Pipeline Maintenance*

Ahmed Al Fahdi Mu64956 To: Malik Shereiqi UEMP4 and Rashid Adawi UEMP2

June 22, 2022

Abstract

As per former supervisor request, I went to Fahud to get a practical exposure on pipeline maintenance. This report covers the topics and activities that have been covered during 14 days visit. Due to maintenance activities timing nature, it was hard to synchronize with each and every activity; however, I got some exposure via peer-to-peer knowledge sharing with UIPT team and Operation team.

1 Overview

1.1 Organizational Background

PDO follows an organizational hierarchy as shown below in the schismatic.

1.2 Pipeline Integrity Overview

The pipeline integrity is a vast topic if to be covered with a reasonable and meaningful depth; therefore, I opted for topics that I attended physically only

^{*}Outside FDP scope

to be included in this report. The schismatic below shows what's normally considered a comprehensive overview of pipeline integrity. The topics that are in **bold**¹, shall be covered in this report chronologically.

 $^{-1}\mathrm{CP}$ is considered to be both an external barrier , and somewhat external monitoring technique

2 MRP (Maintenance Reference Plan)

Risk-based maintenance and inspection plan generated with the aim of preserve the fitness for service status of PDO assets. MRP consists of:

- 1. Routine activities: activities that are planed and regularly preformed. Example: pigging.
- 2. Non routine activities: activities that are planed and performed at much lower frequency. Example: intelligent pigging.
- 3. Ad-hoc activities: unplanned activities and performed only due to necessity. Example: intelligent pigging in a flow line.

In order to maintain low pipeline integrity risk as low as reasonably practicable ALARP, the following is considered:

- The pipeline operating conditions is to be monitored. This will help to predict possible future integrity threats. After that, the integrity is to be restored to make it fit for service through repairing.
- The performance of pipeline protection barriers is to be monitored. This will provide pipeline's deterioration rate. After that, those anomalies that have been detected are to be repaired.

Through learning from previous pipeline failures, a standardized pipeline's integrity threats has been created:

Standardized Pipelines Integrity Threats Time-dependent External corrosion Internal corrosion Stress corrosion cracking Fatigue Time-independent Incorrect operational procedure Weather-related and outside force Resident (Stable) Manufacturing related Welding/ fabrication related Equipment related Design mistakes

3 Pigging Activity

Pigging is a cleaning process for pipelines utilizing fluid differential pressure (oil/gas). The typical velocity is between 1.5 m/s to 3.0 m/s.

3.1 Types Of Pigs

3.2 Pigging Medium²

3.2.1 Liquid

Generally lower pressure, typically 30 to 40 bar, as well as it's in-compressible; therefore, it's easier to control as there is no significant build-up pressure. Also, liquid works as a lubrication for the pig which reduces wear, tear, and vibrations.

3.2.2 Gas

Gas generally has a higher pressure than oil, typically more than 120 bar. This will result in reduced controllability especially considering the compressibility nature of gases, as there will be a significant pressure build-up. Gas is considered to be a harsh and dry medium that will result in much greater wear, tear, and vibrations than oil medium.

It's worth mentioning is that during EGS activity, I witness a pig go through the excavated pipeline. We could feel the vibrations 15-20 seconds prior to pig arrival. There was a considerable amount of vibrations and sound similar to what you would expect from a train passing by. It was a good showcase of how harsh the gas medium can be for pigs.

²Reference:Pigging Overview

Figure 1: Cup pig

3.3 Pigs Designs And Usages

Pigs are generally made of metallic bodies. Bi-directional pigs are typically preferred due to being able to move in both directions; hence, easy retrieval.

3.3.1 Cup pigs

- 1. Standard
- 2. Conical

3.3.2 Disk Pigs

- Flat section.
- Support disk 99% of ID.
- Sealing element 102% of ID.
- Bi-Directional.
- Better performance than cup pig, and easily retrievable.
- Minimum bend radius 1.5D.
- Preferable.

Figure 2: Disk and cup seals

Figure 3: Bi-Di typical pig

3.3.3 Foam Pigs

- Used to test piggability or retrieval of trapped pig.
- Lowest cleaning performance.
- Low risk of blockage (increased pressure will destroy them).
- Inexpensive.

3.3.4 Other Design Considerations

- Minimum bending radii.
- Tees with diameter greater than 50% of the main diameter.
- Valves
 - Fitted:

- * Full bore ball valves.
- * Reduced ball valves.
- * Check valves.
- Non-fitted:
 - * Butterfly valves.
 - * Wedged/parallel gate valves.
- Reducers.
- Length of the pipeline
- Types of debris that intended to be removed:
 - Ferrous debris
 - Soft/hard wax
 - Dust
 - Hard pipeline wall debris

3.4 Procedure ³⁴

3.4.1 Line-up

The purpose of lining-up is to prepare the receiver for receiving the pig. This process follows specific steps as explained in GU-1008 depending on the configuration.

Generic steps:

- 1. Open Vent release all trapped air in pig trap.
- 2. Open Kicker valve; pressurize the pig barrel. Verify the pressure using the pig trap pressure gauge.
- 3. Close vent valves.
- 4. Open Kicker line valve.
- 5. Open Main Isolation Valve (MIV).

3.4.2 Launching

Launching is the process where the pig is launched from launcher (upstream) as per GU-1008, depending on the specific configuration.

Generic steps:

1. Verify and ensure that kicker valves, isolation valve/s, and balancing line (if available) are closed.

 $^{^3 \}rm{Due}$ to lengthy procedure steps, I found it redundant to repeat what has been already mentioned in GU-1008 and PR-1082; hence, I mentioned only the general concept. $^4 \rm{See:}~\rm{SOP-812}$

⁷

- 2. Depressurize the launcher to zero, and verify that the pig trap is completely depressurized by unscrewing the safety bleeder screw BEFORE proceeding (if there is a depressurization sound with unscrewing, stop the procedure).
- 3. Open the door, and insert the pig.
- 4. Close the drain valves, and the door.
- 5. Open the balancing valve, and fill the barrel through equalizing valves. Then, close the vent valve.
- 6. One the pressure gauges have the same readings (zero differential pressure), close the equalizing valves.

3.4.3 Receiving

The process of receiving the pig at receiver and retrieving the pig as per GU-1008.

3.4.4 Safety Precautions And Other Considerations ⁵

Due to high pressure, there is always the risk of the pig firing back or out during launching and receiving. There have been many incidents involving pigging in the past. Therefor, there are some safety precautions:

- Never stand in front of the door or at the side where the hinge is fitted, as it poses the risk of pig projectile.
- Pyrophoric dust can be formed in dry gas lines which can produce an exothermic reaction when it comes into contact with air, and causes fire.
- Naturally Occurring Radioactive Material (NORM) must be measured and identified.

 $^{^{5}}$ As per PR-1082

Figure 4: NORM measuring device

Figure 5: Risk zones

3.5 Pig Traps Design and Configurations

3.5.1 Pig Traps Configurations⁶

There are 9 different pig traps configurations, one of which is critical sour service. The general configuration expression:

$$MIV(S/D) - xKIC(S/D) - BAL(A/B/N)$$
(1)

Where:

- MIV (Main Isolation Valve)
 - S (single)
 - D (double)
- KIC (Kicker Valve)
 - S (single)
 - D (double)
- BAL (Balancing Line)
 - A (after kicker valve)
 - B (before kicker valve)
 - N (not available)

When it comes to critical sour service configuration, MIV(D) - KIC(D) - BAL(A), it has two additional components that require consideration: Nitrogen purging valve, and Nitrogen cylinder gas.

3.5.2 Design⁷

The main components of pig traps are:

- Major barrel: An enlarged section of the barrel used for loading or retrieving pigs.
- Minor barrel: A section of the barrel between the pig trap valve and the reducer.
- Reducer: A reducer between major and minor barrel.
 - Types of reducers:
 - 1. Concentric.

^{2.} Eccentric.

 $^{^{6}}$ As per GU-1008

⁷As per DEP 31.40.10.13-Gen.

Figure 6: Types of reducers

- End closure: A quick opening end closure welded to the major barrel allowing the insertion and removal of pigs.
- Vents.
- Drain valves.
- Pressure gauges: important safety pressure measures, that give the operators a clear idea if the pig trap is pressurized or not.
- Bypass line: connects the pipeline with related upstream or downstream facilities such as a booster station, tank farm, etc.
- Kicker line: connects the major barrel with the bypass line to enable diversion of the fluid through the barrel to launch or receive a pig.
- Balance valves/lines: connects the front of the pig trap (minor barrel) to the kicker line. It is controlling differential pressure; hence, controlling the pig movement.
- Pig signalers: mechanical or digital devices that actuate when the pig passes through them.

Figure 7: Typical horizontal pig trap

3.5.3 Design Pressure

- 1. The design pressure of the pig trap system shall not be less than that of the pipeline.
- 2. Pipeline design pressure and fitting class rating shall be as indicated on the data sheet/requisition.

3.5.4 Design Temperature

- 1. The maximum design temperature shall not be less than the maximum temperature that the pig trap system could attain or to which it could be exposed during operation, start-up or shutdown.
- 2. The minimum design temperature shall be based on minimum ambient temperature and on the conditions (e.g., blowdown) that could occur during operations.
- 3. Minimum and maximum ambient temperatures shall be as indicated on the data sheet/requisition.

3.5.5 Design Velocities

Suggested maximum velocities for the purpose of piping diameter selection are:

- For piping in intermittent service:
 - 1. In liquid: 8 m/s (26 ft/s)
 - 2. In gas: 40 m/s (130 ft/s)
- For piping in continuous service:
 - 1. In liquid: 4 m/s (13 ft/s)
 - 2. In gas: 20 m/s (65 ft/s)

3.5.6 Corrosion Allowance

Corrosion allowance should be considered for the barrel, balance line, drain lines, pressurizing line and kicker line depending on the frequency of pigging and duration of exposure to moisture.

3.6 Case Study

I attended pigging activity for 20" pipeline from Yibal to Fahud.⁸ This specific pig trap has the simplest configuration with single main isolation valve, single kicker valve, and a balancing line after kicker valve.

$$MIV(S) - KIC(S) - BAL(A)$$
⁽²⁾

Figure 8: Receiver pig trap schismatic

⁸See: Appendix (1)

Valve/Door/Pressure Gauge	Normal Status
А	0
В	С
C1	С
C2	С
C3	С
Ι	0
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Zero
PG3	Operating Pressure

Table 1: Normal conditions before line-up at receive	e line-up at receiver
--	-----------------------

r

Valve/Door/Pressure Gauge	Normal Status
А	0
В	0
C1	0
C2	С
C3	С
Ι	С
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Operating Pressure
PG3	Operating Pressure

Table 2: Conditions after line-up at receiver

Figure 9: Launcher pig trap schismatic

Valve/Door/Pressure Gauge	Normal Status
А	0
В	С
C1	С
C2	С
C3	С
Ι	0
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Zero
PG3	Operating Pressure

Table 3: Normal conditions at launcher pig trap (before changing anything)

Valve/Door/Pressure Gauge	Normal Status
А	0
В	С
C1	С
C2	С
C3	С
Ι	0
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Zero
PG3	Operating Pressure

Table 4: Conditions prior to launching at launcher

Valve/Door/Pressure Gauge	Normal Status
А	0
В	0
C1	0
C2	С
C3	С
Ι	С
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Operating Pressure
PG3	Operating Pressure

Table 5: Normal conditions at receiver as they were set before in Table 2

Valve/Door/Pressure Gauge	Normal Status
А	0
В	С
C1	С
C2	С
C3	С
Ι	0
E1 & E2	С
D1 & D2	С
F	С
PG1 & PG2	Zero
PG3	Operating Pressure

Table 6: Conditions at receiver after completing the pigging process (same as Table 1)

Figure 10: Lining-up process

Figure 11: Safety Bleeder Screw

Figure 12: Main isolation valve 20" and drain 4"

Figure 13: Drain valve

Figure 14: Kicker valve

Figure 15: Loading the pig into the launcher

Figure 16: Pushing the pig into the launcher

Figure 17: Closing main isolation valve using hydraulic pressure

Figure 18: MIV opening and closing indicator

4 CP

4.1 Theoretical Background

4.1.1 Corrosion

The the most aggressive enemy against pipelines, or any other equipment made of metallic materials, is corrosion. Corrosion happens because processed metals tend to be in unstable energy levels. Other metals with "stable" energy levels, like gold, are nearly immune to corrosion. These metals are know as "noble metals".

For the corrosion to happen, four components must be present:

- 1. Anode: where electrons generated by the formation of metallic ions.
- 2. Cathode: which is the reaction site for the electrons.
- 3. Metallic connector: the path that connect anode and cathode in which electrons can pass through.
- 4. Electrolyte: the medium which completes the electrical circuit involves the flow of ions.

For example, the corrosion that takes place in iron Fe when connected to more active metal, say copper, follows these reactions:

$$Fe \to Fe^{2+} + 2e^- \tag{3}$$

$$O_2 + 2H_2O + 4e^- \to 4OH^- \tag{4}$$

$$Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2$$
 (5)

Figure 19: Galvanic series activity

4.1.2 Corrosion Countermeasures

There are many methods in which we can protect pipelines against corrosion:

Essentially, by using cathodic protection, we are trying to make the pipeline as cathodic as possible. Therefore, protecting the pipeline from corrosion.

Sacrificial Anode CP System	Impressed Current CP System
No external power required	External power required
Fixed driving voltage	Adjustable voltage
Fixed current	Adjustable current
Limited current (10 to 50 mill-amperes typical)	Unlimited current (10 to 100 amperes typical)
Usually used in lower resistivity electrolytes	Can be used in almost any resistivity environment
Usually used with small or very well coated structures	Can be used on any size structure
Low \$/unit cost	High \$/unit cost
High \$/sq. ft. of metal protected	Low $s/sq.$ ft. of metal protected
Low maintenance	Higher maintenance
Does not cause stray current corrosion	Stray dc currents can be generated
Temporary	Permanent

Table 7: Comparison of CP systems

4.2 Case Study ⁹

I accompanied CP coordinate in inspecting cathodic protection systems in precommissioning phase. The pipeline of interest in this case was 10" CS from HGS to RMS-1. The inspection aimed to see if the ON/OFF voltage potential was within the acceptable range. In this case, Impressed Current CP System (ICCP) is used.

ICCP is used at multiple points On-Plot for piping and unrestrained pipelines, and Off-Plot for restrained (buried) pipelines. In this cases, the Off-Plot pipelines are Carbon Steel (CS), and the On-Plot is Duplex Carbon Steel (DSS). Due to being different materials with different potential activities, the two materials are incompatible and must not get directly connected.

 $^{^{9}}$ As per SP-1128

Figure 20: Combined isolating flange and drain point with coupon test facility

Figure 21: Cathodic protection transformer rectifier (outside)

Figure 22: Cathodic protection transformer rectifier (inside)

Figure 23: Measuring ON/OFF potential at transformer rectifier

Figure 24: Measuring ON/OFF potential at transformer rectifier

Figure 25: Measuring $\rm ON/OFF$ voltage

Figure 26: Measuring the ΔV between in station DSS and out-of-station CS.

5 EGS^{10}

Epoxy grouted sleeves can be used for repairing gouges, dents, internal defects and external defects. This technique is considered to be a permanent repair.

5.1 Sleeve Material

- Sleeve fabrication shall be ASTM A516 Grade 65 / 70 (non-sour).
- Thickness shall be 10.3 mm for pipe size from 6" through 24" and 14.3 mm for pipe size from 28" through 48".
- Copies of the mill test certificates shall be supplied to Company for approval and shall be of type 3.1B.

5.2 Sleeve Fabrication

- 1. Shall be cold cut or hot cut into pieces of appropriate size.
- 2. Plate pieces shall then be rolled, beveled and tapped to form half sleeves to the dimensions and tolerances specified in standard drawings.
- 3. A 100 mm wide band from the edges to be welded shall be subjected to Magnetic Particle (MT) inspection after every bead.
- 4. Each half sleeve shall be 2 meters long.

5.3 Case Study

I witnessed some parts of EGS process that was conducted on 16"THUMID RMS 4 TO GGP. 11

6 R.O.W Inspection¹²

Right of way inspection is meant to check regularly on the integrity of the pipelines and their R.O.W. Due to the importance and criticality of pipelines, the R.OW is protected under Royal Decree No. 8/2011. I accompanied Slim Al Rashdi UIPT-451 in inspecting the R.O.W for MOL-25 42" pipeline from Nahadah Booster Stations to the High Point.¹³

This line in particulate is considered to be the backbone of Oman's economy, as it conveys all the production from Northern and Southern fields to MAF. Generally, there were many unauthorized road crossings that pose some serious risk to the integrity of the pipeline. For example, there was an unauthorized

 $^{^{10}}$ As per SP-2285

 $^{^{11}\}mathrm{I}$ took some photos of the process but unfortunately I lost them.

 $^{^{12}}$ Case study

¹³See: Appendix (2 & 3)

Figure 27: R.O.W unauthorized disturbance

blacktop construction that crossed directly the R.O.W of the pipeline. The unauthorized constriction company used the R.O.W as road to move their heavy machinery, e.g. soil compactor.

Another observation is the inadequate surveillance and protection of the pipeline considering its criticality. People were crossing the windrow with their vehicles and destroying the windrow. Moreover, the pipeline is easily accessible to non-authorized personal, which ultimately increases the risk of intentional or non-intentional third party damage or vandalism.¹⁴

7 Operation Team Overview Orientation ¹⁵

7.1 Charlie Station

Charlie or "C" is gathering station located in Fahud with purpose of gathering oil and gas from wells before sending it for further processing.

Process:

- 1. Wells output enter the station.
- 2. The flow then will be divided into:
 - (a) Three bulk/production vessels.
 - i. Denoted by V-0510, V-0512, V-0525.
 - ii. Separate output into:
 - A. Liquid: red line.
 - B. Gas: yellow line.
 - (b) Three test vessels.

 $^{^{14}\}mathrm{A}$ possible countermeasure for this problem could be the usage of non-intrusive modernized methods like UAVs

 $^{^{15}}$ Non-pipeline activity

Figure 28: Station-C overview

- i. Denoted by V-0531, V-0532, V-05125.
- ii. Each test vessel can be used only by one well at time, unlike production vessels.
- iii. Separate output into:
 - A. Liquid: red line.
 - B. Gas: yellow line.
 - C. Water: blue line \Longrightarrow will be mixed with liquid after test.
- 3. All the liquid from previous steps will go to "surge tanks"
 - (a) The oil will go to MLPS for further processing.
 - (b) The excessive gas with go to atmospheric pressure flare.
- 4. All the gas with to (prioritized respectfully):
 - (a) Two gas turbines that are powered by gas pressure.
 - (b) Three motor turbines that are powered by electrical motors.
- 5. If the turbines are working at maximum capacity, then the gas will go to High-Pressure-Flare.
- 6. The gas output from turbines goes to:
 - (a) Gas injection: injected into the well to force the oil out.
 - (b) Gas left: injected into reservoir to maintain a specified pressure.

LISTS

Contents

1	Ove 1.1 1.2	rview1Organizational Background1Pipeline Integrity Overview1
2	MR	P (Maintenance Reference Plan) 3
3	Pig	ging Activity 3
	3.1	Types Of Pigs 4
	3.2	Pigging Medium 4
		3.2.1 Liquid
		3.2.2 Gas
	3.3	Pigs Designs And Usages 5
		3.3.1 Cup pigs
		3.3.2 Disk Pigs
		3.3.3 Foam Pigs 6
		3.3.4 Other Design Considerations
	3.4	Procedure
		3.4.1 Lme-up
		3.4.2 Launching
		3.4.3 Receiving 8
	2.5	3.4.4 Safety Precautions And Other Considerations 8 Dig Trans Configurations
	5.5	2.5.1 Dig Traps Configurations 10
		3.5.2 Pig Trap Design 10
		$3.5.2$ Tig Hap Design \dots 10
		3.5.4 Design Temperature 12
		3.5.5 Design Velocities
		3.5.6 Corrosion Allowance
	3.6	Case Study 13
	0.0	ouse study is
4	\mathbf{CP}	23
	4.1	Theoretical Background
		4.1.1 Corrosion
		4.1.2 Corrosion Countermeasures $\ldots \ldots \ldots \ldots \ldots \ldots 25$
	4.2	Case Study
F	FC	24
9	EG 5 1	Sloave Material 24
	5.2	Sleeve Fabrication 24
	0.4 5.2	Case Study 24
	0.0	Case Dudy

6	R.C	. W	Inspection ¹⁰	6
---	-----	------------	--------------------------	---

7	ОТ	00															35
	7.1	Charlie Station															35

34

List of Figures

1	Cup pig	5
2	Disk and cup seals	6
3	Bi-Di typical pig	6
4	NORM measuring device	9
5	Risk zones	9
6	Types of reducers	11
7	Typical horizontal pig trap	12
8	Receiver pig trap schismatic	13
9	Launcher pig trap schismatic	14
10	Lining-up process	17
11	Safety Bleeder Screw	18
12	Main isolation valve 20" and drain 4"	19
13	Drain valve	19
14	Kicker valve	20
15	Loading the pig into the launcher	20
16	Pushing the pig into the launcher	21
17	Closing main isolation valve using hydraulic pressure	22
18	MIV opening and closing indicator	22
19	Galvanic series activity	24
20	Combined isolating flange and drain point with coupon test fa-	
	cility	27
21	Cathodic protection transformer rectifier (outside)	28
22	Cathodic protection transformer rectifier (inside)	29
23	Measuring ON/OFF potential at transformer rectifier	30
24	Measuring ON/OFF potential at transformer rectifier	31
25	Measuring ON/OFF voltage	32
26	Measuring the ΔV between in station DSS and out-of-station CS.	33
27	R.O.W unauthorized disturbance	35
28	Station-C overview	36

List of Tables

1	Normal conditions before line-up at receiver	14
2	Conditions after line-up at receiver	14
3	Normal conditions at launcher pig trap (before changing any-	
	thing) \ldots	15

 $^{^{16}}$ Case study

4	Conditions prior to launching at launcher	15
5	Normal conditions at receiver as they were set before in Table 2	16
6	Conditions at receiver after completing the pigging process (same	
	as Table 1)	16
7	Comparison of CP systems	25

APPENDIX

S.N	Description
1	Pig trap drawing for 20"
2	Main Oil Line (MOL) system schismatic diagram
3	R.O.W inspection report (the first page only)
4	CP sample report (H1-NTH-IS-FHD-GAS-2021)
5	Final Inspection Report (EGS)
6	Welding Procedure Specification (WPS) for EGS

Pipeline Right of Way Inspection Report

Pipeline location	Nahadah-high point	Inspector Name	Salim Al-Rashdi / Ahmed Al-Fahdi
Pipeline Type	MOL-25 42"	Ref Indicator	UIPT-451 / UEMP2X
Inspected Length	100 KM	Inspection Date	03.02.2022
General observations			
1-			
- 2-			
3-			
4-			
5-			

No	Chainage (Km)	Findings	Photos	Action Required
1	0+400	Wadi washout		Windrow reinstatement
2	2+200	Wadi washout		Windrow reinstatement
3	5+970	wadi washout, Unauthorized road crossing		Windrow reinstatement
4	6+978	Wadi washout		Windrow reinstatement

Project	Pipeline Maintenance Contract (C3100000047)									ولات شرمم	لهندسة والمق	۸ الغاليي العالمية المالمية الم المالمية المالمية الم المالمية المالمية الم المالمية المالمية مالمية المالمية المالمية المالمية المالمية المالمية المالمية المالمية المالمية ال المالمية المالمية مالمية المالمية مالمية المالمية المالمية المالمية مالمية مالمية مالمية مالمية المالمية ممالمية مالمية مالمية مالمية مالمية ممالمية مالمية مية مالمية مية مالمية مالمية مالمية مية مالم المالمية المالمية المالمية المالمية مالمية ممالمية مالم		
Owner	Petroleum De	velopment Oma	n				AL-CH							
Main Contractor	ctor Al Ghalbi International Engineering & Contracting LLC									PIDELINE MAINTENANCE CONTRACT - NORTH OMAN (C.3100000007)				
CP Contractor	Amran Catho	lic Protection S	ystems and Ser	vices LLC						In cente montrette	ice controler from			
HALF YEARLY CP STATISTICS REPORT: NORTH OMAN-FAHUD GAS LINES														
Code			FHE.GFEI0	3				Pipeline	16# GAS LI	NE FRM FH	D E STN-FHD	F ST		
Date	H-1	19-Jun-21	H-2	11-D	ec-21			Frequency			H2-2	021		
						Area :-I	Fahud Gas a	nd other lines						
			Pipe to S	Soil (-mV)		Familia	Dine/Ctn e		2D (m)/)	Droin	Surrent (A)			
Chainage	Key Point	Half y	early-1	Half y	early-2	Foreigi	r Fipe/Sur s	ide/Coupoir F	5F (-111V)	Dialit	Junenii (A)	Remarks		
		H-1 ON	H-1 OFF	H-2 ON	H-2 OFF	H-1 ON	H-1 OFF	H-2 ON	H-2 OFF	H-1	H-2			
0.010		1786	984	1423	902	564	505	575	510	0.00	Dis	XIJ, FE-1		
0.056		1746	968	1395	870	956	854	993	877			P/L Xing [OHL71mv]		
0.187		1734	949	1345	872	958	852	990	876			P/L Xing 16" old		
2.000		1726	1050	1391	877	1726	1050	1390	876			Buried coupon off -2284/964 mV		
3.790		-	-	-	-							P/L Xing 16" old		
3.813		-	-	-	-									
3.858		1672	910	1367	885	1560	1014	1495	1032			16" gas Fahud E-F		
4.007		1542	970	1265	940	1258	977	1347	1027			16" gas Fahud E-F		
4.008		1574	912	1494	913	274	254	145	273	0.20	0.14	XIJ, FF-1		
		Half y	early-1	Half y	early-2	ļ								
		ON	OFF	ON	OFF	ļ								
Total test Post		9	9	9	9	ļ								
Protected test p	post	7	7	7	7	ļ								
Un-Protected te	est post	0	0	0	0	ļ								
Over Protected	l test post	0	0	0	0	ļ								
Defective/ No	test post	2	2	2	2	ļ								
Test Post % Pr	otection	100%	100%	100%	100%									

FINAL INSPECTION REPORT

REPORT TITLE	Automated Ultrasonic Inspection at one location on the 16"THUMID RMS4 TO GGP
REPORT REFERENCE	HIS100.16"THUMID RMS4 TO GGP -08-2021
DATE	03-NOV-2021
TAG NO.	OM.GGP.GGTI01
REVISION NUMBER	00
CLIENT	PETROLEUM DEVELOPMENT OF OMAN
LOCATION	16"THUMID RMS4 TO GGP @11845.813m
PO No	4500894741
CONTRACTOR	Al Ghalbi

	Performed By	Reviewed By	Approved By
Name	ВҮЈИ К. К	INDRAJIT GUPTA	
Designation	ASNT UT Level-II	UT Level-III	
Signature			

Contents

Executive summary

1. Executive Summary	03
2. Introduction	04
3. Survey locations	04
4. Inspection details, equipment & personnel	- 05
5. Results	6-10
6. Appendix -1 Dig sheets	11

HI-TECH INSPECTION SERVICES L.L.C,

P.O.BOX 1809, RUWI, P.C. 112, SULTANATE OF OMAN Phone: (+968) 24449092 | 24446444 | 24449010 | 24446414 www.hitechoman.netEmail: <u>admin@hitechoman.net</u>

IPV Data:

Survey Date	Chainage (M)	Scan no.	Tgen (mm)	Tmin (mm)	Deg/Clock Position	Cir Width X-Axis (mm)	Length Y-Axis (mm)	Wall Loss cf Tgen	Surface Type	Dist. From U/S girth weld (m)
03-06-2021	11845.813		8.0	5.8	5:22 O'C	97	435	27.0%	INT	8.142

Aut Current Data:

Survey Date	Chainage (M)	Scan no.	Tgen (mm)	Tmin (mm)	Deg/Clock Position	Cir Width X-Axis (mm)	Length Y-Axis (mm)	Wall Loss cf Tgen	Surface Type	Dist. From U/S girth weld (m)	
	11845.813m		SCAN-1	7.6	7.2					INT	
03-11-2021		SCAN-2	7.6	4.8	162° 5:24'O'C	25	20	36.8%	INT	8.160	
			7.6	6.3	163° 5:27'O'C	25	15	17.1%	INT	8.376	
		SCAN-3	7.6	3.6	181º 6:01'O'C	30	20	52.6%	INT	8.720	

1 INTRODUCTION

Automated Ultrasonic Corrosion Mapping Inspection utilizing **INTRA-SPECT C-MAPPSULTRASONIC CORROSION MAPPING SYSTEM** was carried out at **one location on the 16"THUMID RMS4 TO GGP @11845.813m**.

2 AUT SURVEY LOCATION

		HR Scan		NR Scan		
Location	Chainage (m)	Extent of Survey (mm)	Scanned Area m ²	Extent of Survey (mm)	Scanned Area m ²	
16"THUMID RMS4 TO 11845.813m GGP		2X120X125 0.03 m ²		1 x 380mm x 1300mm 2 x 380mm x 650mm	0.494 m ² 0.494 m ²	
	Total	0.03 ו	m ²	0.988 m ²		

3 AUT INSPECTION DETAIL, EQUIPMENT & PERSONNEL

PIPE LINE	:	16"THUMID RMS4 TO GGP
TAG NO	:	OM.GGP.GGTI01
SURVEY TYPE	:	BASELINE
OPERATORS	:	ВҮЈИ К.К
SURVEY DATE	:	03-NOV-2021
PROCESSOR	:	C-MAPPS data acquisition and automated Motion control unit Serial No. 118
SCANNER	:	5080 Scanner, 20" scanner arm and probe Holder assembly
PROBES	:	Serial No.: 09.31624 4.0 mm focal depth, 10 MHz, 8.38x8.38mm
CALIBRATION STANDARDS	:	16" dia Step Block
AMDATA Calibration Due Date	:	June 06, 2022
PROCEDURE NO.	:	HIS/AUT/01 Rev 00
RESOLUTION	:	2X4 mm pixel size in Normal Resolution 1x1 mm pixel size in high resolution
SENSITIVITY	:	2mm dia. FBH at back- wall trigger level
ERROR PARAMETERS	:	Normal Resolution- +/- 0.2mm trough wall, Up to 2mm width and 4mm length. Up to 1mm Length and width in high resolution
ORIENTATION	:	Positioning referenced from the top of the pipe (12 O'C), scanning in clockwise direction, looking in the direction of flow

4 RESULTS:

Location:-1, 16"THUMID RMS4 TO GGP

Survey Date: 03-11-2021

Limitations:

- Surface Condition: The inspection was carried out on a primer coated surface.
- Step block was used for calibration.
- Weather: Fine.
- Temperature: 41° C

Corrections: No calibration correction required.

4.1 AUT inspection results were as below:

Location:-01, @11845.813m

IPV Data:

Survey Date	Chainage (M)	Scan no.	Tgen (mm)	Tmin (mm)	Deg/Clock Position	Cir Width X-Axis (mm)	Length Y-Axis (mm)	Wall Loss cf Tgen	Surface Type	Dist. From U/S girth weld (m)
03-06-2021	11845.813		8.0	5.8	5:22 O′C	97	435	27.0%	INT	8.142

Aut Current Data:

Survey Date	Chainage (M)	Scan no.	Tgen (mm)	Tmin (mm)	Deg/Clock Position	Cir Width X-Axis (mm)	Length Y-Axis (mm)	Wall Loss cf Tgen	Surface Type	Dist. From U/S girth weld (m)
		SCAN-1	7.6	7.2					INT	
03-11-2021	11845.813m	SCAN-2	7.6	4.8	162° 5:24'O'C	25	20	36.8%	INT	+8.160
			7.6	6.3	163° 5:27'O'C	25	15	17.1%	INT	+8.376
		SCAN-3	7.6	3.6	181º 6:01'O'C	30	20	52.6%	INT	+8.720

Observation,

Three contiguous normal resolution scans were performed at this IPV location. Scans-1 and Scan-3 were performed 380mm long from 3:00 O'C to 9:00 O'C.

Scan-2 was performed 380mm long with full Circumference.

Scan-1 was made 7.680 m downstream from upstream girth weld.

Scan-02, Defect-1: Discrete Corrosion pitting was observed; T min 4.8 mm noted at 5:24 O'C with 20 mm long x 25mm wide, approximately 8.160 meters Downstream from upstream girth weld.

Scan-02, **Defect-2**: Discrete Corrosion pitting was observed; T min 6.3 mm noted at 5:27 O'C with 15 mm long x 25mm wide, approximately 8.376 meters Downstream from upstream girth weld.

Scan-03, **Defect-3**: Isolated Corrosion pitting was observed; T min 3.6 mm noted at 6:01 O'C with 20 mm long x 30mm wide, approximately 8.720m Downstream from upstream girth weld.

.HR scan was performed over the t min area.

Scanning Ref: 12 O'C, top of the pipe, scanning was done clockwise looking in the direction of the flow.

Location map along with defect sketch and Photograph

Location: -01, 11845.813m

SPOOL-NO-10060

HITECH-SS-F-38-AUTC-00

Page 8 of 11

HIGH RESOLUTION SCAN-2 DEFFECT T-MIN-4.8 LENGTH-20 WIDTH-25 ORIENTATION 162° 5:24'O'C

HITECH-SS-F-38-AUTC-00

Page 9 of 11

HITECH-SS-F-38-AUTC-00

Page 10 of 11

Appendix 1

Dig sheet.

HITECH-SS-F-38-AUTC-00

			WE	LDING F	ROCE	DUR	E SPE	CIFICA	TION (WP	S)							
Refere	nce: SF	2 1177 & API	1104									Sheet : 1					
Clier : Petroleum Development of Oman						Contract No.: C311260											
Contractor : Al-Ghalbi International Engineering & Co						ontracting LLC Contract Title : Pipeline Maintenance Contract -North Oman											
WPS	No.	: ALG/WPS/0	Joint Design (showing joint fit-up dimensions, angle tolerances & pass														
Rev.N	lo.	: 1	Seque	Sequences													
Date		: 16/08/2015					JOINTL	DESIGN 32.5 - 35°									
PQR	No.	:ALG/PQR/00	2														
Date	10.	: A : 10/08/2015					0	· 1 6	RE	7	_	t					
Test	Code	: API 1104	3/2015				2°	-1.0 	X			l nn					
Servi	ce	: Sour						/-									
MDM.	r	: 5 ⁰ C			2	5 X 3 n	nm	Maxin	nis-match = 1	6mm 3	.0mm – 4.0mm Root Gap						
Proce	es) (es)	: SMAW			-	Flat Bar				-							
Туре	(s)	: Manual					1	TEST COUP	ON: ASTM A51	6 GRADE 70 (SOUR)						
Mater	ial Spec. :	ASTM A516	3 GRADE 70 (SOUR)		Grade	: 70	Dillinger Fra	nce	Group No. : Heat Treatme	nt Condition : N	ANCK					
Widx.	Qualif	ied Thickness R	ange Actual:		Quali	fied Di	ameter F	Range:		Qualified Posit	tions & Progres	sion:					
	8	.025 mm TO 16.	05 mm			6"	to 48"			5G /	All uphill						
Pass	Process	Consum	ables	AWS	Diameter mm	SFA	Group No.	Current	(Amps) range	(Volts) range	Travel Speed mm/sec range	(kJ / m					
No.		Manufacturer	Brand	Class				Polarity				range					
1	SMAW	ESAB	OK 55.00	E 7018-1	2.5	5.1	1	DC/RP	78.6-106.4	22.7-30.7	1.037 - 1.403	1.698 - 2.					
2	SIVIAW	EOAD	OK 55.00	E 7010-1	2.5	5.1			09.6 123.4	22.0-00.4	0.035 - 1.26	2 261 - 3					
3	SMAW	ESAB	OK 55.00	E 7018-1	3.25	5.1	1	DC/RP	101 1 126 9	22.4-30.3	1.027 - 1.20	2.201-3					
4	SMAW	ESAB	OK 55.00	E 7010-1	3.25	5.1	-		85 5.03 0	22.1-30.7	1.863 - 2.520	0.926 - 1					
5	SMAW	ESAB	OK 55.00	E 7018-1	2.5	5.1	1	DC/RP	74 8-101 2	22.0-30.7	1.663 - 2.320	0.920 - 1.					
7	SMAW	ESAB	OK 55.00	E 7018-1	2.5	5.1	1	DC/RP	73.1-98.9	22.6-30.6	2.028 - 2.742	0.803 - 1.					
Note	Remarks		10.1.00.00						Qualif	ied weld depos	sit thickness						
1. Thi	is WPS is a	pplicable for sleev	ve welding onl	y .				Process Max. mm				. mm					
2. we sat	isfactory for	r welding.	when weather	or degree or	protection	5 1101		SMAW 14.7				4.7					
3. En	sure proper	earth clamp to a	void any arc s	trikes.		la dau				Gas							
	en interupti ermal insula	ting blanket for sl	navoidable, tr ow cooling.	e weid shall i	be wrapped	in ary		Purpose	G	as	% Comp.	Flow ra					
4. wh the	n on / Run	Off plates to be w	elded at both	ends of long	seam.			Shielding	N	I/A	N/A	N/A					
4. wh the 5. Ru		at 150mm max. s	pacing. Minim	um length of	tacks is 25n	nm.		Trailing Backing	N	I/A	N/A	N/A					
4. wh the 5. Ru 6. Ta	ck welding a	7. only hermetically sealed E 7018-1 electrodes shall be used . Backing N/A N/A N/A N/A							of Vaccum P	ac Electrodes:	<u> N/A</u>						
4. wh the 5. Ru 6. Ta 7. onl 8. Pre	ck welding a y hermetica heating sh	ally sealed E 7018 all be done over a	a minimum dis	tance of 75m	m from sea	m weld		Handling	9. Electrode certificate shall be in accordance with ISO 10474, and test result shall be ASME Section II Part C. 1. Protect VacPac from damage at all times. 10. Comply with PR-1629(Rev.3) 3. Do not use a knife or any other sharp object to open the outer be packaging. 11. Weld metal deposite Ni content should not be exceed 1% for sour service. 3. Do not use a knife or any other sharp object to open the outer be packaging. 12. Low-hydrogen basic electrodes in Vacuum pac shall be used. 5. Cut open the protective foil at one end.								
4. wh the 5. Ru 6. Tau 7. onl 8. Pre 9. Ele and 10.Cc 11. W 12. Lu	ck welding by hermetics sheating sh actrode cert d test result omply with f /eld metal ow-hydroge	ally sealed E 7018 all be done over a ificate shall be in shall be ASME S PR-1629(Rev.3) deposite Ni conte in basic electrode	a minimum dis accordance w Section II Part	tance of 75m ith ISO 10474 C. be exceed 19 pac shall be	im from sea 4, % for sour se used.	m weld ervice.		Handling 1. Protec 2. Handle 3. Do not packagin 4. Before contains 5. Cut op 6. Do not	t VacPac from e the single inne use a knife or g. using VacPac a vacuum. If th en the protectin take out more	damage at all ti er, metal foil, Va any other sharp ™ electrodes C e vacuum has ve foil at one en than one electro	mes. acPac with specia b object to open t theck if the protect been lost, discard id. oode at a time. the	al care. he outer bo ctive foil still d the pack. ereby ensur					
4. wh the 5. Ru 6. Tau 7. onl 8. Pre 9. Ele and 10.Cc 11. W 12. Lu	ck welding ly hermetic: sheating sh actrode cert d test result omply with I /eld metal ow-hydroge	ally sealed E 7018 all be done over a ificate shall be in : shall be ASME S PR-1629(Rev.3) deposite Ni conte in basic electrode	a minimum dis accordance w iection II Part nt should not s in Vacuum	tance of 75m ith ISO 10474 C. be exceed 19 pac shall be	Im from sea 4, % for sour se used.	m weld		Handling 1. Protect 2. Handle 3. Do not packagin 4. Before contains 5. Cut op 6. Do not that the n the top b 7. Discan opened N	t VacPac from the single innu use a knife or g. using VacPac a vacuum. If th en the protectiin take out more emaining electr ack on the plas d electrodes th /ac- Pac™ for i	damage at all ti r, metal foil, Va any other sharp ™ electrodes C e vacuum has i ve foil at one en todes are still pr stic capsule. nat have been e more than 12 h	mes. acPac with specia o object to open t theck if the protect been lost, discard rod. rode at a time, the rotected inside th exposed to the atri- ours.	al care, he outer bc ctive foil still d the pack. ereby ensur e package, mosphere ir					
4. wh the 5. Ru 6. Tau 7. onl 8. Pre 9. Ele and 10.Cc 11. W 12. Lu For : Name	ck welding ly hermetic: eheating sh actrode cert d test result omply with I /eld metal ow-hydroge	ally sealed E 7018 all be done over a ificate shall be in shall be ASME S PR-1629(Rev.3) deposite Ni conte in basic electrode 31 International.	a minimum dis accordance w section II Part nt should not is in Vacuum	tance of 75m ith ISO 10474 C. be exceed 19 pac shall be	A, 4, % for sour se used.	m weld ervice. Nai	: Client	Handling 1. Protect 2. Handle 3. Do not packagin 4. Before contains 5. Cut op 6. Do not that the n the top b 7. Discan opened V	t VacPac from a the single innu use a knife or g. using VacPac a vacuum. If th en the protecting take out more emaining electing ack on the plas d electrodes th /ac- Pac™ for p	damage at all ti ar, metal foil, Va any other sharp r™ electrodes C e vacuum has I ve foil at one en than one electr todes are still pr stic capsule. that have been e more than 12 h	mes. acPac with specia o object to open t sheck if the protect been lost, discard d. rode at a time, the rotected inside th exposed to the at ours. velopment on construction	al care, he outer bc ctive foil still d the pack. ereby ensu e package. mosphere in an on					
4. wh the 5. Ru 6. Tau 7. onl 8. Pre 9. Ele anu 10.Cc 11. W 12. Lu For : Namu Signa	ck welding ly hermetica eheating sh actrode cert d test result omply with I /eld metal ow-hydroge	ally sealed E 7018 all be done over a ificate shall be in shall be ASME S PR-1629(Rev.3) deposite Ni conte in basic electrode 31 International.	a minimum dis accordance w section II Part nt should not s in Vacuum	tance of 75m tith ISO 10474 C. be exceed 19 pac shall be	A, 4, 6 for sour se used.	m weld ervice. Nai Sig	• : Client ne : nature :	Handling 1. Protec 2. Handle 3. Do not packagin 4. Before contains 5. Cut op 6. Do not that the n the top b 7. Discan opened V	t VacPac from the single innu use a knife or using VacPac a vacuum. If th en the protectin take out more emaining electr ack on the plas d electrodes th /ac- Pac™ for i	damage at all ti r, metal foil, Va any other sharp ™ electrodes C e vacuum has i ve foil at one en todes are still pr stic capsule. nat have been e more than 12 h	mes. acPac with specia o object to open t theck if the protect been lost, discard d. rode at a time, the rotected inside th exposed to the at ours. velopment con- construction	al care. he outer bc stive foil still d the pack. ereby ensui e package. mosphere in man					
4. wh the 5. Ru 6. Tai 7. onl 8. Pre 9. Ele and 10.Cc 11. W 12. Lu For : Name Signa Desig	ck welding ly hermetic: eheating sh actrode cert d test result omply with I /eld metal ow-hydroge AL-GHALE e :	ally sealed E 7018 all be done over a ificate shall be in shall be ASME S PR-1629(Rev.3) deposite Ni conte in basic electrode 31 International. S + o + A Staury GA / Q C	a minimum dis accordance w section II Part Int should not s in Vacuum	tance of 75m th ISO 1047. C. be exceed 19 pac shall be	An from sea 4, % for sour se used.	m weld ervice. Nai Sig De:	• : Client me : nature : signation	Handline 1. Protec 2. Handle 3. Do not packagin 4. Before contains 5. Cut op 6. Do not that the n the top b 7. Discar opened V	t VacPac from a the single innu use a knife or g. using VacPac a vacuum. If the en the protectin take out more emaining electurack on the play d electrodes th /ac- Pac™ for i	damage at all ti r, metal foil, Va any other sharp ™ electrodes C e vacuum has l ve foil at one en than one electr than one electr th	mes. acPac with specia o object to open t sheck if the protect been lost, discard d. rode at a time, the rotected inside th exposed to the at ours. velopment on construction	al care. the outer bo ctive foil still d the pack. ereby ensur e package. mosphere ir					

المحالية العامية العالية العندسية والمقاولات شمم م AL-CHALIS INTERNATIONAL ENGINEERING & CONTRACTING LLC PIPELINE MAINTENANCE CONTRACT - NORTH OMAN (C311260)

WELDING PROCEDURE SPECIFICATION (WPS)

Reference: SP 1177 8	& API 1104	Sheet: 2 of 2						
WPS No. : ALG/WPS/52	Rev.No.: 1	Date : 16/08/2015						
PR	EHEAT	Post Weld Heat Treatment						
Ambient Temp. : N/A								
Preheat Temperature: 100	9 ⁰ C (min.)	Heating Method : N/A						
Method of Heating : Propar	ne Torch (Rosebud type)	Heating Rate : N/A						
Temp.Monitoring Method : Thermo melt Crayons /Therm	nometer.	Soaking Temperature : N/A						
Method of Controlling : Ma	nual	Soaking Time : N/A						
Interpass Temperature : • Thermometer/ Thermo melt •	< 250 deg.C (monitored by Crayons)	Cooling Rate : N/A						
TEC	CHNIQUE		OTHERS					
Multiple pass or single pas	s per side: Multiple	Tack welding Paramet length of tack is 25 mm	ters : Tack welding at 150 mm max. spacing.Minimum					
Electrode : Single		Bridge / Bar Materials	: Same as base material / Fill pass core wire					
String/Weave Bead : String	Root, Weave Fill & Cap	Method of Tack Remo	val : Grinding & Feathering					
Max. Width of Weave : 2.5	times Electrode dia.	Method of Clamping :	N/A					
Orifice / Cup Size : N/A		Clamp Removal : N/A						
Mode of Metal Transfer : N	/A	Lowering Off : N/A						
Electrical stick out length :	N/A	Treatment to second side : N/A						
Wire feed speed : N/A		Method of Back Gouging : N/A						
Contact Tube to Work Dist	ance : N/A	Gas backing : N/A						
Tungsten Electrode Class	& Size : N/A	No. of passes before Interruption : Weld to Completion						
No. of welders : 2 Nos. (mi	<u>n.)</u>	Initial & Interpass clea	Initial & Interpass cleaning : Grinding / Brushing					
Time Lapse betwee route 8 10 minutes (Including MPT)	& Second Pass :	Type of Electrode Pac	kaging : hermetically sealed					
Time Lapse betwee other F 7 minutes.(Including MPT)	Pass :	Electrode Baking Time: 2 hrs if required on accumpacted go						
Plant of origin of filler meta	al : Esab .Hungary	Electrode Baking tem	perature : 300° - 350° C. (If needed)					
Shielding Flux : N/A		Electrode No. of back	ets : One (excluding initial baking)					
Note:								
For : AL-GHALBI Internatio	onal.	For : Client	شركة تنمية نغطمها:					
Name: Ashok	Ky ma quite initial initial	Name :	Petroleum Revelopment Uman					
Signature : 372000	(CALOC)	Signature :	Approved for Constitute					
Designation : OA/QC	WS AGESTOR	Designation :	1980					
Date : 17.0	8.2075 MTERNATIONAL ENGS.	Date :						
			Quality Management Services					

1

 $\langle \neg \rangle$