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Endowing 3D objects with realistic surface appearance is a challenging and

time-demanding task, as real-world surfaces typically exhibit a plethora of

spatially variant geometric and photometric detail. Not surprisingly, com-

puter artists commonly use images of real-world objects as an inspiration

and a reference for their digital creations. However, despite two decades

of research on image-based modeling, there are still no tools available for

automatically extracting the detailed appearance (microgeometry and tex-

ture) of a 3D surface from a single image. In this article, we present a novel

user-assisted approach for quickly and easily extracting a nonparametric

appearance model from a single photograph of a reference object.

The extraction process requires a user-provided proxy, whose geometry

roughly approximates that of the object in the image. Since the proxy is

just a rough approximation, it is necessary to align and deform it so as to

match the reference object. The main contribution of this work is a novel

technique to perform such an alignment, which enables accurate joint re-

covery of geometric detail and reflectance. The correlations between the

recovered geometry at various scales and the spatially varying reflectance

constitute a nonparametric appearance model. Once extracted, the appear-

ance model may then be applied to various 3D shapes, whose large-scale

geometry may differ considerably from that of the original reference ob-

ject. Thus, our approach makes it possible to construct an appearance li-

brary, allowing users to easily enrich detail-less 3D shapes with realistic

geometric detail and surface texture.
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1 INTRODUCTION

Today’s high-end computer games and motion picture special ef-

fects require creating highly detailed 3D models with photoreal-

istic appearance. Modeling such objects from scratch is extremely

difficult and time consuming even for expert modelers. This is par-

ticularly true for complex objects with irregular shapes and visu-

ally interesting fine-scale detail. Not surprisingly, computer artists

commonly use images of real-world objects to serve as an inspi-

ration and a reference for their digital creations. This is greatly

assisted by the ubiquity of digital imagery of just about any con-

ceivable object and the ability to quickly find an image exhibiting

a desired object appearance on the Internet.

However, despite the considerable amount of research dedicated

to image-based modeling of geometry and appearance, it is still not

feasible to automatically extract a fully detailed realistic 3D object

model from a single image: state-of-the-art automatic computer

vision methods still rely on a variety of simplifying assumptions,

which may not hold in practice.

Creating a fully detailed object model is difficult; however, pro-

ducing a coarse, rough 3D shape is a much easier task. With cur-

rently available interactive modeling tools, an experienced mod-

eler can create a rough shape, such as the smooth fire hydrant and

R2D2 models in Figure 1, very quickly and effortlessly. Alterna-

tively, in some cases, a coarse model can be found in a repository

of 3D models. However, enriching the coarse model with medium-

and fine-scale geometric deformations and displacements, as well

as a realistic surface texture, is a challenging and daunting task

even for professionals, and may involve a combination of several

sophisticated modeling and texturing tools. For example, it would

take an experienced modeler about 3 hours to create a model sim-

ilar to the one shown on the right of Figure 1 using existing com-

mercial tools.

In this article, we focus on this last challenging and time-

consuming step. We address both the process of extracting a non-

parametric appearance model from a photograph and the process

of applying such a model to a target 3D shape. For the extraction

process, we assume that the user has chosen a photo of a reference

object that exhibits the desired appearance, and that he or she has

created or obtained a rough geometric source proxy approximating

this object (e.g., in Figure 1 on the left). We use this proxy to recover

the geometric detail exhibited by the reference object at multiple

scales, jointly with a detailed spatially variant reflectance texture.

Since the source proxy is just a coarse approximation of the ref-

erence object’s geometry, it is first necessary to register the source

proxy with the reference object by aligning and nonrigidly deform-

ing the proxy shape. This registration paves the way for accurate
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Fig. 1. Assisted by a rough 3D proxy, our approach can extract the geometric and photometric appearance of a fire hydrant from a single photo (left) and

transfer it to a new target shape (R2-D2 from Star Wars).

joint recovery of geometric detail and diffuse reflectance by en-

hancing the state-of-the-art method of Barron and Malik (2015).

The recovered geometric details, the diffuse reflectance texture,

and the correlations between the two constitute our nonparamet-

ric appearance model.

Given a detail-less target shape we can now transfer the ex-

tracted appearance model to this shape, yielding a richly detailed

3D model, whose fine-scale appearance greatly resembles that ex-

hibited by the reference object (as shown in Figure 1 on the right).

We first transfer a medium-scale geometric deformation field, and

use the result to transfer fine-scale displacements and reflectance

in a geometry-correlated manner. We demonstrate that such bi-

scale appearance transfer is effective even when the target shape

is significantly different from that of the original reference object.

In summary, our contributions are the following:

• A novel method for aligning and deforming a coarse 3D

proxy to match a 2D image of the reference object.

• Leveraging the aligned proxy to enhance the performance of

Barron and Malik’s method (2015) for simultaneous extrac-

tion of illumination, shape, and reflectance, and introducing

a novel bi-scale deformation representation.

• A new two-step method for geometry-correlated transfer of

appearance extracted from the reference object in a single 2D

image to a new 3D target shape.

The first two contributions pave the way for constructing a use-

ful appearance library. As a proof of concept, Figure 14 will later

demonstrate a small library with five different categories of real-

istic materials (stone, metal, wood, fabric, and bread). The avail-

ability of such libraries, along with our bi-scale appearance trans-

fer technique, would allow users to easily enrich new 3D shape

models with medium- and fine-scale geometric deformations and

displacements, as well as realistic surface texture.

2 RELATED WORK

Image-based 3D modeling. Much work has been done over the

years on creating textured 3D models from photographs. An early

example is the pioneering Façade system (Debevec et al. 1996)

for creating an architectural model, typically from multiple pho-

tographs of a building, with many follow-ups in research and com-

mercial products (Oliveira 2002). Oh et al. (2001) developed a set of

tools for fitting a 3D model to a photograph and used the bilateral

filter to decouple the illumination from uniformly textured areas,

making it possible to perform texture replacement.

More recent and relevant examples include Zheng et al. (2012),

who fit objects with cuboid proxies, and the 3-Sweep system (Chen

et al. 2013) that offers an intuitive UI for fitting generalized cylin-

ders to objects. The applicability of these approaches is limited to

objects having suitably restricted geometry.

Kholgade et al. (2014) fit a stock 3D model to an object in a

single image to perform 3D manipulations on that object. Since the

stock model cannot be expected to match the object, considerable

user assistance is necessary to perform geometric alignment: the

user specifies a set of pairwise point correspondences between the

image and the model. Once the model is aligned, the environment

illumination is estimated, and the object’s texture is recovered. A

somewhat more automated approach that uses model collections

is described by Rematas et al. (2017).

The preceding techniques are better suited for modeling the

large-scale geometry of man-made objects, and they model the ap-

pearance using color textures recovered from the image (with or

without accounting for illumination). In contrast, our goal is to ex-

tract a visually complex appearance model that may be transferred

to new shapes, which may be rather different from that of the ref-

erence object. Importantly, our model captures fine geometric de-

tails (at two different scales), in addition to the diffuse reflectance

texture.

Model to image fitting. Kraevoy et al. (2009) create new mod-

els through deforming 3D templates to fit manually generated

2D contour drawings. Somewhat similarly, we utilize coarse 3D

proxies, which are deformed to align with edges in input photos.

Like Kraevoy et al. (2009), we also use a hidden Markov model

(HMM) (Rabiner 1989) to compute the optimal point correspon-

dences between 3D vertices and 2D edge pixels. However, we solve

a much more challenging problem, as automatically detected im-

age edges are much noisier, more fragmented, and more ambigu-

ous than the clean contour drawings used in Kraevoy et al. (2009).

Xu et al. (2011) automatically deform a 3D candidate from an

available set of candidate models to fit a photographed object

under the guidance of silhouette correspondence. As shown by

Kholgade et al. (2014), the alignments resulting from Xu et al.

(2011) are not exact enough to support precise appearance recov-

ery. Su et al. (2014) and Huang et al. (2015) recover the geometry

of an object from a single image by leveraging shape collections,
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an approach that is currently viable only for a limited set of object

classes for which such collections are currently available. Further-

more, Huang et al. (2015) fit a model to an image by combining

together different parts of the shapes in the collection, which re-

quires the shapes to be segmented. This works well for models of

man-made objects, such as furniture, but is not well suited for more

general and less regular objects, such as some of the reference ob-

jects in our examples.

Wang et al. (2016) develop a pipeline for transporting texture

from images of real objects to 3D models of similar objects. Their

key assumptions include that the reference object has homoge-

neous part-level textures and a similar 3D model that has been

segmented into parts is available. In contrast, we do not make such

assumptions and instead extract an appearance model that may

be then applied to a variety of different shapes; furthermore, our

model includes medium- and fine-scale geometric deformations in

addition to reflectance.

Geometry and appearance of real objects may be captured si-

multaneously using an RGBD camera. The challenges in such a

process are rather different from our scenario: overcoming noisy

depth data and imprecise camera poses. These challenges have

been tackled by refining the 3D reconstruction using shape-from-

shading (see Wu et al. (2014) and Yu et al. (2013)), and by using

joint optimization of camera poses and geometry (see Wu et al.

(2016) and Zhou and Koltun (2014)). Our setting is different in that

we reconstruct from a single image and use a coarse proxy, rather

than a sequence of depth maps.

Image-based material editing and modeling. Several meth-

ods support replacing the material of an object in an image. Fang

and Hart (2004) and Zelinka et al. (2005) synthesize a texture across

the surface of an object in an image by using surface normals re-

covered via shape-from-shading to guide the synthesis. Diamanti

et al. (2015) also use example-based texture synthesis to replace the

texture of an object in an image but rely on user-provided annota-

tions both inside the target image region and on the texture exem-

plars. Khan et al. (2006) infer the shape and surrounding lighting

of a object in a photograph and render its appearance with altered

material. Xue et al. (2008) model the reflectance of weathered sur-

face pixels in a photograph as a manifold and use it for editing

the weathering effects in the image. All of these approaches only

recover partial aspects of appearance to modify the appearance

of a particular object in the context of the original input image,

whereas our goal is to extract an appearance model that may then

be used to create stand-alone detailed 3D models.

Various tools are also proposed for recovering the microgeom-

etry and reflectance of materials from a single input image. For

example, Dischler et al. (2002) and Wang et al. (2003) describe in-

teractive methods for modeling bump and displacement maps. The

AppGen system (Dong et al. 2011) enables the user to extract a ma-

terial (diffuse albedo map, bump map, and a spatially varying spec-

ular coefficient) from a single image of a roughly planar surface

lit by directional lighting. Our method also recovers appearance

models (geometric details at two scales and diffuse albedo map)

for different materials, but the only assistance required from the

user is to provide a relatively coarse proxy approximating the vis-

ible part of an object of interest in the image. Our goals are similar

to those of AppGen, but our approach is not limited to nearly pla-

nar surfaces, and the extracted nonparametric appearance model

may be applied to objects with rather different shapes.

Intrinsic image decomposition. These techniques factor an

image into a product of reflectance and shading. The problem

is severely ill-posed and thus requires strong assumptions (Horn

1986) or user assistance (Bousseau et al. 2009) to be solved. Barron

and Malik (2015) unify intrinsic decomposition and shape-from-

shading techniques and recover, from a single image of an object,

its shape, diffuse reflectance, and illumination. This decomposi-

tion is highly ambiguous, as the same pixel color may be explained

by an infinite number of combinations of these three components.

Several rather restrictive priors are therefore employed in Barron

and Malik (2015). For example, the object shape is assumed to be

smooth (bend rarely), the distribution of orientations is assumed to

be isotropic, and the normals on the object’s contour are assumed

to be perpendicular to the view direction. These assumptions of-

ten result in significant deviations from the actual object shape,

which in turn yields incorrect estimates of the underlying shape

and the reflectance across its surface. Furthermore, the shape

smoothness prior prevents the faithful extraction of fine-scale geo-

metric details, which are crucial for a realistic appearance of 3D

models.

We adopt Barron’s approach in our appearance extraction step

(Section 5.1). However, instead of relying on general shape priors,

we assume that a coarse geometric proxy is available, which can

be either modeled very quickly by an experienced modeling soft-

ware user or obtained from an online 3D repository. We show that

after properly aligning and deforming the coarse proxy with the

object in the image, we can extract the medium- and fine-scale ge-

ometry, as well as the spatially varying albedo map, much more

accurately.

Example-based texture synthesis. A complete literature re-

view of example-based texture synthesis methods is outside the

scope of this work, and we refer the reader to the excellent survey

by Wei et al. (2009). Here, we use nonparametric texture synthe-

sis to synthesize the extracted displacement fields and diffuse re-

flectance textures on the target proxy. To obtain realistic results,

we extend the method of Mertens et al. (2006), where the synthe-

sis is guided by the correlation with a geometric feature field ex-

tracted from the source and target shapes. However, in contrast to

Mertens et al. (2006), we transfer bi-scale geometric detail in addi-

tion to the diffuse reflectance texture. Furthermore, since the initial

level of the target shape’s geometric detail may differ from that of

the source shape, we perform the geometric detail transfer in two

subsequent stages, where the result of the first stage enables the

correlations used to guide the synthesis during the second stage.

Due to our use of state-of-the-art texture optimization techniques

in the second stage, our approach is able to cope with more struc-

tured and less homogeneous textures, as demonstrated in Figure 1.

Boneel et al. (2010) also apply example-based guided texture

synthesis on simple 3D proxies. The goal is to render natural land-

scape scenes without the needs of creating detailed 3D landscape

models. That work is not concerned with capturing and transfer-

ring the appearances of real reference objects.
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Fig. 2. Given a photograph of a reference object (a) and an initial coarse 3D proxy (b), we first deform the proxy (c) to align with the object in the photo

and then extract a medium-scale deformation (d) and a fine-scale displacement (e). These geometric details, together with the extracted diffuse reflectance,

form a nonparametric appearance model (f), which can be easily transferred to new 3D shapes in the bottom row: detail-less target shapes (g) and (j), after

geometric detail transfer (h) and (k), and after diffuse reflectance transfer (i) and (l).

3 OVERVIEW

The goal of our work is to develop a new tool that would enable

users to easily endow a 3D shape with richly detailed realistic ap-

pearance extracted from a photograph of a reference object. More

specifically, assuming that the reference object exhibits some inter-

esting geometric surface details (deformations and displacements),

and a natural color texture (diffuse reflectance map), we would like

to learn a nonparametric appearance model that captures both, as

well as the correlation between the appearance and various higher-

level geometric features. Once such a model is learned, it can be

applied to new object shapes as well.

As mentioned earlier, we employ a coarse 3D proxy to facilitate

the extraction of the appearance model. Figure 2(a) and (b) show a

reference object photograph along with a suitable proxy as an ex-

ample. To make use of the coarse proxy, we must first register and

align it with the object image (Figure 2(c)). This is a challenging

task, as the proxy can be quite coarse and may have different part

scales. Our solution to this problem is our main technical contri-

bution, described in detail in Section 4.

Having aligned and deformed the proxy to better fit the ref-

erence object in the image, we apply an enhanced version of

Barron and Malik’s algorithm (2015) to extract the illumination,

the diffuse reflectance, and the depth map of the reference object,

as described in Section 5.1. The resulting depth map provides a

much more detailed and accurate shape approximation of the ob-

ject’s visible part than the aligned proxy. To make the extracted

geometric and photometric details transferable to other models,

we further extract a two-stage deformation between the aligned

proxy and the detailed depth map: a medium-scale deformation

followed by a fine-scale displacement field. The two-scale deforma-

tion (Figure 2(d) through (e)) together with the diffuse reflectance

constitute our nonparametric appearance model (Figure 2(f)); see

Section 5.2.

Finally, Section 6 describes how, given a coarsely modeled tar-

get shape, we apply the extracted appearance model to this object,

which yields a deformed 3D model with detailed displacement and

reflectance maps (Figure 2(g)), thereby completing our modeling

pipeline. More examples are shown in Section 7.

4 PROXY ALIGNMENT

To properly guide the appearance extraction using the initial

coarse proxy Pinit , we first need to position and deform Pinit so that

its 2D projection aligns well with the visible part of the reference

object in the image. Our alignment process attempts to match the

edges of Pinit with the salient object image edges. To minimize

undesirable distortions to Pinit , a global rigid transformation is

applied first, followed by a nonrigid deformation defined by a set

of per-vertex displacements. The global transformation is derived

from an edge-saliency potential field (Section 4.1) combined

with edge point correspondences (Section 4.2). The subsequent

nonrigid deformation is obtained via a constrained optimization

(Section 4.3).

4.1 Edge-Saliency Potential Field

To align Pinit with the dominant features in the input image, we

first use structured forests (Dollár and Zitnick 2013) to extract an

edge map (Figure 3(b)). The edge map assigns an edge response

value si ∈ [0, 1] to each pixel pi , indicating the likelihood that pi

is located on a salient edge.

Since the extracted edges are generally fragmented, directly

pairing them with edges of Pinit is prone to error. To alleviate this

problem, we extend the edge map to a scalar edge-saliency poten-

tial field (Figure 3(c)) over the image space, such that (1) the field

has smaller values (blue) at areas closer to an edge to attract edges

of Pinit , and (2) the more salient an edge is, the smaller the field

values in its vicinity so that the proxy can align with dominant
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Fig. 3. Given an input image (a), we generate an edge map (b) with edge

response values predicted using Dollár and Zitnick (2013), which yields

our scalar edge-saliency potential field (c) as defined in Equation (1).

features. Formally, we define the edge-saliency potential field F
at each pixel pi as

F (pi ) = min
j ∈E

(
‖pi − pj ‖2 + ω (1 − sj )2

) 1
2 , (1)

where E denotes the set containing the indices of edge pixels, and

the positions of all pixels are normalized into [−0.5, 0.5]. The pa-

rameter ω balances the influence of the distance and edge saliency

and is set to 0.1 by default.

4.2 Correspondence Search

Our experiments show that the edge potential field can robustly

guide the registration of the 3D proxy, especially when the ini-

tial alignment is poor (e.g., see Figure 5). However, it is difficult

to precisely control the edge-to-edge alignment due to the diffu-

sion of field values. To address this limitation, we augment the

field-based alignment with pointwise correspondences. In other

words, we first uniformly sample vertices along the sharp edges of

Pinit , which can be easily detected based on local curvatures, espe-

cially for coarse CAD models. Next, for each vertex whose projec-

tion into the image is visible, we search for its best-matching edge

pixel in the nonmaximal suppression edge map (Figure 3(b)). As in

our edge-saliency potential field, here the saliency of edge pixels

is also used to assist in the matching process, as described in the

following.

To automatically compute the optimal point correspondences,

an HMM (Kraevoy et al. 2009; Rabiner 1989) is applied. The

HMM emission probability is computed using the matching score

S (v̄i ,pj ) between a projected edge vertex v̄i and an edge pixel pj :

P (v̄i |pj ) ∝ e
− 1

2S2 (v̄i ,pj ) . (2)

The matching score should be high if (1) the projected vertex

v̄i is close to pj , (2) the projected edge orientation at v̄i and the

detected edge orientation at pj are similar, and (3) the saliency at

Fig. 4. Comparison of point correspondence strategies: (a) HMM cor-

respondences computed by Kraevoy et al. (2009); (b) HMM correspon-

dences when accounting for edge saliency and distance continuity; (c) our

HMM correspondences, accounting for edge saliency, distance continu-

ity, and orientation consistency; see improved correspondences inside blue

rectangles.

pj is high. We hence empirically define the score as

S (v̄i ,pj ) =
sa

j |t
T
i tj |

‖v̄i − pj ‖b
, (3)

where sj is the saliency at pj , and the unit vectors ti and tj de-

note the orientations of the edges at v̄i and pj , respectively. Two

constant parameters are set to a = 0.7 and b = 0.5 by default.

Since the automatically detected image edges are generally

noisy and fragmented, both distance continuity and orientation

consistency are considered when computing the HMM transition

probability:

P (pj |pj−1) ∝ e
− (1−dj /di )2

2σ 2 e
−

(1−t
T
i

tj )2

2σ 2 , (4)

where di = ‖v̄i − v̄i−1‖, dj = ‖pj − pj−1‖, and σ = 5 by default.

The HMM problem is solved using the Viterbi algorithm

(Rabiner 1989), giving us consistent matches between edge ver-

tices on the proxy and edge pixels in the image (Figure 4).

4.3 Optimizing the Pose and Shape of 3D Proxy

Armed with the edge-saliency potential field and the pointwise

correspondences, we can now optimize Pinit ’s pose and shape to

achieve the best alignment with the reference object. To evaluate

how well Pinit ’s projection aligns with the image edges, the data

term accumulates the total field values along the projected visible

edges and the sum of distances between the corresponding match-

ing points:

Ed (P ) =
∑

i ∈V
(F (v̄i ))2 + ‖v̄i −M (vi )‖2, (5)

where V is the set containing the indices of detected visible edge

vertices on Pinit , andM (vi ) are the edge pixels corresponding to

v̄i , determined as described earlier (Section 4.2).

To best align the proxy Pinit , we first search for a rigid transfor-

mation T (rotation and translation) that minimizes the preceding

data term. Note that here we assume that the input image is cap-

tured by a perspective camera with known focal length.1 Thus,

the size of the projection may be adjusted through the distance

1For photos taken with unknown focal lengths, a default value is used. As a result,
the aligned proxy model may subject to perspective distortion, but this does not have
a strong impact on our goal of nonparametric appearance model extraction.
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Fig. 5. Optimizing the pose and shape of a coarse 3D proxy (a). Casually placing the proxy with different initial positions and orientations, shown as red,

green, and blue wireframes in (b), the resulting rigid (c) and nonrigid (d) transformations based on point correspondences defined in Kraevoy et al. (2009) fail

to properly register the proxy. In comparison, our rigid transformations (e) can noticeably improve the proxy registration from different initial placements

(b). The alignment is further improved through nonrigid deformation of proxy edges (f).

between Pinit and the camera. To compute the optimal transfor-

mation, we minimize the following objective function:

T = argmin
T

Ed (T (P )). (6)

Once the optimal rigid transformation is found, we further

deform Pinit using nonrigid deformation to match the observed

edges. This is done by minimizing both the data term Ed and an

as-rigid-as-possible term Es (Sorkine and Alexa 2007). The latter

shape-preserving term is necessary since Ed is only defined on

visible edge vertices. The deformation of other vertices is con-

strained by Es , which attempts to maintain the original shape of

Pinit :

Es =
∑

i ∈M

∑

j ∈N (i )

wi j ‖ (vi −vj ) − Ti (v ′i −v
′
j )‖2, (7)

where {vi } are the deformed 3D vertices of Pinit and {v ′i } are the

original untransformed ones, M denotes the set containing all ver-

tex indices in Pinit , and N (i ) the set containing vertices connected

to vi . The transformation Ti is local within the neighboring set

N (i ), and wi j is the cotangent weight (Meyer et al. 2003). In ad-

dition, we can optionally enforce the flatness of selected planar

surfaces by

Ep =
∑

i ∈M

‖vi − Proj (vi )‖2, (8)

where Proj (vi ) is its projection on the PCA plane computed from

all vertices on the planar surface and is updated at each iteration.

The aligned proxy Palign is initialized to T (Pinit ) and then fur-

ther deformed by minimizing the following objective function:

Palign = argmin
P

(
Ed (P ) + Es (P ) + Ep (P )

)
. (9)

The preceding optimization is solved using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal and Wright

2006).

4.4 Experimental Validation

We performed several experiments to test the sensitivity of our

proxy alignment method to the initial placement (position and

orientation) of the proxy. The results of one such experiment is

shown in Figure 5. The same proxy was placed in several different

positions and orientations (shown in the wireframe in Figure 5(b)).

These different initial placements yield nearly the same registered

proxy, as shown in Figure 5(e) through (f). In contrast, Kraevoy’s

method (2009) shows more sensitivity to the initial placement

Fig. 6. Aligning an image object with a progressively refined set of 3D

proxies (shown in the left column). The initial poses (green), rigid align-

ments (blue), and the final nonrigid deformations (red) of these proxies

are shown in the second column. The zoom-in regions with only the fi-

nal deformation results are shown in the right two columns for easier

examination.

(Figure 5(c) and (d)). Figure 7 shows the results of a quantitative

stress test using a different image with nine significantly different

initial proxy positions and orientations. Once again, the final

nonrigid alignment results are nearly identical, except when the

initial placement is extremely poor.

We also tested the sensitivity of our method to the accuracy of

the proxy. The method was applied to a sequence of progressively

finer proxies of the stone chair (shown in the leftmost column

of Figure 6). It may be seen that although the simplest proxy,

consisting of merely two boxes, is too coarse, slightly more

detailed proxies result in a satisfactory alignment and registration

(second and third rows). Interestingly, the most refined proxy

(bottom row) yields a less satisfactory result. A quantitative test

using a different reference image is shown in Figure 8. In our
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Fig. 7. Stress test for initial proxy placements, which reports the average alignment error for the visible proxy edges (on the right, using pixel units) for various

initial proxy placements. The alignment error is computed with respect to manually defined ground truth edges, shown on the left. The qualitative results

are shown in the middle with colors that correspond to the error plot lines. One failure case is shown at the second row, where our HMM correspondences

are partially wrong due to the extreme deviation of the initial placement (black).

Fig. 8. Aligning an image object with a progressively finer set of 3D proxies (initial poses shown in green). The detected edge map and our computed

edge-saliency potential field are shown in the second row of Figure 3, guiding the rigid alignment (shown in blue) and nonrigid deformation (shown in red)

of proxies. Even the very coarse initial proxy on the left is successfully aligned. The alignment errors are plotted on the right, using colors corresponding to

those of the disks next to each of the four proxies.

experience, for good results, the proxy should capture the main

large-scale geometric parts of the object in the image, such as the

arm rests of the stone chair. Trying to model geometric features

that do not manifest themselves as highly salient edges in the

image is unnecessary and, in fact, could prove counterproductive,

as evidenced by the results of the finest proxies in Figures 6 and 8.

5 APPEARANCE EXTRACTION

Having a 3D proxy Palign aligned with the reference object in im-

age I, we next extract a joint geometric-photometric appearance

model, which can be applied to other objects. The process starts

with recovering a depth map Z and a reflectance map R for the

reference object’s visible part (Section 5.1). This is followed by the

extraction of the appearance model that consists of two parts: (1) a

medium-scale deformation field Dm and (2) a fine-scale displace-

ment field Df and the correlated reflectance map R (Section 5.2).

5.1 Detail Recovery

Following Barron and Malik’s SIRFS method (2015), we assume

that the object surface in the input photograph is Lambertian

and represent the input image as I = R + S(Z, L), where I is the

log-image of the input, R is the log-reflectance image, and S is

a shading function that generates the log-shading image of the

depth map Z under the low-frequency illumination L, represented

using a small number of spherical harmonics. Accordingly, the

depth map Z and the illumination L can be computed using the

following optimization (Barron and Malik 2015):

(Z, L) = argmin
Z,L

д(I − S(Z, L)) + f (Z) + h(L), (10)

where д, f , and h are cost functions or priors for reflectance,

geometry, and lighting, respectively.

Differently from SIRFS, which focuses on recovering large-scale

geometry and smooth reflectance without a proxy, our method is

based on a well-aligned large-scale proxy Palign and focuses on re-

covering reflectance and finer geometric details. We thus apply en-

hanced cost functions for reflectance and geometry.

Reflectance priors. For reflectance, our cost function д(R) con-

sists of three terms:

д(R) = λeдe (R) + λaдa (R) + λrдr (R), (11)
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Fig. 9. Intrinsic decomposition results (top row: Z; bottom row: R) obtained using different approaches for an input photograph (a). Without using a proxy,

the original SIRFS method outputs overly smooth Z and noisy R (b). More geometric details are recovered using our approach and a 3D proxy (b, c).

Nevertheless, when the imprecise alignment obtained using Kraevoy et al. (2009) (the green one in Figure 5(c), which is the best of the three) is used,

artifacts show up along sharp edges in both Z and R (b). These artifacts are not present in our approach (d); see zoomed-in views for a better comparison.

where дe and дa are the parsimony and absolute priors that we

inherit from SIRFS with weight parameters λe , λa , and λr . The

former expects a small number of different reflectance values in the

input image, whereas the latter constrains the reflectance values

following a learned model; please refer to Barron and Malik (2015)

for details. Here дr is a novel Retinex prior, which replaces the

smooth prior used in SIRFS, as the latter assumes that reflectance

is piecewise constant and does not hold for object surfaces with

rich textures. Instead, our Retinex prior дr assumes that in each

local region, pixels with similar chromaticity values have similar

reflectance. Accordingly, it is defined as

дr (R) =
∑

i

∑

j ∈N (i )

α (ci , c j ) | |Ri − Rj | |2, (12)

where N (i ) is a 5 × 5 window centered at pixel i , ci , and c j are

chromaticities of pixels i and j, and Ri and Rj are their reflectances.

We set the weight function α (ci , c j ) = e−‖ci−c j ‖/4, which rewards

pixel pairs with small chromaticity difference.

Geometry prior. For improved recovery of geometric detail, we

dropped the contour, isotropic, and smooth priors proposed in the

original SIRFS method, as our proxy prior naturally provides the

contour normals and our reference objects typically include rich

geometric details. Hence, the cost function is simply defined by

f (Z) = λp fp (Z), (13)

where the proxy prior fp constrains the smoothed version of the

reconstructed depth map Z to be consistent with Palign—for in-

stance:

fp (Z) =
∑

i

| |G (Zi , r ) − Zi (Palign) | |2, (14)

where G (Zi , r ) is the depth at pixel i after filtering by a Gaussian

with radius r , whereas Zi (Palign) is the depth of Palign at the same

pixel. Our l2-based proxy prior is slightly different from the lp -

based proxy prior used in SIRFS, as the geometric details in our

input photograph are not distributed in a sparse manner.

Optimization. We solve the optimization in (10) with the mul-

tiscale solver described in Barron and Malik (2015). The differ-

ence of our method is that instead of using a plane as initializa-

tion, we sample the proxy geometry as the initial depth map for

optimization. In our current implementation, we use the original

weight settings (λe = 3.36 and λa = 4.75) for the parsimony and

absolute priors inherited from SIRFS, and set λr = 5 and λp = 1

by default for the new priors introduced by our method. For il-

lumination, we follow the same approach as SIRFS and apply the

laboratory-like prior for h. After solving for the depth map and the

illumination, we compute the log-reflectance image as the differ-

ence R = I − S(Z, L).
Figure 9 compares the intrinsic decomposition by our method to

two other alternatives. Note that thanks to the well-aligned proxy

Palign, our enhanced SIRFS decomposition algorithm successfully

recovers the reflectance and geometric details over the surface.

Without a proxy (Figure 9(a) and (d)) or with a misaligned proxy

(Figure 9(b)), the SIRFS decomposition results contain noticeable

artifacts in both recovered Z and R.

5.2 Bi-Scale Deformation Extraction

Recall that our ultimate goal is not to recover the depth map Z and

the reflectance map R in themselves but rather to transfer the ap-

pearance captured by these two maps to other 3D shapes. Hence,

our next step is to extract a joint geometric-photometric appear-

ance model based on Z and R, which consists of both a deformation

operator D and the reflectance map R. The deformation operator

D maps the visible part of the aligned proxy to the recovered depth

map (i.e., D (Palign) = Z). We model D as a composition of two

operators:D = Df ◦ Dm , whereDm is a medium-scale deforma-

tion field and Df is a fine-scale displacement field; see Figures 10

and 11.

There are three reasons for decomposing D into two steps.

First of all, since Palign only matches the reference object along a

few salient edges, the full deformation D can be very significant;

applying such a large deformation directly to a coarse shape
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Fig. 10. Bi-scale deformation extraction. Using the normal map derived

from the depth map Z, we first extract the medium-scale deformation

Dm (middle left). The final-scale displacement Df (bottom left) is then

extracted based on the differences between Dm (Palign ) and Z-mesh (bot-

tom middle). In comparison, directly extracting full deformation in a single

step results in noticeable artifacts along sharp edges (bottom right).

Fig. 11. Our bi-scale deformation D = Df ◦ Dm maps the visible regions

of the aligned proxy Palign obtained using an initial proxy Pinit and a refer-

ence image (top left) to the recovered depth map (bottom right) such that

Df ◦ Dm (Palign) ≈ Z. The plot shows the increase in the computation

cost of the deformation Dm as the tessellation Tm increases, and three

of resulting models Dm (Palign), D′m (Palign) and D′′m (Palign ) are shown

on the right. Although using finer tessellations Tm increases the cost, the

resulting deformations are still not as accurate as our bi-scale deformation

(top right).

can result in visible artifacts, especially in the vicinity of sharp

edges—for example, see the direct raycasting result in Figure 10

(bottom right). We overcome this by regularizing Dm with

an as-rigid-as-possible constraint to avoid extreme meshing

distortions, as described in the following. The resulting deformed

shape Dm (Palign) is then close to Z but missing fine geometric

details. These details are then captured by Df as a displacement

along the normal at each vertex.

Second, transferring the medium-scale deformation fieldDm to

the smooth target shape first ensures that the initially smooth tar-

get shape now has a sufficient amount of geometric detail across its

surface, which in turn enables the subsequent geometry-correlated

transfer of fine-scale displacementDf and reflectance texture R in

a joint and correlated manner.

Finally, decomposing D into medium-scale and fine-scale op-

erators and then applying these two operators separately can

dramatically increase the number of possible geometric patterns,

making it easier to synthesize rich geometric details on the target

shape using only limited exemplars from a single photo.

In the following, we assume that a parameterization, also known

as a UV-map, is available for the initial proxy, which is also inher-

ited by the aligned proxy Palign. A suitable parameterization can

be automatically generated by the modeling software. In all of our

experiments, we used the UVLayout software2 for this purpose.

When the reference object consists of several regions, each featur-

ing a different appearance, the proxy should be split (by the user)

into several pieces accordingly. For example, the stone chair in

Figure 11 can be split into three pieces, as shown in Figure 12, each

of which is automatically embedded into the plane by the UVLay-

out software.

We represent the medium-scale deformation field Dm using a

medium-scale tessellation Tm of the aligned proxy Palign. The tes-

sellation is obtained using the midpoint subdivision algorithm. We

then deform the resulting mesh by normal transfer (Jones et al.

2003). Specifically, we project each visible triangle t ∈ Tm onto the

normal map derived from Z and compute the average normal Nt

over the projection area. Next, we compute a deformation fieldDm

that attempts to match the normals {Nt }. The deformation is rep-

resented as a set of displacement vectors for the vertices of Tm ,

where each displacement vector is expressed in the local frame at

the corresponding vertex. The deformation is regularized using a

local as-rigid-as-possible shape preserving constraint, similar to

the term Es defined in Equation (7), to avoid artifacts. Figures 10

and 11 visualize the resulting deformations on two different exam-

ples.

The fine-scale displacement map Df is then computed based

on the difference between Dm (Palign) and Z-mesh, a mesh cre-

ated from the depth map Z. A second, much finer tessellationTf is

created for this purpose. For each vertex v ∈ Tf , we compute the

displacement by casting a ray along the normal at v such that v is

displaced to its corresponding location on Z-mesh. The density of

Tf is thus naturally set as the same of the resolution of the input

image. Both the fine-scale displacement map Df and the recov-

ered surface reflectance R are represented as a four-channel RGBD

(RGB + displacement) texture over the UV-map (e.g., see Figure 12).

Our experiments indicate that the tessellation of Tm , for com-

puting the medium-scale deformation, should be neither too sparse

(causing obvious meshing artifacts, particularly near sharp edges),

nor too dense (causing much higher computation effort); see Fig-

ure 11. We have found that computing Dm directly on the finest

tessellationTf is counterproductive: although the resulting defor-

mation field takes about 10 times longer to compute, the amount

and precision of captured geometric detail is lower than with our

bi-scale approach; compare the model D′′m (Palign) in Figure 11 to

the Df ◦ Dm (Palign) result in the top row of Figure 11. Empiri-

cally, we set by default the number of vertices in Tm as 5% of that

in Tf .

To summarize, to capture the significant deformation between

Palign and Z without introducing unwanted distortions and

2https://www.uvlayout.com.
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Fig. 12. Appearance transfer. Based on the correspondences between the geometric features Φ of the source proxy Palign (top left) and the target shape

Ptarget (bottom left), we first transfer the medium-scale deformation to Ptarget . The fine-scale displacements and the reflectances are then synthesized over

the UV-map of Ptarget using correspondences between the geometric feature vectors Ψ. Applying the displacement and the reflectance texture yields the

final appearance transfer result (bottom right).

artifacts, we do not extract it directly by casting rays but rather

compute first the medium-scale Dm deformation using an as-

rigid-as-possible term to keep it well behaved and under control.

This regularized deformation, however, cannot extract all of the

fine details. Thus, the second, fine-scale displacement mapping

Df is extracted by casting a ray along each normal.

6 APPEARANCE TRANSFER

Having extracted an appearance model, our goal is now to transfer

it to a new target shape Ptarget provided by the user. This allows

us to add realistic geometric and photometric details to Ptarget .

Since Ptarget could be overly smooth or coarse, a two-step process

is applied. It first transfers medium-scale geometric deformations

(Section 6.1), followed by applying a more detailed displacement

field, along with the surface reflectance, using geometry-correlated

texture transfer (Section 6.2).

6.1 Medium-Scale Deformation Transfer

Given a target shape Ptarget , we first perform theDm deformation

transfer in a geometry-correlated manner, inspired by Mertens

et al. (2006). We assume that the target shape is also provided with

its planar embedding (UV-map), similarly to the aligned proxy.

Moreover, we are able to compute the global symmetry plane us-

ing the technique proposed in Xu et al. (2009) for both Palign and

Ptarget , which can guide us to align the two models.

Next, over each of the two models, we compute a 9D geometric

feature vector Φ for each vertex that consists of (1) normal-

ized height (1D), (2) projection onto the symmetry plane with

symmetry-reflected normal (4D), and (3) symmetry-reflected

directional occlusion (4D). We interpolate the per-vertex feature

vectors Φ across each of the two UV-maps and then use the

PatchMatch algorithm (Barnes et al. 2009) to compute a nearest-

neighbor field (NNF) between the two Φ-feature maps. The

resulting NNF maps each small patch on Ptarget to one on Palign

that is the most similar in terms of the aforementioned geometric

features. We can thus use the NNF to transfer the corresponding

deformation operation, denoted as D̂m (·), to target shape Ptarget .

See Figure 12 (left) for an illustration. Because of overlap between

neighboring patches, multiple Dm displacement vectors may be

mapped to the same vertex of Ptarget , in which case voting takes

place to compute a single displacement vector. The entire surface

of the target is then deformed by minimizing the energy function:

Pdeform = argmin
P

(
‖D̂m (Ptarget ) − P ‖2 + βEs (P )

)
, (15)

where Es is the as-rigid-as-possible term defined in (7), weighted

with a parameter β . Larger values of β favor an as-rigid-as-possible

deformation, whereas smaller values enable more nonrigid local

deformations to be applied. The effect of β is demonstrated in

Figure 13. We used β = 1 to generate our results.

6.2 Displacement and Reflectance Transfer

Having transferred the medium-scale geometric deformation, the

resulting deformed target shape Pdeform now has sufficient amount

of geometric detail for performing geometry-correlated transfer

of the remaining fine-scale displacements jointly with the re-

flectance. Recall that the preceding are represented as an RGBD

texture over the UV-map of the aligned proxy. Our goal is now to

synthesize an RGBD texture over the UV-map of the target shape.

To perform the transfer in a geometry-guided manner, we first

construct a guidance field over the reference and target UV-maps.

For each UV point, we compute a 13D geometric feature vector Ψ
at the corresponding location on the 3D shape. The feature vec-

tor Ψ consists of the aforementioned geometric feature vector Φ
plus multiscale solid angle curvature (4D) (Mertens et al. 2006).

Following Mertens et al. (2006), we also use canonical correlation

analysis (CCA) to transform the 13D geometric feature space into

a 4D space, where the correlation with the RGBD texture values is

maximal.
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Fig. 13. The effect of the β parameter in Equation (15) on medium-scale deformation transfer to a target shape Ptarget .

Finally, example-based texture synthesis is carried out using tex-

ture optimization (Darabi et al. 2012; Kwatra et al. 2005). We ex-

tend the self-tuning texture optimization of Kaspar et al. (2015) by

adding the computed geometric guidance fields as a soft constraint.

Specifically, we define the distance between a reference patch s and

a target patch t as follows:

d̂ (r, t) = γ (df )df (r, t) + (1 − γ (df ))dt (r, t) + μΩ(s), (16)

wheredf is the Euclidean distance between the two vectors formed

by concatenating the feature values inside each patch, whereas

dt is the Euclidean distance between two vectors of concatenated

RGBD values. The weighting function γ (df ) = e
−d2

f
/4

is mono-

tonically decreasing with respect to df . This means that in areas

where the target guidance field is matched well, the patch distance

is dominated by df , whereas in other areas, it is dominated by dt .

The last occurrence term, μΩ(s), is added to discourage repetitions,

as proposed in Kaspar et al. (2015): each exemplar pixel has an oc-

currence count, and each time a patch is selected as the best match,

the occurrence count of each pixel inside the patch is incremented.

Ω(s) is set to the sum of the occurrence counts of all pixels in-

side s, and in our results, we set the default weight of this term to

μ = 0.01. See Figure 12 (right) for an illustration.

7 RESULTS

The proposed approach was implemented and successfully used

to extract appearance models for a variety of materials from sin-

gle photos. Specifically, as simple proof-of-concept, we have con-

structed a small appearance library containing five material cate-

gories: stone, metal, wood, fabric, and bread, as shown in the top

row of Figure 14. We then applied the extracted appearance mod-

els to a variety of target shapes, as shown in Figures 1, 2, 14, 15,

16, and 17.

These results demonstrate that our approach successfully ex-

tracts the complex geometric details from different photos, such

as the vertical ridges on the fire hydrant in Figure 1 and the rough

surfaces of the stone chair in Figure 2. These geometric details,

together with the corresponding coherent reflectance maps, form

easy-to-use appearance models. Once applied to detail-less tar-

get shapes, these appearance models can effectively endow these

shapes with realistic geometric and photometric details. Further-

more, applying different appearance models to the same target

shape can produce quite different medium- and fine-scale geomet-

ric details, as can be well seen by examining each of the rows in

Figure 14. Also compare the zoomed-in views of the duck model

in Figures 15 and 17.

Table 1. The Time Our Modeler Used to Model Shapes Manually (e.g.,

15 Minutes for the Fire Hydrant in Figure 1 and 10 Minutes for the Chair

and the Table in Figure 2(b) and (g)

Models Figure 1 Figure 2 Figure 5 Figure 11 Targets

Time 15m 10m 12m 4m 5–15m

Note: In general, it takes our modeler between 5 and 15 minutes to create the detail-
less target shapes shown in this article.

The appearance models shown in Figure 14 are intended to

serve as a proof-of-concept that a diverse and rich appearance

library could be constructed by individual modelers, as well as

by the modeling community as a whole. Each appearance model

in such a library need only to be extracted once, and then it may

be used by different users on many new shapes. For this reason,

even in cases where a suitable 3D proxy for the reference object

is nontrivial to model, this one-time modeling cost (e.g., see

Table 1) will be amortized as the extracted appearance is applied

to new shapes. Note that the same modeling effort must also be

spent in the traditional modeling workflow, before the modeler

can even begin the time-consuming process of creating the fine

surface detail and texturing the model. In our approach, this latter

time-consuming modeling stage is replaced by automatically

applying one of the appearance models from the library. The

entire computational process of proxy alignment, detail extrac-

tion, and appearance modeling generally takes about 15 minutes,

and the average appearance transfer time for each model is less

than 10 minutes. In comparison, manually creating such detailed

3D models by manipulating the meshes and applying suitable

textures can be extremely tedious and time consuming.

Even though our approach is designed to automate the process

of geometric detail modeling, it does provide users with some de-

grees of control over the modeling results. When the reference ob-

ject contains regions with different appearances, such as the black

hole on fire hydrant (Figure 1), the flat surfaces on the stone chair

(Figure 12), and the white top on the wood stool (Figure 17), the

user can designate different parts on the target shape and assign a

different appearance to each part. Each designated part is parame-

terized automatically using the UVLayout software. Naturally, dif-

ferent parts of a target shape may also have completely different

appearances applied to them, as demonstrated in Figure 16. The

magnitude of displacements can also be tuned when deforming the

target shapes, yielding surfaces with different levels of roughness;

see Figure 15.

Limitations. To maximize the usability of the proposed ap-

proach, we constrain ourselves to modeling appearance from sin-
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Fig. 14. Using single input photos and coarse 3D proxies (top), we construct a small library of appearance models for five different categories of materials.

This allows users to easily add photorealistic details to target shapes and experiment with different appearances. Although bumpiness is introduced to all

target shapes, close inspection shows that the character of the bumps is quite different among the different materials. Note that most resulting shapes

utilize at least two appearance models extracted from different photos for their different parts. The different parts, and their assigned appearance, are

indicated by the user.
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Fig. 15. Adjustment of displacement magnitude during appearance transfer. The stone appearance model extracted from Figure 11 is applied to different

target shapes with different displacement magnitude settings. The resulting surface detail can therefore be rougher (rooster) or smoother (snail). For each

shape, four models are shown: the user-provided proxy Ptarget (top left), the deformed model Pdeform (top right), the final displaced geometry Df (Pdeform)
(bottom left), and the texture mapped result (bottom right).

gle input photos. Even though we adopt a state-of-the-art ap-

proach (Barron and Malik 2015) and further enhance it using the

aligned 3D proxy, there is still some ambiguity between geome-

try Z and reflectance R. Thus, some variations in albedo may be

captured as geometric deformations, whereas some geometric de-

tails may be captured as changes in the albedo. Figure 18 shows

such an example. Although our proxy alignment process success-

fully deforms the initial proxy to match the photo, the depth map

extracted using Equation (10) fails to capture the indented radial

wood growth rings. Thus, rather than being captured as a geomet-

ric detail, the rings become part of the reflectance texture instead.

8 CONCLUSIONS AND FUTURE WORK

With today’s interactive modeling tools and 3D repositories, it is

easy to create or find simple 3D object models. However, traversing

“the last mile” between these simple, sterile looking models and

richly detailed realistic looking ones can be a daunting task.

In this work, we have addressed this challenging stage of the

modeling pipeline via proxy-based appearance extraction from

a single image and geometry-correlated transfer of the extracted

appearance onto new shapes. Given a photograph of an object

possessing the desired appearance, we have shown how to extract

both geometric and photometric surface details by registering the
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Fig. 16. A simple input scene (left) is enriched using appearance models extracted from photos of different materials (refer to Figure 14). From top to bottom,

the four fish models have metal, wood, bread, and stone appearances applied, respectively. The base has fabric appearance applied.

Fig. 17. Applying multiple appearance models extracted from a single ref-

erence object image (wood stool) to different parts of a target shape (duck

model). The white top material is applied to the interior of the duck model.

proxy with the image. We have demonstrated that once the proxy

is deformed and aligned with the reference object in the input

photo, the large-scale geometry information that it carries can

greatly assist the recovery of middle-scale and fine-scale surface

details. The separation of geometric details into two scales assists

us in performing the transfer of the finer-scale geometric and pho-

tometric details in a geometry-correlated fashion. Experimental

results demonstrate that the proposed algorithm can effectively

extract photorealistic geometric details from different types of

materials and convincingly transfer them to various target shapes.

In future work, we plan to address some of the limitations of our

current approach. First, the geometry and appearance extraction

Fig. 18. A failure case, where the geometric details extracted (bottom row)

do not correctly capture the ones on the reference object, although the

proxy alignment process is very successful (top row). Specifically, the in-

dented growth rings are not part of the recovered geometry, being cap-

tured as reflectance details instead. Furthermore, in highlighted areas with

red boxes, the extracted surfaces appear to be overly rough.

(using our modification of Barron and Malik’s approach (2015))

should be made more robust by automatic tuning of the parameters

so as to perform best of a given shape. Next, the current approach

assumes diffuse reflectance illuminated by low-frequency illumi-

nation. We would like to extend the approach to handle more gen-

eral reflectance models and more directional illumination. Having

a fairly good approximation of the object’s shape should help us

cope with effects, such as self-shadowing from directional light

sources, as well as model ambient occlusion of the low-frequency

illumination. Having a better illumination model will, in turn, en-

able more accurate geometry and reflectance reconstruction.

It would be interesting to attempt to further automate our ap-

proach by automatic recovery of candidate proxy shapes from 3D

shape repositories, at least for man-made objects. In addition, we

would like to leverage Internet image collections to construct a

rich appearance model library. We believe that it can be a valuable

tool for artists when making their 3D creations.
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