ADVANCED CLASS - XII MODULE - 01

Relations & Function | Inverse Trigonometric Functions | Continuity & Differentiability, Methods of Differentiation Application of Derivatives

Video solution will be available soon..

Get complete class 12th JEE study material(hard copies) delivered at your home at the lowest cost of Rs1299/- only

Order from book section of pw app

HELLO बच्चों

Physics Wallah

EDITION : 2021

Published By: Physics Wallah

2nd Floor, A-1/12, West Paschim Vihar New Delhi-110063

Mobile App:	Physics Wallah (Available on Play Store)				
	http://bit.ly/3ru9Agh				
Website:	www.physicswallahalakhpandey.com				
	www.physicswallah.live				
Youtube Channel:	Physics Wallah - Alakh Pandey				
Email:	support@physicswallah.org				

Rights All rights be reserved by Publisher. No part of this book may be used or reproduced in any manner whatsover without the Written permission from author or publisher.

Disclaimer: Every effort has been taken in compilling/editing of the concerned data/information given in this book in various section, Also the question in books contain are memory based so it is possible to remain some mistake due to human error if so kindly compare the data with the government publication, journals and notification.

PhysicsWallah

EXERCISE-III

- Q.1 For the function $f(x) = ln (\sin^{-1} log_2 x)$, (A) Domain is $\left[\frac{1}{2}, 2\right]$ (B) Range is $\left(-\infty, ln\frac{\pi}{2}\right]$ (C) Domain is (1, 2] (D) Range is R
- Q.2 Let $D \equiv [-1, 1]$ is the domain of the following functions, state which of them are injective. (A) $f(x) = x^2$ (B) $g(x) = x^3$ (C) $h(x) = \sin 2x$ (D) $k(x) = \sin (\pi x/2)$
- Q.3 Let $f: I \to R$ (where I is the set of positive integers) be a function defined by $f(x) = \sqrt{x}$, then f is: (A) one - one (B) many one (C) onto (D) into
- Q.4 If f: $R \rightarrow [-1, 1]$, where $f(x) = sin\left(\frac{\pi}{2}[X]\right)$, (where [.] denotes the greatest integer function), then (A) f(x) is onto (B) f(x) is into (C) f(x) is periodic (D) f(x) is many one
- Q.5 Let $f: [-1, 1] \rightarrow [0, 2]$ be a linear function which is onto, then f(x) is/are (A) 1-x (B) 1+x(C) x-1 (D) x+2
- Q.6 If 'f' and 'g' are bijective functions and gof is defined then gof must be (A) injective (B) surjective (C) bijective (D) into only
- Q.7 If $f: R \to [-1, 1]$, where $f(x) = \sin \pi/2 [x]$, (where [*] dentoes the greatest integer function) then
 - (A) f(x) is onto (C) f(x) is periodic

(B) f(x) is into (D) f(x) is many one

Q.8 Let $f: R - \left\{\frac{1}{5\sqrt{2}}\right\} \rightarrow R - \left\{\frac{1}{5\sqrt{2}}\right\}$ be a function defined as $f(x) = \left(\frac{x - 2\sqrt{5}}{5\sqrt{2}x - 1}\right)$ then which of the following is(are) **CORRECT**? (A) $f\left(f(f(2017)))\right) = 2017$

> (B) $f(x) = f^{-1}(x)$ has more than 3 real roots (C) f(x) is a bijective function

(D)
$$f(f(f(x))) = f(f(f(f(x)))) \forall x \neq \frac{1}{5\sqrt{2}}$$

Q.9 Let
$$f(x) = \left(\frac{1-x}{1+x}\right), 0 \le x \le 1 \text{ and } g(x) = 4x (1-x), 0 \le x \le 1$$

1, then

(A)
$$\log = \frac{1 - 4x + 4x^2}{1 + 4x - 4x^2}, 0 \le x \le 1$$

(B) $\log = \frac{1 - 4x - 4x^2}{1 + 4x - 4x^2}, \frac{1}{2} \le x \le 1$
(C) $\operatorname{gof} = \frac{8x(1 - x)}{(1 + x)^2}, 0 \le x \le 1$
(D) $\operatorname{gof} = \frac{8x(1 + x)}{(1 + x)^2}, 0 \le x \le 1$

Q.10 Which of following pairs of functions are identical.

(A) $f(x) = e^{\ln \sec^{-1} x}$ and $g(x) = \sec^{-1} x$ (B) $f(x) = \tan(\tan^{-1} x)$ and $g(x) = \cot(\cot^{-1} x)$ (C) $f(x) = \operatorname{sgn}(x)$ and $g(x) = \operatorname{sgn}(\operatorname{sgn}(x))$ (D) $f(x) = \cot^{2} x \cdot \cos^{2} x$ and $g(x) = \cot^{2} x - \cos^{2} x$

Comprehension #1 (Q. No. 11 to 13)

Let
$$f(x) = \frac{x^3}{3} + \frac{x^2}{2} + ax + b \quad \forall x \in \mathbb{R}$$

Q.11 Least value of 'a' for which f(x) is injective function, is

(A)
$$\frac{1}{4}$$
 (B) 1
(C) $\frac{1}{2}$ (D) $\frac{1}{8}$
Q.12 If a = -1, then f(x) is
(A) bijective (B) many-one and onto
(C) one-one and into (D) many- one and into

Q.13
$$f(x)$$
 is invertible iff

$$(A) a \in \left[\frac{1}{4}, \infty\right], b \in R \quad (B) a \in \left[\frac{1}{8}, \infty\right], b \in R$$
$$(C) a \in \left(-\infty, \frac{1}{4}\right], b \in R \quad (D) a \in \left(-\infty, \frac{1}{4}\right), b \in R$$

Comprehension #2 (Q. No. 14 to 16)

Consider the function $f(x) = \begin{cases} x^2 - 1, & -1 \le x \le 1\\ \ell nx, & 1 < x \le e \end{cases}$ Let $f_1(x) = f(|x|)$ $f_2(x) = |f(|x|)|$ $f_3(x) = f(-x)$ Now answer the following questions.

Relations and Function

R Physic	sWallah						JEE - MATHEMATICS
Q.14	Number of positive solution of the equation $2f_2(x) - 1$ Q.1			If $f_4(x) = \log_{27}(f_3(x) + 2)$, then range of $f_4(x)$ is			
	= 0 is (are) (A) 4 (C) 2	(B) 3 (D) 1		(A)[1,9]		(B) $\left[\frac{1}{3}\right]$	$(, \infty)$
Q.15	Number of integral solution of the equation $f_1(x) = f_2(x)$ is (are)			$(C)\left[0,\frac{1}{3}\right]$		(D)[1,27]	
	(A) 1 (C) 3	(B)2 (D)4					
Q.17	Match the column	1:				Colu	ımn – Π
	(A) The period o	f the function				(p)	1/2
	$y = \sin (2\pi t + t)$ (B) $y = \{\sin (\pi x)\}$ $x \in (0, a), where the set of the se$	$\pi/3$) + 2 sin ($3\pi t + \pi/4$) + 3 sin $5\pi t$ } is a many one function for here {x} denotes fractional part of x, t	hen a may	y be		(q)	8
	(C) The fundame	ental period of the function $y = \frac{1}{2} \left(\frac{1}{2} \right)^2$	sin(π/4) cos(π/4)	$\frac{ x }{ x } + \frac{\sin(\pi x)}{ \cos(\pi x) }$	$\left(\frac{4}{4}\right)$ x $\left(\frac{4}{4}\right)$ x $\left(\frac{4}{4}\right)$ x $\left(\frac{4}{4}\right)$	(r)	2
	(D) If $f: [0, 2] \rightarrow f(x) = ax^2 + b$ numbers, the	[0, 2] is bijective function defined b x + c, where a, b, c are non-zero real n f(2) is equal to	у			(s)	0
Q.18	Let $f(x) = \sin^{-1} x$, Column – 2	$g(x) = \cos^{-1} x$ and $h(x) = \tan^{-1} x$. For	r what inte	erval of varia Colum	tion of x the f n−Ⅱ	following	are true.
	(A) $f\left(\sqrt{x}\right) + g$	$\left(\sqrt{\mathbf{x}}\right) = \pi/2$		(p)	$[0,\infty)$		
	(B) $f(x) + g\left(v\right)$	$\sqrt{1-x^2}$ = 0		(q)	[0, 1]		
	(C) $g\left(\frac{1-x^2}{1+x^2}\right)$	=2h(x)		(r)	(−∞, 1)		
	(D) $h(x) + h(1)$	$=h\left(\frac{1+x}{1-x}\right)$		(s)	[-1, 0]		
NUMERICAL VALUE BASED Q.19 Let f be a function satisfying $2f(x) - 3f(1/x) = x^2$ for any		Q.24	If f is a function such that $f(0) = 2$, $f(1) = 3$ and $f(x + 2) = 2f(x) - f(x + 1)$ for every real x then $f(5)$ is				
	$x \neq 0$, then absolute value of $f(2)$ is			An odd function is symmetric about the vertical line			
Q.20	If $f(x) + f(x+4) = f(x+2) + f(x+6) \forall x \in \mathbb{R}$, and $f(5) = 10$, then $\sum_{x=1}^{100} f(5+8r)$ equal to			$x = a (a > 0)$ and if $\sum_{r=1}^{\infty} [f(1+4r)]^r = 8$, then find the			
				value of $f(1)$.			
	1=1		Q.26	Let f : R ®	R such that		
Q.21	Absolute value c	of the parameter α , for which the		$f(x-f(y)) = f(f(y)) + x f(y) + f(x) - 1 \forall x, y \in \mathbb{R}.$			

- Q.21 Absolute value of the parameter α , for which the function $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself, is
- If f "(x) = -f(x) and g(x) = f'(x) and F(x) =Q.22 $\left(f\left(\frac{x}{2}\right)\right)^2 + \left(g\left(\frac{x}{2}\right)\right)^2$ and given that F(5) = 5, then F(10) is equal to
- Q.23 If f(x) is a function that is odd and even simultaneously, then f(3) - f(2) is equal to
- Then find the value of |(f(16))| 125. The function f satisfies the functional equation 3 f(x)Q.27 + $2f\left(\frac{x+59}{x-1}\right) = 10x + 30$ for all real $x \neq 1$. The value of f(7) is equal to
- Q.28 The total number of solutions of $[x]^2 = x + 2 \{x\}$, where [.] and $\{.\}$ denote the greatest integer and the fractional part functions, respectively, is equal to

ABOUT PHYSICS WALLAH

Alakh Pandey is one of the most renowned faculty in NEET & JEE domain's Physics. On his YouTube channel, Physics Wallah, he teaches the Science courses of 11th and 12th standard to the students aiming to appear for the engineering and medical entrance exams.

Scan the QR Code

PW

Alakh Pandey

YouTube

- www.physicswallahalakhpandey.com | - www.physicswallah.live

- Physics Wallah - Alakh Pandey | 🕟 - Physics Wallah - Alakh Pandey