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Abstract

In this paper, we develop a framework to characterize the impact of infrastructure
investment on welfare. We suppose infrastructure investment affects the cost of ship-
ping goods between directly connected locations and the total bilateral cost between
any two locations is determined by traders optimally traveling across the complete
transportation network. Our approach comprises two distinct but complementary char-
acterizations: First, we characterize how infrastructure investment between any two
connected locations decreases the total trade costs between all pairs of locations. Sec-
ond, we characterize how the cost reduction between any two locations changes affects
welfare. We apply these results to shipment level data between U.S. cities to calculate
the welfare effects of improving each portion of the U.S. Interstate Highway System
(THS). We find very heterogeneous welfare effects of improvements to different sections
of the THS — reducing the travel time by 30 minutes on 1-95 South from New York
to Philadelphia would increase aggregate U.S. welfare by 0.02%, whereas reducing the
travel time by 30 minutes from Seattle to Salt Lake City along I-84 East would only
increase aggregate U.S. welfare by one-hundredth of that.

*Comments are welcome. We thank David Atkin, Dave Donaldson, Pablo Fajgelbaum, Xiangliang i,
and Sam Kortum for very helpful discussions.



1 Introduction

More than a trillion dollars is spent on investment in transportation across the world each
year (Lefevre, Leipziger, and Raifman, 2014). These investments on the transportation net-
works are designed to enhance economic activity by reducing the economic costs of moving
goods and people across space. However, there is limited understanding both how investment
in transportation networks affect economic costs and how changes in economic costs affect
economic outcomes. Better understanding of both questions is necessary in order to deter-
mine how to optimally allocate transportation investment to optimize economic outcomes.

In this paper, we develop a new spatial framework incorporating infrastructure investment
that admits an analytical solution for how infrastructure investment of any two connected lo-
cations decreases the cost of travel between all bilateral pairs. We then embed this framework
in a standard spatial economic framework in order to characterize the general equilibrium
impact on welfare of any infrastructure investment. Finally, apply the theory to detailed
shipment level data on trade between U.S. cities in order to estimate the welfare effects of
improving each portion of the U.S. Interstate Highway System.

To incorporate infrastructure investment, we suppose the world is composed of many
locations arranged on a weighted graph. Trade between locations requires traveling across
the network of the graph, incurring (iceberg) trade costs along the way. Infrastructure
investment can be undertaken to reduce the cost of any connection on the graph, which
reduces the bilateral trade costs both for the locations immediately connected and for all
trade flows using that route. As a result, characterizing how infrastructure investment affects
bilateral trade costs is quite difficult, as investment in infrastructure may potentially affect
trade costs between all other locations and traders may endogenously alter the route they
travel.

Previous applications of spatial models to understand the impact of transportation in-
frastructure have relied on computational algorithms such as Djikstra (see e.g. Donaldson
(2012)) to solve for the optimal routes in graphs. Our approach, in contrast, is analytical.
To make the problem tractable, we suppose that trade is undertaken by a continuum of
heterogeneous traders, who choose the least cost route over the network but vary in their
idiosyncratic cost of traveling over different paths. Using a combination of graph theory
and properties of extreme value distributions (in the spirit of Eaton and Kortum (2002)),
we show that this assumption admits a straightforward analytical relationship between the
weighted graph of the network and the resulting endogenous expected bilateral iceberg trade
costs. Moreover, the framework admits an intuitive expression for the elasticity of a bilateral

trade cost between any locations to an improvement in infrastructure between any two other



locations.

We then show how this framework can be readily combined with standard general equilib-
rium spatial frameworks, including the economic geography framework of Allen and Arkolakis
(2014) and the trade framework of Anderson (1979); Anderson and Van Wincoop (2003).
For both these frameworks, the elasticity of equilibrium welfare to a change in bilateral trade
costs between any two locations is equal to the fraction of world trade between those loca-
tions.Combining this elasticity with the elasticity of bilateral trade costs to infrastructure
investments yields a straightforward expression of the welfare effect of any transportation
infrastructure investment, which can be written as a “sufficient statistic” depending solely on
observed trade flows and the bilateral trade cost where the infrastructure investment occurs.

We then apply our framework to examine the welfare impact of improving each segment
of the U.S. Interstate Highway System (IHS). Using recently released shipment level micro
data from the Commodity Flow Survey, we show that our framework closely matches ob-
served trade flows, and both the average and variability of distance traveled across shipments
between a given origin and destination. Finally, we estimate that the welfare impact of im-
provements to different segments of the IHS are very heterogeneous. Along the 1-95 corridor
on the eastern seaboard and along I-70 in Indiana and Ohio, the effects of infrastructure
improvements are large; for example, reducing the travel time by 30 minutes on 1-95 South
from New York to Philadelphia (which we estimate is the most important highway in the
U.S.) would increase aggregate U.S. welfare by 0.02%. However, infrastructure improvements
elsewhere on the THS have effects that are orders of magnitude smaller; for example, we esti-
mate that reducing the travel time by 30 minutes from Seattle to Salt Lake City along I-84
East would only increase aggregate U.S. welfare by 0.0002%. Hence, the results highlight the
need to appropriately target infrastructure improvements in order to maximize their benefit.

There is a recent expanding literature on evaluating the impact of infrastructure in-
vestment in general equilibrium, such as Donaldson (2012), Allen and Arkolakis (2014),
Donaldson and Hornbeck (2012) in an inter-city context and the work of Ahlfeldt, Redding,
Sturm, and Wolf (2012) in an intra-city context; see Redding and Turner (2014) for an
excellent review of the literature. The application of these models to the study of spatial
policy, however, has preceded more slowly, as the combination of many locations, general
equilibrium forces, and flexible spatial linkages have made it difficult to characterize optimal
policy. For example, Ossa (2014) and Ossa (2015) follow a computational approach to char-
acterize optimal tariff and tax policies in spatial frameworks, while Allen, Arkolakis, and
Takahashi (2014) and Allen, Arkolakis, and Li (2015) derive first order necessary conditions
for the characterizations of the optimal investment in infrastructure. However, despite the

huge investment in transportation infrastructure, very little is known about the the impact



of changes in the transportation network on welfare in a general equilibrium setup. Two
notable exceptions are Felbermayr and Tarasov (2015), who consider infrastructure invest-
ment when the world is a line, and Fajgelbaum and Schaal (2016), who use tools from the
transportation economics literature to derive the optimal transport network in the presence
of congestion. Relative to Felbermayr and Tarasov (2015), our paper considers an arbitrary
geography; whereas relative to Fajgelbaum and Schaal (2016), our setup falls within the
class of general equilibrium spatial gravity models that have proven successful in matching
observed empirical patterns and performing counterfactuals using real world data, see e.g.
Redding and Rossi-Hansberg (2016).

The remainder of the paper proceeds as follows. The next section presents the framework
for the endogenous transportation costs and derives a number of key properties. Section 3
embeds the transportation cost framework into a the spatial economic model and derives the
elasticity of aggregate welfare

derives the elasticity of welfare to a change in any bilateral trade costs in both economic
geography and trade frameworks. Section 4 then combines the two results to derive the

elasticity of welfare to any infrastructure project. Section 5 concludes.

2 Endogenous transportation costs

In this section, we describe how to calculate the transportation costs between any two loca-
tions, accounting for the fact that agents endogenously choose the least cost route between

locations.

2.1 Setup

Consider a world composed of a finite number of locations ¢ € {1,...,N}. Locations are
organized on a weighted graph with an associated infrastructure matric T = [t;; > 1], where
t;; indicates the iceberg trade cost incurred from moving directly from i to j (if ¢ and j are
not directly connected in the graph, then ¢;; = co). The top left panel of Figure 1 provides
an example of such a network, where N = 25 and locations are arrayed in a two-dimensional
grid, with locations that are directly connected (i.e. ¢;; is finite) if they are adjacent and not
connected (i.e. ¢;; is infinite) otherwise.

Trade between ¢ and j is undertaken by a continuum of heterogeneous traders v € [0, 1]
who travel along (endogenously chosen) paths to get from i to j. A path p between i

and j is a sequence of locations beginning with location ¢ and ending with location j



{i =po,p1,...,px = j}, where K is the length of path p.! The aggregate trade cost from
i to j on a path p of length K, 7;; (p) is the product of the instantaneous trade costs along

the path:
K

Tij (p) = Htpk—lapk (1)

k=1
Each trader also incurs a path-specific idiosyncratic trade cost shock ¢;; (p, ), so the total
cost to trader v of traveling along path p between ¢ and j is 7;; (p)ei; (p,v). Let 75 (v)
indicate the cost trader v incurs optimally choosing the path between ¢ and j to minimize
the iceberg trade costs incurred:
(V)= _min_ 7 (p)ei; (p,v).

In what follows, we assume that €;; (p, v) is Frechet distributed with shape parameter 6 > 0,
and we let P;; ¢ denote the set of all paths of length K that go from ¢ to j.

Notice in our formulation that we allow traders to choose any possible path to ship a good
from ¢ to j — including the most meandering of routes. The extent to which traders differ in
which path they choose is determined by the shape parameter 6. In a sense, the parameter
0 can be considered as capturing the possibility of mistakes and randomness in the choice
of routes, with higher values indicating greater agreement across traders. In the limit case
of no heterogeneity, # — oo, all traders choose the route with the minimum aggregate trade
cost. The previous literature has focused exclusively on this limited case and relied upon
computational methods to calculate this least cost route (i.e. using the Djikstra algorithm as
in Donaldson (2012) and Donaldson and Hornbeck (2012) or the Fast Marching Method as in
Allen and Arkolakis (2014). As will become evident below, the advantage of the framework
proposed here is that the solution takes a convenient analytical form allowing for explicit
characterizations for how changes in the infrastructure affect bilateral trade costs. For this,
we view our formulation as relaxing the previous literature’s focus on the least cost route in
order to to better understand the impact of changes in the investment matrix on realized
trade costs. Finally, we should note that the concept of heterogeneous traders formulation
has been utilized previously by Allen and Atkin (2015). However, their formulation does
not consider the optimal route taken, as the the random trader shocks are realized on the

expected cost matrix instead of the infrastructure matrix.

IFollowing the literature on graph theory, we assume that t; = co to exclude paths that stay in the same
location; however, we allow traders shipping goods from i to i to choose the “null” path where they travel
nowhere and incur no trade costs (which is the only admissible path of length 0).



2.2 Optimal routes

Using the familiar derivations pioneered in Eaton and Kortum (2002) we can express the

expected trade cost 7;; from i to j across all traders as:

=

Tij = By [1; V)] = ¢ (Z Z Tij (p)9> ) (2)

K=0 pEPK

where ¢ =T (%1). Substituting equation (1) into equation (2) yields:

i = _HZZHM 1Pk

K=0 pePg k=1

In what follows, it proves useful to characterize the weighted adjacency matric A =
[aij = t;jg]. Note that a;; € [0, 1], where 0 indicates there is no connection between ¢ and j,
a;; = 1 indicates a cost-less connection, and a;; € (0,1) indicates a costly connection. We

can then write the expected trade cost as:
00 K
-6 _ -6 Z Z
Tij =c H Apy._1.,px -
K=0pePy k=1

The summing over all paths of length K can be written in a more convenient form by

explicitly summing across all locations that are traveled to first, second, etc. as follows:

—0 _ 0 Z Z Z Z
Qi kg X Ay kg X ooe X Qg o ke g X akK—lyj) )

= k1=1ko=1 kg _1=1

where k, is the sub-index for the n'* location arrived at on a particular path. This portion of
the expression in the parentheses, however, is equivalent to the (7, j) element of the weighted

adjacency matrix to the power K, i.e.:

i’ ‘”ZAW

where AKX = [AK], ie. AL is the (i,j) element of the matrix AX, ie. A to the matrix

power K. Furthermore, as long as the spectral radius of A is less than one,?the geometric

2A sufficient condition for the spectral radius being less than one is if Z tw < 1 for all 4. This will

necessarily be the case if either trade costs between connected locations are sufﬁmently large, the adjacency
matrix is sufficiently sparse, or the heterogeneity across traders is sufficiently small (i.e. 6 is sufficiently



sum can be expressed as:

d A =(1-A)"'=B,
K=0

where we call B = [b;;] the route cost matriz. Finally, the expected trade cost from i to j

can be written as a simple function of the route cost matrix:
1
Tij =cb.°. (3)

Equation (3) provides an analytical relationship between any given infrastructure matrix and

the resulting expected trade cost, accounting for traders choosing the least cost route.

2.3 Properties of the endogenous trade costs

In this subsection, we derive four important properties of this endogenous trade cost frame-
work. The first two properties will prove helpful in providing an analytical characterization
of the welfare impact of transportation infrastructure improvements, whereas the latter two

properties will prove helpful in estimation the model parameters from the data.

2.3.1 The probability of using a particular link along the optimal path

We first characterize the probability that trade going from location ¢ to location j travels
kl
ij
probability of taking any particular path p of length K can be written as:

through the link ¢y;, which we refer to as =« Given the extreme value distribution, the

-0
s (p) = 7ij (P)
1 - 0o —0
ZKZO Zp’EPij,K T’U (p,)
1 K
mij (p) = Do H Apy,_1,py» (4)
"7 k=1

where the second line used the definition of 7;; (p) from equation (1) and the derivation for
equation (3). As a result, we can calculate the probability of using link ¢;; when traveling

from 7 to j by summing across all paths from 7 to j that use the link #;;:

1 %) K
ﬂ-z]zl = b Z Z Hapk—hpk'

Y K=0pe PEL k=1

where P!, is the set of all paths from & to [ of length K that use link ¢;;.

large).



Note that for any p € PZ;ZK, there must exist some length B € [1,2,..., K — 1] at which

the path arrives at link ¢;; so that this can be written as:

K-1 B K-B-1

1 00 B
kl __
Tij = b_ E : E : Hapk—lzpk X Qg X E : H Gy _1,qx

Y K=0B=0 \pcPi k=1 q€Py; k-p-1 k=1

As above, we can then explicitly enumerate all possible paths from i to k of length B and
all possible paths from [ to j of length K — B — 1:

1 co K-1 N N N N

k:l

Zj _b_ E E E E Qg X - .. Xakalyk XA X E E are, X ... Xakxfol,j ,
" K=0 B=0 \ ki=1 kp_1=1 k1=1 kr_p_1=1

which again can be expressed more simply as elements of matrix powers of A :

This is where it gets a little more difficult. Recall from matrix calculus that the derivative

of the power of a matrix can be written as:

K—-1
DSk (A)C=> APCAK1 (5)
B=0

where Sk (A) = AKX and C is an arbitrary matrix. Furthermore, recall from above that the

geometric series of a power of matrices can be written as:

YA =(1-A)"
K=0
Hence, we can right multiply both sides of equation (5) by C and differentiate to yield:

i DSk (A)C = DT (A)C,

where T (A) = (I — A)~". Recall from matrix calculus (see e.g. Weber and Arfken (2003))
that DT (A)C = (I—A)"'C(I—A)"" so that we have:

Z Z_ ABCAK-B-1 _ (I- A)—l C(I- A)_l ‘ (6)

K=0 B=0



Define C to be an N x N matrix that takes the value of a;; at row k£ and column [ and zeros

everywhere else. Equation (6) then implies that:

Kl bikaklblj
7

1 7 ’
wi = (2T ) )
J C Tiklri i

Equation (7) is intuitive: the numerator on the right hand side is the expected trade cost on

the least cost route from i to j, whereas the denominator is the expected trade cost on the
least cost route from i to j through the transportation link ty;. Hence, the more costly it is
to travel through the link #;; relative to the unconstrained least cost route, the less likely a
trader is to use the link t;.

As an example, consider the network of locations presented in Figure 1. If we assume
that all connected locations have the same direct cost ¢;;, then the top right panel depicts
the probability that an agent going from ¢ = 1 (bottom left) to 7 = 25 (top left) travels
over each connection. As is evident, connections along the direct diagonal route are chosen
much more often than other routes, and connections near the diagonal route are chosen more
often than those further away. As an additional example, the bottom left panel depicts the
probability for agents going from ¢ = 1 (bottom left) to j = 15 (top center). In this case,
there are four different paths that share the same least deterministic costs. As is evident,
traders are much more likely to use links on these routes than other links. However, there is
also heterogeneity in the probability traveled across these different links — for example, the
connection from 1 to 7 is traveled more often than the connection from 2 to 8. This occurs
because there are many more possible paths going from 1 to 15 that use the 1 to 7 link than
that use the 2 to 8 link, so each trader is more likely to get an idiosyncratic draw that causes
her to choose a path using the former link.

It turns out that this same intuition is helpful in interpreting how changes in an infras-

tructure link affect bilateral trade costs, which we turn to next.

2.3.2 How changes to infrastructure affect endogenous trade costs

Consider now how a change in the transportation link ¢, affects the bilateral trade costs

from 7 to 7, ie. giﬁ—gi for all i,7,k,1 € {1,...,N}. First note that this elasticity is equal

to the elasticity of an element of the route cost matrix to a change in the element of the



weighted adjacency matrix A:

-
8ln7'ij . dIn <Cbij > . 8lnbij

8lntkl dln (al;l%> N 8lnakl'

To calculate this elasticity, we parameterize the weighted adjacency matrix as a function of

a variable ¢ follows:

a;; ifk#iorl=#j
Ay (t)=4¢" ;
t ifk=iandl=j

i.e. changing t just increases ay. By defining Cy,; (t) =1 — Ay, (t), we have:

O0ln bij .

>< _
dt ij

del (t)il Qe (8)
Oln (73]
]

Using the familiar expression for the derivative of an inverse of a parameterized matrix (see
e.g. Weber and Arfken (2003)), we have:

dCr (1)
dt

L dC (1)
dt

= —Cp (1) Cu ().

0 ifk#iorl#j
Note that dcc’l“é(t) 7 #J and Cj; (t)”" = B so the derivative becomes:
—1 ifk=diandl =

dCr ()"

= BE;;B
dt kI,

where Ei; is an N x N matrix equal to one at (k,l) and zeros everywhere else. The (i, 7)

component of this inverse is hence:

dCy (1)~ ki

—a | = [BE,BJ; Z Z bimEy = bikbyj, (9)
ij

ij

-

so combining equations (8) and (9) and using the relationships ay = t;;” and T = cbi_je yields

a simple expression for how a change in the infrastructure matrix changes the endogenous

0
Olnry _ bwawby _ (7 ‘ (10)
Olnty bij TiktkiTij

trade costs:

10



Note that the elasticity of trade costs from i to j to changes in the link ¢z, from (10) is exactly
equal to the probability that a route from i to j uses the t;; infrastructure from (7). Hence,
the more “out of the way” the transportation link ¢;; is from the optimal path between k and
[, the less frequently that path is used, and the smaller the effect an improvement in ¢;; has

on the reduction of trade costs between k& and (.

2.3.3 The expected distance between two locations

We now characterize the expected distance traveled between two locations on the optimal
route. While traders do not directly care about distance (distance only matters inasmuch
as it affects trade costs), the following expressions will prove useful in estimating the model
parameters from the data.

Let d;; be the distance between locations 7 and j, where d;; is finite if ¢ and j are directly

connected and infinite otherwise. Let czij (p) be the distance between i and j on path p:
K
= Z Api_ 1 ,pr
k=1

The expected distance from 7 to j is equal to the sum across all possible paths of the

probability of traveling over that path times its distance:
K
E (dij ) Z Z mij (p )dekflvpk'
K=0pePy k=1
Applying expression (4) for the probability of a particular path yields:
E( ) Z Z H%k 1.Pk dek 1,Pk )
bij K=0pePx k=1

which as above we can write by explicitly accounting for all possible paths:

[e%s) N N N
~ 1
E (dzg (p)> = b_ E E E . E (ai,kl XX ak’K—l:j) (diJﬁ + ..+ dk’K—l:j)
i K=o ki=1ko=1 kgx_1=1

As in Section 2.3.1, this expression can be rearranged to note that distance dy; is incurred

on any path that travels through link ay;, allowing us to consider all paths that go through

11



link az; on the B stop along the way from i to j:

9 N N

oo K-1 N N N
B

N N N
e = EkBH:l Zk3+2:1 .. Zk;(_lzl ((ll,k3+1 X ... X akK_1,k)
~ 079 oo K-1 N N
£ (du0) = 333 (303 a4y )

Define the matrix (D o A) = [d;;a;;],;. Note that [A® (D o A) AX~5~1] = SV SV AR X

ij
—-B—-1

diag X Al[; , so that we can rewrite expected distance from expression (11) in matrix

notation as follows:

E (Jw (p)> — i] L:Ig AP (Do A) AK‘B‘1] )
We can then apply equation (6) to write:
E(dy 1) = 5 (1= 4)7 (DoA) I-4)7]; =
£ () - 2 (A[];]m By

(1)

where the operation “o” is the Hadamard (element-wise) product. This can be written

equivalently in “trade notation” as:

£(00) =S 3 (i) >

k=1 =1

Equation (12) is intuitive: from equation (7), the probability of a trader going from i to
0

7 traveling through link t;; is (l > ; as a result, the expected distance that a trader

C TiklklTik
travels is simply the sum across all links multiplied by the probability each link is used.

2.3.4 The variation across traders in distance traveled between two locations

Finally, we derive a measure of the variation across traders in the distance traveled between
two locations. This expression will prove helpful when comparing the model predictions to
the data below. A natural measure of the variation would be the standard deviation of
distance traveled across all traders going from ¢ to 7. We instead employ an alternative

measure of the variation which admits a simple analytical formulation: the “LogMeanExp

12



minus mean”, which for a random variable x is defined as:
"LogMeanExp minus mean of 2” = log E [exp ()] — E (z) .

Because log F [exp (z)] is convex, the “LogMeanExp minus mean” of z is increasing in the
variance of .3
Using an analogous derivation as in Section 2.2 and applying equation (12) for the ex-

pected distance traveled, the LogMeanExp minus mean can be calculated as:

[(T— (Aoexp (D)))l}i]) ~ [B(A°D)BJ,

log (B (exp iy (p))) — 2 (i (5)) = log ( B, B,

where exp (D) = [exp d,;;] is a matrix of the exponential of distances.

3 The welfare effects of changing bilateral trade costs

We now introduce a spatial economic setup which we incorporate with the endogenous trans-
portation network setup presented in Section 2 in order to characterize the welfare effect of
changing the transportation infrastructure. We consider two variants of the setup — one in
which agents are perfectly immobile and one in which agents are perfectly mobile — and
present new derivations of how a change in any bilateral trade cost affects the endogenous

aggregate welfare.

3.1 A Spatial Economic Framework

Setup Suppose that the N locations are inhabited by an exogenous measure L of agents.
On the production side, an agent residing in location 7 supplies her endowed unit of labor
inelastically in order to produce A; units of that locations differentiated variety, for which
she is compensated with a wage w;. Production occurs in a perfectly competitive framework
with labor as the only factor of production. On the consumption side, agents use their wage
to purchase a constant elasticity of substitution (CES) bundle of these differentiated varieties
with elasticity of substitution o. To purchase goods, workers are randomly matched with

traders and hence face trade costs equal to the expected trade costs 7;; above.

3Indeed, one can show that for any set of realizations of random variables, log % Z?zl exp (z,) €
[max x,, — logn, max xz,], so that the “LogMeanExp minus mean” can be interpreted as measuring the differ-
ence between the maximum of a random value and its mean. We show below that the “LogMeanExp minus
the mean” of distances traveled across traders is highly correlated (correlation of 0.89) with the standard
deviation of distance traveled.

13



Equilibrium Given the perfect competition assumption, the price for a unit of a good
from ¢ for a consumer in location j is p;; = 7;;%-. Given the CES preferences of consumers,

the value of goods shipped from location 7 to location j can be written as:
1—0 po—1, 1—0 po—1
Xij =y TAT w; T Py TR, (13)

where P; is the ideal Dixit-Stiglitz price index and E; is the total expenditure of agents in
location j.

In equilibrium, the following three conditions will hold:

1. Total income Y; is equal to total sales:

V=) X (14)

E; =) X (15)

3. Total income is equal to total expenditure which is each to total payments to workers:
Y, = E; = wiLy, (16)

where L; is the measure of agents residing in location 1.

The equilibrium welfare of a worker is given by W; = “u;, where u; is the amenity value of
living in location ¢. Using this expression to substitute out for the price index and the third
equilibrium to substitute for E;, we can rewrite equation (13) for the value of bilateral trade

as follows:

-0
. Tij l1-0o l—0, 0o
Xij = (AZZLJ> wi Wj U)j Lj. (17)

Substituting the gravity equation (17) and the equilibrium condition (16) into equilibrium

conditions (14) and (15) yields a system of equilibrium conditions:

l1-0o
szz = Z ( Tij > ’lUil_Ule_a’U}?Lj (18)

- Ain

N -0
w; L; = Z i wi W w? L (19)
o j=1 Ajui / ! v
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We do so under two different assumptions regarding labor mobility:

Assumption 1. Trade framework (Anderson, 1979; Anderson and Van Wincoop, 2003).

Workers are perfectly immobile, so the measure of workers in each location {L;} is exogenous.

Assumption 2. Economic geography framework (Allen and Arkolakis, 2014). Workers are
perfectly mobile, so the measures of workers in each location ensures that welfare is equalized
across all locations, i.e. W; =W for alli € {1,...,N}.

In the trade framework, equations (18) and (19) can be solved directly to determine the
equilibrium wage and welfare in all locations. In the economic geography framework, the

imposition of welfare equalization results in the following system of equilibrium equations:

l1-0o
wti =y () g, )
i v
N 7— 1_0—
wte= w3 () el @)
j=1 ’

which can be solved for the equilibrium wage and population in all locations along with the
aggregate welfare W .4

In what follows, we use the system of equilibrium conditions above to derive how changes
in transportation infrastructure affects the equilibrium welfare of agents. As an intermediate

step, we first derive the welfare effects of a changes in a particular (endogenous) trade cost.

3.2 Elasticity of welfare to changes in trade costs

We first examine how a change in a (endogenous) bilateral trade costs affects the aggregate
welfare. To do so, we construct a planner problem which maximizes aggregate welfare subject
to resource constraints and then show that the first order conditions of this problem are
identical to the equilibrium conditions (18) and (19) in the trade framework or equilibrium
conditions (20) and (21) in the economic geography framework. This alternative planner
formulation of the equilibrium then allows us to directly apply the envelope theorem to

calculate the elasticity of welfare to a change in trade costs.

4See Allen, Arkolakis, and Takahashi (2014) for a detailed description of the properties of both types of
equilibria.
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3.2.1 Trade framework

Consider the following “planner” problem which chooses wages and welfare to maximize a
weighted average of (log) welfare subject to the constraint that aggregate labor income is

equal to aggregate trade flows:

N

max wl In W; subject to:
{wi, W; }

N N l-0o
1 1 Tij l—oti/l—0, o
1—%”*@‘:1—022@%) w2

i=1 j=1

where w; = w;L; is the Pareto weight placed on the welfare of location ¢ and the constraint
requires that total world labor income is equal to total world sales.

The associated Lagrangian is:

N
L: Zwi
i=1

T, _ _
(SD () )
i
The first order conditions of this maximization problem can be written as:

aE N - -0
= . - = i 1_0 41_0- O—L
Oln Wz 0 Wi )\Z (A]Ul) wj VVZ Wi S

j=1

oL A o
=0: wl; = 1 — 0 Z < ] > 'lUil_Ule_UU)?Lj + —w;
7j=1

0lnw; Aju; A

Substituting in the weight w; = w; L; and noting in equilibrium the Lagrange multiplier A = 1,
we see immediately that the solution to the maximization problem (22) is the equilibrium
system of equations (18) and (19). As a result, we can apply the envelope theorem to derive

the elasticity of world welfare to a change in bilateral trade frictions 7;;:

N
Yyw Jln Tij Yyw

i=1

Equation (23) — which has been derived using alternative methods by Atkeson and Burstein
(2010) and Fan, Lai, and Qi (2013) — shows that the effect of a change in bilateral trade
friction between i and j on a weighted average of world welfare in a trade framework is

simply proportional to the fraction of world income comprised by trade flows from ¢ to j.
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3.2.2 Economic geography framework

Now consider the slight variant of the “planner” problem (22) which chooses wages, popu-
lation, and welfare to maximizes the (equalized) log welfare across locations subject to the

same constraint that aggregate labor income is equal to aggregate trade flows:

max  In W subject to:

{wi}{L:},W}
1 N 1 N N - 1—0
_ j 1—0o l—o, o7
1_02101'[4— 1_022 (—A-uj> w; ‘W w]-LJ (24)
i=1 i=1 j=1 ¢

The associated Lagrangian is:

(ZZ < Tij > I=o wil—ffwl—dw?Lj — szLz>

The first order conditions of this maximization problem can be written as:

oL Tij wi— -
= : _— = 0 4 UL
dln W W AZZ(Au) w WLy =
1
)\ - Y_W
aE N T 1—0o 1—-0o
— . 1Lz = (1= v 1 le o O‘L 1.7crwlfa C'rLi
01nw; 0: w ( U);(Aiu]) +UZ(A Uz) i i
(25)
oL i\
=VuU: 1Lz = Wlia L 1= C-TLZ' 2
8111 Lz 0w 2]: <AJUZ) w] Wi ( 6>
Substituting equation (26) into equation (25) yields:
l—0o 2, l—0o, o0

Hence, the first order conditions (26) and (27) correspond to the equilibrium conditions (20)
and (21). As a result, we can apply the envelope theorem to determine the elasticity of

welfare to a change in the (endogenous) trade cost 7;;, which yields:

Xij

-2 (28)

81HW_% :)\(Tij

8lnTij N aTij

1—0
) 1 le o O'L



Hence, in both the case where labor is perfectly immobile and perfectly mobile, the elasticity

) gllfl‘y, is equal to the fraction of world
ij

income that is traded from that origin to that destination, }),((,é

of aggregate welfare to a change a bilateral trade cost

3.3 Elasticity of welfare to changes in infrastructure

A simple application of the product rule allows us to combine equation (10) — which pro-
vides the elasticity of bilateral trade costs between any pair of locations to a change in any
infrastructure — with equations (23) and (28) — which give us the elasticity of welfare with
respect to a change in bilateral trade costs in economic geography and trade frameworks,

respectively — to determine the welfare effect of any change in infrastructure:

N N

dlnW dinW  dlnmy
_ , 29
dlnt, ;;dmm * dnt, (29)

Note that because traders are optimally choosing their routes, any change in infrastructure
will affect all bilateral trade flows. Substituting in equations (10) and either (28) or (23) into
equation (29) yields:

N N
dlnW X briaijbj

_ - B 30
dln tz’j ; ; Yyw bkl ’ ( )

which can be written in “trade notation” as:

dIn W Y& X )\’
i, =X (i) &
As an example, return to the two dimensional grid network considered in Figure 1 and
suppose all locations have identical productivities and amenities and labor is mobile. The
bottom right panel of Figure 1 depicts the elasticity of welfare to a change in each direct
connection using equation (31). As is evident, reducing the cost of traveling over links in
the center of the grid have larger impacts on welfare than those in the periphery. Intuitively,
this is for two reasons: first, the connections in the center are more likely to be traveled than
on the periphery (see the bottom left panel of Figure 1) and hence will have larger effects on
bilateral trade costs; second, because they are more centrally located, locations in the center
will have greater populations and economic output, so that the trade flows flowing through
the central links will be larger on average. As a result, improvements to those links will have
larger effects on welfare.

We can further express this equation solely in terms of data and (i, j) variables by noting
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from gravity equation (17) that we can write:

1—
(Xleji> _ (Tkﬂji) 7
XpiXji ThiTjl ’

so that expression (30) becomes:

(%)

dan tijTji -0 0 N Xkl X]%Xl =1
— —_= )(-1'75r : ° 32
dInt;; ( c ) w22 \yw X, (32)

Equation (32) provides a “sufficient statistic” of the welfare effect of any infrastructure

improvement that depends only observed bilateral trade flows and knowledge of the expected

trade cost between j and 7, 7j;, and the instantaneous trade cost, ¢;;. Moreover, the result is

Xki X1
Xk

costs of j to [ relative to trade costs between k£ and [, which implies that more trade from &

intuitive: a larger value of is indicative of low trade costs from £ to ¢ and low trade
to [ travels through 7 and j. As a result, an improvement in the infrastructure between ¢ and
7 will have a larger effect on trade flows between k and [. Finally, the larger the value of 6,
the more responsive traders are to changes in the relative cost of different paths; conversely,
the larger the value of o, the more responsive trade flows are to changes in trade costs (so
a given ratio of trade flows is indicative of smaller differences in trade costs). As a result,
the relevant measure of the effect of an infrastructure improvement between ¢ and j on trade
0
X}—j’l """ To calculate the effect of such

an infrastructure improvement on total world welfare, we then simply construct a weighted

flows between k£ and [ in terms of observables is <

average of this ratio, where the weights are the fraction of world trade between any two

locations %

4 The welfare effects of improving the U.S. Interstate
Highway System

In this section, we apply the theoretical framework developed above to estimate the aggregate
welfare effect of the U.S. of improving each segment of the Interstate Highway System (IHS).
The THS — depicted in Panel A of Figure 2 — is one of the largest infrastructure investments
in history (Kaszynski, 2000). It took more than thirty five years to construct at an estimated
cost $560 billion (in 2007 dollars), and total annual maintenance costs of the highway system
is approximately $130 billion (CBO, 1982; FHA, 2008; NSTIFC, 2009). However, little
is known about the relative importance of different segments of the THS in terms of how

each affects the welfare of the U.S. population. Such knowledge is crucial for appropriately
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targeting future investments in the improvement of the IHS.

4.1 Data

To assess the relative importance of each segment of the THS, we use shipment level data
between 67 U.S. metropolitan statistical areas (which we refer to as “cities”) from the public
use micro data of the 2012 Commodity Flow Survey (CFS, 2012). Shipments between these
cities constitute 60% of the value of commodity flows within the United States. For each
of the 696,021 shipments on for-hire trucks between these cities, we observe the origin city,
the destination city, the value of the shipment, and the distance the truck traveled on its
chosen route.® Consistent with the theoretical framework developed above, the CFS micro-
data demonstrate that there exists substantial heterogeneity across shipments in the distance
they travel between a particular origin city - destination city pair. Panel A of Figure 3 depicts
the distribution of distance traveled for the twenty origin city - destination city pairs with
the greatest observed trade flows. For example, the interquartile range of shipments from
New York to Boston is 91 miles. While certainly part of this variation is due to differences
in the particular origin and destination within the two cities, it seems likely that differences
in the path chosen also are responsible for part of this variation.’

We proceed by constructing the graph representation of the IHS. We say that a pair of
cities in the CFS is directly connected by the IHS if the shortest route between the two
cities on the IHS does not pass through another city.” For each connected city pair, we then
calculate both the distance traveled and the time it takes to traverse the direct route using
Google Maps. The resulting graph of the IHS network is depicted in Panel B of Figure 2.

Finally, for all origin city - destination city pairs, we use the CFS micro data to con-
struct an aggregate measure of the value of bilateral trade flows, the mean distance traveled
between the pair, the standard deviation of distance traveled between the pair, and the dif-
ference between the log of the mean of the exponential and the mean distance traveled (the

8

“LogMeanExp minus Mean”).® As discussed above, the “LogMeanExp minus Mean” is an

alternative measure of the variability of a random variable; consistent with this, Panel B of

5We constrain our analysis to for-hire trucks because the distance traveled for private trucks is top-coded
at 500 miles.

6We examine the extent to which the model can capture the variation across cities in route distance
variability despite treating each city as a single point below.

"We allow a small about of flexibility in defining the shortest route. For example, without traffic, traveling
from Denver, CO to Seattle, WA takes 18 hours and 16 minutes via Salt Lake City on I-80 W and 1-84 W
takes 18 hours and 31 minutes on I-25 N and I-90 W without passing through another CFS city. Because
the direct route is nearly as fast, we classify Denver and Seattle as directly connected on the THS.

8To control for outliers, we winsorize the distance traveled in the micro CFS data at the 10%/90% level
before calculating the variability measures. Both variability measures are measured in hundreds of miles.
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Figure 3 shows that the correlation between the standard deviation and the “LogMeanExp
minus Mean” is very high (0.89).

4.2 Estimation

In order to assess the elasticity of aggregate welfare to improvements to different segments of
the IHS, we need (1) a measure of the infrastructure matrix T = [t;; > 1] and (2) estimates of
the shape parameter governing heterogeneity across routes 6 and the elasticity of substitution
o. To proceed, we assume that the trade cost incurred along the direct connection from

and j is a function of the time it takes to travel from 7 to j (in hours) time;;:
ti; = exp (ktime;;), (33)

where k > 0. The exponential functional form has been used extensively in the economic
geography literature, and has a number of attractive properties including (1) infrastructure
costs are always greater or equal to one, i.e. ¢;; > 1; (2) conditional on travel time, the
number of locations through which a trader passes does not affect the trade costs that
trader incurs; and (3) the effect of a reduction in travel time on the percentage change in

welfare is proportional to the welfare elasticity to a change in the infrastructure cost, i.e.
OWmW _  9lnW
at’imeij — "9ln tij "

Given parametric assumption in equation (33), we just need to estimate the parameter

triplet {x,8,0}. To proceed, we use a method of moments estimation strategy using three
sets of moments: (1) the mean distance traveled between each origin city - destination city
pair; and (2) the observed value of bilateral trade flows between each origin city - destination
city pair; and (3) an average trade cost 20% ad valorem tariff equivalent, consistent with the
evidence from the literature on domestic distribution costs in the U.S., see e.g. Anderson
and Van Wincoop (2004). This provides us with 2 x N? + 1 = 8979 moments to estimate
the three parameters.

The three sets of moments match intuitively to each of the parameters. Given the para-
metric assumption in equation (33), a;; = exp (— (0k) dist;;), so that the matrices A and B
depend only on the product fx. From equation (12), this in turn implies that the expected
distance between any origin city - destination city pair depends only on the product of # and
r as well, so the first set of moments (the mean in distance traveled) are sufficient to identify
fr. The second set of moments — the bilateral trade flows — can then be used to identify the
ratio of the elasticity of substitution and the trader heterogeneity %. To see this, note that

substituting equation (3) into the gravity equation (17) and taking logs yields the following
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expression for bilateral trade flows:

o—1
In Xij = (T) In bij -+ 111’71 + In 5]'7
where In~; and Ind; are origin and destination fixed effects, respectively. For any set matrix
B = [b;;], this implies that we can identify the ratio of parameters % by regressing log

trade flows on Inb;; with a set of origin and destination fixed effects. Finally, from equation
(3), we see that the level of trade costs are differentially affected by x and 6, as b;; depends
on the product k6 but 7;; = cbi_j%, allowing us to find the level of the 6 that ensures the mean
trade cost matches our assumed value.

4.3 Estimation Results

Table 1 presents the results of the estimation. We estimate an effect of travel time (in
hours)x = 0.0108, indicating a five hour trip incurs an ad valorem tariff equivalent trade
cost of 5.5% . We estimate an elasticity of substitution o = 7.92, implying a trade elasticity
of about 7, consistent with a large literature (e.g. Eaton and Kortum (2002)). Finally, we
estimate a trader heterogeneity parameter § = 136.13, indicating reasonably small hetero-
geneity across different paths, which suggests most trade occurs on paths close to the least
cost route. The implied trade costs from these parameters are calibrated to have a mean of
20% ad valorem tariff equivalent, with a median of 16.9% and moderate variation (a 25th
percentile of 10.4% and a 75 percentile of 27.1%).

Figure 4 shows that the model is able to closely match the observed average distance
traveled in the data (with a correlation of 0.997) and the observed bilateral trade flows (with
a correlation of 0.737). Moreover, we can also test the extent to which the model is able
to capture the observed heterogeneity in distance traveled between a particular origin city -
destination city pair. Reassuringly, the “LogMeanExp minus Mean” predicted by the model
is positively and statistically significantly correlated with the “LogMeanExp minus Mean”
observed in the data, albeit with a correlation of only 0.03. However, is able to closely capture
the observed variation across origin and destination cities in variability of routes. To see
this, we regress variability in traveled distance for a given origin-destination city pair across
shipments on a set of origin and destination city fixed effects. Figure 5 shows the correlation
between those fixed effects in the CFS data to those estimated in the model is positive
and reasonably large (0.318 for origin fixed effects and 0.168 for destination fixed effects),

although the model predicts substantially more variation in route distance than exists in
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the data.” Note that this positive correlation exists despite the model not accounting for
across-city variation in the size of the Metropolitan Statistical Area, which is likely driving
part of variation in the data due to within-city differences in where the particular origin and

destination was for a given shipment.

4.4 The welfare effects of improving the U.S. Interstate Highway
System

Given our estimated parameters, we can estimate the probability of using any particular
connection for any origin city - destination city pair using equation (7). As an example,
Figure 6 depicts the probability a trader going from Los Angeles to New York uses each
part of the Interstate Highway System. As is evident, there is reasonable variation in the
paths chosen, with traders employing both northern connections (e.g. Salt Lake City to
Omaha) and southern connections (e.g. Phoenix to Oklahoma City) along the way. As
traders continue eastward, however, the geographic dispersion of connections narrow, as
routes converge through Indiana, Ohio, and Pennsylvania.

Finally, we estimate the welfare effects of improving the U.S. Interstate Highway System.

To do so, we apply equation (30) to all connected origin city - destination city pairs to cal-

OlnWwW
alntij :

would have the largest impact on aggregate welfare are the 1-95 corridor which connects the

culate Figure 7 presents the results. The portions of the IHS for which improvements

major eastern seaboard cities (Washington, Baltimore, Philadelphia, and New York) and
the interstates in the states of Ohio and Indiana (“the crossroads of America”), through
which much of the U.S. trade flows. Table 2 reports the top 20 THS segments for which
improvements would have the greatest welfare impacts. As is evident, the welfare impact
of transportation infrastructure improvements is substantial: our parameter estimates imply
that a 30 minute reduction in the travel time from New York to Philadelphia — which given
our estimate of x implies a fall in trade costs of about 0.5% — would increase aggregate U.S.
welfare by 0.02%. However, there is substantial heterogeneity across various parts of the IHS
— for example, a 30 minute reduction in travel time from Seattle to Salt Lake City along I-84
East would only increase aggregate U.S. welfare by 0.0002%. Hence, these results highlight
the need to appropriately target funds for infrastructure improvements in order to maximize
the benefit.

9Indeed, if we also include the variability of distance traveled as a moment, the estimated trader hetero-
geneity 6 increases to 228, suggesting we may be potentially overstating the heterogeneity across traders.
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5 Conclusion

TBD
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Tables and Figures

Figure 1: AN EXAMPLE GEOGRAPHY

Example Graph Probability of traveling across each link from i=1 to j=25

0.026

0.024

0.022

0.018

0.016

0.014

0.012

Notes: This figure provides an example geography. The top left frame depicts the graph of
the connections between each of the 25 locations, where all connections are assumed to incur
an equal cost. The top right depicts the probability of traveling along each connection when
beginning at location 1 (bottom left) and traveling to location 25 (top right). The bottom
left frame also depicts the probability of traveling along each connection when beginning at
location 1 (bottom left) but now traveling to location 15 (top center). Finally, the bottom
right figure depicts the elasticity of aggregate welfare to an improvement in each of the
connections.
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Figure 2: THE U.S. INTERSTATE HIGHWAY NETWORK
Panel A: The Observed U.S. Interstate Highway Network
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Notes: This figure depicts the U.S. Interstate highway network. Panel A shows the observed
interstate highway network along with the cities included in the Commodity Flow Survey.
Panel B depicts the graphical representation of the direct connections between cities along
the interstate highway system. Two cities are considered connected if the fastest route
between the locations along the interstate highway system does not pass through another

city. The color of the links indicates the driving distance between the connected cities, with

blue indicating a longer distance and red indicating shorter distances.
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Figure 3: THE VARIABILITY OF ROUTE DISTANCES ACROSS SHIPMENTS
Panel A: Variation in Distance Traveled between Major City Pairs
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Notes: This figure shows the variability in distances traveled from a given origin to a given
destination across shipments in the CFS micro data. Panel A presents the histogram of
distances traveled for the twenty origin-destination city pairs with the largest observed value
of shipments. Panel B presents the relationship between the standard deviation in distance
traveled between a particular city pair to the log of the mean of the exponential distance
traveled, where distances are measured in hundreds of miles. Both measures of variability
are calculated across all for-hire truck shipments in the micro CFS data and winsorized at
the 10%/90% level. The correlation between the two measures is 0.89. The two outlying
origin-destination pairs are shipments from Jacksonville to Memphis and from Salt Lake City
to El Paso.
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Figure 4: MODEL FIT
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Notes: This figure depicts the ability of the model to match the moments in the data. The
top panel reports the relationship between the model predicted and observed mean distance
(in hundreds of miles) across all shipments within each city pairs. The middle panel reports
the relationship between the model predicted and observed difference between the log of
the mean of the exponential of the distance and the mean distance, which measures the
heterogeneity in which routes are chosen between city pairs. The bottom panel reports the
relationship between the observed trade flows and those predicted from a gravity regression
with origin and destination fixed effects using the model predicted average bilateral trade
costs.
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Figure 5: PREDICTED AND OBSERVED VARIABILITY OF ROUTE DISTANCES
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Notes: This figure compares the observed and model predicted variability of distance traveled
by origin and destination cities. To do so, we regress variability in traveled distance for a
given origin-destination city pair across shipments (measured as the difference between the
log of the mean of the exponential distance traveled ) on a set of origin and destination city
fixed effects. The figure depicts the relationship between those fixed effects in the CFS data
to those estimated in the model.
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Table 1: ESTIMATION

Model parameters
Estimated Correlation: predicted

Parameter Symbol Moment value vs. observed
Effect of distance on direct & Mean path distance  0.0108 0.997

trade cost

Trader heterogeneity 0 Trade flows 136.13 0.737
Elasticity of substitution o Trade costs 7.9237 1

Implied trade costs
Mean 25% perc.  Median 75% perc.

1.2 (calibrated) 1.104 1.169 1.271

Notes: This table reports the estimated parameter values and summary statistics for the
implied bilateral trade costs. The three parameters were estimated to most closely match
the three reported moments; note that the estimation procedure simultaneously estimated
all parameters by minimizing all moments, so the assignment of parameter to moment above
is heuristic.
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Table 2: Tor 20 HIGHWAYS

Origin City Destination City Interstate ~ Welfare Elasticity

1 New York Philadelphia 95 (South) 0.04481
2 Baltimore Washington 95 (South) 0.04477
3 Columbus Dayton 70 (West)  0.0438

4 Dayton Columbus 70 (East)  0.04094
5 Dayton Cincinnati 75 (South) 0.04007
6  Philadelphia Baltimore 95 (South) 0.03961
7  Cincinnati Dayton 75 (North) 0.03691
8  Philadelphia New York 95 (South) 0.03292
9  Washington Baltimore 95 (North) 0.03069
10 Washington Richmond, VA 95 (South) 0.03025
11  Beaumont Houston 10 (West)  0.02874
12 Tulsa Oklahoma City 44 (West)  0.02874
13 Pittsburgh Columbus 70(West)  0.02868
14 Lake Charles, LA Beaumont 10 (West)  0.02858
15 Baltimore Philadelphia 95 (North) 0.02793
16  Columbus Cincinnati 71 (South) 0.02742
17  Cincinnati Louisville/Jefferson County 71 (South) 0.02662
18 Louisville/Jefferson County Nashville 65 (South) 0.02659
19 Columbus Cleveland 71 (North) 0.02629
20 Nashville Memphis, TN 40 (West)  0.02617

Notes: This table reports the twenty (one-way) interstate links that have the greatest im-
provement on U.S. welfare for a given percentage reduction in trade costs on that connection.
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