
 © Ian Sommerville 2018

Cloud-based software

 © Ian Sommerville 2018:Cloud-based Software

• The cloud is made up of very large number of remote servers that are
offered for rent by companies that own these servers.

• Cloud-based servers are ‘virtual servers’, which means that they are implemented
in software rather than hardware.

• You can rent as many servers as you need, run your software on these
servers and make them available to your customers.

• Your customers can access these servers from their own computers or other
networked devices such as a tablet or a TV.

• Cloud servers can be started up and shut down as demand changes.

• You may rent a server and install your own software, or you may pay for
access to software products that are available on the cloud.

The cloud

�2

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.1 Scaleability, elasticity and resilience

�3

Cloud software
characteristics

Elasticity
Adapt the server configuration

to changing demands

Resilience
Maintain service in the
event of server failure

Scaleability
Maintain performance as

load increases

Figure 5.1 Scaleability, elasticity and resilience

 © Ian Sommerville 2018:Cloud-based Software

• Scaleability reflects the ability of your software to cope with increasing
numbers of users.

• As the load on your software increases, your software automatically adapts so
that the system performance and response time is maintained.

• Elasticity is related to scaleability but also allows for scaling-down as well
as scaling-up.

• That is, you can monitor the demand on your application and add or remove
servers dynamically as the number of users change.

• Resilience means that you can design your software architecture to
tolerate server failures.

• You can make several copies of your software concurrently available. If one of
these fails, the others continue to provide a service.

Scaleability, elasticity and resilience

�4

 © Ian Sommerville 2018:Cloud-based Software

Cost 
You avoid the initial capital costs of hardware procurement

Startup time  
You don’t have to wait for hardware to be delivered before you can start work.
Using the cloud, you can have servers up and running in a few minutes.

Server choice  
If you find that the servers you are renting are not powerful enough, you can
upgrade to more powerful systems. You can add servers for short-term
requirements, such as load testing.

Distributed development  
If you have a distributed development team, working from different locations, all
team members have the same development environment and can seamlessly
share all information.

Table 5.1 Benefits of using the cloud for software development

�5

 © Ian Sommerville 2018:Cloud-based Software

• A virtual server runs on an underlying physical computer and is made up
of an operating system plus a set of software packages that provide the
server functionality required.

• A virtual server is a stand-alone system that can run on any hardware in
the cloud.

• This ‘run anywhere’ characteristic is possible because the virtual server has no
external dependencies.

• Virtual machines (VMs), running on physical server hardware, can be
used to implement virtual servers.

• A hypervisor provides hardware emulation that simulates the operation of the
underlying hardware.

• If you use a virtual machine to implement virtual servers, you have exactly
the same hardware platform as a physical server.

Virtual cloud servers

�6

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.2 Implementing a virtual server as a virtual machine

�7

Host OS

Server hardware

Hypervisor

Guest
OS

Figure 5.2 Implementing a virtual server as a virtual machine

Server
software

Virtual web
server

Linux

Apache
web server

Guest
OS

Server
software

Virtual mail
server

Windows Server

Outlook

 © Ian Sommerville 2018:Cloud-based Software

• If you are running a cloud-based system with many instances of
applications or services, these all use the same operating system, you
can use a simpler virtualization technology called ‘containers’.

• Using containers accelerates the process of deploying virtual servers on
the cloud.

• Containers are usually megabytes in size whereas VMs are gigabytes.

• Containers can be started and shut down in a few seconds rather than the few
minutes required for a VM.

• Containers are an operating system virtualization technology that allows
independent servers to share a single operating system.

• They are particularly useful for providing isolated application services where
each user sees their own version of an application.

Container-based virtualization

�8

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.3 Using containers to provide isolated services

�9

Host OS

Server hardware

Container manager

Figure 5.3 Using containers to provided isolated services

Server
software

Server
software

Application
software

Application
software

Graphics
libraries

Photo manager

Graphics
libraries

Photo manager

Graphic design
software

Graphic design
software

Container 2Container 1

User 2User 1

 © Ian Sommerville 2018:Cloud-based Software

• Containers were developed by Google around 2007 but containers
became a mainstream technology around 2015.

• An open-source project called Docker provided a standard means of
container management that is fast and easy to use.

• Docker is a container management system that allows users to define
the software to be included in a container as a Docker image.

• It also includes a run-time system that can create and manage
containers using these Docker images.

Docker

�10

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.4 The Docker container system

�11

Docker client

Dockerfiles
Docker host

Docker hub

Registries

Docker
daemon

Images

Containers

Figure 5.4 The Docker container system

 © Ian Sommerville 2018:Cloud-based Software

Docker daemon 
This is a process that runs on a host server and is used to setup, start, stop, and
monitor containers, as well as building and managing local images.

Docker client 
This software is used by developers and system managers to define and control
containers

Dockerfiles 
Dockerfiles define runnable applications (images) as a series of setup commands
that specify the software to be included in a container. Each container must be
defined by an associated Dockerfile.

Image  
A Dockerfile is interpreted to create a Docker image, which is a set of directories
with the specified software and data installed in the right places. Images are set
up to be runnable Docker applications.

Table 5.2 The elements of the Docker container system

�12

 © Ian Sommerville 2018:Cloud-based Software

Docker hub 
This is a registry of images that has been created. These may be reused to setup
containers or as a starting point for defining new images.

Containers 
Containers are executing images. An image is loaded into a container and the
application defined bby the image starts execution. Containers may be moved
from server to server without modification and replicated across many servers.
You can make changes to a Docker container (e.g. by modifying files) but you
then must commit these changes to create a new image and restart the
container.

Table 5.2 The elements of the Docker container system

�13

 © Ian Sommerville 2018:Cloud-based Software

• Docker images are directories that can be archived, shared and run on
different Docker hosts. Everything that’s needed to run a software
system - binaries, libraries, system tools, etc. is included in the directory.

• A Docker image is a base layer, usually taken from the Docker registry,
with your own software and data added as a layer on top of this.

• The layered model means that updating Docker applications is fast and efficient.
Each update to the filesystem is a layer on top of the existing system.

• To change an application, all you have to do is to ship the changes that you
have made to its image, often just a small number of files.

Docker images

�14

 © Ian Sommerville 2018:Cloud-based Software

• They solve the problem of software dependencies. You don’t have to
worry about the libraries and other software on the application server
being different from those on your development server.

• Instead of shipping your product as stand-alone software, you can ship a
container that includes all of the support software that your product needs.

• They provide a mechanism for software portability across different
clouds. Docker containers can run on any system or cloud provider
where the Docker daemon is available.

• They provide an efficient mechanism for implementing software services
and so support the development of service-oriented architectures.

• They simplify the adoption of DevOps. This is an approach to software
support where the same team are responsible for both developing and
supporting operational software.

Benefits of containers

�15

 © Ian Sommerville 2018:Cloud-based Software

• The idea of a service that is rented rather than owned is fundamental to
cloud computing.

• Infrastructure as a service (IaaS)

• Cloud providers offer different kinds of infrastructure service such as a compute
service, a network service and a storage service that you can use to implement
virtual servers.

• Platform as a service (PaaS)

• This is an intermediate level where you use libraries and frameworks provided by
the cloud provider to implement your software. These provide access to a range of
functions, including SQL and NoSQL databases.

• Software as a service (SaaS)

• Your software product runs on the cloud and is accessed by users through a web
browser or mobile app.

Everything as a service

�16

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.5 Everything as a service

�17

Cloud data center

Infrastructure as a service

Platform as a service

Software as a service

Figure 5.5 Everything as a service

Storage
Network

Computation
Virtualization

Cloud management
Monitoring

Database
Software development

Photo
editing

Logistics
management

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.6 Management responsibilities for IaaS and PaaS

�18

Basic computational
services

Infrastructure as a service Platform as a service

Basic computational
services

Managed by
cloud vendor

Application services
(database etc.)

Cloud management
services

Application services
(database etc.)

Cloud management
services

Software as a service

Managed by
cloud vendor

Managed by
cloud vendor

Managed by
cloud vendor

Managed by
software provider

Managed by
software provider

Managed by
software provider

Managed by
software provider

Figure 5.6 Management responsibilities for IaaS and PaaS

 © Ian Sommerville 2018:Cloud-based Software

• Increasingly, software products are being delivered as a service, rather
than installed on the buyer’s computers.

• If you deliver your software product as a service, you run the software
on your servers, which you may rent from a cloud provider.

• Customers don’t have to install software and they access the remote
system through a web browser or dedicated mobile app.

• The payment model for software as a service is usually a subscription
model.

• Users pay a monthly fee to use the software rather than buy it outright.

Software as a service

�19

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.7 Software as a service

�20

Cloud infrastructure

Software services

Figure 5.7 Software as a service

Cloud provider

Software provider

Software customers

 © Ian Sommerville 2018:Cloud-based Software

Cash flow  
Customers either pay a regular subscription or pay as they use the software. This
means you have a regular cash flow, with payments throughout the year. You don’t
have a situation where you have a large cash injection when products are purchased
but very little income between product releases.

Update management 
You are in control of updates to your product and all customers receive the update at
the same time. You avoid the issue of several versions being simultaneously used and
maintained. This reduces your costs and makes it easier to maintain a consistent
software code base.

Continuous deployment 
You can deploy new versions of your software as soon as changes have been made
and tested. This means you can fix bugs quickly so that your software reliability can
continuously improve.

Table 5.3 Benefits of SaaS for software product providers

�21

 © Ian Sommerville 2018:Cloud-based Software

Payment flexibility 
You can have several different payment options so that you can attract a wider
range of customers. Small companies or individuals need not be discouraged by
having to pay large upfront software costs.

Try before you buy 
You can make early free or low-cost versions of the software available quickly
with the aim of getting customer feedback on bugs and how the product could be
approved.

Data collection 
You can easily collect data on how the product is used and so identify areas for
improvement. You may also be able to collect customer data that allows you to
market other products to these customers.

Table 5.3 Benefits of SaaS for software product providers

�22

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.8 Advantages and disadvantages of SaaS for customers

�23

Software
customer

No upfront costs
for software or

servers

 Disadvantages

Reduced software
management costs

 Advantages

 Immediate
software updates

Mobile, laptop and
desktop access

Privacy
regulation

conformance

Network constraints

Security concerns

Loss of control
over updates

Service lock-in

Data exchange

Figure 5.8 Advantages and disadvantages of SaaS for customers

 © Ian Sommerville 2018:Cloud-based Software

Regulation 
Some countries, such as EU countries, have strict laws on the storage of personal
information. These may be incompatible with the laws and regulations of the country where
the SaaS provider is based. If a SaaS provider cannot guarantee that their storage
locations conform to the laws of the customer’s country, businesses may be reluctant to use
their product.

Data transfer 
If software use involves a lot of data transfer, the software response time may be limited by
the network speed. This is a problem for individuals and smaller companies who can’t
afford to pay for very high speed network connections.

Data security 
Companies dealing with sensitive information may be unwilling to hand over the control of
their data to an external software provider. As we have seen from a number of high profile
cases, even large cloud providers have had security breaches. You can’t assume that they
always provide better security than the customer’s own servers.

Data exchange 
If you need to exchange data between a cloud service and other services or local software
applications, this can be difficult unless the cloud service provides an API that is accessible
for external use.

Table 5.4 Data storage and management issues for SaaS

�24

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.9 Design issues for software delivered as a service

�25

SaaS design
issues

Local/remote processing Authentication

Information leakage Multitenant or multi-instance
database management

Figure 5.9 Design issues for software delivered as a service

 © Ian Sommerville 2018:Cloud-based Software

• Local/remote processing

• A software product may be designed so that some features are executed locally in the
user’s browser or mobile app and some on a remote server.

• Local execution reduces network traffic and so increases user response speed. This
is useful when users have a slow network connection.

• Local processing increases the electrical power needed to run the system.

• Authentication

• If you set up your own authentication system, users have to remember another set of
authentication credentials.

• Many systems allow authentication using the user’s Google, Facebook or LinkedIn
credentials.

• For business products, you may need to set up a federated authentication system,
which delegates authentication to the business where the user works.

SaaS design issues (1)

�26

 © Ian Sommerville 2018:Cloud-based Software

• Information leakage

• If you have multiple users from multiple organizations, a security risk is that
information leaks from one organization to another.

• There are a number of different ways that this can happen, so you need to be
very careful in designing your security system to avoid this.

• Multi-tenant and multi-instance systems

• In a multi-tenant system, all customers are served by a single instance of the
system and a multitenant database.

• In a multi-instance system, a separate copy of the system and database
is made available for each user.

SaaS design issues (2)

�27

 © Ian Sommerville 2018:Cloud-based Software

• A multi-tenant database is partitioned so that customer companies have
their own space and can store and access their own data.

• There is a single database schema, defined by the SaaS provider, that is shared
by all of the system’s users.

• Items in the database are tagged with a tenant identifier, representing a
company that has stored data in the system. The database access software
uses this tenant identifier to provide ‘logical isolation’, which means that users
seem to be working with their own database.

Multi-tenant systems

�28

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.10 An example of a multi-tenant database

�29

Stock management

 Tenant Key Item Stock Supplier Ordered

T516 100 Widg 1 27 S13 2017/2/12

T632 100 Obj 1 5 S13 2017/1/11

T973 100 Thing 1 241 S13 2017/2/7

T516 110 Widg 2 14 S13 2017/2/2

T516 120 Widg 3 17 S13 2017/1/24

T973 100 Thing 2 132 S26 2017/2/12

Figure 5.10 An example of a multitenant database

 © Ian Sommerville 2018:Cloud-based Software

Resource utilization 
The SaaS provider has control of all the resources used by the software and can
optimize the software to make effective use of these resources.

Security 
Multitenant databases have to be designed for security because the data for all
customers is held in the same database. They are, therefore, likely to have fewer
security vulnerabilities than standard database products. Security management is
simplified as there is only a single copy of the database software to be patched if
a security vulnerability is discovered.

Update management  
It is easier to update a single instance of software rather than multiple instances.
Updates are delivered to all customers at the same time so all use the latest
version of the software.

Table 5.5 Advantages of multi-tenant databases

�30

 © Ian Sommerville 2018:Cloud-based Software

Inflexibility 
Customers must all use the same database schema with limited scope for
adapting this schema to individual needs. I explain possible database adaptations
later in this section.

Security 
As data for all customers is maintained in the same database, then there is a
theoretical possibility that data will leak from one customer to another. In fact,
there are very few instances of this happening. More seriously, perhaps, if there
is a database security breach then it affects all customers.

Complexity 
Multitenant systems are usually more complex than multi-instance systems
because of the need to manage many users. There is, therefore, an increased
likelihood of bugs in the database software.

Table 5.5 Disadvantages of multi-tenant databases

�31

 © Ian Sommerville 2018:Cloud-based Software

Authentication 
Businesses may want users to authenticate using their business credentials rather
than the account credentials set up by the software provider. I explain, in Chapter 7,
how federated authentication makes this possible.

Branding 
Businesses may want a user interface that is branded to reflect their own organisation.

Business rules 
Businesses may want to be able to define their own business rules and workflows that
apply to their own data.

Data schemas 
Businesses may want to be able to extend the standard data model used in the
system database to meet their own business needs.

Access control  
Businesses may want to be able to define their own access control model that sets out
the data that specific users or user groups can access and the allowed operations on
that data.

Table 5.6 Possible customisations for SaaS

�32

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.11 User profiles for SaaS access

�33

SaaS
application

Profile
co1

Profile
co2

Profile
co3

Profile
co4

Profile
co6

Profile
co5

co1 user

Figure 5.11 User profiles for SaaS access

co1 user co1 user

co4 user co4 user co4 user

co6 user

co6 user

co3 user

co3 user

co3 user

co4 user

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.12 Database extensibility using additional fields

�34

Stock management

 Tenant Key Item Stock Supplier Ordered Ext 1 Ext 2 Ext 3

T516 100 Widg 1 27 S13 2017/2/12

T632 100 Obj 1 5 S13 2017/1/11

T973 100 Thing 1 241 S13 2017/2/7

T516 110 Widg 2 14 S13 2017/2/2

T516 120 Widg 3 17 S13 2017/1/24

T973 100 Thing 2 132 S26 2017/2/12

Figure 5.12 Database extensibility using additional fields

 © Ian Sommerville 2018:Cloud-based Software

• You add some extra columns to each database table and define a
customer profile that maps the column names that the customer wants to
these extra columns. However:

• It is difficult to know how many extra columns you should include. If you have too
few, customers will find that there aren’t enough for what they need to do.

• If you cater for customers who need a lot of extra columns, however, you will find
that most customers don’t use them, so you will have a lot of wasted space in your
database.

• Different customers are likely to need different types of columns.

• For example, some customers may wish to have columns whose items are string types, others
may wish to have columns that are integers.

• You can get around this by maintaining everything as strings. However, this means that either
you or your customer have to provide conversion software to create items of the correct type.

•

Adding fields to extend the database

�35

 © Ian Sommerville 2018:Cloud-based Software

• An alternative approach to database extensibility is to allow customers to
add any number of additional fields and to define the names, types and
values of these fields.

• The names and types of these values are held in a separate table,
accessed using the tenant identifier.

• Unfortunately, using tables in this way adds complexity to the database
management software.

• Extra tables must be managed and information from them integrated into the
database.

Extending a database using tables

�36

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.13 Database extensibility using tables

�37

Stock management

 Tenant ID Item Stock Supplier Ordered Ext 1

T516 100 Widg 1 27 S13 2017/2/12

T632 100 Obj 1 5 S13 2017/1/11

T973 100 Thing 1 241 S13 2017/2/7

T516 110 Widg 2 14 S13 2017/2/2

T516 120 Widg 3 17 S13 2017/1/24

T973 100 Thing 2 132 S26 2017/2/12

E123

E200

E346

E124

E125

E347

 Tenant Name Type

T516

T516

T516

T632

T632

T973 ‘Delivered’ Date

‘Location’

‘Weight’

‘Fragile’

String

Integer

Bool

‘Delivered’ Date

‘Place’ String

Field names

 Tenant Value

T516

T516

T516

T632

T632

T973 ‘2017/2/10’

‘A17/S6’

‘4’

‘False’

‘2017/1/15’

‘Dublin’

Record

E123

E123

E123

E200

E200

E346

Field values

...

Figure 5.13 Database extensibility using tables

Tab1

Tab2 Tab3

Main database table

Extension table showing the
field names for each company
that needs database extensions Value table showing the value of

extension fields for each record

 © Ian Sommerville 2018:Cloud-based Software

• Information from all customers is stored in the same database in a multii-
multi-tenant system so a software bug or an attack could lead to the data
of some or all customers being exposed to others.

• Key security issues are multilevel access control and encryption.

• Multilevel access control means that access to data must be controlled at both
the organizational level and the individual level.

• You need to have organizational level access control to ensure that any
database operations only act on that organization’s data. The individual user
accessing the data should also have their own access permissions.

• Encryption of data in a multitenant database reassures corporate users
that their data cannot be viewed by people from other companies if some
kind of system failure occurs.

Database security

�38

 © Ian Sommerville 2018:Cloud-based Software

• Multi-instance systems are SaaS systems where each customer has its own
system that is adapted to its needs, including its own database and security
controls.

• Multi-instance, cloud-based systems are conceptually simpler than multi-tenant
systems and avoid security concerns such as data leakage from one organization
to another.

• There are two types of multi-instance system:

• VM-based multi-instance systems are multi-instance systems where the software
instance and database for each customer runs in its own virtual machine. All users from
the same customer may access the shared system database.

• Container-based multi-instance systems* These are multi-instance systems where each
user has an isolated version of the software and database running in a set of containers.

• This approach is suited to products in which users mostly work independently, with
relatively little data sharing. Therefore, it is best used for software that serves individuals
rather than business customers or for business products that are not data-intensive.

Multi-instance databases

�39

 © Ian Sommerville 2018:Cloud-based Software

Flexibility  
Each instance of the software can be tailored and adapted to a customer’s needs.
Customers may use completely different database schemas and it is
straightforward to transfer data from a customer database to the product database.

Security  
Each customer has their own database so there is no possibility of data leakage
from one customer to another.

Scaleability 
Instances of the system can be scaled according to the needs of individual
customers. For example, some customers may require more powerful servers than
others.

Resilience 
If a software failure occurs, this will probably only affect a single customers. Other
customers can continue working as normal.

Figure 5.7 Advantages of multi-instance databases

�40

 © Ian Sommerville 2018:Cloud-based Software

Cost  
It is more expensive to use multi-instance systems because of the costs of
renting many VMs in the cloud and the costs of managing multiple systems.
Because of the slow startup time, VMs may have to be rented and kept running
continuously, even if there is very little demand for the service.

Update management  
It is more complex to manage updates to the software because many instances
have to be updated. This is particularly problematic where individual instances
have been tailored to the needs of specific customers.

Table 5.7 Disadvantages of multi-instance databases

�41

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.14 Architectural decisions for cloud software engineering

�42

Should the software
use a multitenant or

multi-instance
database?

Figure 5.14 Architectural decisions for cloud software engineering

Software structure

Cloud platform

Scaleability and resilienceDatabase organization

What are the
software scaleability

and resilience
requirements?

Should the software
structure be mono-

lithic or service-
oriented?

What cloud platform
should be used for
development and

delivery?

 © Ian Sommerville 2018:Cloud-based Software

Target customers 
Do customers require different database schemas and database personalization? Do customers
have security concerns about database sharing? If so, use a multi-instance database.

Transaction requirements 
Is it critical that your products support ACID transactions where the data is guaranteed to be
consistent at all times? If so, use a multi-tenant database or a VM-based multi-instance database.

Database size and connectivity 
How large is the typical database used by customers? How many relationships are there between
database items? A multi-tenant model is usually best for very large databases as you can focus
effort on optimizing performance.

Database interoperability 
Will customers wish to transfer information from existing databases? What are the differences in
schemas between these and a possible multitenant database? What software support will they
expect to do the data transfer? If customers have many different schemas, a multi-instance
database should be used.

System structure  
Are you using a service-oriented architecture for your system? Can customer databases be split
into a set of individual service databases? If so, use containerized, multi-instance databases.

Table 5.8 Questions to ask when choosing a database organization

�43

 © Ian Sommerville 2018:Cloud-based Software

• The scaleability of a system reflects its ability to adapt automatically to
changes in the load on that system.

• The resilience of a system reflects its ability to continue to deliver critical
services in the event of system failure or malicious system use.

• You achieve scaleability in a system by making it possible to add new
virtual servers (scaling-out) or increase the power of a system server
(scaling-up) in response to increasing load.

• In cloud-based systems, scaling-out rather than scaling-up is the normal
approach used. Your software has to be organized so that individual software
components can be replicated and run in parallel.

• To achieve resilience, you need to be able to restart your software
quickly after a hardware or software failure.

Scalability and resilience

�44

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.15 Using a standby system to provide resilience

�45

Location A Location B

Figure 5.15 Using a standby system to provide resilience

System monitor

Active system Standby system

Database 1 Database 2

Database
mirror

 © Ian Sommerville 2018:Cloud-based Software

• Resilience relies on redundancy:

• Replicas of the software and data are maintained in different locations.

• Database updates are mirrored so that the standby database is a working copy
of the operational database.

• A system monitor continually checks the system status. It can switch to the
standby system automatically if the operational system fails.

• You should use redundant virtual servers that are not hosted on the
same physical computer and locate servers in different locations.

• Ideally, these servers should be located in different data centers.

• If a physical server fails or if there is a wider data center failure, then operation
can be switched automatically to the software copies elsewhere.

Resilience

�46

 © Ian Sommerville 2018:Cloud-based Software

• An object-oriented approach to software engineering has been that been
extensively used for the development of client-server systems built
around a shared database.

• The system itself is, logically, a monolithic system with distribution across
multiple servers running large software components. The traditional multi-
tier client server architecture is based on this distributed system model.

• The alternative to a monolithic approach to software organization is a
service-oriented approach where the system is decomposed into fine-
grain, stateless services.

• Because it is stateless, each service is independent and can be replicated,
distributed and migrated from one server to another.

• The service-oriented approach is particularly suitable for cloud-based software,
with services deployed in containers.

System structure

�47

 © Ian Sommerville 2018:Cloud-based Software

• Cloud platforms include general-purpose clouds such as Amazon Web
Services or lesser known platforms oriented around a specific
application, such as the SAP Cloud Platform. There are also smaller
national providers that provide more limited services but who may be
more willing to adapt their services to the needs of different customers.

• There is no ‘best’ platform and you should choose a cloud provider
based on your background and experience, the type of product that you
are developing and the expectations of your customers.

• You need to consider both technical issues and business issues when
choosing a cloud platform for your product.

Cloud platform

�48

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.16 Technical issues in cloud platform choice

�49

Figure 5.16 Technical issues in cloud platform choice

Expected load and
load predictability

Resilience

Supported cloud
services

Privacy and
data protection

Cloud platform
choice

 © Ian Sommerville 2018:Cloud-based Software

Figure 5.17 Business issues in cloud platform choice

�50

Figure 5.17 Business issues in cloud platform choice

Target
customers

Cost

Portability and
cloud migration

Business
issues

Service-level
agreements

Developer
experience

 © Ian Sommerville 2018:Cloud-based Software

• The cloud is made up of a large number of virtual servers that you can rent for
your own use. You and your customers access these servers remotely over the
internet and pay for the amount of server time used.

• Virtualization is a technology that allows multiple server instances to be run on
the same physical computer. This means that you can create isolated instances
of your software for deployment on the cloud.

• Virtual machines are physical server replicas on which you run your own
operating system, technology stack and applications.

• Containers are a lightweight virtualization technology that allow rapid replication
and deployment of virtual servers. All containers run the same operating
system. Docker is currently the most widely used container technology.

• A fundamental feature of the cloud is that ‘everything’ can be delivered as a
service and accessed over the internet. A service is rented rather than owned
and is shared with other users.

Key points 1

�51

 © Ian Sommerville 2018:Cloud-based Software

• Infrastructure as a service (IaaS) means computing, storage and other services
are available over the cloud. There is no need to run your own physical servers.

• Platform as a service (PaaS) means using services provided by a cloud platform
vendor to make it possible to auto-scale your software in response to demand.

• Software as a service (SaaS) means that application software is delivered as a
service to users. This has important benefits for users, such as lower capital costs,
and software vendors, such as simpler deployment of new software releases.

• Multitenant systems are SaaS systems where all users share the same database,
which may be adapted at run-time to their individual needs. Multi-instance
systems are SaaS applications where each user has their own separate database.

• The key architectural issues for cloud-based software are the cloud platform to be
used, whether to use a multitenant or multi-instance database, the scaleability and
resilience requirements, and whether to use objects or services as the basic
components in the system.

Key points 2

�52

