
IEEE SIGNAL PROCESSING LETTERS, VOL. 21, NO. 10, OCTOBER 2014 1235

Scaled-Distance-Transforms and Monotonicity
of Autocorrelations

Jean-Luc Bouchot and Frédéric Morain-Nicolier

Abstract—In this letter, we investigate the use of distance trans-
forms in a scale space domain for the image (and signal) misalign-
ment problem. We show that it is possible to build an autocorrela-
tion function that is monotonic with respect to the amount of trans-
lation. This creates a new paradigm for image comparison and
gives yet a new generalization of distance transforms to grey-level
images. Its behavior is analyzed on a natural scene image and its
robustness against noise is verified numerically.

Index Terms—Autocorrelation, distance transforms, Hausdorff
measure, misalignment, scale-space.

I. INTRODUCTION

A COORDING to some research in the neuroscience (see
for instance Cadieu et al. [1]), the human brain manages

to recognize some objects by a cascade of different detectors
with increasing complexity. It is now clear that the neurons are
activated in presence of certain fixed stimuli. In particular it
seems that edges play an important role in the detection process.
Due, however to the scale invariance nature of the human visual
system, it is beforehand impossible to tell the scale of an object
activating a neuron at a given moment.
On the other side, computer vision scientists have been

working intensively on structural similarity measures. A
major piece of work is dealing with image quality estimation
and yields one of the best measures so far [2]. The authors
compared images by separating their resemblances into three
components. First a luminance normalization, second a contrast
normalization, while the third component seems to have the
most impact and is described as being a structural component
of the image. More recently, some work have been done on
monogenic representations and phase-based imaging for image
comparison [3], [4]. It is clear since the original work of [5]
that structural information is contained in phases.
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It is also understood that edges play a great role in machine
recognition. The HOG descriptor [6] gives a description of local
neighborhoods only based on weighted edges. Based on this,
Shrivastava et al. [7] recently described how considering the
whole environment (i.e. the whole image) for comparison, even
though one uses local descriptors, can drastically improve some
results.
In this letter, we investigate a new way to look at multivariate

real-valued functions by defining a distance transform in a scale
space. This approach is particularly suited for the misalignment
problem, e.g. for image registration and stereo vision. Unlike
most of the similarities used in image comparison and pattern
matching [8], our scaled distance transform yields a monotonic
behavior when dealing with autocorrelations.

A. Monotonicity of Autocorrelation and Misalignment

In this note, we are particularly interested in similarity mea-
sures designed for the following misalignment problem:

(1)

where
• and are two multivariate signals: ,
• corresponds to the translation of the signal by a vector
, and

• corresponds to an objective function. It can be under-
stood as a distance measure or a similarity measure (in
which case we would want to maximize this equation).

When , we are dealing with an autocorrelation min-
imization. In order to use local minimization techniques, it is
essential for the objective function to show some kind of
monotonicity with respect to the amount of misalignment such
as for all . However,
as described in [8], most of the usual similarity measures or
distance metrics, such as any -divergences and Minkowski
distances, do not fulfil this property. This has led researchers
to increase the work on local feature selections. Unfortunately,
while SIFT [9] and HOG [6] like features appear robust for nat-
ural images, they behave poorly, for instance, in interferometric
imaging (such as those obtained by Optical Coherence Tomog-
raphy). In such cases, purely structure based measures show
stronger potential. To the best of our knowledge, only measures
based on the discrepancy norm [10] and Hausdorff measures
[11] show this monotonic behavior.

B. Organization and Contribution

In this letter we investigate a new similarity measure in a
scale-space that fulfills the above monotonicity criterion. It
is based on a combination of distance transforms at different
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scales. We start in Section II by re-introducing the mandatory
background. In particular basics about distance-transforms and
scale space are given. Then, we introduce our novel approch in
Section III. We derive our scaled-distance-transform (SDT) for
one dimensional signals and analyze its theoretical properties.
Section III-B extends our results to higher dimensional signals.
Finally Sections IV and V give some numerical results and
draw conclusions.

II. BACKGROUND REVIEW

A. Distance Transforms and Hausdorff Measures

In his novel work, Baddeley [12] introduced a metric based
on the Hausdorff measure to compare two binary images. While
his idea was first to compare the efficacy of different edge detec-
tion algorithms, it has led to many research in the area of binary
pattern matching. In particular it introduced the notion of Local
Distance Maps that also show a monotonic behavior with re-
spect to the displacement.
In this section we consider two bounded open sets and

in an ambient metric space .
Definition 1: (Distance transform to the foreground). The dis-

tance transform is defined as

(2)

Remark 1: The output of the distance transform might be
infinite for . We can restrict the domain of definition
of the DT to a bounded domain containing .
Remark 2: This is generally called the distance to the fore-

ground. A similar definition, with the distance transform to the
background may be defined. We will not give any further details
about this in the rest of this note. The distance transform to the
background is finite as long as is bounded.
From there, it is easy to define the distance transform of bi-

nary functions (i.e. indicator functions). As long as these func-
tions have support on a bounded domain we can identify them
with their support and consider the distance transform of their
support. We will equivalently write

(3)

where represents the indicator function of the set . Com-
paring indicator functions can also be done with the Hausdorff
metric [11], [13]. It is defined as follows:
Definition 2: (Hausdorff distance). Given two bounded sets

, the Hausdorff distance is defined as

(4)

This Hausdorff distance can however be reformulated in a sim-
pler manner [12]

(5)

which is in this case implemented by running two distance trans-
form algorithm. Some efficient and robust approximations have
been developed that makes this idea tractable [14], [15], [16].

The importance of this distance is justified by the following
theorem:
Theorem 1: Given a non-empty finite set and a

vector , it holds [11]:

where the norm depends on the distance used in the definition
above and is the translation of by a vector .
As a consequence, we have the monotonicity along a line of

the autocorrelation function:
Corollary 1: Let be a vector and a non-

empty finite set. For any two constants , it holds:

B. Scale Space

As this area can be very detailed if we want an exhaustive
description, we only review the topics needed for this letter: the
Gaussian scale space. We refere the curious reader to [17] for
more details.
Scale space representations have first been introduced and

studied in details in [18] and then used in different computer
vision algorithms [9], [6]. It allows to give a description of
an image based on its spatial coordinates as well as in terms
of scale. Given the well known Gaussian smoothing kernel

depending on the continuous scale
parameter , one can define the scale space representation
of an image as, and for as above,

(6)

where denotes the product of convolution. These ideas have
been successfully used in the context of feature detection such
as SIFT [9] or HOG [6].

III. SCALED DISTANCE TRANSFORMS

The whole idea of our new approach is to use the scale-space
representation to embed the structures of images in a more ro-
bust similarity measure that is monotonic with respect to the
amount of translation. We first look at the one-dimensional case
and deal with higher-dimensional signals in the following sec-
tion. On the other hand, our approach can be seen as yet an-
other generalization of the distance transform to continuous, or,
at least, non-binary signals. However, unlike other generaliza-
tions [19], [20], [21], the autocorrelation function based on the
Hausdorff distance in a scale space shows the monotonic be-
havior expected. Our generalization differs also from others by
the fact that it extends the idea of edge comparison, as suggested
by the original work.

A. One-Dimensional Signals

Edges are found as zero-crossing of the Laplacian of the
scale-space representation: a point is said to be an edge at
a given scale if the Gaussian regularized derivative
reaches an extremum at . In other words, we want both a
non-vanishing first derivative and a zero-crossing of the second
one.
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In the one-dimensional case, this translates to:

We denote by the set of edges found in at scale . It
is defined as

(7)

This can equivalently be written as
, where the inverse should

be understood in an algebraic way as

Definition 3: Let be a function defined on , open
and bounded, with values in . Its scaled-distance transform is
a positive real-valued mapping from :

(8)

(9)

B. Higher Dimensional Signals

We use a very similar approach to define the scaled-distance
transform in a multivariate setting. However, here we calculate
the distance transform to an edge, which can appear in any di-
rection. We say that an edge located at is oriented in the
direction, , if

(10)

The set of all edge locations at scale is defined as

(11)

Hence we get the following definition:
Definition 4: Let be a function defined on , open

and bounded, with values in . Its scaled-distance transform is
a positive real-valued mapping from :

(12)

(13)

C. Comparing SDTs and Monotonicity

Given a finite measure on and a distance on , we
suggest to compare two SDT representations with

(14)

Proposition 1: Given a function in . Its auto-
correlation function where the Haus-
dorff distance is used as is monotonic with the respect to the

Fig. 1. Mansion image with the reference patch.

displacement. For a certain and two constants
, it holds

(15)

Note that this property is stated for functions defined on which
means that the objective function needs not to be defined
for all ’s. Fortunately, a simple completion of the function with
0’s will solve any problems. The proof relies on the following
lemma.
Lemma 1: Given a function , the set of its edges at a given

scale is anti-invariant with respect to translations:

Proof: To prove the lemma it is sufficient to show that for
any , . The other part of the
inequality is obtained with .
Equations (10) and (11) state that if there exists

an such that and
. In particular we have

A similar result is obtained regarding the first derivative. Hence
which concludes the proof.

Proof. (of the proposition): With the use of the pre-
vious lemma, the proof of Proposition 1 is rather straight-
forward. Indeed, for a fixed , for two positive
constants and a translation vector ,
we have that

; due to Corrollary 1
and the definition 4 of the SDT combined with the previous
lemma.
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Fig. 2. Discrepancies of the translated pattern in the noise free case. and axis corresponds to the displacement of the window that is compared to the black
box from Fig. 1.

Fig. 3. Discrepancies of the translated pattern in the noisy case. and axis corresponds to the displacement of the window that is compared to the black box
from Fig. 1.

Hence, by definition of a positive finite measure, we have that

which is the claimed result.

IV. NUMERICAL RESULTS

A. Monotonicity

To analyze the monotonicity property of the SDT, we com-
pare a sliding patch around the black box from the mansion pat-
tern, Fig. 1. This patch corresponds to a pixel area. We
compare its SDT with other patches in its neighborhood in the
image with translations from pixels to pixels in all
directions.1

For the numerical experiments we need to specify how to
deal with the finite measure specified in the combination of the
Hausdorff distances at every level. We suggest three ideas but
it is evident that prior knowledge on the geometry of the scene
may help the design of better ones. We consider:
• , ; in this case, only a subset of scales is
given importance (we do not use this approach further)

• ; in this case we give the same emphasis on all scales
without further considerations

• ; here we give more emphasize on objects at
coarser scales. It is motivated by the fact that noise and
unwanted details will most likely appear in fine scales.

Moreover we apply the SDT on discrete images and therefore
use the usual Gaussian pyramid as a scale space. The results of

1Note that all the data for this note can be obtained from the authors’ websites:
http://www.math.drexel.edu/jb3455/publi.html or http://pixel-shaker.fr/

the local discrepancy can be seen in Fig. 2. It is important to
notice that the monotonicity along a line is not valid due to the
fact that we consider “real” patches or a real image and thus we
are not dealing with exact autocorrelation. However, it is still
locally true and the surface shows few local minima.

B. Noise Robustness

It is well known that the Hausdorff distance is however rather
unstable when facing noise. This is due to the in its defini-
tion. To overcome this problem, it has been suggested to average
the contribution of all the pixels via the use of a -mean:

(16)

And as gets bigger this approximation gets better but more
sensitive to noise. For this series of tests we have considered
the black box reference window as noise free and have added
Gaussian noise to the sliding window. The dissimilarity maps
can be seen in Fig. 3, where we have .

V. CONCLUSION

We have introduced an approach that generalizes the classical
distance transform to non-binary signals based on a scale space
representation. Compared to other generalizations, the autocor-
relation function based on our scaled distance transform shows
a monotonic behavior with respect to the misalignment. This
generates new ideas for signal and image registration.
The idea to use the scale space for edge detection is not new,

it can be understood as the building blocks of wavelet analysis,
for instance. However, the monotonicty property of the autocor-
relation function described above may motivate new research
in image alignments based on wavelet representations and/or
multiresolution analysis.
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