Antyanta Bangunharcana

Student Researcher | 3D Computer Vision / Robot Perception / Deep Learning

- in linkedin.com/in/antyanta-bangunharcana-60980216a
- scholar.google.co.kr/citations?user=WUQXsgUAAAAJhl=en
- 🛮 +8210-4276-3878 🛛 antyanta@gmail.com / antabangun@kaist.ac.kr
- ♀ [34051] Daejeon, Yuseong-gu, Munji-dong 103-6

As a dedicated computer vision researcher, I am currently pursuing a Ph.D. in the Mechatronics, Systems, and Control (MSC) Lab at KAIST's Department of Mechanical Engineering, under the mentorship of Prof. Soohyun Kim and Prof. KyungSoo Kim. My research expertise encompasses a broad spectrum of 3D computer vision applications, specifically emphasizing (self-)supervised depth estimation via monocular or stereo cameras, visual odometry and SLAM, and long-term visual localization. With a strong foundation in these areas, I am committed to advancing the field and contributing to innovative solutions.

EDUCATION

2019 - present	PhD in Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST)
	Recipient of KAIST International Student Scholarship 2019-2023.
	Thesis - Deep Iterative Refinements for Long-term Visual Localization.
	Expected graduation date: February 2024
2017 - 2019	MSc in Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST)
	Recipient of KAIST International Student Scholarship 2017-2019.
	Thesis - 3D Object Detection in Disparity Space Using Context Guided Stereo Matching.
2013 - 2017	BSc in Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST)
	Recipient of KAIST International Student Scholarship 2013-2017.

PUBLICATIONS

DUALREFINE: SELF-SUPERVISED DEPTH AND POSE ESTIMATION THROUGH ITERATIVE EPIPOLAR SAMPLING AND REFINEMENT TOWARD EQUILIBRIUM

2023

github.com/antabangun/DualRefine antabangun.github.io/projects/DualRefine Antyanta Bangunharcana, Ahmed Magd Aly, and Kyung-Soo Kim

To be presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023

REVISITING THE RECEPTIVE FIELD OF CONV-GRU IN DROID-SLAM

2022

Antyanta Bangunharcana, Soohyun Kim, and Kyung-Soo Kim

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 1906-1916

ROBOTIC MAPPING APPROACH UNDER ILLUMINATION-VARIANT ENVIRONMENTS AT PLANETARY CONSTRUCTION SITES

2022

Hong, Sungchul, Pranjay Shyam, Antyanta Bangunharcana, and Hyuseoung Shin In Remote Sensing 14, no. 4 (2022): 1027

VISUAL SLAM-BASED ROBOTIC MAPPING METHOD FOR PLANETARY CONSTRUCTION

2021

Hong, Sungchul, Antyanta Bangunharcana, Jae-Min Park, Minseong Choi, and Hyu-Soung Shin In Sensors 21 (22), 7715

CORRELATE-AND-EXCITE: REAL-TIME STEREO MATCHING VIA GUIDED COST VOLUME EXCITATION

2021

github.com/antabangun/coex antabangun.github.io/projects/CoEx

Antyanta Bangunharcana, Jae Won Cho, Seokju Lee, In So Kweon, Kyung-Soo Kim, and Soohyun Kim In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3542-3548. IEEE, 2021

RETAINING IMAGE FEATURE MATCHING PERFORMANCE UNDER LOW LIGHT CONDITIONS

2020

Pranjay Shyam, Antyanta Bangunharcana, and Kyung-Soo Kim

In 2020 20th International Conference on Control, Automation and Systems (ICCAS), pp. 1079-1085. IEEE, 2020

PROJECTS

ADVANCED DENTAL X-RAY IMAGE ENHANCEMENT FOR DIAGNOSTIC SUPPORT

2021 - 2022

Collaboration: DIGIRAY Corp

Description: Designed an image enhancement software for dental X-ray images utilizing contrast amplification and deep-learning-based super-resolution techniques. The software aids dentists in making diagnoses by reducing noise and enhancing the images to high-resolution. Implemented in C++ and using TensorRT for model conversion, the system enables inference on \sim 4000 \times 4000 resolution images within 1 second.

Python PyTorch Keras OpenCV TensorRT C++

VISION-BASED TERRAIN MAPPING ON A LUNAR ROVER FOR PLANETARY CONSTRUCTION

2019 - 2021

Collaboration: Korea Institute of Civil Engineering and Building Technology

Description: Developed camera-based terrain mapping software for a lunar rover using state-of-the-art self-supervised depth estimation and SLAM techniques. The system operates close to real-time (~ 15 fps) on a laptop with RTX 3070, mapping a terrain area of $50m \times 40m$.

Python PyTorch OpenCV ROS

AUTOMATED FILLET WELD GAP DETECTION AND CLASSIFICATION

2019 - 2020

Collaboration: Hyundai Heavy Industry

Description: Engineered an innovative welding solution employing a custom-built 4k resolution stereo camera to detect and classify fillet weld gaps. As welding is a hazardous process, automating it can significantly reduce the risk of human injury. By collecting and training our system on a targeted dataset, the software achieved a 1mm precision in detecting welding gaps with the camera positioned at a distance of approximately 1 meter.

Python PyTorch OpenCV MATLAB ROS

MSC Lab Autonomous Electric Vehicle Development

2018 - 2023

Description: Contributed to the research and development of MSC Lab's autonomous electric vehicle, focusing on vision-based systems. Key responsibilities included surround-view depth estimation, visual odometry and localization, 3D object detection, and traffic sign, light, and line detection, classification, and segmentation.

Python PyTorch OpenCV TensorRT C++ ROS

2ND PLACE - ROBOTIC VISION SCENE UNDERSTANDING (RVSU) CHALLENGE

2022

As part of the CVPR 2022 Embodied AI Workshop.

Robotic Vision Scene Understanding Challenge: MSCLab Report Bangunharcana, Antyanta, Soohyun Kim, and Kyung-Soo Kim

HONORABLE MENTION (=2ND PLACE) - ARGOVERSE STEREO DEPTH ESTIMATION CHALLENGE

2022

As part of the CVPR 2022 Workshop on Autonomous Driving.

Deep Equilibrium Model for Memory Efficient Stereo Matching on the High-Resolution Argoverse Dataset Bangunharcana, Antyanta, Soohyun Kim, and Kyung-Soo Kim

Programming Languages Py Frameworks Py

Python, MATLAB, C++
PyTorch, Keras, OpenCV,
TensorRT, ROS