
3. Maximum Likelihood Estimation
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Maximum Likelihood (ML) Estimation

Maximum likelihood identifies the population 
parameter values that best fit the data  

Similar in logic to least squares, the “best” 
parameters minimize the distance to the data  

The normal distribution function captures the 
discrepancy between the data and parameters
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A Simple Analysis Model

Empty regression model with two parameters, 
the mean and variance 

Y is normally distributed around a predicted 
value, E(Y), which in this case is the mean
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Some Recurring Notation 

Predicted value

Univariate 
normal curve

Spread

Center
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Math Achievement Data

Math achievement data for 250 students 

The data set includes pre-test and post-test 
math achievement scores and academic-related 
variables such as math self-efficacy, math 
anxiety, standardized reading scores, socio-
demographic variables 
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math.dat

Variable Name Missing % Scaling

Identifier variable ID 0 Integer index

Gender MALE 0 0 = female, 1 = male

Free or reduced lunch LUNCHASST 4.3 0 = none, 1 = assistance

Achievement group ACHIEVEGRP 2.0 1 = typically achieving, 2 = low 
achieving, 3 = learning disability

Standardized reading STANREAD 10.0 Continuous

Math self-efficacy EFFICACY 9.7 6-point ordinal scale

Math anxiety ANXIETY 9.3 Continuous

Pre-test math achievement MATHPRE 0 Continuous

Post-test math achievement MATHPOST 18.0 Continuous
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Substantive Example

Use maximum likelihood to estimate the mean 
and variance of math post-test scores 

The analysis assumes that math scores are 
normally distributed around the mean 
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Normal Distribution Function

Scaling factor that makes area  
under the curve equal one

Squared z-score (“fit”)
Likelihood of a score, given  
assumed parameter values
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height of the curve
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Example

Let’s assume for now that m= 57 and s = 9
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Example

Let’s assume for now that m= 57 and s = 9
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Key Points

A likelihood essentially measures individual fit 

The likelihood gets higher (fit improves) when a 
score is close to the center of the distribution 
(i.e., is a good match to the parameters) 

The likelihood gets lower as scores move away 
from the center of the distribution
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A Sample Of Likelihood Values

Still assume that the population 
parameters are m= 57 and s = 9 

Scores close to the mean have 
high likelihoods, and vice versa

Y L

63 0.0354
53 0.0401
71 0.0132
53 0.0401
57 0.0443
55 0.0432
59 0.0432
74 0.0074
44 0.0156
37 0.0037
45 0.0182
63 0.0354
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Joint Probability

The joint probability for a set of events is the 
product of individual probabilities 

e.g., The probability of concurrently observing 
two heads is (.50)(.50) = .25 

Strictly speaking, a likelihood is not a 
probability, but the same rules apply
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Sample Likelihood

The sample likelihood is the product of the 
individual likelihoods 

       is the multiplication operator over all cases
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Sample Likelihood

The sample likelihood is the product of 250 
individual likelihood contributions 

The sample likelihood is too small to work with

really close to zero!
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Logarithms

Likelihoods are computationally difficult and 
introduce precision and rounding problems 

The product rule for logarithms says log[(a)(b)] = 
log(a) + log(b) 

Using logarithms converts a multiplication 
problem to a simpler addition problem
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The log likelihood the natural logarithm of a 
likelihood 

Log likelihood values also quantify relative 
probability, but they do so on a negative metric

Log Likelihood
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A Sample Of Log Likelihood Values

Still assume that the population 
parameters are m= 57 and s = 9 

Scores close to the mean have 
high likelihoods, and vice versa

Y L log(L)

63 0.0354 -1.4510
53 0.0401 -1.3969
71 0.0132 -1.8794
53 0.0401 -1.3969
57 0.0443 -1.3536
55 0.0432 -1.3645
59 0.0432 -1.3645
74 0.0074 -2.1308
44 0.0156 -1.8069
37 0.0037 -2.4318
45 0.0182 -1.7399
63 0.0354 -1.4510
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Let’s assume for now that m= 57 and s = 9
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Let’s assume for now that m= 57 and s = 9
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The sample likelihood is the sum of the individual 
log likelihood contributions 

The log likelihood represents the joint probability 
of the sample data, given the parameters

Sample Log Likelihood
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Sample Log Likelihood

The sample log likelihood is the sum of 250 individual 
log likelihood contributions 

The sample likelihood quantifies the relative probability 
of obtaining these 250 scores from a normal population 
with this particular mean and standard deviation
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Interpreting The Log Likelihood

The log likelihood quantifies the fit between the 
sample data and the population parameters  

The log likelihood depends on the sample size, 
number of variables, number of parameters in 
the model, missing data, etc. 

No absolute criterion for a good or a bad value
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Estimation Strategy

Thus far we’ve treated the parameters as known 

The sample log likelihood provides a 
mechanism for estimating unknown parameters 

Compute the log likelihood for different 
parameter values and find the value that 
produces the highest log likelihood (best fit)
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Individual Log Likelihoods At    = 54

Student Y f (Y) log(L)

1 63 0.0269 -3.6162
2 53 0.0441 -3.1223
3 71 0.0074 -4.9001
4 53 0.0441 -3.1223
5 57 0.0419 -3.1717
… … … …

246 49 0.0380 -3.2705
247 54 0.0443 -3.1162

248 61 0.0328 -3.4186
249 51 0.0419 -3.1717
250 38 0.0091 -4.6964

Sum = -926.436

26

Individual Log Likelihoods At    = 55

Student Y f (Y) log(L)
1 63 0.0299 -3.5112
2 53 0.0432 -3.1409
3 71 0.0091 -4.6964

4 53 0.0432 -3.1409
5 57 0.0432 -3.1409
… … … …

246 49 0.0355 -3.3384
247 54 0.0441 -3.1223
248 61 0.0355 -3.3384
249 51 0.0402 -3.2149

250 38 0.0074 -4.9001
Sum = -919.362
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Individual Log Likelihoods At    = 56

Student Y f (Y) log(L)
1 63 0.0328 -3.4186
2 53 0.0419 -3.1717
3 71 0.0111 -4.5051

4 53 0.0419 -3.1717
5 57 0.0441 -3.1223
… … … …

246 49 0.0328 -3.4186
247 54 0.0432 -3.1409
248 61 0.0380 -3.2705
249 51 0.0380 -3.2705

250 38 0.0060 -5.1162
Sum = -915.374
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Auditioning Values Of M In Integer Increments

Log likelihood values increase 
(fit improves) as the population 

mean approaches 57

29

What We Know So Far

Integer search values between 50 and  

Log likelihood values improve (get less 
negative) as the mean increases from 50 to 56, 
and they get worse from 58 to 64 

The mean that maximizes the probability of the 
data falls somewhere between 56 and 58
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Auditioning Values Of M In .01 Increments

logL

56.76 -914.4077

56.77 -914.4069

56.78 -914.4063

56.79 -914.4061

56.80 -914.4062

56.81 -914.4066

56.82 -914.4073

= 56.79^
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Conclusion

The population mean that maximizes the 
probability (likelihood) of the data is 56.79 

The maximum likelihood estimate is    = 56.79 

Same result as the arithmetic mean

^
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Improving The Search With Calculus

Differential calculus rules give the first 
derivative (slope) of the log likelihood function 
at the parameter’s current value 

The sign and magnitude of the slope inform the 
adjustments to the parameters from one 
iteration to the next
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Positive Slope (First Derivative)

A positive first derivative 
suggests an increase in 

the parameter value
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Negative Slope (First Derivative)

A negative first derivative 
suggests an decrease in 

the parameter value
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Zero Slope (First Derivative)

A first derivative of zero 
occurs at the maximum 

likelihood estimate
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Maximum Likelihood = Hill Climbing

ML estimation is akin to 
climbing to the top of a hill 

Each successive step adjusts 
the parameters in a direction 
increases the likelihood until 
reaching the top of the hill
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Maximum Likelihood = Hill Climbing

Slope is very positive, 
make large increase in 
the parameter value
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Maximum Likelihood = Hill Climbing

Slope is positive, 
increase the 

parameter value

39

-9
80

-9
60

-9
40

-9
20

-9
00

50 52 54 56 58 60 62 64
Population Mean

Re
la

tiv
e 

Pr
ob

ab
ili

ty
 o

f t
he

 D
at

a

Maximum Likelihood = Hill Climbing

Slope is slightly 
positive, increase by 

small amount
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Maximum Likelihood = Hill Climbing

Slope is zero, climb 
has reached the 
top of the hill

41

Curvature Of The Log Likelihood

A function’s curvature (second derivative) near 
its maximum determines the standard errors 

Steep functions have small standard errors 
because small changes to the parameter are 
impactful to the log likelihood 

Shallow functions have large standard errors
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Two Functions With Different Curvature 

The flat function has the 
same maximum but 
larger standard error

Flat
Steep
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Mplus Maximum Likelihood Script

DATA: 
file = math.dat; 
VARIABLE: 
names = id male lunchasst achievegrp stanread efficacy 
anxiety mathpre mathpost; 
usevariables = mathpost; 
ANALYSIS: 
estimator = ml; 
MODEL: 
[mathpost]; mathpost;
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Mplus Output

MODEL FIT INFORMATION 

Number of Free Parameters                        2 

Loglikelihood 

          H0 Value                        -913.999 
          H1 Value                        -913.999
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Mplus Output

MODEL RESULTS 

                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 

 Means 
    MATHPOST          56.792      0.592     95.877      0.000 

 Variances 
    MATHPOST          87.717      7.846     11.180      0.000
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