
5. Bayesian Statistical Paradigm
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Frequentist Paradigm Tenets

A parameter such as 𝜇 is the true value of a 
statistic in the full population of participants 

The parameter is fixed in the full population, we 
compute an estimate from a sample 

Estimates vary across different random samples 
we could potentially work with
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Important Implications

Probability doesn’t apply to a fixed parameter 

Any statements about probability, precision, 
confidence intervals, etc. refer to estimates 

Probability = long run frequency of estimates 
across many different samples of data
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95% Confidence Intervals

The 95% confidence interval from a sample 
either contains the parameter or it does not 

“Confidence” is the long-run frequency that 
such an interval contains the true parameter 

e.g., 95 out of 100 samples we could potentially 
work with should yield confidence intervals that 
include the true population parameter
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Test Statistic

Assuming H0 is true, p is 
the proportion of all 
random samples that will 
give a test statistic as 
large as that from the data

p(t > 1 | H0 is true)

= .16

Significance Tests And p-Values
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Bayesian Paradigm

The Bayesian framework defines a parameter 
such as 𝜇 as a variable that has a distribution 

e.g., The mean is a normally distributed variable 

The posterior distribution represents our 
knowledge about the potential values of the 
parameter after analyzing the data
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Posterior Distributions Of Parameters

Most likely  
parameter value

Most likely  
parameter value

Spread = uncertainty 
about the parameter
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Important Implications

Probability applies to parameters 

Probability = the degree of certainty about the 
parameter values after analyzing the data 

e.g., The credible intervals gives a range in 
which 95% of the parameter values are likely to 
fall; the probability is the proportion of 
parameters above or below a particular value
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Why Bayes?

Bayes is a direct estimation approach that is a 
flexible alternative to maximum likelihood 

Bayesian estimation (MCMC) is the mathematical 
machinery behind multiple imputation 

Often the only way to get good results for some 
analyses (e.g., mixes of categorical and continuous 
predictors, interactions, multilevel models)
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Bayes’ Theorem

Probability of the parameter,  
given the data (the posterior)

Unnecessary scaling factor

Likelihood of the data, given  
an assumed parameter value (ML) A priori  distribution 

of the parameter

11

Research Scenario

Two researchers use the Bayesian statistical 
paradigm to estimate the incidence of postpartum 
depression in the population of new mothers 

The posterior distribution is proportion to the 
prior distribution times the likelihood of the data
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Prior Distributions

Researcher A uses a meta-analysis to specify an 
informative prior distribution where depressive 
rates of 15% are very likely 

Researcher B specifies a non-informative prior 
distribution where all values of the population 
proportion are equally likely
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Informative vs. Non-Informative Prior
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The informative prior emphasizes 
parameter values close to .15
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The Likelihood Of The Data

Researchers recruit 100 new mothers, seven of 
whom are diagnosed with clinical depression 

The maximum likelihood estimate of the 
population proportion is π  = .07 

The likelihood function gives the relative 
probability of this data, given differed assumed 
values of the population parameter
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Likelihood Function

A population value of .07 
maximizes the probability of  

this sample of data

= .07
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Posterior Distributions

The distribution of the parameter given the 
data — the posterior — blends information 
from the prior distribution and the likelihood 

The non-informative prior has no influence 
because it weights all values of pi the same 

The informative prior acts like a secondary data 
source that combines with observed data
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Posterior Distributions

Posterior with 
informative prior

Posterior with non- 
informative prior
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Moving Forward With Prior Distributions

Software packages often default to non-
informative prior distributions that have no (or 
minimal) impact on the analysis results 

Priors for means and regression coefficients are 
usually flat like the previous example 

Priors for variance parameters impart information, 
but their impact is only evident in small samples
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A Simple Analysis Model

An empty regression model has two 
parameters, the mean and variance 

Y is normally distributed around a predicted 
value, E(Y), which in this case is the mean
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Some Recurring Notation 

Predicted value

Univariate 
normal curve Spread

Center
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Math Achievement Data

Math achievement data for 250 students 

The data set includes pre-test and post-test 
math achievement scores and academic-related 
variables such as math self-efficacy, math 
anxiety, standardized reading scores, socio-
demographic variables 
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math.dat

Variable Name Missing % Scaling

Identifier variable ID 0 Integer index

Gender MALE 0 0 = female, 1 = male

Free or reduced lunch LUNCHASST 4.3 0 = none, 1 = assistance

Achievement group ACHIEVEGRP 2.0 1 = typically achieving, 2 = low 
achieving, 3 = learning disability

Standardized reading STANREAD 10.0 Continuous

Math self-efficacy EFFICACY 9.7 6-point ordinal scale

Math anxiety ANXIETY 9.3 Continuous

Pre-test math achievement MATHPRE 0 Continuous

Post-test math achievement MATHPOST 18.0 Continuous
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Substantive Example

Use the Bayesian framework to estimate the 
mean and variance of math post-test scores 

The analysis assumes that math scores are 
normally distributed around the mean 
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Bayesian Estimation With MCMC

MCMC = Markov chain Monte Carlo 

MCMC is an iterative procedure that estimates 
one parameter at a time, treating the current 
values of other parameters as known constants 

Repeating the sequence many times gives a 
posterior distribution for each parameter
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Do for t = 1 to T iterations 

1. Estimate the mean, given the current value 
of the variance 

2. Estimate the variance, given the current 
value of the mean 

Repeat

MCMC Recipe
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The Meaning Of Estimation

Parameters are variables that have a distribution 

Bayesian estimation uses Monte Carlo 
computer simulation to “draw” new estimates 
from a distribution of plausible values 

Estimation = random number generation
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Conditional Distribution Of The Mean

The posterior distribution 
of 𝜇 is a normal curve 
centered at the mean of 
the sample data
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Monte Carlo Dart Game

Random number generation is akin to throwing 
a dart at a picture of a normal distribution 

For any dart that lands under the distribution, 
its location on the horizontal axis is the value of 
the next parameter estimate 

More darts should land in the peaked area of 
the curve, fewer darts should land in the tails
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Throw again!
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Monte Carlo Dartboard
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Mean

𝜇 = 57.45
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Conditional Distribution Of The Variance

Variance
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of σ2  is a positively skewed 
inverse gamma distribution
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Monte Carlo Dartboard

Throw again!
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Monte Carlo Dartboard

σ2 = 85.08
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σ2 = 88.38

Variance At Iteration Three
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Iterate …
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𝜇 = 57.17

Iteration Est.

1 57.45
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… …

10,000 57.17
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σ2 = 111.11

Variance At Iteration 10,000

Iteration Est.

1 85.08

2 84.91

3 88.38

… …

10,000 111.11
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Trace Plots

A trace plot is a line graph that displays the 
iterations on the horizontal axis and the 
parameter estimates on the vertical axis 

Trace plots are important tools for evaluating 
whether the MCMC algorithm is working well 

e.g., Does the algorithm achieve a steady state?
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Summarizing The Posterior Distributions

Repeating the estimation steps for thousands of 
iterations gives a distribution for each 
parameter 

Use descriptive statistics to summarize the 
center and spread of the posterior distribution 

The mean and standard deviation are analogous 
to a point estimate and standard error
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Posterior Distribution Of The Mean

Mean = 56.82
Std. Dev. = .63
95% C.I. = (55.57, 58.05)
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Interpretations Are Subtly Different!

The posterior mean, M𝜇 = 56.82, is the most 
likely parameter value (akin to a point estimate) 

The posterior standard deviation, SD𝜇 = .63, 
quantifies uncertainty in the parameter after 
analyzing the data (akin to a standard error) 

The credible interval indicates that 95% of the 
parameter values fall between 55.57 and 58.05

49

60 80 100 120 140
Variance

Posterior Distribution Of The Variance

Mean = 84.00
Std. Dev. = 8.34
95% C.I. = (69.37, 101.92)
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Maximum Likelihood vs. Bayesian

Point estimates and standard errors are numerically 
similar to posterior means and standard deviations

Maximum Likelihood Bayesian Estimation

Estimate Std. Error Mean Std. Dev.

Mean 56.83 0.63 56.82 0.63

Variance 82.76 8.12 84.00 8.34
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Blimp Bayesian Analysis Script

DATA: math.dat; 
VARIABLES: id male lunchasst achievegrp stanread efficacy 
     anxiety mathpre mathpost; 
MISSING: 999; 
MODEL: mathpost ~ ; 
SEED: 90291; 
BURN: 1000; 
ITERATIONS: 10000; 
CHAINS: 4 processors 4; 
OPTIONS: psr;
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Blimp Output

ANALYSIS MODEL ESTIMATES: 

Missing outcome: mathpost    
                                -------------------------------------------------------- 
Parameters                      |   Mean   |  Median  |  StdDev  |Lower 2.5 |Upper 97.5| 
                                -------------------------------------------------------- 
Variances:                      |          |          |          |          |          | 
  Residual Var.                 |    84.001|    83.340|     8.337|    69.372|   101.917| 
                                |----------|----------|----------|----------|----------| 
Coefficients:                   |          |          |          |          |          | 
  Intercept                     |    56.824|    56.827|     0.632|    55.569|    58.050| 
                                |----------|----------|----------|----------|----------| 
Standardized Coefficients:      |          |          |          |          |          | 
                                |----------|----------|----------|----------|----------| 
Proportion Variance Explained   |          |          |          |          |          | 
  by Fixed Effects              |     0.000|     0.000|     0.000|     0.000|     0.000| 
  by Residual Variation         |     1.000|     1.000|     0.000|     1.000|     1.000| 
                                |          |          |          |          |          | 
                                -------------------------------------------------------- 
                                Summaries based on 10000 iterations using 4 chains
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Grand mean (intercept) estimates from 500 iterations

Blimp Trace Plots
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Variance estimates from 500 iterations

Blimp Trace Plots
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Mplus Bayesian Analysis Script

DATA: 
file = math.dat; 
VARIABLE: 
names = id male lunchasst achievegrp stanread efficacy anxiety mathpre mathpost; 
usevariables = mathpost; 
missing = all(999); 
ANALYSIS: 
estimator = bayes; 
bseed = 90291; 
fbiterations = 10000; 
MODEL: 
[mathpost]; mathpost; 
OUTPUT: 
tech8;
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Mplus Output

MODEL RESULTS 
                                Posterior  One-Tailed         95% C.I. 

                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5% 
 Means 
    MATHPOST          56.835       0.634      0.000      55.579      58.065   

 Variances 
    MATHPOST          84.200       8.402      0.000      69.978     102.573  
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