
 © Ian Sommerville 2018

Chapter 6
Microservices architecture

 © Ian Sommerville 2018:Microservices architecture

• A software service is a software component that can be accessed from
remote computers over the Internet. Given an input, a service produces
a corresponding output, without side effects.

• The service is accessed through its published interface and all details of the
service implementation are hidden.

• Services do not maintain any internal state. State information is either stored in
a database or is maintained by the service requestor.

• When a service request is made, the state information may be included
as part of the request and the updated state information is returned as
part of the service result.

• As there is no local state, services can be dynamically reallocated from
one virtual server to another and replicated across several servers.

Software services

�2

 © Ian Sommerville 2018:Microservices architecture

• After various experiments in the 1990s with service-oriented computing,
the idea of ‘big’ Web Services emerged in the early 2000s.

• These were based on XML-based protocols and standards such as
SOAP for service interaction and WSDL for interface description.

• Most software services don’t need the generality that’s inherent in the
design of web service protocols.

• Consequently, modern service-oriented systems, use simpler, ‘lighter
weight’ service-interaction protocols that have lower overheads and,
consequently, faster execution.

Modern web services

�3

 © Ian Sommerville 2018:Microservices architecture

• Microservices are small-scale, stateless, services that have a single
responsibility. They are combined to create applications.

• They are completely independent with their own database and UI
management code.

• Software products that use microservices have a microservices
architecture.

• If you need to create cloud-based software products that are adaptable,
scaleable and resilient then I recommend that design them around a
microservices architecture.

Microservices

�4

 © Ian Sommerville 2018:Microservices architecture

• System authentication

• User registration, where users provide information about their identity, security
information, mobile (cell) phone number and email address.

• Authentication using UID/password.

• Two-factor authentication using code sent to mobile phone.

• User information management e.g. change password or mobile phone number.

• Reset forgotten password.

• Each of these features could be implemented as a separate service that
uses a central shared database to hold authentication information.

• However, these features are too large to be microservices. To identify the
microservices that might be used in the authentication system, you need to
break down the coarse-grain features into more detailed functions.

A microservice example

�5

 © Ian Sommerville 2018:Microservices architecture

Figure 6.1 Functional breakdown of authentication features

�6

User registration

Setup new login id

Setup new password

Setup password recovery information

Setup two-factor authentication

Confirm registration

Authenticate using UID/password

Get login id

Get password

Check credentials

Confirm authentication

Figure 6.1 Functional breakdown of authentication features

 © Ian Sommerville 2018:Microservices architecture

Figure 6.2 Authentication microservices

�7

UID
management

Password
management

User info
management

UID data

Password data

User data

Authentication

Figure 6.2 Authentication microservices

 © Ian Sommerville 2018:Microservices architecture

Self-contained 
Microservices do not have external dependencies. They manage their own data and
implement their own user interface.

Lightweight  
Microservices communicate using lightweight protocols, so that service
communication overheads are low.

Implementation-independent  
Microservices may be implemented using different programming languages and may
use different technologies (e.g. different types of database) in their implementation.

Independently deployable  
Each microservice runs in its own process and is independently deployable, using
automated systems.

Business-oriented 
Microservices should implement business capabilities and needs, rather than simply
provide a technical service.

Table 6.1 Characteristics of microservices

�8

 © Ian Sommerville 2018:Microservices architecture

• Microservices communicate by exchanging messages.

• A message that is sent between services includes some administrative
information, a service request and the data required to deliver the
requested service.

• Services return a response to service request messages.

• An authentication service may send a message to a login service that includes
the name input by the user.

• The response may be a token associated with a valid user name or might be an
error saying that there is no registered user.

Microservice communication

�9

 © Ian Sommerville 2018:Microservices architecture

• A well-designed microservice should have high cohesion and low
coupling.

• Cohesion is a measure of the number of relationships that parts of a component
have with each other. High cohesion means that all of the parts that are needed
to deliver the component’s functionality are included in the component.

• Coupling is a measure of the number of relationships that one component has
with other components in the system. Low coupling means that components do
not have many relationships with other components.

• Each microservice should have a single responsibility i.e. it should do
one thing only and it should do it well.

• However, ‘one thing only’ is difficult to define in a way that’s applicable to all
services.

• Responsibility does not always mean a single, functional activity.

Microservice characteristics

�10

 © Ian Sommerville 2018:Microservices architecture

Figure 6.3 Password management functionality

�11

Figure 6.3 Password management functionality

User functions

Create password

Change password

Check password

Recover password

Supporting functions

Check password validity

Delete password

Backup password database

Recover password database

Check database integrity

Repair password DB

 © Ian Sommerville 2018:Microservices architecture

Figure 6.4 Microservice support code

�12

Microservice X

 Service functionality

 Message
management

 UI
implementation

 Failure
management

 Data consistency
management

Figure 6.4 Microservice support code

 © Ian Sommerville 2018:Microservices architecture

• A microservices architecture is an architectural style – a tried and tested
way of implementing a logical software architecture.

• This architectural style addresses two problems with monolithic
applications

• The whole system has to be rebuilt, re-tested and re-deployed when any
change is made. This can be a slow process as changes to one part of the
system can adversely affect other components.

• As the demand on the system increases, the whole system has to be scaled,
even if the demand is localized to a small number of system components that
implement the most popular system functions.

Microservices architecture

�13

 © Ian Sommerville 2018:Microservices architecture

• Microservices are self-contained and run in separate processes.

• In cloud-based systems, each microservice may be deployed in its own
container. This means a microservice can be stopped and restarted
without affecting other parts of the system.

• If the demand on a service increases, service replicas can be quickly
created and deployed. These do not require a more powerful server so
‘scaling-out’ is, typically, much cheaper than ’scaling up’.

•

Benefits of microservices architecture

�14

 © Ian Sommerville 2018:Microservices architecture

Imagine that you are developing a photo printing service for mobile devices.
Users can upload photos to your server from their phone or specify photos from
their Instagram account that they would like to be printed. Prints can be made at
different sizes and on different media.

Users can chose print size and print medium. For example, they may decide to
print a picture onto a mug or a T-shirt. The prints or other media are prepared and
then posted to their home. They pay for prints either using a payment service
such as Android or Apple Pay or by registering a credit card with the printing
service provider.

Table 6.2 A photo printing system for mobile devices

�15

 © Ian Sommerville 2018:Microservices architecture

Figure 6.5 A microservices architecture for a photo printing system

�16

Mobile
app API gateway

Authentication

Figure 6.5 A microservices architecture for a photo printing system

SERVICES

Registration

Upload

Payment

Printing

Despatch

 © Ian Sommerville 2018:Microservices architecture

Figure 6.6 Microservices architecture - key design questions

�17

What are the microservices that
make up the system?

How should microservices
communicate with each other?

How should the microservices
in the system be coordinated?

How should service failure be
detected, reported and managed?

How should data be
distributed and shared?

Microservices
architecture

design

Figure 6.6 Microservices architecture - key design questions

 © Ian Sommerville 2018:Microservices architecture

• Balance fine-grain functionality and system performance

• Single-function services mean that changes are limited to fewer services but require service
communications to implement user functionality. This slows down a system because of the need
for each service to bundle and unbundle messages sent from other services.

• Follow the ‘common closure principle’

• Elements of a system that are likely to be changed at the same time should be located within the
same service. Most new and changed requirements should therefore only affect a single service.

• Associate services with business capabilities

• A business capability is a discrete area of business functionality that is the responsibility of an
individual or a group. You should identify the services that are required to support each business
capability.

• Design services so that they only have access to the data that they need

• If there is an overlap between the data used by different services, you need a mechanism to
propagate data changes to all services using the same data.

Decomposition guidelines

�18

 © Ian Sommerville 2018:Microservices architecture

• Services communicate by exchanging messages that include
information about the originator of the message, as well as the data that
is the input to or output from the request.

• When you are designing a microservices architecture, you have to
establish a standard for communications that all microservices should
follow. Some of the key decisions that you have to make are

• should service interaction be synchronous or asynchronous?

• should services communicate directly or via message broker middleware?

• what protocol should be used for messages exchanged between services?

Service communications

�19

 © Ian Sommerville 2018:Microservices architecture

Figure 6.7 Synchronous and asynchronous microservice interaction

�20

Service A

Figure 6.7 Synchronous and asynchronous microservice interaction

Calls
Returns

Requests (B)

Synchronous - A waits for B

Asynchronous - A and B execute concurrently

Queue B Queue A

Requests (A)

Service B

Service A

Processing Waiting Processing

Processing Processing

Processing Processing

ProcessingProcessing

Service B

 © Ian Sommerville 2018:Microservices architecture

• In a synchronous interaction, service A issues a request to service B.
Service A then suspends processing while B is processing the request.

• It waits until service B has returned the required information before
continuing execution.

• In an asynchronous interaction, service A issues the request that is
queued for processing by service B. A then continues processing without
waiting for B to finish its computations.

• Sometime later, service B completes the earlier request from service A
and queues the result to be retrieved by A.

• Service A, therefore, has to check its queue periodically to see if a result
is available.

•

Synchronous and asynchronous interaction

�21

 © Ian Sommerville 2018:Microservices architecture

Figure 6.8 Direct and indirect service communication

�22

Figure 6.8 Direct and indirect service communication

Direct communication - A and B send messages to each other

Indirect communication - A and B communicate through a message broker

Message broker

Service A Service B

Service A Service B

 © Ian Sommerville 2018:Microservices architecture

• Direct service communication requires that interacting services know
each other’s address.

• The services interact by sending requests directly to these addresses.

• Indirect communication involves naming the service that is required and
sending that request to a message broker (sometimes called a message
bus).

• The message broker is then responsible for finding the service that can
fulfil the service request.

Direct and indirect service communication

�23

 © Ian Sommerville 2018:Microservices architecture

• You should isolate data within each system service with as little data
sharing as possible.

• If data sharing is unavoidable, you should design microservices so that
most sharing is ‘read-only’, with a minimal number of services
responsible for data updates.

• If services are replicated in your system, you must include a mechanism
that can keep the database copies used by replica services consistent.

Microservice data design

�24

 © Ian Sommerville 2018:Microservices architecture

• An ACID transaction bundles a set of data updates into a single unit so
that either all updates are completed or none of them are. ACID
transactions are impractical in a microservices architecture.

• The databases used by different microservices or microservice replicas
need not be completely consistent all of the time.

• Dependent data inconsistency

• The actions or failures of one service can cause the data managed by another
service to become inconsistent.

• Replica inconsistency

• There are several replicas of the same service that are executing concurrently.
These all have their own database copy and each updates its own copy of the
service data. You need a way of making these databases ‘eventually consistent’
so that all replicas are working on the same data.

Inconsistency management

�25

 © Ian Sommerville 2018:Microservices architecture

• Eventual consistency is a situation where the system guarantees that the
databases will eventually become consistent.

• You can implement eventual consistency by maintaining a transaction
log.

• When a database change is made, this is recorded on a ‘pending
updates’ log.

• Other service instances look at this log, update their own database and
indicate that they have made the change.

Eventual consistency

�26

 © Ian Sommerville 2018:Microservices architecture

Figure 6.9 Using a pending transaction log

�27

Pending transactions log

A1/DB update 1

A1/DB update 2

A2/DB update 1

Figure 6.9 Using a pending transactions log

Service A1
Database A

Service A2
Database A

 © Ian Sommerville 2018:Microservices architecture

• Most user sessions involve a series of interactions in which operations
have to be carried out in a specific order.

• This is called a workflow.

• An authentication workflow for UID/password authentication shows the steps
involved in authenticating a user.

• In this example, the user is allowed 3 login attempts before the system indicates
that the login has failed.

Service coordination

�28

 © Ian Sommerville 2018:Microservices architecture

Figure 6.10 Authentication workflow

�29

End

Retry
login

Get login

Start

End

Check
login

Get
password

Check
password

Indicate
failure

login OK

login invalid

password OK

password
invalid

attempts > 3

attempts = 1
authfail = F

authfail=T

Figure 6.10 Authentication workflow

authfail = F
Increment
attempts

attempts <= 3

authfail = T

authfail=F

 © Ian Sommerville 2018:Microservices architecture

Figure 6.11 Orchestration and choreography

�30

Authentication
controller

Service orchestration Service choreography

Figure 6.11 Orchestration and choreography

Authentication eventsLogin
service

Password
service

Login
service

Password
service

 © Ian Sommerville 2018:Microservices architecture

Internal service failure  
These are conditions that are detected by the service and can be reported to the
service client in an error message. An example of this type of failure is a service
that takes a URL as an input and discovers that this is an invalid link.

External service failure  
These failures have an external cause, which affects the availability of a service.
Failure may cause the service to become unresponsive and actions have to be
taken to restart the service.

Service performance failure  
The performance of the service degrades to an unacceptable level. This may be
due to a heavy load or an internal problem with the service. External service
monitoring can be used to detect performance failures and unresponsive
services.

Table 6.3 Failure types in a microservices system

�31

 © Ian Sommerville 2018:Microservices architecture

• A timeout is a counter that this associated with the service requests and
starts running when the request is made.

• Once the counter reaches some predefined value, such as 10 seconds,
the calling service assumes that the service request has failed and acts
accordingly.

• The problem with the timeout approach is that every service call to a
‘failed service’ is delayed by the timeout value so the whole system slows
down.

• Instead of using timeouts explicitly when a service call is made, he
suggests using a circuit breaker. Like an electrical circuit breaker, this
immediately denies access to a failed service without the delays
associated with timeouts.

Timeouts and circuit breakers

�32

 © Ian Sommerville 2018:Microservices architecture

Figure 6.12 Using a circuit breaker to cope with service failure

�33

Circuit breaker

Check S2
availability

retries>3

retries<=3

timeout ok

timeout fail

S2 available

S2 unavailable

Figure 6.12 Using a circuit breaker to cope with service failure

Service S1 Service S2

Set timeout Route service
request

Respond S2
unavailable

Set S2
unavailable

Route service
response

Increment
retries

Check
timeout

 © Ian Sommerville 2018:Microservices architecture

• The REST (REpresentational State Transfer) architectural style is based
on the idea of transferring representations of digital resources from a
server to a client.

• You can think of a resource as any chunk of data such as credit card details, an
individual’s medical record, a magazine or newspaper, a library catalogue, and
so on.

• Resources are accessed via their unique URI and RESTful services operate on
these resources.

• This is the fundamental approach used in the web where the resource is
a page to be displayed in the user’s browser.

• An HTML representation is generated by the server in response to an HTTP
GET request and is transferred to the client for display by a browser or a
special-purpose app.

RESTful services

�34

 © Ian Sommerville 2018:Microservices architecture

Use HTTP verbs 
The basic methods defined in the HTTP protocol (GET, PUT, POST, DELETE)
must be used to access the operations made available by the service.

Stateless services 
Services must never maintain internal state. As I have already explained,
microservices are stateless so fit with this principle.

URI addressable 
All resources must have a URI, with a hierarchical structure, that is used to
access sub-resources.

Use XML or JSON  
Resources should normally be represented in JSON or XML or both. Other
representations, such as audio and video representations, may be used if
appropriate.

Table 6.4 RESTful service principles

�35

 © Ian Sommerville 2018:Microservices architecture

Create 
Implemented using HTTP POST, which creates the resource with the given URI. If the
resource has already been created, an error is returned.

Read 
Implemented using HTTP GET, which reads the resource and returns its value. GET
operations should never update a resource so that successive GET operations with no
intervening PUT operations always return the same value.

Update  
Implemented using HTTP PUT, which modifies an existing resource. PUT should not
be used for resource creation.

Delete  
Implemented using HTTP DELETE, which makes the resource inaccessible using the
specified URI. The resource may or may not be physically deleted.

Table 6.5 RESTful service operations

�36

 © Ian Sommerville 2018:Microservices architecture

• Imagine a system that maintains information about incidents, such as
traffic delays, roadworks and accidents on a national road network. This
system can be accessed via a browser using the URL:

• https://trafficinfo.net/incidents/

• Users can query the system to discover incidents on the roads on which
they are planning to travel.

• When implemented as a RESTful web service, you need to design the
resource structure so that incidents are organized hierarchically.

• For example, incidents may be recorded according to the road identifier (e.g.
A90), the location (e.g. stonehaven), the carriageway direction (e.g. north) and
an incident number (e.g. 1). Therefore, each incident can be accessed using its
URI:

• https://trafficinfo.net/incidents/A90/stonehaven/north/1

Road information system

�37

https://trafficinfo.net/incidents/A90/stonehaven/north/1

 © Ian Sommerville 2018:Microservices architecture

Incident ID: A90N17061714391

Date: 17 June 2017

Time reported: 1439

Severity: Significant

Description: Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes

Table 6.6 Incident description

�38

 © Ian Sommerville 2018:Microservices architecture

• Retrieve

• Returns information about a reported incident or incidents. Accessed using the
GET verb.

• Add

• Adds information about a new incident. Accessed using the POST verb.

• Update

• Updates the information about a reported incident. Accessed using the PUT
verb.

• Delete

• Deletes an incident. The DELETE verb is used when an incident has been
cleared.

Service operations

�39

 © Ian Sommerville 2018:Microservices architecture

Figure 6.13 HTTP request and response processing

�40

HTTP
request

HTTP
response

Service actions

Microservice

Figure 6.13 HTTP request and response processing

Request
processing

Response
generation

 © Ian Sommerville 2018:Microservices architecture

Figure 6.14 HTTP request and response message organization

�41

 [Request header]

 [Request body]

REQUEST

[HTTP verb] [URI] [HTTP version]

Figure 6.14 HTTP request and response message organisation

 [Response header]

 [Response body]

RESPONSE

[Response code][HTTP version]

 © Ian Sommerville 2018:Microservices architecture

JSON

{ 
id: “A90N17061714391”, 
“date”: “20170617”, 
“time”: “1437”, 
“road_id”: “A90”, 
“place”: “Stonehaven”, 
“direction”: “north”, 
“severity”: “significant”, 
“description”: “Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes.” 
}

Table 6.7 XML and JSON descriptions

�42

 © Ian Sommerville 2018:Microservices architecture

XML

<id> 
A90N17061714391  
</id> 
<date> 
20170617  
</date> 
<time> 
1437  
</time> 
… 
<description>Broken-down bus on north carriageway. One lane closed. Expect
delays of up to 30 minutes. 
</description>

Table 6.7 XML and JSON descriptions

�43

 © Ian Sommerville 2018:Microservices architecture

Figure 6.15 A GET request and the associated response

�44

REQUEST

GET HTTP/1.1

...
Content-Length: 461
Content-Type: text/json

RESPONSE

HTTP/1.1

Figure 6.15 A GET request and the associated response

200incidents/A90/stonehaven/

Host: trafficinfo.net
...
Accept: text/json, text/xml, text/plain
Content-Length: 0

{
 “number”: “A90N17061714391”,
 “date”: “20170617”,
 “time”: “1437”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “north”,
 “severity”: “significant”,
 “description”: “Broken-down bus on north
 carriageway. One lane closed. Expect delays
of up to 30 minutes.”
}
{
 “number”: “A90S17061713001”,
 “date”: “20170617”,
 “time”: “1300”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “south”,
 “severity”: “minor”,
 “description”: “Grass cutting on verge. Minor
delays”
}

 © Ian Sommerville 2018:Microservices architecture

• After a system has been developed and delivered, it has to be deployed on
servers, monitored for problems and updated as new versions become
available.

• When a system is composed of tens or even hundreds of microservices,
deployment of the system is more complex than for monolithic systems.

• The service development teams decide which programming language,
database, libraries and other support software should be used to implement
their service. Consequently, there is no ‘standard’ deployment configuration
for all services.

• It is now normal practice for microservice development teams to be
responsible for deployment and service management as well as software
development and to use continuous deployment.

• Continuous deployment means that as soon as a change to a service has
been made and validated, the modified service is redeployed.

Service deployment

�45

 © Ian Sommerville 2018:Microservices architecture

• Continuous deployment depends on automation so that as soon as a
change is committed, a series of automated activities is triggered to test
the software.

• If the software ‘passes’ these tests, it then enters another automation
pipeline that packages and deploys the software.

• The deployment of a new service version starts with the programmer
committing the code changes to a code management system such as Git.

• This triggers a set of automated tests that run using the modified service.
If all service tests run successfully, a new version of the system that
incorporates the changed service is created.

• Another set of automated system tests are then executed. If these run
successfully, the service is ready for deployment.

Deployment automation

�46

 © Ian Sommerville 2018:Microservices architecture

Figure 6.16 A continuous deployment pipeline

�47

Commit change to
version manage-

ment

Triggers

pass

Reject change Reject change Reject change

Reject change

pass

pass

fail

fail

fail

Figure 6.16 A continuous deployment pipeline

Run unit tests

Containerize
service

Run integration
tests

Build test
system

Replace current
service

Deploy service
container

Run acceptance
tests

fail

pass

 © Ian Sommerville 2018:Microservices architecture

Figure 6.17 Versioned services

�48

API
gateway cameras

service request
for cameras service

Figure 6.17 Versioned services

current version
link

service
response

cameras service
response

monitor
 response

Service
monitor

cameras 001

cameras 002

 © Ian Sommerville 2018:Microservices architecture

• A microservice is an independent and self-contained software component
that runs in its own process and communicates with other microservices
using lightweight protocols.

• Microservices in a system can be implemented using different programming
languages and database technologies.

• Microservices have a single responsibility and should be designed so that
they can be easily changed without having to change other microservices in
the system.

• Microservices architecture is an architectural style in which the system is
constructed from communicating microservices. It is well-suited to cloud
based systems where each microservice can run in its own container.

• The two most important responsibilities of architects of a microservices
system are to decide how to structure the system into microservices and to
decide how microservices should communicate and be coordinated.

Key points 1

�49

 © Ian Sommerville 2018:Microservices architecture

• Communication and coordination decisions include deciding on microservice
communication protocols, data sharing, whether services should be centrally coordinated,
and failure management.

• The RESTful architectural style is widely used in microservice-based systems. Services
are designed so that the HTTP verbs, GET, POST, PUT and DELETE, map onto the
service operations.

• The RESTful style is based on digital resources that, in a microservices architecture, may
be represented using XML or, more commonly, JSON.

• Continuous deployment is a process where new versions of a service are put into
production as soon as a service change has been made. It is a completely automated
process that relies on automated testing to check that the new version is of ‘production
quality’.

• If continuous deployment is used, you may need to maintain multiple versions of deployed
services so that you can switch to an older version if problems are discovered in a newly-
deployed service.

•

Key points 2

�50

