\right)
$$

Three Implied Mechanisms

(Schematic by Eggers, colored boxes by me)

Figure 5

Results

- Focus only on differential rates of replacement by winning/losing status, p_{w} and p_{l} from last slide
- Symmetry in the pdf of candidate quality, $g(\theta)$, in an open seat contest is sufficient for the assumption that marginal winners of open seat winners have the same average quality of the candidate pool.
- If candidates are drawn from some non-degenerate $g(\theta)$, then there can be balance on quality following open-seat elections or following winners of open-seat elections, but not both.
- Follows from a straightforward (but not obvious) application of Bayes' rule-see proof in manuscript
- Indicates quality differences persist even under the literature's favorite "scare-off" mechanism

Results-binary case

- $g(\theta) \sim \operatorname{Bernoulli}(q)$, where q is $\operatorname{Pr}(\theta=$ "strong" $)$

Discussion

- Provides a unifying theoretical approach to multiple existing studies
- Utilities are general across races (regardless of margin of victory)
- But, theoretical results are scoped to the RDD bandwidth
- Is this satisfying?
- Nice example of empirically-motivated deductive theory
- Hard to distinguish between mechanisms empirically

Application 2

López-Moctezuma (2016)

- What is the effect of deliberation (the process) on collective decision making?
- Many models of deliberation, scant empirical evidence because it's hard to do!
- Specifies a theoretical model of deliberation
- Uses minutes from the Federal Open Market Committee (FOMC) at the Fed to compute a structural model
- Compares model fit from his theory to existing theories to justify this approach

Model

- Nature specifies inflation state $\omega_{t} \in\{0,1\}$ (low or high); unobserved to committee members
- T monetary policy meetings, indexed $t=1, \ldots, T$
- N committee members at each meeting offering policy recommendation $r_{i t} \in\{0,1\}$ to chairman
- Chairman proposes a policy directive (on interest rates), $d_{t} \in\{0,1\}$
- Utilities to committee members:

$$
u_{i}\left(d_{t}, \omega_{t}\right)= \begin{cases}0 & \text { if } \omega_{t}=d_{t} \\ -\pi_{i} & \text { if } \omega_{t}=1, d_{t}=0 \\ -\left(1-\pi_{i}\right) & \text { if } \omega_{t}=0, d_{t}=1\end{cases}
$$

Sequence

(1) Inflation state ω_{t} released; Order of speech exogenously given to FOMC members
(2) Member i forms belief:

- Common prior: $\rho_{t} \equiv \operatorname{Pr}\left[\omega_{t}=1\right]$
- Private signal: $s_{i t} \mid \omega_{t} \sim \mathcal{N}\left(\omega_{t}, \sigma_{i}^{2}\right)$
- History of recommendations:

$$
x_{n(i)_{t}, t}=\left(r_{1, t}, \ldots, r_{n(i)_{t}-1, t}\right) \in\{0,1\}^{n(i)_{t}-1}
$$

(3) Strategy for member i is mapping $\gamma\left(s_{i t}=\operatorname{Pr}\left(r_{i t}=1 \mid s_{i t}\right)\right.$; equilibrium strategies as cutpoints
(4) Chairman observes private signal and $s_{C t}$ and full vector of reports $x_{C t}=\left(r_{1 t}, \ldots r_{N t}\right)$ and makes policy directive d_{t}

Equilibrium

- Equilibrium cutpoint, $s_{i t}^{*}$, above which $r_{i t}=1$ and $r_{i t}=0$ otherwise
- Relatively "ugly," but follows straightforwardly from normal pdf
- With cutoff pinned, $s_{i t}^{*}$ we can write the probability of $r_{i t}=1$ given the state ω_{t}
- With this probability, we can calculate "value" of deliberation for each member-which comes from the signals in preceding reports
- Construct likelihood of observing the full vector of recommendations at a meeting, t (includes Chairman's recommendation)

Structural Estimation

- Goals:
- Simulate counterfactuals, i.e. what is the value of deliberation?
- Comparison across theoretical models (vis a vis earlier models of FOMC behavior)
- Data from FOMC meeting minutes
- Using STAN-Bayesian approach seems novel
- Model is done sequentially at every meeting t on the basis of speaking order
- Think in terms of two loops:
- Inner loop: computes equilibrium condition \rightarrow likelihood
- Outer loop: Given likelihood function, estimate posterior distribution of parameters

Value of Deliberation \rightarrow Clarification

Main result is on value of deliberation, calculated:

- No deliberation condition:
- Define equilibrium cutpoint $s_{i t}^{* *}$ as a function of only bias $\left(\pi_{i}\right)$, expertise $\left(\sigma_{i}\right)$, and the prior ρ_{t}
- Deliberation condition:
- Define equilibrium cutpoitn $s_{i t}^{*}$ as in model, incorporating above parameters as well as history of recommendations ($\mathrm{x}_{i t}$) and pivotality consideration PIV ${ }_{t}^{i}$
- Value of deliberation is the probability that decision w/ deliberation \neq decision w/o deliberation
- Odd quantity because the histories are of different lengths depending on enforced but not randomly assigned order

Results

- Simulated value of deliberation + posterior IQR

Figure 7

Results 2

- Correlates of value of deliberation; right panel is counterintuitive to me

Figure 8

Discussion

- Innovative application of structural estimation
- Model is in some ways quite simple, scoped quite tightly to the data
- What is the scope for such models in political science generally?
- To what extent is the model comparison helpful?
- Samii (2016) endorses pushing structural estimation further in political science
- Seems like STAN makes such models somewhat easier(?) than conventional methods of structural estimation

