Centre Candidate Number Number ### **INSTRUCTIONS TO CANDIDATES** Write your name, centre number and candidate number at the top of this page and all separate answer paper used. There are 12 questions in this question paper. ### Section A Answer all the questions. Write your answers in the spaces provided on the question paper. ### Section B Answer any two questions. Write your answers on the separate answer paper provided. - 1. Fasten the separate answer paper securely to the question paper. - 2 Enter the numbers of the **Section B** questions you have answered in the grid. ### **MFORMATION FOR CANDIDATES** The number of marks is given in brackets [] at the end of each question or part question. A copy of the **Periodic Table** is on page 10. | Candidate's
Use | Examiner's
Use | |--------------------|-------------------| | Section A | | | Section B | | | Total | | **Cell phones** are **not** allowed in the Examination room. ### **Section A** ### [45 MARKS] Answer all the questions in this section. Write your answers in the spaces provided. 1 Study the diagram below and answer questions that follow. NB: d, e, f are processes. (a) Name the processes d, e and f, | | so-contract the first contract to | |--|-----------------------------------| | scribe what you would do to convert substance A to E | 3. | | | | | | .5 | | te one of the basic units of matter. | | | te one of the basic units of matter. | | | (a) | | te whether Uranium is more or less reactive than Maganesium, explain r answer. | |-----|------|--| | (b) | (i) | Calculate the relative molecular mass of Uranium Tetracfluoride (UF ₄) | | | (ii) | How many tonnes of Uranium can be produced in the above reaction using 24 tonnes of magnesium? | | | | ural Uranium has several Isotopes. Define the term Isotopes. | | calcium hydrogencarbonate decomposes according to the equation below Ca(HCO₃)₂(aq) → CaCO₃(s) + H₂O (ℓ) + CO₂(g) (i) Name the white solid formed in this reaction. (ii) If the water boiled contained 16.2g of Calcium hydrogencarbonate, Calculate the mass of CaCO₃ formed To The diagrams below show the electron arrangement in the outer shell of five ele A to E. All elements are from Period 3 of the Periodic Table. (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X²+? | | (1) | Ca(HCO ₃) ₂ | |---|-----|-----------|--| | calcium hydrogencarbonate decomposes according to the equation below Ca(HCO₃)₂(aq) → CaCO₃(s) + H₂O (ℓ) + CO₂(g) (i) Name the white solid formed in this reaction. (ii) If the water boiled contained 16.2g of Calcium hydrogencarbonate, Calculate the mass of CaCO₃ formed To The diagrams below show the electron arrangement in the outer shell of five ele A to E. All elements are from Period 3 of the Periodic Table. (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X²+? | | (ii) | Al ₂ (SO ₄) ₃ | | (ii) Name the white solid formed in this reaction. (ii) If the water boiled contained 16.2g of Calcium hydrogencarbonate, Calculate the mass of CaCO ₃ formed To The diagrams below show the electron arrangement in the outer shell of five electron at the E. All elements are from Period 3 of the Periodic Table. (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X ²⁺ ? | (b) | | | | (ii) If the water boiled contained 16.2g of Calcium hydrogencarbonate, Calculate the mass of CaCO ₃ formed To The diagrams below show the electron arrangement in the outer shell of five electron at the context of the periodic Table. A to E. All elements are from Period 3 of the Periodic Table. Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X ²⁺ ? | | | $Ca(HCO_3)_2(aq) \longrightarrow CaCO_3(s) + H_2O(\ell) + CO_2(g)$ | | Calculate the mass of CaCO ₃ formed To The diagrams below show the electron arrangement in the outer shell of five | | (i) | Name the white solid formed in this reaction. | | The diagrams below show the electron arrangement in the outer shell of five election A to E. All elements are from Period 3 of the Periodic Table. A to E. All elements are from Period 3 of the Periodic Table. B C D E (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X ²⁺ ? | | (ii) | | | The diagrams below show the electron arrangement in the outer shell of five election A to E. All elements are from Period 3 of the Periodic Table. A to E. All elements are from Period 3 of the Periodic Table. B C D E (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? Which element will form an ion of the type X ²⁺ ? | | | | | A to E. All elements are from Period 3 of the Periodic Table. A to E. All elements are from Period 3 of the Periodic Table. B C D E E (a) Put the letters A to E in the table to show which elements are metals and which are non-metals. Metals Non-Metals (b) Which element is most likely to be in Group VI of the Periodic Table? ——————————————————————————————————— | | | | | (c) Which element will form an ion of the type X ²⁺ ? | (a) | Put which | the letters A to E in the table to show which elements are metals arch are non-metals. | | | (b) | Whi | ch element is most likely to be in Group VI of the Periodic Table? | | | (c) | | | | (d) Which element has an atomic number of 15? | 101 | Whi. | ch element will form an ion of the type X ²⁺ ? | | | , , | Whi | ich element will form an ion of the type X ²⁺ ? | | • | (d) | | | (a) Work out the relative formula mass, M_r of the following: | | mers | ams below snow sections of the polymer chain of two condensation. | | |------|------------------|--|---------| | nylo | 'n | -N-C-D-C-N-M-C-D | | | Tery | /lene | -o-c-2-c-0-3-o-c-2 | | | (a) | (i) | Draw a circle around an amide linkage in the diagram. Label this amide linkage. | | | | | | | | | (ii) | Draw a circle around an ester linkage in the diagram. Label this est linkage. | er | | (b) | Nan
nylo | ne a type of naturally occurring polymer that has a similar linkage to n. | | | | | | | | (c) | Why | are nylon and terylene known as condensation polymers? | | | (d) | mad
disa | ing nets used to be made of natural fibres but many nets are now
le from nylon. Suggest one advantage other than strength and one
dvantage of using nylon in place of natural fibres to make fishing net
antage | ts. | | | Disa | dvantage | | | | - | and oxygen are the two main gases present in the air. Both gases ar
from air. | To
e | | (a) | Ву и | what process are the two gases obtained from the air? | | | (b) | Stat | ogen is used in the manufacture of ammonia by the Haber Process. e any 2 important conditions for the reaction in which ammonia is ned by the Haber Process. | | | (c) | Stat | e one important use of ammonia | | | | i and | т | otal | | (| NY | | | |---------------|-------|---|------| | <u> </u> | | | Tota | | The calc | reac | tion below takes place during the production of calcium oxide when carbonate is thermally decomposed. | | | | Ca | $CO_3(s) \longrightarrow CaO(s) + CO_2(g)$ | | | (a) | Give | e a common name for: | | | | (i) | Calcium carbonate. | | | | (ii) | Calcium oxide. | | | | (iii) | Calcium hydroxide. | | | | Wh | at is the Chemical Formula of Calcium hydroxide. | | **9** The following experiment was set up to investigate the effect of damp air on iron filings. The graduated cylinder contained 50cm³ of air at the start. | 4 | - | | |----|---|--| | -1 | 1 | | | • | J | | (a) State two changes which would be observed after 1 week. |
 |
 | erabar variable (A. A. A | |------|------|---| | | | [2] | | |
 |
[4] | | (b) | What volume of air was | s in the graduated | cylinder after 1 week? | |-----|------------------------|--------------------|------------------------| | | | [1] | |-------|--|-----| |
1 | | | (c) Calculate the % of air used up in the experiment. | | C. A. Williamson, A. A. | | |--|-------------------------|--| | | | | | | | | | | | | Total [5] [2] ## Section B ### [20 MARKS] ### Answer any two questions in this section. Write your answers on the separate answer paper provided. A student set up an experiment to produce ethanol from glucose, she dissolved glucose in warm water, added yeast and left the mixture in a warm place for about 7 days in the apparatus shown below. - (a) Write a word equation for the formation of ethanol from glucose. - **(b)** What is the scientific name for this reaction. [1] - (c) Suggest a suitable temperature at which the process occurs. [1] - (d) The airlock prevents air from going into the flask but allows carbon dioxide gas to go out. - (i) Why must air not be allowed into the flask? - (ii) Describe the change which will be seen in the airlock. [3] - (e) Ethanol can be oxidised to ethanoic acid by boiling ethanol with acidified potassium dichromate (VI). Give two reasons why the conversion of ethanol to ethanoic acid is an oxidation process. [2] - (f) When concentrated sulphuric acid is added to ethanol, the following reaction occurs. - (i) What type of reaction is this? - (ii) What test can be done to show that ethene is formed? [2] [1] **Total** [10] 11 (a) When magnesium is heated in a stream of steam, it reacts vigorously forming a white solid and hydrogen gas. - (a) Complete the diagram to show how hydrogen gas can be collected. [2] - (b) Write a balanced chemical equation for the reaction of magnesium with steam. [3] - (c) Choose two other metals from the reactivity series of metals which will also react with steam and one metal which will not react with steam. [3] - (d) Suggest a method which can be used to extract magnesium from its ores. [1] - (e) When a piece of magnesium is added to copper(II) sulphate solution, copper metal is formed according to the word equation below: Magnesium + Copper (II) sulphate → magnesium sulphate + copper. - (i) Write a balanced chemical equation for the reaction. [1] - (ii) What type of a reaction is this? [1] **Total** [10] - 12 (a) The increase in industrial activity in Zambian cities has results in high levels of atmosphere (air) pollution. Carbon monoxide is one of the pollutants of the air. - (i) How is carbon monoxide produced? [1] (ii) Explain why carbon monoxide is a dangerous gas. [1] - (iii) Name the pollutant gas which is mainly responsible for producing acid rain.[2] - (b) (i) State the two main stages in the purification of domestic water supply. - (ii) Give two industrial uses of water. [2] (c) When steam is passed over very hot carbon, a mixture of carbon monoxide and hydrogen gas is formed. $$H_2O_{(g)} + C_{(s)} \longrightarrow H2_{(g)} + CO_{(g)}$$ State which substance is - (i) reduced. - (ii) oxidised. [2] **Total** [10] ## DATA SHEET # The Periodic Table of the Elements | *58-71 Lar
+90-103 A
Key | Francium
87 | 133
Cs
Caesium
55 | 85
Rb
Rubidium | 39
X
Potassium | Lithium 3 23 Na Sodium | | - | |---|------------------|------------------------------------|-------------------------------------|---------------------------------|--|-------------------------|----------| | *58-71 Lanthanoid series +90-103 Actinoid series Key | Radium 88 | | 88
Strontium | 40 Ca Calcium | 9 Be Beryllium 4 24 Mg Magnesium | | = | | series ieries a = relative atomic mass X = atomic symbol b = proton (atomic) number | Actinium + | Lanthanum 57 | 89
Y
Yttrium | 45
Sc
Scandium
21 | | | | | s s | | 178
Hf
Hafnium
72 | 91
Zr
Zirconium
40 | 48
Ti
Titanium | | Transport of the Parket | | | Cerium
58
232
Th
Thorium | 3 140 | 181
Ta
Tantalum | 93
Nb
Niobium | 51
V
Vanadium | | | | | Praseodymium 59 Pa Pa Pa Pa Prolactinium 91 | 141 | 184
W
Tungsten | 96
Mo
Molybdenum | 52
Cr
Chromium | | | | | , , | 5 14 | 186
Re
Rhenium | Tc
Technetium | Mn
Mn
Manganese
25 | | | | | Promethium 61 Np Neptunium 93 | | 190
OS
Osmium | 104
Ru
Ruthenium
44 | 56
Fe
iron | | 1
Hydrogen | | | , , , | 150 | 192 r Irdium | 103
Rh
Rhodium
45 | 59
Co
Cobalt
27 | | | Group | | Europium
63
Am
Americium
95 | 152
Fi | 195
Pt
Platinum
78 | 106
Pd
Palladium
46 | 59
Ni
Nickel | | | 뮹 | | 3 | 6 157 | 197
Au
Gold
79 | 108
Ag
Silver | 64
Cu
Copper
29 | | | | | Terblum
65
Bk
Berkelium
97 | | 201
Hg
Mecury
80 | 112
Cd
Cadmium
48 | 65
Zn
Zinc | | | | | Dysprosium 66 Cf Californium 98 | 162
DV | 204
T/
Thallium
81 | 115
In
Indium | | 3 | | = | | Holmium
67
Es
Einsteinium
99 | Ho | 207
Pb
lead | 119
Sn
Th | 73
Ge
Germanium | Carbon 6 28 Si | | 2 | | Erbium 68 Fm Fermium 100 | 167
Er | 209
Bi
Bismuth | Sb
Antimony | 75
As
Arsenic | Nitrogen 7 31 P Phosphorus 15 | | < | | Thulium 69 Md Mendelevium 101 | 169
Tm | Po
Polonium
84 | Tellurium 52 | Selenium | | 45 | ≤ | | 70 Yitterbium 70 No Nobelium 102 | 173
Yb | At
Astatine | lodine | - To | | | ≦ | | 1 1 7 | 175
Lu | Rn
Radon | Xenon | 84
Xr
Kypton | Neon Neon 10 Ar Argon | Helium | 0 | The volume of one mole of any gas is $24\ dm^3$ at room temperature and pressure (r.t.p.).