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Abstract— This paper considers the problem of identifying
multivariate autoregressive (AR) sparse plus low-rank graphical
models. Based on a recent problem formulation, we use the
alternating direction method of multipliers (ADMM) to solve
it efficiently as a convex program for sizes encountered in
neuroimaging applications. We apply this algorithm on syn-
thetic and real neuroimaging datasets with a specific focus
on the information encoded in the low-rank structure of our
model. In particular, we illustrate that this information captures
the spatio-temporal structure of the original data, generalizing
classical component analysis approaches.

I. INTRODUCTION

Identifying statistical correlations between the variables in
multivariate datasets is a fundamental and recurrent problem
in many engineering applications. To this end, the langage of
graphical models has become very popular because they al-
low to study and represent the interactions between variables
in a concise manner [1].

Graphical models encode information about dependence
between the variables conditioned on all the other variables,
or conditional dependence [2]. For static models this infor-
mation is contained in the inverse of the covariance matrix
(also known as the precision matrix). The identification of
the model is then a covariance selection problem [3]. Addi-
tionally, sparsity and/or low-rank structural constraints can
be imposed to the precision matrix estimation. The sparsity
constraint results from the parsimony principle in model
fitting, i.e., one assumes few direct interactions between the
variables, and is enforced through l1-norm regularizers [4].
The low-rank structure, enforced through nuclear-norm reg-
ularizers, models the presence of latent variables that are not
observed but generate a common behavior in all the observed
variables [5]. The low-rank modeling is inspired from what
is done in classical component analysis techniques, and leads
to models that are simpler and more interpretable [6], [7]. An
example of graphical model that is both sparse and low-rank
is given in Fig. 1.
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Fig. 1. Ten observed variables xi, i ∈ [1 . . . 10] with few interactions
among them (sparsity) and one latent variable x11 (low-rank structure).

In dynamical models, the additional information of the
ordering of the data is taken into account and datasets are
seen as time series. A widely used class of models encoding
this information are autoregressive (AR) models which are
characterized by their power spectral density, the dynamic
equivalent of the covariance matrix [8]. As in the static
case, it has been shown that a zero in the inverse power
spectral density corresponds to conditional independence
between two variables [9]. In the dynamic case the (inverse)
power spectral density is encoded in a block Toeplitz matrix.
Because of this particular structure the classical l1-norm can
not be used to induce sparsity in the inverse power spectral
density. This problem is solved by introducing an alternate
regularization proposed in [10]. Finally, [11] presents a uni-
fying framework allowing sparse plus low-rank identification
of inverse power spectral densities in multivariate time series.

In this paper we adapt the problem formulated in [11]
to the alternating direction method of multipliers (ADMM)
framework of [12] in order to scale it with larger datasets for
which the CVX Matlab toolbox of [13] is computationally
expensive. In particular, we exploit separability of constraints
of the ADMM framework to decouple the sparsity and
the low-rank constraints. The first update is a projective
gradient update similar to the one proposed in [10] and the
second update is a well known projection onto the cone of
positive semidefinite matrices. In the numerical examples we
illustrate the performance of the proposed algorithm on a
real neuroimaging dataset. We also provide further insight
into the information encoded in the low-rank structure of
our model by applying the proposed algorithm to datasets
with different spatio-temporal structures, which is shown to
be at least partially recovered in the latent variables.

The paper is organized as follows. We present the op-
timization problem leading to this sparse plus low-rank
decomposition in Section II and we explain how we use
ADMM to efficiently solve it in Section III. We then show
the results of our approach on synthetic and real data in
Section IV and conclude.
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II. PROBLEM FORMULATION

We first introduce some basic notions, explain the moti-
vation of the sparse plus low-rank (S+L) graphical models
and then formally deduce the corresponding optimization
problem. Finally, we define latent components that we use in
the numerical examples in order to characterize information
encoded in the low-rank part of this decomposition.

Consider a q-dimensional autoregressive (AR) gaussian
process x = [x1(t) . . . xq(t)]

T of order p

x(t) =

p∑
i=1

Aix(t− i) + ϵ(t),

where x(t) ∈ Rq , Ai ∈ Rq×q , i = 1 . . . p and ϵ(t)
is white gaussian noise with covariance matrix Σ. x is
completely characterized by its spectral density Φ(ejθ) which
encodes information about dependence relations between the
q variables [8]. On the contrary the inverse power spectral
density Φx(e

jθ)−1 encodes conditional dependence relations
between variables [9], [14]. Two variables xk and xl are
independent, conditionally on the other q − 2 variables of x
over {t ∈ Z}, if and only if

(Φ(ejθ)−1)kl = 0 ∀θ ∈ [0, 2π], (1)

The nodes of the corresponding graphical model are the q
variables of x and there is no edge between the two nodes
xk and xl if and only if (1) is satisfied [9].

A. S+L graphical models

Assume that x(t) = [(xm(t))T (xl(t))T ]T where xm(t) =
[x1(t) . . . xm(t)]T ∈ Rm contains manifest variables,
that is variables accessible to observations, and xl(t) =
[xm+1(t) . . . xm+l(t)]

T ∈ Rl contains latent variables, not
accessible to observations. The power spectrum of x can be
expressed using the following block decomposition

Φx =

[
Φm Φ∗

ml

Φml Φl

]
, Φ−1

x =

[
Υm Υ∗

ml

Υml Υl

]
, (2)

where the ∗ denotes the conjugate transpose operation.
In order to better characterize the conditional dependence

relations between the manifest variables, from (2) we obtain
the following decomposition of Φ−1

m using the Schur com-
plement [15]

Φ−1
m = Υm −Υ∗

mlΥlΥml . (3)

The main modeling assumption here is that l ≪ m and
that the conditional dependencies relations among the m
manifest variables encoded in Φ−1

m can be largely explained
through few latent variables. The corresponding graphical
model has few edges between the manifest variables and
few latent nodes, as in Fig. 1. This leads to a S+L structure
for Φ−1

m following (3): Φ−1
m = Σ − Λ, where Σ = Υm is

sparse because it encodes conditional dependence relations
between the manifest variables and Λ = Υ∗

mlΥlΥml is low

rank. Since x is an AR process of order p, we can assume that
Σ and Λ belong to the family of matrix pseudo-polynomials

Qm,p = {
p∑

j=−p

e−ijθRj : Rj = RT
−j ∈ Rm×m}.

Following [11] we further rewrite Σ and Λ as

Σ− Λ = ∆X∆∗,
Λ = ∆L∆∗, (4)

where ∆ is a shift operator ∆(eiθ) := [I eiθI . . . eipθI]
and X and L are now matrices belonging to Qm(p+1) which
is the set of symmetric matrices of size m(p+1)×m(p+1).

Finally, Mm,p is the vector space of matrices W :=
[W0 W1 . . .Wp] with W0 ∈ Qm and W1 . . .Wp ∈ Rm×m.
The linear mapping T : Mm,p → Qm(p+1) outputs a
symmetric block Toeplitz matrix from the blocks of W as

T (W ) =


W0 W1 · · · Wp

WT
1 W0

. . .
...

...
. . . . . . W1

WT
n · · · WT

1 W0

 .

The adjoint operator of T is the linear mapping D :
Qm(p+1) → Mm,p defined for a matrix X ∈ Qm(p+1)

partitioned in square blocks of size m×m as

X =


X00 X01 · · · X0p

XT
00 X11 · · · X1p

...
...

. . .
...

XT
0p XT

1p · · · Xpp

 . (5)

Following this partition, W = D(X) ∈ Mm,p is given by{
W0(X) =

∑p
h=0 Xhh,

Wj(X) = 2
∑p−j

h=0 Xh,h+j ∀j = 1 . . . p.
(6)

B. S+L identification problem formulation

Assume that we have a finite length realization
xm(1) . . . xm(N) of the manifest process xm. It should be
emphasized that no data is available regarding the latent
process xl, and its dimension is not even known. Our
goal is to recover the S+L model defined in the previous
section which best explains the collected data. Therefore,
one estimate of X and L (hence of Σ and Λ) is given by
solving the regularized maximum entropy problem [16], [17]
for which the primal is

min
X,L∈Qm(p+1)

− log detX00 + ⟨C,X⟩

+ λγh(D(X + L)) + λ trace(L)

subject to X ⪰ 0, X00 ≻ 0, L ⪰ 0,

(7)

where
• γ > 0 and λ > 0 are weighting parameters leading to

a sparse Σ and a low-rank Λ,
• C = T (R̂) where R̂ ∈ Mm,p are the p+1 first sample

covariance lags R̂k [8],
• ⟨., .⟩ is the inner product associated with Rm×m,
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• h is the following function chosen to favor a structured
sparse solution D(X + L)

h(Y ) =
∑
j>i

max{|(Y0)ij |, max
k=1,...,p

|(Yk)ij |, max
k=1,...,p

|(Yk)ji|},

which is convex but non smooth. This limitation was over-
come in similar works [10] by solving the corresponding
dual problem. In the present case, it can be shown based on
[10] and [11] that the dual of (7) is

max
Z∈Mm,p

Ψ(C + T (Z))

subject to
∑p

k=0(|(Zk)ij |+ |(Zk)ji|) ≤ γλ, i ̸= j

diag(Zk) = 0, k = 0, ..., p

λI + T (Z) ⪰ 0,

(8)

where Ψ : Qm(p+1) → R is defined as

Ψ(V ) = − log det(V00 − V T
1:p,0V

−1
1:p,1:pV1:p,0)−m

and V ∈ Qm(p+1) is partitioned as in (5).

C. Definition of latent components

The optimal primal variables (Xopt,Lopt) are recovered
from the optimal solution Zopt following [11] from which
Σopt and Λopt are computed by (4). Λopt is a square matrix
function of size m, defined over the unit circle and for which
we consider the pointwise singular value decomposition
since Λopt is low-rank for all θ ∈ [0, 2π]

Λopt
m,m(θ) = Γm,l(θ)Ωl,l(θ)Γ

∗
m,l(θ). (9)

The i-th column of Γm,l(θ) contains the strength of the
conditional dependence relation between the i-th unobserved
latent variable and each of the m manifest variables. Fol-
lowing component analysis nomenclature [6] we call the i-
th column of Γm,l(θ) the i-th latent component and denote
it γi,.(θ). In other words, γi,j(θ) with i ∈ [1 . . . l] and j ∈
[1 . . .m] represents the weight of the conditional dependence
between the latent variable xm+i(t) and the manifest variable
xj(t) in the expression of xj(t). In the static case, γi,.(θ)
reduces to a constant vector because ∆ = I in (4) and Λ
does not depend on θ. On the contrary, in the dynamic case
each latent component is a function of θ ∈ [0, 2π].

III. ALTERNATING DIRECTION METHOD OF MULTIPLIERS

We use the alternating direction method of multipliers
(ADMM) of [12] to solve (8). This choice is motivated
by the fact that this algorithm both inherits the strong
convergence properties of the method of multipliers and
exploits decomposability of the dual problem formulation
leading to efficient partial updates of the variables. We show
how we rewrite (8) in the ADMM format by separating
the sparse and low-rank constraints, then explain how we
choose an adequate stopping criterion and recover the primal
variables.

In order to decouple the constraints related to sparsity and
low-rank we introduce the new variable Y ∈ Qm(p+1) and
reformulate (8) as

min
Z∈Mm,p

Ψ(C + T (Z))

subject to A(Z) ≤ b, (C1)
Y = T (Z) + λI ,
Y ⪰ 0 (C2),

(10)

where the first constraint (C1) gathers the first two constraints
on Z of (8) and A and b are defined accordingly; and (C2) is
the last constraint of (8) imposing positive semidefiniteness
of the new variable Y . Using the augmented Lagrangian
formulation, we introduce Lρ defined by

Lρ(Z, Y,M) = Ψ(C + T (Z))− ⟨M,Y − T (Z)− λI⟩
+
ρ

2
∥Y − T (Z)− λI∥2

F ,

where ∥·∥F is the Frobenius norm. Subsequently, the ADMM
updates are

Zk+1 = min Lρ(Z, Y
k,Mk), (S1)

Z ∈ C1

Y k+1 = min Lρ(Z
k+1, Y,Mk), (S2)

Y ∈ C2

Mk+1 = Mk − ρ(Y k+1 − T (Zk+1)− λI). (S3)

It should be noted that (S1) has no closed form solution
and corresponds to the sparsity set of constraints of [10]. We
approximate the solution by a projective gradient step as in
[10]. Following this approach,

Zk+1 = ΠC1(Z
k − tk∇ZLρ(Zk, Yk,Mk)),

where
• ∇ZLρ(Zk, Yk,Mk) = ∇Ψ(Zk) +D(Mk)

+ρD(T (Zk)+λI−Y k),
• tk is found from the Armijo conditions,
• ΠC1 is the projection onto C1 which reduces to a

projection onto the l1-norm ball [10], [18].
The optimization problem (S2) has a closed form solution

and is computed as

Y k+1 = ΠC2(
1

ρ
Mk − T (Zk+1)− λI),

where ΠC2 is the projection onto the cone of symmetric
positive semidefinite matrices of size m(p+ 1)×m(p+ 1),
which is done by selecting the eigenvectors corresponding
to positive eigenvalues. This leads to the final updates of
the ADMM algorithm.

ADMM for sparse plus low-rank inverse power spectral
density estimation. Initialize Z0, Y0, M0; set ρ > 0; and
successively update variables as follows:

Zk+1 = ΠC1(Z
k − tk∇ZLρ(Zk, Yk,Mk)),

Y k+1 = ΠC2(
1
ρM

k − T (Zk+1)− λI),

Mk+1 = Mk − ρ(Y k+1 − T (Zk+1)− λI).

(11)

Following [12], a stopping criterion for (11) is based on the
primal and dual residuals r and s that respectively measure
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satisfaction of the equality constraint of (10) and the distance
between two successive iterates of the additional variable Y .
r and s should satisfy ∥r∥F ≤ ϵpri and ∥s∥F ≤ ϵdual where
ϵpri and ϵdual are defined as

ϵpri = m(p+ 1)ϵabs

+ϵrel max{λ
√

m(p+ 1), ∥T (Zk)∥F , ∥Y k∥F },
ϵdual = m

√
p+ 1ϵabs + ϵrel∥D(Mk)∥F .

Here ϵabs and ϵrel are the predefined absolute and relative
tolerances for the problem.

A variation is obtained when ρ is multiplied by a factor
of τ > 1 at each iteration up to a maximum value ρmax

starting from a value ρ0 depending on the application.
Convergence analysis of the ADMM algorithm follows

from [12, Section 3.2][19]. The computational cost per
iteration of the updates (11) depends on the projections
onto C1 and C2, the gradient evaluation of Lρ, and the
linear mappings T and D leading to a final complexity
O(m3(p+ 1)3).

IV. NUMERICAL EXAMPLES

In this section we apply the proposed ADMM algorithm
to solve the sparse plus low-rank decomposition on synthetic
and real datasets and explore the type of information encoded
in the identified latent components. The Matlab code for
the algorithm is available from the webpage http://www.
montefiore.ulg.ac.be/˜rliegeois/

A. Application on linear synthetic data

This synthetic dataset consists of time series corresponding
to a first order AR model (dynamic model, p = 1) with
the interaction graph presented in Fig. 1. The interaction
graphs of the manifest variables (support of Σ) identified
for different values of λ and λγ are represented in Fig. 2
as well as l, the number of latent components (rank of Λ)
that were identified. In order to discriminate between models
we compute a score function f , defined in [10], taking into
account fitting to the data and complexity of the model.

l= 1, f= 4.31

λ
=

 0
.4

2

l= 2, f= 7.08 l= 2, f= 6.61

l= 0, f= 3.63

λ
=

 0
.6

3

l= 1, f= 1.45 l= 1, f= 1.51

l= 0, f= 3.63

λ
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 0
.8

5

λγ= 0.22
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λγ= 0.45

l= 0, f= 1.61

λγ= 0.67

(B) True interaction 

graph

(C) Optimal interaction 

graph in static case

l= 1, f= 1.44

λ
=

 0
.6

1

λγ= 0.4

(A) Interaction graphs for di!erent values of parameters λ and λγ

Optimal

Fig. 2. (A) Interaction graphs of estimated models for different values of
λ and λγ using a first order AR model (p = 1). (B) True interaction graph.
(C) Optimal interaction graph of estimated model obtained in the static case
(p = 0).

As expected, higher values of λ promote models with less
latent components, and higher values of λγ favor models
with few interactions between the manifest variables. The
model with the best (lowest) score function recovers the
true interaction graph with the correct number of latent
components (Fig. 2A). The optimal interaction graph in the
static case (Fig. 2C), on the contrary, does not recover exactly
the true interaction graph.

The stopping criterion based on the primal and dual
residuals is illustrated in Fig. 3 using this dataset. The
algorithm stops when ∥r∥2 ≤ ϵpri and ∥s∥2 ≤ ϵdual are
both satisfied.
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Fig. 3. Typical convergence scheme of the ADMM algorithm obtained
with the linear synthetic dataset with the parameter values ρ0 = 1, τ = 1.1,
ρmax = 1000, ϵabs = 10−5, and ϵdel = 10−4.

B. Application on non-linear synthetic data

The interest in considering a non-linear generative model
is that it can produce endogenous sustained oscillations in
networks similarly to what is observed in neuroimaging data
such as fMRI time series. A popular non-linear model is the
Hopfield model widely used in neural networks [20]:

ẋi = −xi + sat(
∑
j ̸=i

Gijxj) + ϵ,

where xi denotes the level of activity of the variable i,
Gij is the strength of the connection from xj to xi, and
sat is a sigmoı̈dal saturation function. Fig. 4 shows how
we generate oscillations in two clusters. In the first case
(Fig. 4B) the oscillations are coupled, leading to dephased
oscillations of the same frequency whereas in the second case
the clusters are decoupled (Fig. 4C), leading to oscillations of
different frequencies in the two clusters. We finally generate
three different datasets for each configuration by sampling
these time series at different frequencies. The first dataset is
produced by using the original time series (no sampling), the
second and third datasets are obtained by sampling the time
series with a period of T1 and T2 to generate synthetic data
with higher frequency content.

Fig. 5 shows the static and dynamic latent components
as defined in section II-C that are identified in the optimal
models from the synchronous oscillations datasets of Fig. 4B.
Since the results are very similar within the nodes of each
cluster and for clarity purposes we plot only the value of the
latent components in node 1 (γi,1) and in node 5 (γi,5).
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Fig. 4. (A) The generative model contains two clusters and the values of the directed connectivity between the nodes is indicated on the corresponding
arrows. These values correspond to the matrix C in (12). (B) Set of parameters leading to coupled oscillations and (C) decoupled oscillations.
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Fig. 5. Latent components identified in the static and dynamic cases from
the three datasets generated from coupled oscillators (Fig. 4 B).

In the static case two latent components corresponding
to the two clusters of the generative model are identified.
There is no significant difference for the three input datasets
suggesting that the frequency content of original data is not
encoded in the static latent components. In the dynamic case
(p = 1), the latent components are encoded in γi,j(θ) and a
single latent component is identified in the optimal model.
Interestingly, the T2-sampled synthetic data (high-frequency
time series) leads to a latent component showing a strong
high-frequency content whereas the original dataset leads to
a latent component with dominant low-frequency content.

Having the same approach on asynchronous oscillations,
we get the results shown in Fig. 6. In the static case we
still obtain two latent components recovering the two clusters
with no distinction between the three starting datasets. In the
dynamic case (p = 1), however, the optimal model now has
two latent components, each one capturing the oscillations
in one of the two clusters. As in the previous case the
frequency content of the synthetic data is encoded in the
frequency content of the latent component. Identifying two
latent components probably comes from the fact that the
frequency of oscillation in the two clusters are different,
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Static
l
opt 2 2 2

case

l
opt 2 2 2

Dyamic

case (p=1)

0 π/2 π0

0.2

0.4

0.6

0.8

1

0 π/2 π
0

0.2

0.4

0.6

0.8

1

0 π/2 π
0

0.2

0.4

0.6

0.8

1

0 π/2 π
0

0.2

0.4

0.6

0.8

1

Low frequency 

content

High frequency 

content

Low frequency 

content

High frequency 

content

Low frequency 

content

High frequency 

content

Low frequency 

content

High frequency 

content

Original data  T1-sampled data  T2-sampled data  

(0.51 , 0.08) (0.50 , 0.03) (0.50 , 0.04) 

(0.01 , 0.62) (0.04 , 0.61) (0.05 , 0.60) 

Latent

comp. n°1

Latent

comp. n°2

( γ    ,γ    )1,1 1,5

( γ    ,γ    )2,1 2,5

γ  (θ)  
1,1

γ  (θ)  
1,5

γ  (θ)  
2,1

γ  (θ)  
2,5

Fig. 6. Latent components identified in the static and dynamic cases from
the three datasets generated from decoupled oscillators (Fig. 4C).

suggesting that the dynamic latent component identifies a
spatio-temporal subspace of variation common to different
manifest variables.

C. Application to neuroimaging data

We illustrate the application of our proposed algorithm
on real neuroimaging data consisting of functional magnetic
resonance imaging time series in 90 brain regions collected
on 17 patients during rest [21]. It should be noted that
this problem dimension is not tractable with a standard
optimization tool such as the CVX toolbox of [13]. The
classical approach is to use component analysis to extract
neuronal networks. During rest, three networks are robustly
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