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Preface

The object of this book is to develop the theory of systems of stochastic
differential equations and then give applications in probability, partial
differential equations and stochastic control problems.

In Volume 1 we develop the basic theory of stochastic differential equa-
tions and give a few selected topics. Volume 2 will be devoted entirely to
applications.

Chapters 1-5 form the basic theory of stochastic differential equations.
The material can be found in one form or another also in other texts.
Chapter 6 gives connections between solutions of partial differential equa-
tions and stochastic differential equations. The material in partial differential
equations is essentially self-contained; for some of the proofs the reader is
referred to an appropriate text.

In Chapter 7 Girsanov’s formula is established. This formula is becoming
increasingly useful in the theory of stochastic control.

In Chapters 8 and 9 we study the behavior of sample paths of the solution
of a stochastic differential system, as time increases to infinity.

The book is written in a textlike style, namely, the material is essentially
self-contained and problems are given at the end of each chapter. The only
prerequisite is elementary probability; more specifically, the reader is as-
sumed to be familiar with concepts such as conditional expectation, inde-
pendence, and with elementary facts such as the Borel-Cantelli lemma. This
prerequisite material can be found in any probability text, such as Breiman
[1; Chapters 3,4].

I would like to thank my colleague, Mark Pinsky, for some helpful
conversations.






General Notation

All functions are real valued, unless otherwise explicity stated.

In Chapter n, Section m the formulas and theorems are indexed by (m.k)
and m.k respectively. When in Chapter [, we refer to such a formula (m.k)
(or Theorem m.k), we designate it by (n.m.k) (or Theorem n.m.k) if [#n,
and by (m.k) (or Theorem m.k) if I=n.

Similarly, when referring to Section m in the same chapter, we designate
the section by m; when referring to Section m of another chapter, say n, we
designate the section by n.m.

Finally, when we refer to conditions (A), (A)), (B) etc., these conditions are
usually stated earlier in the same chapter.






10.
11
12,
13.
14.
15.
16.
17.

Contents of Volume 2

Auxiliary Results in Partial Differential Equations
Nonattainability

Stability and Spiraling of Solutions

The Dirichlet Problem for Degenerate Elliptic Equations
Small Random Perturbations of Dynamical Systems
Fundamental Solutions for Degenerate Parabolic Equations
Stopping Time Problems and Stochastic Games

Stochastic Differential Games






Stochastic Processes

1. The Kolmogorov construction of a stochastic process

We write a.s. for almost surely, a.e. for almost everywhere, and a.a. for
almost all.
We shall use the following notation:

R" is the real euclidean n-dimensional space;

%, is the Borel o-field of R", i.e., the smallest o-field generated by the
open sets of R";

R® is the space consisting of all infinite sequences (x), x5, ..., x,, .. .)
of real numbers;

D, is the smallest o-field of subsets of R containing all k-dimensional
rectangles, i.e., all sets of the form

{(xp %, ... iy €1, ..., ;€L}, k>0,
where I, . . ., I, are intervals.
Clearly % is also the smallest o-field containing all sets
{(xp %95 ... ) (xpy...,5)EB}, BEB,.

An n-dimensional distribution function F,(x,, ..., x,) is a real-valued
function defined on R" and satisfying:

(i) for any intervals I, = [q;, i), 1 < k < n,
Ay - -+ A F,(x) >0 (1.1)

where
Af(x) = F(xn - s %1 B By« -5 %)

—f(xn X B By ys - )
(i) ifx® 1 xaskt oo (1< j<mn) then
F(x®, ..., 81 F(x,...,x) as k7% oo;
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(iif) if o | — oo for some f, then F(x;, ..., x,) | 0, and if x; T oo for
allj, 1 < j < n,then E,(x;,...,x,) 71 L.

Unless the contrary is explicitly stated, random variables are always
assumed to be real valued, i.e., they do not assume the values + o0 or — 0.

If X,..., X, are random variables, then X = (X,, ..., X,) is called an
n-dimensional random variable, or a random variable with values in R". The
function :

Fxy,...,x,) = PX, <x,...,X, <x,) (1.2)

is an n-dimensional distribution. Conversely, for any n-dimensional distribu-
tion F, there is a probability space and a random variable X with values in
R" such that its distribution function is F,, i.e., (1.2) holds; see, for instance,
Breiman [1].

A sequence {F (x,,...,x,)} of distribution functions is said to be
consistent if
Hm F (x,...,x)=F _y(xp...,%,_4), n>L (1.3)
x,To0

Let (2, &, P) be a probability space, and let {X,} be a sequence of
random variables. We call such a sequence a discrete time stochastic process,
or a countable stochastic process, or a stochastic sequence. The distribution
functions of (X, ..., X ), n > I, form a consistent sequence. The converse
is also true, namely:

Theorem 1.1. Let {F,} be a sequence of n-dimensional distribution func-
tions satisfying the consistency condition (1.3). Then there exists a probabil-
ity space (8, %, P) and a countable stochastic process {X,} such that

P(X; <=xp...,X,<x,)=F(x,...,x,), n>1

>n

In fact, one can take @ = R>=, § = B

[s}4

P{{xp 2 %y <ypo %, < 4} = Flyn ...,y
and more generally
P{(x, % ... )8, < ;< by,...,a, <x, <b}
is given by the left-hand side of (1.1), and
Xn((xl’ Xgs - . o )) = Xy
The consistency condition guarantees that P is well defined on all rectangles.
The main nontrivial point here is the fact that P can be extended into a

probability in (2, %), and this follows from the Kolmogorov extension
theorem:
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If P is defined on all finite-dimensional rectangles, and:

i P>0,PR*)=1
(i) if S;,...,S, are disjoint n-rectangles and S = S;U--- US,
then P(S) = Z7. \P(S));
(iii) if {S;) is a nondecreasing sequence of n-dimensional rectangles and
S; 1S asj1 oo, then lim; , P(S) = P(S);

then there is a unique extension of P into a probability on (R®, % ).

For proof, see Breiman [1].

A stochastic process is a family of random variables { X(#)} defined on a
probability space (2, &, P), where t varies in a real interval I (I is open,
closed, or half-closed). We denote it also by {X(¢), t€1}, {X(t)} (t€I) or
X(t), teL _

A stochastic process defines a set of distribution functions

'Ftl---g,(xla %) = PIX(H) < x,. X(t,) < x,] (14)

where t; < + -+ < ¢, tELn =1, 2, ... ; they are called the finite-dimen-
sional joint distribution functions of the process.
A set of distribution functions

| {F . .o (an.. %)) (1.5)
defined forall ¢, < - - - < ¢, telLl<j<nn=12..., is said to be
consistent if

WmF, .. (%, .., %) =F o o (®n s G B e e )

IkT oo

The set given by (1.4) is consistent. We shall now prove the converse.

Theorem 1.2. Given a consistent set of distribution functions as in (1.5),
there exists a stochastic process { X(t), t €1} defined on a probability space
(R, F, P) such that the given distribution functions are the joint distribution
functions of the process, i.e., such that (1.4) holds.

Proof. Denote by R’ the set of all real valued functions x(-) on I. A set of
the form

B = (x(); (1) alt,), ...)€D), De%, (16)
is called a cylinder set with countable base {¢}. Denote by %, the class of
all cylinder sets with countable base. This class is clearly a o-field, and it
coincides with the o-field generated by all the finite-dimensional rectangles
in R',

{X('); x(tl)e Il' R x(tn)EIn}’

where I, . . ., I are intervals,
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We take @ = R!, & = %B,.Given a sequence T = {t;} in I, denote by
B, the class of all sets
{x(-); (x(t)), x(ty), ... )ED}, DEB,.
By Theorem 1.1 and the remark following it, there exists a unique probabil-
ity measure P on (2, %) such that

Pr{x(-); x(t;) < xp ..., x(8) < x,} = (xp.ox), n> L

(1.7)

Set P(B) = Pp(B) if BE %B,. For this definition to make sense we must
show that if B € %, where T" = {#} then

P,{(B) = P.(B). (1.8)
Setting S = TUT we have TCS, ®B,C %Bg. Since Pr= P on all
finite-dimensional rectangles with base in T, P, = P on any set of % ;. Thus
P.(B) = Py(B). Similarly, P,.(B) = P¢(B), and (1 8) follows.
Having defined the probablhty space (2, ¥, P), we now take

X(t, x(-)) = ()

(1.4) then immediately follows.
We refer to the stochastic process constructed in this proof as the process
obtained by the Kolmogorov construction.

.....

Definition. A v-dimensional countable stochastic process (or a v-dimen-
sional stochastic sequence) is a sequence {X,} of r-dimensional random
variables. A family { X(¢), t €I} of v-dimensional random variables is called a
v-dimensional stochastic process.

A v-dimensional stochastic sequence {X,} gives rise to functions
F,(%,...,%)=PX;<%,...,X, <X (1.9)

where % € R” and a < b means that ¢ < b; for 1 < j < », where a =
(@, ...,4a,), b=(b,...,Db,). Setting

Gl Dr+k(Xp - o s Xpopprr) = Fu (X, -0, X, XF) (1< k<)
(1.10)
where
X = (Dot 1s Xa=1)p 42>+ + + 5 Kyp) if 1<i<n-—-1,
Xt = (Ko ytr o+ s X(neDptks Dy o v o 00},
it is clear that the sequence {G(x,, ..., x,)} is a consistent sequence of

distribution functions.
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Definition. A function F,(X,, ..., X,) defined for all X, € R” is called an
n-dimensional distribution function with respect to R” if:

(i) condition (1.1) holds with q,, b; replaced by @, = (a, . . ., 4,),
by = (b, . . . » by,), where @ < by, and x; replaced by %, in the definition of

ALf;
i) F (R, L (R, ..., %) X0 R for 1 < k< n (e,
each component of X% increases to the corresponding component of %,);
(iif) if some kth component of some ¥ decreases to — oo, then

F,(%,...,%,) | 0; and if all components of all the X, increase to oo, then
Fn(fls R in) T L
Set :
F(X,...,%_, %) = Jim F,(%,...,%,_y, &) (1.11)
— 0

where the first k components of %*, X% agree, whereas the last » — k
components of ¥* and %X are equal, respectively, to oo and k. Then,
obviously; the set of distribution functions G,_y), 41, - - -, G, defined by
(1.10) is consistent.

A sequence of distributions {F,} with respect to R” is said to be
consistent if

lim F,(%,,...,%,) =F,_{(%,...,%,_}),
x,too
where X, 1 0 means that each component of X, increases to oo. This is
clearly the case if and only if the corresponding sequence of distributions
G,(xy, . . ., x;), defined by (1.10), (1.11), is consistent.

If we apply Theorem 1.1 to the latter sequence, we conclude that for any
consistent sequence of distribution functions, with respect to R?, there exists
a countable r-dimensional stochastic process { X,} whose distribution func-
tions are the F,, ie., (1.9) holds. The probability space (2, %, P) can be
taken such that & = R” * = the space of all infinite sequences (%, %, . . . ),
Z,€R% and ¥ = B,  the smallest o-field containing all finite-dimensional
rectangles

{((Zp %y ... i ¥ €D, R €D, ... )

where ff is an interval in R".

A set of distribution functions (F, ..., (%,...,%,)} where ¢; <
<t ,t,€,n=12,..., issaid to be consistent if
}1&1«* wF W EB)=F (B B By )

Theorem 1.3. Given a consistent set of distribution functions with respect
to R®\,{(F, ..., (X, ..., %,); t; <+ -< ¢, t, € I}, there exists
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probability space (R, ¥, P) and a v-dimensional stochastic process X (t)
(t € I) defined on it such that

PIX(t) <%,...,X(t,) <%]=F, ... (% ....%) (112

The functions F, ..., are called the finite-dimensional joint distribution
functions (with respect to R”) of the process X(¢).

The proof is similar to the proof of Theorem 1.2; it is based on the
extension of Theorem 1.1 to distribution functions with respect to R,
mentioned above. Here © is the space R™’ of all functions x(-) from I into
R”and § = %, ; consists of all sets (1.6) with D € B, . The construction
of the process X(t) in this proof is called the Kolmogorov construction.

2. Separable and continuous processes

Definition. A r-dimensional stochastic process { X(¢), t €1} is called separ-
able if there exists a countable sequence T = {¢,} that is a dense subset of I
and a subset N of @ with P(N) = 0 such that, it &N,

{X(t,w)€Fforallt€]} = {X(t, w) EF for all tjE]}

for any open subset ] of I and for any closed subset F of R". T is called a set
of separability, or briefly, a separant.

Two r-dimensional stochastic processes { X(¢)} and {X'(¢)} (tE€I) defined
on the same probability space are said to be stochastically equivalent if

PX(t) # X'(f)] =0  forall t€L
We then say that {X'(t)} is a version of {X(t)}.

Theorem 2.1. Any »-dimensional process is stochastically equivalent to a
separable stochastic process.

The random variables of the separable process may actually take the
values * o0, even though the random variables of the original process are
real valued.

For proof the reader is referred to Doob [1]. Theorem 2.1 will not be used
in the text of this book.

From Theorem 2.1 it follows that when one constructs a stochastic
process from a given set of distribution functions (as in the Kolmogorov
construction), one may always take this process to be separable.

Let X (t) be a v-dimensional stochastic process for ¢ € I. Thus, for each ¢,
X(t) is a random variable X(¢, w). The functions t—X(t, w) (w fixed) are
called the sample paths of the process. If for a.a. w the sample paths are
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continuous functions for all £€ I, then we say that the stochastic process is
continuous. If for a.a. w the sample paths are right (left) continuous, then we
say that the stochastic process is right (left) continuous.

It is easy to see that a right (or left) continuous stochastic process is
separable and any dense sequence in I is a set of separability.

A stochastic process { X(t), t€ 1} is said to be continuous in probability if
for any s€I and € > 0,

PX(t) — X(s)| > €]>0 if t€l, t—s.

The following theorem is due to Kolmogorov.

Theorem 2.2, Let X(t) (t€I) be a v-dimensional stochastic process such
that

E|X(t) — X(s)|? < C|t — s|**= (2.1)

for some positive constants C, a, 3. Then there is a version of X(t) that is a
continuous process.

Proof. Take for simplicity I = [0,1]. Let 0 < y < a/B and let 6 be a
positive number such that

(1-8){a+1—By)>1+34. (2.2)
Then, by (2.1),
P{IX(j27") — X(i27")| >[(j — 927"]
forsome 0 < i < j < 2% j — i < 2%}
< T -2 PEIX(j2T) - X(igm)|8
0<ig j<2"
j—i<ar?

<C X - i)2‘"]1+“_ﬁ"< C,2rli+8-(1-8)(1+apy)
0<i<j<2n
j—i<2m

= G2

where g > 0 by (2.2), and C;, C, are positive constants. Since 227 ™ < o0,
the Borel-Cantelli lemma implies that for a.a. w

|X(j2=") — x(i27")| < h((j —i)27") if 0<i< <2
i—i<2® n>mw
(2.3)

Y

where h(t) = t¥ and m(w) is some sufficiently large positive integer.
Let ¢,, ¢, be any rational numbers in the interval (0, 1) such that ¢, < t,,
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t=1t, — t; < 27 ™18 where m = m(w) is as in (2.3). Choose n » m such
that
2—(n+1)(1—8) £t< 2—n(1—5)‘

We can expand t,, t, in the form

t,=1i27" —27P — ... = QTR
t,=72""+2 4 ... 427
where n < p, < -- <p, n< g <---<gq. Then t, < i27" <
27" <ty and j — i < 12" < 2%,
By (2.3),
|X(i2™" = 2°P — . .. = 27P) = X(i2Th = 27P — ... — 2R
< h(27#),
Hence

|X(¢t,) — X(i27")| < i h(27P) < C;h(27™)  (C, constant).

Similarly,
|X(ty) — X(277)] < C5h(277).
Finally, by (2.3),
X(j27) - X(i2=")| < h{(j - #2°7) < h(s).
Hence
|X(t,) — X(t;)] € Ch(t,—t,)  (C constant). (2.4)

Let T = {t} be the sequence of all rational numbers in the interval (0, 1).
From (2.4) it follows that

1X(t) — X(e)l < Ch{ — 1)  if 0< -1 <2779 m=m(w)
(2.5)

Thus X(t, w), when restricted to t € T is uniformly continuous. Let ){ (t, w)
be its unique continuous extension to 0 < ¢ < 1. Then the process X(t) is
continuous. We shall complete the proof of Theorem 2.2 by showing that
X(t) is a version of X(t). .

Let t*€[0, 1] and let t, €T, t,—t* if j'>c0. Since X(?) is a continuous
process,

f(tj,, WX (%, @) as. as j—o0.
From (2.1) it also follows that
X(t;, w)>X(t*, @) inprobability,  as j—>o0.
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Since f(tf,, w) = X(t;, ») as., we get X(t*, w) = X(t*, w) as.
From (2.5) we see that
|X(t) ~ X(s)| < Ch(t — s) = C(t — s)

if t—s<2 ™19 m=m(w). Thus:

¥

Corollary 2.3. Let X(t) (t€1) be a v-dimensional process satisfying (2.1).
Then for any bounded subinterval ] C I and for any € >0, a.a. sample paths
of the continuous version of X(t) satisfy a Holder condition with exponent

(a/B)—€on].

3. Martingales and stopping times

Definition. A stochastic sequence {X,,} is called a martingale if E|X, | < o0
for all n, and

E(X, X, ... X)=X, as. (n=1,2...)
It is a submartingale if E|X,,| < co for all n, and

E(X Xp,....X)> X, as. (n=12...)

Theorem 3.1. If {X,} is a submartingale, then

1oy
P(linkafnxk > A) < ~ EXa forany A>0, n>1  (3.1)

This inequality is called the martingale inequality.

Proof. Let
A= X<NN(G >N (1<k<n),
i<k
A= (lglﬂcnxk > A).
Then A is a disjoint union L)} _ A,. Therefore
n n
AP(A) = kE M(Ak) <k2 E(XkXAk) (3.2)
-] -]

where xjg is the indicator function of a set B. Since A, belongs to the o¢-field
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EX,' > 3 E(X,"xy) = 2 EE(X, x| Xy, ..., X)

= kz Ex, E(X Xy, ..., X
=]
n

> i Ex,E(X Xy .. .. X)) > 2 E(xa %)

k=1 k=1
Comparing this with (3.2), the assertion (3.1) follows.

Corollary 3.2. If {X,} is a martingale and E|X,|* < o for some a > 1
and all n > 1, then

1 o
P(lin’?i:ank|>?\)<-X;E|Xn| forany A >0, n > 1

This follows from Theorem 3.1 and the fact that {{X,|*} is a submartin-
gale (see Problem 8).

Definition. A stochastic process {X(t), t€I} is called a martingale if
E|X(t)] < o for all t€1, and

E{X(t)]X(1),1<s,7€I}=X(s) forall t€I, s€ s<t
It is called a submartingale if E|X (t)| < oo and
E{X(t)|X(r),7r<s,tE€EI} > X(s) forall tel, s€], s<t

Corollary 3.3. (i) If {X(¢)} (t€ 1) is a separable submartingale, then
P{ max X(s)>A)} < LEX*(t)  forall A>0, teL

S tSE A
(i) If {X(t)} (t€1) is a separable martingale and if E|X(t)|* < oo for
some a > 1 and all t€1, then

P max X(s)>A} < 55 EIX(OF  forall X>0, tel
This follows by applying Theorem 3.1 and Corollary 3.2 with X, = X(s;) if
1< j<n—-1X=X(#)ifj > n, wheres; < - - - <s,_; < t, taking the
set {83, ...,9,_;} to increase to the set of all #, with ¢, < t, where {¢,} is a
set of separability (cf. Problem 1(b)).
We denote by ¥ (X(\), A€EI) the o-field generated by the random
variables X(A), A€ L.
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Definition. Let X(t), « < ¢ < B, be a v-dimensional stochastic process. (If
B = o0, we take a < t < 00.) A (finite-valued) random variable 7 is called a
stopping time with respect to the process X(f) if a < 7 < f and if, for any
a <t< B, {r <t} belongs to F(XA), a <A< t) If B =00 and 7 may
also assume the value + o0, then we call 7 an extended stopping time.

Notice that the sets {7 > t}, {s < 7 < t} (where s < ) also belong to
F(XA),a <A< B

Lemma 3.4. If 7 is a stopping time with respect to a v-dimensional process
X(t), t > 0, then there exists a sequence of stopping times 7, such that

(i) 7, has a discrete range,
(ii) 7, > 7 everywhere,
(iii) 7, | T everywhere as n T 0.

Proof. Define 7, = 0if 7 = 0 and
S B PP B S S )
n n n

Then clearly (i)—(iii) hold. Finally, 7, is a stopping time since

(n<y= U [n=1%1]

(i+1)/n<t n

= U ﬁ<fr<':1}e@()((2\),h<t).
(i+1)/n<t
If X(t) is right continuous, then
X(tAT)=>X(tAT) as as n — 0.

Since X (t A 7,) is obviously a random variable, the same is true of X (t A 7).
We shall prove:

Theorem 3.5. If 7 is a stopping time with respect to a right continuous
martingale X (t), t > 0, then the process Y{t) = X(t A7), t > 0, is also a
right continuous martingale.

Before giving the proof, we need some preliminaries.

Definition. A sequence of random variables X is said to be uniformly
integrable if E|X,| < o for any n > 1, and

lim |X.| dP—=0  as A—co. (3.3)
R IX>A
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Lemma 3.6. If {X ) is uniformly integrable, then Gim E|X | < co. If
further X_—X a.s. or in probability, then E|X ~ X, |—0 and EX,—EX.

Proof. For any A > 0,
E|X,| <A +f 1X,| dP.
| Xal>A

From this and (3.3) it follows that E|X,| < C, where C is a constant
independent of n. To prove the last assertion, notice, by Fatou’s lemma, that
if X, > X a.s., then

f|X|dP<hmf|x,,de<oo.

Next, by Egoroff's theorem, X,—X almost uniformly, i.e., for any € > 0
there is an event A with P(A) < € such that X, — X uniformly on €\A.
Hence

im [ 1X, - X| dP=n1LngoL]Xn - X| dP < Tm L x| dP +fA|x| dP.

n—o0

Now, by (3.3),
[ Ixldp <[ |x,dp +f 1X,| P < (M) + A,
A 1 Xl >A (X <NNA

where 1(A)—0 if A—>oo, and n(A) does not depend on n. By Fatou’s lemma,
the same inequality holds for X. Taking € | 0, we get

Tm f|x,, — X|dP < 27(A)=0  if A—oo.
If X,— X in probability, then any subsequence X,. of X, has a subsub-

sequence X,. which converges as. to X. By what we have proved,
E|X,. — X|—0 if n”—>co. But this implies that E|X, — X|—0 as n—c0.

Proof of Theorem 3.5. Let0 < t; < ¢, < -+ <t _ <t =s<t,
m
A= ()[X(t AT)EB], B BorelsetsinR’, (34)
jm]

and let 7, be the stopping times constructed in the proof of Lemma 3.4.
Assume first that there is an integer j such that s = (j + 1)/n. On the set
< (j+1)/n,1, <(j+ 1)/n so that

X{(snT)=X(1,) =X(t AT,)
Consequently

X(s A 1,) dP= [ X(t A7) dP. (35)

Ln[m(u 1)/n) An[r<(} + 1)/n]
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Next,
M
X(tA1)dP= 3 X(l+1)dP
An[r>(j+1)/n] I=j+17AN[l/n<r<{+1)/n] n
+ X (t) dp (3.6)
AN[r>(M + 1)/n]
where (M + 1)/n <t < (M + 2)/n.
Notice that
Aﬂ[T>M:1]-—“ M (X(t) € B) m[f>M:1 ]
=]

Since each set on the right belongs to F(X(A), A < (M + 1)/n), we can use
the martingale property of X (¢) to deduce that

X( M+1
An[r>(M + 1)/n] n

f X () dP= ) ap
AN{r> (M + 1) /0]
Hence, from (3.6),

M~1

/ X(t AT,) dP= [ x( L
An[r>(f + 1)/n] I=i+1 YAn[l/n<r<(l+ 1)/n] n
X( M+1
An[t>M/n] n
Proceeding in this manner step by step, we arrive at

)dP

+

) dP.

i+ 2
X (t ) dP= [ / )dP

|
Lﬂ[‘r>ii+1)/ﬂ] An[r>(j+1)/n] n

= X (s) dP= X(s A T,) dP,
An[r>(i +1)/n] An[r>{j+ 1)/n]

since s = (j + 1)/n,

Aﬂ["r >"%1]=[ ﬁ (X(t) € B))

>
nit>
jm]

n

isin $(X(A), A < (j +1)/n), and s A 7, = s on this set.
Recalling (3.5) we conclude that

[ X(s A1) dP= [ X(t A1,) dP. (3.7)
A A

So far we have assumed that the number s is in the range of 7,. If this is
not the case, ie., if j/n < s < (j + 1)/n for some j, then we modify the
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definition of 7_, by taking
$ f L<rg s,
n
nT ] i+l i+ 1
72 s< 71X 1=
n
The assertion (3.7) then follows as before, and the 7, satisfy the properties
asserted in Lemma 3.4.
We shall now complete the proof of the theorem in case 7 is bounded, i.e.,
7 € N < oo (N constant).
The range (s} of 7, lies in [0, N + 1).
Notice now that | X(¢)| is a submartingale. If we apply the proof of (3.7) to
|X(t)], instead of X(t), we obtain

fA|X(sM,,)| dP<fA|X(tm,,)| dp

whenever ¢ > s. Taking, in particular,
=1, A={X(sAT)>A}, t=N+1,

we get
X{(s A 1,)| dP< 7,)| dP.
j;X(SATn)|>A | (s )I fX(s/\'r,, [>A X ( )I
But since |X ()| is a submartingale,
f X (1) dP<f |X (N + 1)| dP.
1X (sATy)| > A IX (sAT)]>A

Tn ™ Sin Tn™ Sin
Summing over i,

X(s A )| dP< f IX(N+1)|dP. (3.8)

| X (sATa)| > A

f|x (sAma)l>A
Now, since X {(t) is right continuous and r is bounded, the random variable
sup sup|X (s A 1,)]
n s»0

is bounded in probability. This implies that the right-hand side of (3.8)
converges to 0 if A — co, uniformly with respect to n. Thus the sequence
{X(s A 1,)} is uniformly integrable. Similarly, one shows that the sequence
{X(t A 7,)} is uniformly integrable. By Lemma 3.6 it follows that
E|X(t A7) < o0.

If we now take n 1 o in (3.7) and apply Lemma 3.6, we get

[ X(s A7) dP= [ X(t ) dP. (3.9)
A A
Since this is true for any set A of the form (3.4), { X (t A 7)} is a martingale.
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We have thus completed the proof in case 7 is bounded. If = is un-
bounded, then r A N is a bounded stopping time. Hence E|X(t A 7)| < oo if
N > t. Further, (3.9) holds with r replaced by 7 A N, and taking N > ¢ the
relation (3.9) follows. This completes the proof.

Remark. Let {X(t),0 < t < T} be a right continuous process and let %,
(0 K t £ T) be an increasing family of o-fields such that F (X (A),
0 < A < t)is a subset of &,. If E|X(t)] < o0 and

E(X(t)|%,)=X(s) forall 0<s<t<T,

then we say that X (t) is a martingale with respect to ¥, (0 < t < T). This
clearly implies that {X(#),0 < t < T} is a martingale. The proof of
Theorem 3.5 shows that if X (t) is a martingale with respect to 9,
(0 < t < T), then the process X (¢ A 7) is also a martingale with respect to
%,; here 7 is any random variable such that 7 > 0 and {7 < t} € ¥, for all
0<t< T

PROBLEMS

1. Let X(t), t > 0 be a stochastic process and let {t;} be a set of
separability. Prove that for a.a. w:

(a) lim inf ~ X(t, w) < X(t, w) < lim sup  X(t, w)

B0 |4—t|<1/n 2O gt <1/n
(t > 0).
(b) sup X(t,w)= sup X(t, w), inf X(t,w)= inf X(f, ©).
a<t<bh a<f<b alt<h a<t;<b

(Notice that, as a consequence, sup,_, ., X(t) and inf, ,_, X(t) are finite- or
infinite-valued random variables.)
(€) sup,c,cp|X(t)], lim sup, , X(t), and lim inf, | X(t) are finite- or in-
finite-valued random variables.
(d) For any positive numbers ¢, 6,
sup  |X(#, w) — X(¢, w)| < ¢
4 — 1< 8
if and only if
sup | X(t, w) — X(s, w)| < €.
jt—s|< 8
2. Let X(t), X'(t) (t > 0) be v-dimensional stochastic processes in
(§2, %, P) and (', %', P’) respectively, having the same finite-dimensional
distribution functions. Then for any sequence {t,}, ¢, > 0, and for any set
De%

v, 00

P{(X(t)), X(tg), ... ) €D} = P'{(X'(t;), X'(t5), . .. )ED}.
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3. Suppose two v-dimensional stochastic processes X(t) and X'(¢) (t > 0)
defined in probability spaces (2, ¥, P) and (', ¥, P’), respectively, are
separable and have the same finite-dimensional distribution functions. If X(t)
is continuous, then X'(t) is continuous.

[Hint: Let v = 1. It suffices to prove continuity for 0 < ¢t < t*, t* < .
Let T = {t;} be a set of separability for both processes for 0 < ¢t < t*. The
continuity of X(¢) implies that

P[ N U sup | X(t) — X(g)] < 1 ] =1.

n=1 m=1 B4 <l/m n

By Problem 2, with
1
p=N U N D Dh={@mm )k-s<s}

m |y 4l<l/m

P'[ N U sup  [X'(8) — X'(¢)] < 1 } = 1.
n=1 m=1 |6~ §l<1/m n

Now use Problem 1(d).]

4. Let X(t) and X'(t) (t > 0) be r-dimensional separable stochastic pro-
cesses defined in probability spaces ({2, %, P) and (', %', P’) respectively,
and having the same finite-dimensional distribution functions. Then:

(a) P{|X(t)|>c0 as tsw} = P'{|X'(t)]>x as t—x};
(b) P{|X(t)]/t*—>M as t—>c0} = P'{|X'(1)|/t*>M as t—>o0},

forany a > 0, M > 0.

[Hint: {|X(t)]>c0 as t—oo} = {1 U minftf>m|X(t,-)| > n}l
5. If two stochastic processes are stochastically equivalent, then they have
the same finite-dimensional distribution functions.
6. Let X,, n » 1 be independent random variables with E|X,| < oo,
EX, = 0. Then the sequence of partial sums X; + - - + + X, is a martingale.
7. Let X be a random variable in (R, ¥, P) with E|X| < o0, and let ¢(x)
be a convex function defined on the real line such that E|¢(X)| < co. Prove:

(a) ¢(EX) < E¢(X) (Jensen’s inequality);
(b) S(E(X|F,) < E(¢(X)|F,) ae., where %, is any o-subfield of F .

8. If {X_ ) is a martingale and ¢(x) is a convex function on the real line,
and if E|¢(X,)| < oo for all n, then {¢(X,)} is a submartingale.

9. If.{X,} is a submartingale and ¢(x) is a convex function and monotone
nondecreasing on the range of the X, and if E|¢(X,)| < oo for all n, then
{¢(X,)} is a submartingale.

10. If 7 is a bounded stopping time with respect to right continuous
martingale X(¢), then EX(r) = EX(0).



PROBLEMS 17

11. Prove that a continuous process is continuous in probability. Give an
example showing that the converse is not true in general.

12. Let X(t), X (t) (t € I) be two stochastically equivalent and separable
processes. Show that if one of them is continuous, then the other is also
continuous, and

P{X(t) = X(t) forall t€I} = 1.
13. A stochastic process {X(t), t€I} is said to be measurable if the

function (t, w)— X (t, ©) (from the product measure space into R') is measur-
able. Show that a continuous stochastic process is measurable.



2

Markov Processes

1. Construction of Markov processes

If x(t) is a stochastic process, we denote by % (x(A), A\€J) the smallest
o-field generated by the random variables x(¢), € J.

Definition. Let p(s, x, t, A) be a nonnegative function defined for
0<s<t<o,xER”, AEB, and satisfying:

(i) p(s, x, t, A) is Borel measurable in x, for fixed s, ¢, A;
(ii) p(s, x, t, A) is a probability measure in A, for fixed s, «, t;
(iii) p satisfies the Chapman-Kolmogorov equation

p(s, x, t, A) =f p(s, x, A, dy)p(\, y, t, A) forany s <A<t
RD
(1.1)
Then we call p a Markov transition function, a transition probability func-

tion, or a transition probability.

Theorem 1.1. Let p be a transition probability function. Then, for any
s > 0 and for any probability distribution = (dx) on (R”, B,), there exists a
v-dimensional stochastic process {x(t), s € t < oo} such that:

Plx(s)eA]l = #(A), (1.2)
P{x()€A|F(x(A), s <A< §)} =p(5x(5),t, A) as. (s<5<t).
(1.3)

Proof. Let M[[0, c0); R”] be the space of all functions « from [0, ®0) into
R”. Let % be the smallest o-field with respect to which all functions w(u)
are measurable, s < u < ¢, i.e,, ¥} is the o-field generated by all the sets
{w; @(u)EA) wheres < u < t,AESB,.

18
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Let ¥, be the smallest o-field with respect to which all functions w(u)
are measurable, s < u < c0. We take & = M[[0, o0); R*), ¥ = %,

We next define a family of finite-dimensional distribution functions with
respect to R if s = t, < t; < - -+ <t and X, €ER” (0 < i < n), then

x X %o
Ftotl---t,,(:-x-:O’ i1’ st ?fn) =f#°° e f—'w f—oo p(tn—l’ yn—l’ tm dyn)

s plty, Y by, dyp)p(te, Yo, ty, dyy)m(dy,).  (1.4)

It is easy to verify that the F, are in fact n-dimensional distribution

functions with respect to R’. Using the Chapman—Kolmogorov equation it
follows that

Fto"-t,‘(EO’ ey in)_)Fto-'-tk_lt)‘.,.l"'t,‘(fO’ Tt Ek—l’ ik*l-l’ c ot En)

thus the family of distribution functions in (1.4) is consistent.

By the Kolmogorov construction, there exists a probability P, in (2, %5,)
and a »-dimensional stochastic process x(t), s < t < o0, such that the
finite-dimensional distribution functions of this process coincide with the
given distributions functions F, .., .

Notice that x(¢, w) = w(1).

Now, if s = tg < t; < -+ + < ¢,

Ps{x(tO)EBl’ LR | x(tn)EBn}
=[ o [ Pltacs et dy) - - - e, ooty dy)m(dye)
B, B, ’B,

(1.5)

provided each B, is a r-dimensional interval (— oo, X,). It is easily seen that
both sides of (1.5) coincide also when the B, are any v-dimensional intervals
(,, %), or disjoint unions of such intervals. Since two probabilities that agree
on a field @ agree also on the o-field generated by @, it follows that (1.5)
holds for all B, in %,.

Taking n = 0 in (1.5) we get the assertion (1.2). Thus it remains to prove
(1.3). Since the random variable on the right-hand side of (1.3) is measurable
with respect to % (x(A), s < A € §), it remains to prove that

. f Xis()ea] AP, =f p(5, x(3),t, A)dP, if DeF(x(A),s <A<3).

D D '

(1.6)
If we prove (1.8) for any set D of the form _
D = {x(t,)EB,y, x(t,)EB,, . .., x(t,) EB,} (L.7)
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where s = t, < t; < - - - < t, = §, then, by the countable additivity of
both sides of (1.6), the assertion (1.6) will follow for any D €&
F(x(A), s < A < 3).

Set t,., = t, B,,; = A. When D is given by (1.7), the left-hand side of
(1.6) becomes

Ps[D n(x(t)EA)] = PS{x(tO)EBO’ sy x(tn)EBrn x(tn+l)EBn+1}
.=f f LRI f f p(tn’ yrw tn+]7 dyn+1)p(tn_1, yn-—ls tn’ dyn)
+1 Y8, B, YBg

- pltgs Yoo s dy;)n(dy,)
21. c f f P(tn, Y, tn+1a A)p(tn—-l’ Yo—1 tn’ dyn)
B, B, ’B,

Tt P(to’ Yo 11 dyl)w(dyo).
Therefore it suffices to show that

fB,, o 'I.B fBo f( yn)p(tn—l’ Yn-1> tn’ dyn) cre p(tO’ Yo, tl’ dyl)w(dy())

- fldg))ap, (18)
x(t,) €B, *(t0) € Bo

where f is a Borel measurable function. It clearly suffices to prove (1.8) when
f is any indicator function xg. Setting B, = B, N F, (1.8) becomes

fB,; fB.,_l o j;;l fBo Pltats Yoo twr d9a) + - Pt Yoo ti. dy1)7(dyo)

gfx(r..)es; j;(a._l)esn-l N 'fx(:o)eaodp"' (19)

Since the right-hand side is equal to
P{x(t,)EBy, ..., x(t,_,)EB,_,, x(t,)EB.},

(1.9) is a consequence of (1.5). This completes the proof of (1.3).
For any x € R" let 7, be defined by

= 11 it x€ A,

m(4) {0 if »& A.

Denote by P, , the probability P, constructed on the measure space (2, F3,)
when 7 = =, and denote the expectation by E_ . Set § = %2, Then we
have the following situation;

(a) (Q, F) is a measure space, % are o-subfields such that & C &} if
s’ < s, t < t,and F is the smallest o-field containing all the ;.

(b) There is a function x(t, w) from [0, oc) X & into R” such that x(¢, )
is 9% measurable for each t > s.

(c) For each xER", s > O there is a probability P, , defined on (£, )
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such that
P, {x(s,w) =2} =1, (1.10)
P (x(t+ h, 0)EA|F)} = p(t, x(t, @), t + h, A) as. (t > s,h > 0).
(1.11)

Definition. A collection {§, &, %}, x(¢), P, ,} satisfying (a), (b), (c), where
p is a transition probability function, is called a (»-dimensional) Markov
process corresponding to p.

The property (1.11) is called the Markov property.

Notice that in the model constructed in Theorem 1.1 %3 is the smallest
o-field generated by x(u), s < u < t. Notice also that x(t, w) = w(t).

The model constructed in Theorem 1.1 will be called the Kolmogorov
model.

Taking the expectation E,_
and ¢t + h is denoted by ¢),

E, fla(t)) = fR plsx t, dy)f(y) (1.12)

if f = x,. By approximation, this relation holds also for any bounded Borel
measurable function f.
We can therefore write (1.11) in the form

E, { fx(t + h))|F;) *fR, p(t, «(2), t + h, dy)f(y)

= Eqy . flx(t + h)) as. (1.13)
if f = x,. By approximation, this relation holds also for any bounded Borel
measurable function f.

We have the following generalization of (1.5) (in case # = =,):

P, {(x(ty), ..., x(t,)) €D}
= [ Pl Yot dy) - plsx t dy) (114)

where D is any set in %, (%, , is the o-field of Borel sets in
R" X R? X - - - X R” (n times)). Indeed, if we denote the left-hand and
right-hand sides of (1.14) by P(D) and Q(D) respectively, then P(D) and
Q(D) define probability measures on 9B, ,,. Since, by (1.5), these measures
agree on all rectangular sets, they must agree on %, .

of both sides of (1.11), we get (when t = s

$

Theorem 1.2. If {2, ¥, 9}, (), P, ,} is a v-dimensional Markov process,
then ,

P _(B|®) = P, (B|x(t)) as.  forany BEF(x(A), A > t). (1.15)
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Proof. Let 0 < h; < h, and let f,, f, be bounded Borel measurable func-
tions in R”. Using (1.13), we have

{fl( x(t + hy)) folx(t + hy))| 51}
{fl x(t + hy))E, ] fo(x(t + hz))laf:%l]l”?i}

=E,_, {[fl(x(t + k) f p(t + hy, x(t + hy), t + hy, dy,) fy( yz)]|65‘:}

=f t, x(t), t + hy, dy,) fi( ) fP t+ hy, yy, t + hy, dyy) fo(ys).
Similarly one can prove by induction on n that, if 0 < hy < - -+ < h,,
E LAt + hy)) - - - flale + R,))IF]
=f' e f p(t, x(¢), t + hy, dy ) fi( )

’ p(t + hn—l’ Yn-1 t+ hn’ dyn) n(yn)' (116)

For any set D € ®,, its indicator function f(x),...,x,) =

Xp(%y ..., x,) can be uniformly approximated by finite linear combina-

tions of bounded measurable functions of the form f,(x,) - - - f,(x,) (each «x,

varies in R”). Employing (1.16) we deduce (by the Lebesgue bounded
convergence theorem) that

E [f(x(t + hy), ..., (¢ + h,))|F]
,..f ffyl,...,yn )p(t, x(8), t + hy, dy,)

cp(t+ h,_p Yot + h,, dy,) as. (1.17)
Setting
B = {(x(t),...,x(t,)) €D}, (1.18)

we conclude that P, ,(B|%;) is & (x(t)) measurable and (1.15) holds for this
B; here % (x(t)) denotes the smallest o-subfield with respect to which x(#) is
measurable.

Since the class @ of sets B for which (1.15) holds is a monotone class
containing all the sets of the form (1.18), it must contain the o-field
generated by these sets, ie., & = F(x(A), A > ¢).

Theorem 1.3. Let x(t) and y(t) be v-dimensional processes defined for
t > 0 and having the same set of joint distribution functions. Suppose x(t)
satisfies the assertions in Theorem 1.1. Then y(t) also satisfies the same
assertions.

An outline of the proof is given in Problem 4.
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2. The Felier and the strong Markov properties

Denote by M(R”) the space of all bounded Borel measurable functions f
from R” into R' with the norm || f|| = ess sup,g-| f(x)|. Consider the
mappings T, , from M(R”) into M(R"):

(T, f)(x) = fR(sxtdy)f() (0<s<t< o)

It is easily seen that | T, ,|| = 1, and
T,,1,,=T, if 0<s<t<u

s u

We define T, , = identity. The family {T,} is called the semigroup
associated with the transition probability function p (or with the correspond-
ing Markov process).

Definition. If for any bounded continuous function f(x), the function
(T, ef)la) = [ pltz e+ A dy)fly)

is continuous, for any A > 0, then we say that the transition probability p (or
the corresponding Markov process) satisfies the Feller property.

We denote by %;. the intersection of the o-fields 5}, ¢ > ¢.
Similarly we denote by %;- the smallest o-field containing %;, t' < t.

Theorem 2.1. Let {Q, &, ¥}, x(t), P, ,} be a v-dimensional Markov
process, right continuous and sattsfymg the Feller property. Then {{, ¥,
Fie, 2(1), P, .} is also a Markov process with the same transition probability
functwn.

Proof. Let f be a bounded continuous function, and let € > 0, h > 0. By
(1.13),

E {flx{t + h +¢) t@f+(}wfpt+e x(t + €),t + h + ¢ dy)fly).

Taking the conditional expectation with respect to %j., we get
E, {fx(t + b+ )% )

= E,J{f p(t + e, x(; +¢€),t+ h+ ¢ dy)f(y)F- } (2.1)

Let € | 0. Since x(t + €)—>x(t) a.s., the Feller property implies that
fp(t+c,x(t+c),t+h+c,_dy —>fptx ), t + h,dy)fly) as.
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By the Lebesgue bounded convergence theorem for conditional expecta-
tion, we then get

E{[plt+ealt+ e t+h+edyfy)ls |

SE | [ plt s, 0+ b dg )| Fe ) = [ plex(0), £+ b dy)fly),

since x(2) is %+ measurable.
On the other hand
flx(t + h + €))>fix(t)) as €0,
so that
E, (f(x(t + h + €))| 5% }=E, { flx(t + B))|F ).
Thus, upon taking € | 0 in (2.1), we get

E, (flalt+ W)IF } = [ ple, xle), t + b, dy)f(y)

This completes the proof.

From Theorem 2.1 it follows that whenever one has constructed, from a
given transition probability function, a Markov process that is right con-
tinuous and satisfies the Feller property, one may assume (without loss of
generality) that %. = %,

Remark. If a Markov process is left continuous, and if % = F {x(A);
s € A € t}, then &~ = 9. This follows by noting that, for any a € R’, the
set {a - x(t) < A} coincides with the set

mfojl él kl;Jn [a-x(t—ilc-) <)\+#]

which belongs to %:-.

Definition. An extended real-valued random variable 7 defined on Q is
called an s-Markov time or an s-stopping time with respect to a given
v-dimensional Markov process {2, ¥, %}, x(¢), P, ,} if 7 > s and the sets
{7 € t} belong to & for every t > s.

Any constant function T = ¢ with ¢ > s is an s-stopping time.

Since {r < t} is the complement of {7 > t}, 7 is an s-stopping time if
and only if 7 > s and the sets {7 > t} belong to ¥, t » s. Notice that the
sets

A<t <t} ={r<th{r <A}

also belong to  %;.
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Consider the events A C J‘ such that

An{r<tjeF forall ¢ > s.
They form a o-field %.

Definition. A »-dimensional Markov process {Q, ¥, %, x(t), P, ,} with
transition probability p is said to have the strong Markov property if for every
x € R’ and for every real-valued s-Markov time 7,

P {x(t + 1)€A|F} = p(r, x{7), t + 7, A) ae. (2.2)

For 7 = h (h constant), this coincides with the Markov property (1.11).
Using (1.12) it is clear that the strong Markov property is equivalent to

E,fit+ DB} = [ plrale) t + 7, dyfly) = B flxlt + 7)) (23)

for any f = x,; hence for any bounded Borel measurable function f.
We shall give some examples of s-stopping times.

Theorem 2.2. Let {Q, F, %, x(¢), P, ,} be a v-dimensional continuous
Markov process and let F be a nonempty closed subset of R’. Let

(w) = first time t > s such that x(t, w) € F. Then 7 is an s-stopping time,
forany s > 0.

If s =0, 7 is called the (first) hitting time of the set F or the exit time
from the open set R”\F; if s > 0, 7 is called hitting time, after s, of F (or the
exit time, after s, from R”\F).

Proof. Let {1} be a dense sequence in the interval [s, c0). Denote by
p(x, F) the distance from x to F. Let {{;} be a dense sequence in F. Since
{1z(t) = &| < a} = {w; «(t, w) ED) (@ > 0)

where D = {xER’, [x — {| < a}, it follows that the set {|x(¢) — {;| < a}
is in %}, if t > s. Consequently, also the set

A U ftign<t)=0 U U g -si<q]
n=1 ti<t n=1 ti<t

is in %. But as is easily seen, this set coincides wnth the set {7 < t}.
Let G be a nonempty open set in R”. Let

m(w) = inf {t; t > s, x(t, 0) EG}.

Then 7 is called the (first) hitting time, after s, of G. Notice that, for a
continuous process,

T(w) = inf {t; t > s, 2(t, ) EG}
=inf {t;t > s, meas [s < t' < ; x(t’, W) EG] > 0} as.
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For any set G, the extended random variable defined by the last expression is
called the ( first) penetration time, after s, of G.

Theorem 2.3. Let {Q, ¥, ¥}, x(t), P, ,} be a v-dimensional continuous
Markov process with ¥+ = %;, and let 7 be the penetration time, after s, of
an open set G. Then 7 is an s-stopping time, for any s > 0.

Proof. Let {t} be a dense sequence in [s, o), and let

[ o]
A= U U [olslg) BNG) > |
y<t+1/n k=1
It is clear that if 7(w) < ¢, then w €A, ; and if wEA,, thenT(w) < t + 1/n.
Hence (7 < t) = lim A,. Since A, € ¥}, ,/,, it follows that the set (7 < t)
belongs to %5..

Remark. Theorems 2.2, 2.3 are clearly valid not only for a continuous
Markov process, but also for any continuous process x(t); the definition of
(extended) stopping time is given in Chapter 1, Section 3.

Theorem 2.4. Let {Q, &, 5], x(f), P, ,} be a v-dimensional Markov pro-
cess, right continuous and satisfying the Feller property, and let . = 3.
Then it satisfies the strong Markov property.

We begin with a special case.

Lemma 2.5. The strong Markov property (2.2) holds for any Markov process
provided 7 is an s-stopping time with a countable range.

Proof. Denote by {t,} the range of 7. Since {7 < ¢} and

{'r<ti}= U(’r<t,)
n<t
belong to %;, it follows that
G = {r= ti}E@;.
Note next that G, belongs to %7, since
{r=tIn{r<t}ed if t>1,
=¢EH if t<t.
Hence, for any AEB,,

{s(eA}= U {r=1t}) isin @,
xpea |
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This shows that x(r) is % measurable.

T

Now let E € %% . Then
EnG=En(r < HnGEF, .
The Markov property gives

- {al(t + t,)EA|@:,} = p(t. x(t), t, + t, A) as,
and since Eﬂ G = J“;,
P, {[x(t + t)eAINENG,) =an- P(t, x(t), t, + ¢, A) dP, ,

Noting that 7 = # on G, and summing over j, we get, upon recalling that

UG =4,
P, {lx(t + 1)€AINE) = plr,x(r), 7 + 1, A) dP,,.  (24)
E
To complete the proof of (2.2) we have to show that the integrand on the

right-hand side of (2.2) is %, measurable. Since 7 and x(r) are & measur-
able, the Feller property implies that

[ plr . 7+ 1 dfy)
6;3

is %] measurable if f(y) is a bounded continuous function. Taking a
sequence f = f of uniformly bounded and continuous functions that con-
verge a.e. to x4, we conclude that

lim fp'rx 7+t dy)f(y) = plr, x(7), 7 + t, A)

m—>e0

is %% measurable.

Proof of Theorem 2.4, Choose 7, as in Lemma 1.3.4. We claim that
F; C %, . Indeed, since 7, > T,

An(r, < t)=[An(r < )]n(r, < ¢

for any set A and forany t > s. If A€ %, then An(r < t)€ %. Since also
(1, € )EF,

An(r, < HE®, e, A€EY,
If f = xz, then the strong Markov property for T, gives
E, [fx(t + 7)) % ] fp Jt+ 1, dy)fly) as.  (2.5)

But then this relation holds also for any bounded continuous function f.
Let E € ¥, . Then (as proved above) E €% and therefore, by (2.5),

Y Tn

[, A + =) a f[fp S+, dyfy)] d,, (26)
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The function { p(A, x, t + A, dy)f(y) is continuous in A, x. Also, if n 1 co,
7, | 7 and x(7,)—x(r) (by the right continuity of the x(¢)). Hence, if we let
n 1 o0 in (2.6) and employ the Lebesgue bounded convergence theorem, we
get

[ fale+a)ap, = [ [ [plr sl e+ dy)f(y) | dp,,. @)

This relation holds also if f = x,, AE®D,.
If we show that x(7) is %% measurable, then the proof of the theorem

T

follows from (2.7) and the argument following (2.4).
Let a € R*. Then, by the right continuity of x(¢),

la-x() <Al= O U[ <A+ L]

m=N k=1 n=k

for any positive integer N. We also have

r <= ﬁ G{'r,<t+%]

p=Ng=1 r=4q
and, more generally,

QE[a'x(7)<7\]ﬂ[7<t]
ﬂ ﬂU[a- )<?\+l]ﬂ['rn<t+%].

m=N k=1 n=k
Since x(7,) € ¥, ,

1
a-x(fﬂ)<A+E]ﬂ[Tm<t+E]e Gﬁ-}-l/mcg‘:*’l/lv'

It follows Q €%, ,,y for any N. Hence Q€ %.. Since %, = G}, we
conclude that [a - ( ) < A]€ % But since a and )\ are arbxtrary, x(1)is &3
measurable.

Corollary 2.6. Let {Q, F, %, x(t), P, ,} be a v-dimensional continuous

Markov process satzsfymg the Feller property. Then it satisfies the strong
Markov property.
Notice that we do not assume here that &}, = 3.

Proof. The proof of Theorem 2.4 applies here except for the last step,
namely, the proof that x(r) is %% measurable. To prove this, suppose for



2. THE FELLER AND THE STRONG MARKOV PROPERTIES 29

simplicity that s = 0. Let {¢;} be a dense sequence in [0, o). For any a € R”
and A real,

[ - x(7) < ][ ]
ﬂﬂU U [a-x(t,)<7\+%

n=1m=1 i=0 (i/n)t<f;<((i+1)/n)t
+

i+ 1 t]
n

m[it<¢<
n

where * indicates that for i = 0 one takes 0 < 7 < t/n. Since each set
[ - - - ] on the right-hand side is in F2, it follows that [a - x(7) < A] € F?.
But since a and A are arbitrary, x(7) is %° measurable.

It can be shown (see Stroock and Varadhan [1]) that, for a continuous
Markov process, % is actually generated by x(t A7), t > s.

T

The next result is the Blumenthal zero—one law.

Theorem 2.7. Let {Q, %, %], x(t), P, ,} be a v-dimensional Markov pro-
cess, right continuous and satisfying the Feller property. If, for some s > 0,
x(s) = x a.s. (x a point in R"), then

P.(B)=0o0r1  forany BE .. (2.8)

x, 8

Proof. By Theorem 2.1, formula (1.17) remains valid when % is replaced
by %¢.. Taking t = s, we get

P, {l(x(s + hy), ... (s + b)) ED]F- )
=f .« .fp s, x, s + hl’ dyl) [N p(s + hn—l’ yn—l’ s + hn, dyn) a.s.
D

By (1.14), the right-hand side is equal to
P, {(x(s+ hy),...,x(s + h,))ED}.
Hence,
P, (B|F;-) = P, (B) as. (2.9)

for any set B of the form (1.18) with ¢, > s. But then (2.9) follows also for
any set B in % . Taking, in particular, B € ;. and noting that
P, (BI:. ) = xg, we get

x, s

Xglw) = Px’s(B) a.s.
Since the right-hand side is constant, xz = const a.s. Hence either xz = 0
a.s. or xg = 1 a.s. This gives (2.8).
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3. Time-homogeneous Markov processes

Definition, A Markov process is said to have a stationary transition prob-
ability function p if

p(s,x, t, A) = p(0,x,t — s, A).
We then also say that the Markov process is time-homogeneous, or tempo-
rally homogeneous.

It is clear that, when p is stationary, P, , = P, o, E, , = E, jforall s > 0.

Therefore, from the probabilistic point of view it suffices to work just with
P ,E_ . 9 whens =0. We set

x, §* x, $°

P.=P., E=E, pltxA)=p0zxtA), =37

x

A O-stopping time 7 will be called, simply, a stopping time or a Markov time.
(Notice that 7 is actually an extended stopping time according to the
definition of Chapter 1, Section 3.) The Markov property now takes the form

E{fla(t + WG} = Eqof(x(R)) as. (3.1)
(1.12) for s = 0 becomes

Ef(x() = [ plt, %, dy)fly), (3.2)

and the strong Markov property takes the form
E{flx(t + m)IF.) = Eflx(®)) (3.3)

where 7 is a stopping time and ¥, = F°,

We shall denote a time-homogeneous Markov process by {Q, ¥, ¥,,
x(t), P, }. ,

For a time-homogeneous Markov process, the Feller property states that
the function

> [ plt, 2, dyfly)

is continuous for any bounded continuous function f and for any ¢t > 0.
The semigroup associated with a stationary transition probability function

is given by
(TA(x) = [ plt. = dyfly). (3.4)

Denote by M, the space of all functions from M(R”) into R' for which
ITf - flis0  if t—0,
where ||f|| = ess sup,cg-| f(%)].

Definition. The infinitesimal generator @ of the time-homogeneous Mar-
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kov process is defined by

&f = lim L t_f . (3.5)

t—0

Its domain D, consists of all the functions in M, for which the limit in (3.5)
exists for a.a. x.

Theorem 3.1. Let @ be the infinitesimal generator of a continuous time-
homogeneous Markov process satisfying the Feller property. If f € Dy and
@f is continuous at a point y, then
Eflx(ry) — fly)
@ = lim —
(@) (y) om E,y

where U is an open neighborhood of y and 7, is the exit time from U.

(3.6)

This is called Dynkin’s formula. Since we shall not use this formula in the
sequel, we relegate the proof to the problems.
For nonstationary transition probability function, one defines the infinite-
simal generators by
. Lo f—f
@ f = ]}lI(I)l — (3.7)
The Dynkin formula extends to this case (with obvious changes in the proof).

PROBLEMS

I. Let {Q, &, 9, x(f), P, ,} be a continuous Markov process. Let 7 be
the first time that ¢t > s and (¢, x(¢t)) hits a closed set F in R**!, Prove that 7
is an s-stopping time, for any s > 0.

2. Let {Q, F, 9}, x(t), P, ,} be a r-dimensional Markov process with
transition probability p. Let X denote a variable point (x4, x) in R”*! and let
X (t, w) = (t, x(t, w)). Prove that {Q, ¥, %}, X(t), Py ,} is a Markov process
with transition probability p,

pls, X, t, I X A) = x{x0)p(s, x, , A)
where I is any Borel set in [0, o).
3. If{Q, %, %,, x(t), P} is a time-homogeneous Markov process and if

J191 = walplt, 2 dy))p(s. . dy) < Clt ~ s+

for some a > 0, € > 0, C > 0, then x(t) has a continuous version.
[Hint: Use Theorem 1.2.2.]
4. Prove Theorem 1.3.
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[Hint: Since p(3, y(5), t, A) is F( y(?\) s < A < §) measurable, it suffices
to show thatif ¢, < - - - <t, =5<¢,,., =1,
P[y(tl)EAl,---,y( JEA,, y(n+1)EA]

= Ep(t,, y(ta), tur s Axa,(y(8) - - xa {y(t,)).

Denote by Q, the probability distribution of (x(t)), ..., x(¢,), x(t,,,)) and
by Q, the probability distribution of (y(t,), . . ., y(#,), y(t,+,))- Make use of
the relations

f Xa, (x) - - - ( ) Xa(Zn s 1) dO1 (s, - oo, %o %)
_.f tn’ X tn+1’ )XAl(xl) T XA,,(xn) dQl(xI’ s Xy Xy 1)

f P(xy, . .oy %oyr) dOy =f<1)(x1, cees Aapy) dQy,

where ® is bounded and measurable.]
5. A r-dimensional stochastic process x(t) (£ > 0) is said to satisfy the
Markov property if
Px(t) € A|F(x(A), A < s)] = P[x(t) € Alx(s)] as. (%)

for any 0 < s < t and for any Borel set A. It is well known (see Breiman [1])
that there exists a regular conditional probability p(s, x, ¢, A) of (%), i.e.,
p(s, x, t, A) is a probability in A for fixed (s, x, t) and Borel measurable in x
for (s, t, A) fixed. Prove that p satisfies

fp(s, x, A, dy)p(\, y, £, A) = p(s, x, t, A) as. (s <A< t).

6. Let x(¢) be a process satisfying the Markov property. Then, for any
0=1¢,<t <--- <t and for any Borel sets B, . . ., B,,

P{x(t,)EB,,...,a(t;) EB,, x(t,) EB,}
_f f p n—1> Xpn—1 t dx) T p(tO’ xO, tla dxl)'?T(de)
Bl Bo

where 7 (dx) is the probability distribution of x(0).

7. Let (R, ¥, %, x(t), P, ,} be a r-dimensional continuous Markov pro-
cess satisfying the Feller property. Let 7 be a real-valued s-stopping time.
Denote by %7 the o-field generated by x(t + 7), ¢ > 0. Prove that

P _.(B|%) =P, ,(Blx(r)) forany B € F. (3.8)
[Hint: Prove that for any bounded measurable function f(x,, . .., x,),
E [fx(ty + 1), .., 2t + 1) F] = B of (2t + 7)., x(2, + 7))
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where s < t; < -+ - < t,; cf. the proof of Theorem 1.2.]

In Problems 8-16, {Q, %, %,, x(¢), P,} is a continuous time-homogeneous
v-dimesional Markov process satisfying the Feller property. By Corollary 2.6,
the process also satisfies the strong Markov property.

8. Prove that for every open (closed) set G, p(¢, x, G) is lower (upper)
semicontinuous.

9. Let A be an open set if R” with boundary dA, and let I' be a closed
subset of dA. Assume that there is an increasing sequence of closed subsets
I, of 9A such that I, 1 I" =0A\T as m 1 co. Assume that P, {x(¢) hits
BA} =1, and let E = {x(t) hits T' before it hits T'}. Then there exists a

sequence f (x,, . . ., x,) of bounded measurable functions such that
fﬂ(x(t1)5 DR x(tn))_’XE a's"
and the functions f,(x,, ..., x,) do not depend on the particular process

x(t).
[Hint: Let {A;} be a dense sequence in [0, o). Check that

E=LJm{mLJ[ >)<iﬂ

j m P ti<?\ p

n{u m[mumrm>%ﬂ

r tl<A’

where j, m, p, i, r, [varyover 1, 2, . . . . Show that P(E) = lim P(E,) where
E, is defined as in E but with §, m, p, i, r, | varying only over a finite set.
Deduce that xp = lim xz, xg = f,(x(t;), . . ., x(t,)) for some n = n(a),
and f, (x;, .. ., x,) does not depend on the particular process x(¢).]

10. Let A and B be open sets with boundaries 9A and 9B respectively, and
assume that A U 0A is contained in B, and that dA consists of a finite number
of manifolds. Denote by t, and t; the exit times from A and B respectively.
Suppose that P (t5 < oo0) = 1 for all x € A U 0A. Prove that for any bounded
measurable function f,

Ef(x(ty)) = E.E,oflx(ts)  (x€A). (3.10)
[Hint: For time-homogeneous processes, (3.9) becomes
E[flx(t, + 7)., ..., x(t, + 7))|F,] = E.of(x(t)), . . ., x(t,). (3.11)

Suppose f = Xr" T closed, and introduce the events
= {x(t) hits TN 0B before it hits 3B\T'},
E’ ={x(t + t,) hits TN 3B before it hits 3B\T'}.
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By Problem 9,
Xg & lim fn(x(tl)’ Tt x(tn))’ Xg = lim fn(x(tl + tA)’ L xn(tn + tA))’
Apply (3.11) to f;, to obtain
Ex_f(x(tﬂ)) = ExXE' = ExEx(tA)XE = ExEx(tA)f(x(tB))‘]
11. Let 7 be the exit time from an open set G. Suppose P (t > a) < B for
all x€ G. Prove that
i) P.(r > na) < 8%

i) Er < a/1 - B)
(iil) EeM < e/l - eB)if B< L A< (—a " log§p).

[Hint: Write
Xiziecift<al = lim fm(x(tl)5 ey x(tm)) (ti < a)’
Xis(egift<a+fl = limfm(x(tl + B)s tees x(tm + B))XIx(t)ECift<a]

for any B > 0. Use (3.11) and induction to verify that
Px[‘r > (n + l)a] = Exx'r>ax‘r>(n+l)a= Exxf>a(Exx‘r>(n+1)ai6‘j:a)

= ;tx'r>aEx(ﬂl)x'r>na < Bﬂ+1] *

12. Suppose » = 1 and 7 = inf {s, x(s) = y} is finite valued, where y is a
real number. Prove, for any closed set A,

P[x(t) = A’ T< t] = Exx:r(t)EAXT<t = ExEx[ xx(t)EAXer<t|6}r]
= Ex <:Ed XenealFr] = EXeciErinXet—nea

= E X, <.Pun[x(t — 7) € A] =j: P (r€ ds)Py[x(t — ) € A].

[Hint: To prove the fourth equality, choose a sequence of functions as in

Problem 10 with E = {x(t — 7) € A}.]
13. A point y is called absorbing if p(t, y, { y}) = 1 for all t > 0. It follows
that (T,f)(y) = f(y). Hence, if f € Dy, then (Ef)(y) = 0. Show that if y is
nonabsorbing and U is a sufficiently small neighborhood of y, 7, = exit time
from U, then sup, .y E, 7y < 0.

[Hint: p(ty, y, N) < 1 for some ¢, > 0 and a closed neighborhood N of y.
Hence p(t, x, R"\N) > 8 > 0 if |x — y| is sufficiently small, and then
Pty > ty) <1—34]

14. Prove that M, is a closed subspace of M(R?”), that TM,Cc M, if t > 0,
and that T,f is a continuous function in tE€[0, o) for any f € M,

15. From the theory of semigroups (see, for instance, Dynkin [2]) one
knows that:

(i) Dg is dense in M, @f € M, if f € Dg;
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(i) T,DeCDyg;
(iiiy if f€EDg, dT,f/dt = T,@f = @T,f for t > 0;
(iv) the operator R,f = [&e M(T,f) dt (f € M,) is defined for all A > 0
and satisfies:
(a) RyfE€Dg if fEM,;
(b) NESI < A7YI 115
(¢ M — @)Rf=fif feM, RRAI- &)f = fif fED,.
Now let y be nonabsorbing and take a neighborhood U of y with
sup,ep E, 7y < . Let hy, = Af — @f. Check that

f(x) = Ryhn(x)

= F_ f[)fve“*‘hx(x(t)) dt+ Ex[e""” f

0

T e My (x(t + 7)) dt].
Use the strong Markov property to deduce

B (x(r) = £ = Bf{e™ = Df(s(50)] = B [ e h(s(0) |
16. Use Problems 13 and 15 to complete the proof of Dynkin’s formula.



Brownian Motion

1. Existence ot continuous Brownian motion

Definition. A Brownian motion or a Wiener process is a stochastic process
x(t), t > 0 satisfying;

i) x(0) = 0;
(ii) for any 0 < ¢, < t; < --- < t,, the random variables
x(t) — x(t) (1 < k < n) are independent;
(i) if 0 < s < ¢, x(¢) — x(s) is normally distributed with

E(x(t) = 2(s)) = (¢ = s)p,  E(x(t) — 2(s))"= (¢ ~ 5)o?

where 1, ¢ are real constants, o #* 0.

p is called the drift and o® is called the variance.

Property (ii) implies that x(f) — x(s) is independent of F(x(A), A < s) or,
more generally, that F(x(p) — x(s), p > s) is independent of % (x(A),
A< s).

If x(t) is a Brownian motion with drift p and variance ¢% and if
0 <ty < -+ < t, then

T(t, t) = E(x(t) — pt;)(x(t) — ut) = o® min (¢, £). (1.1)
Indeed, if £, > ¢,
T(t, ) = E[x(t) — x(t,) — p(t; — ) + x(t) — ut [z (t) — pty)
= E(x(t) — pt)’= 0%
If p = 0, 02 = 1, then we speak of normalized Brownian motion. Notice
that for any Brownian motion with drift 1 and variance 0%, (x(t) — ut)/o is a
normalized Brownian motion.

From now on we consider only normalized Brownian motion and refer to
it briefly as Brownian motion.
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Let X,,..., X, be random variables with joint normal distribution

N(@O,T) where ' = (T)), 'y = min (t, ), 0 < t; < - - . It is easily
checked that det I # 0. Let (T ) be the inverse matrix to I‘ Let X, be the
random variable X, = 0; its distribution function is

0 if %<0
Xo(xg) = ’
ol%o) { 1 if x>0,

Then (see Problem 1) the joint distribution function F,, ..., of X,
X, ..., X, (where t; = 0) is given by

Ftotl,,,,”(xo, xl, Cey %)
%, x e
(2'” n/2 det I‘ 1/2 f ) f exp i: 2= $1 iyf] dyl dyn'
(1.2)
It follows that
Fto-f-t,,(xO’ vy x) 1 | ORI ¢ AP FEPRE SRR, x,)
if xk T c0.

Thus, the functions F,, ..., given by (1.2) form a consistent family of
distribution functions. By the Kolmogorov construction there exists a prob-
ability space (@, ¥, P) and a process x(f) such that the joint distribution
functions of x(f) are given by (1.2). But then, by Problem 2, x(t) is a
Brownian motion.

We have thus proved that the Kolmogorov construction produces a
Brownian motion.

It is easily seen that a Brownian motion is a martingale. Thus the
martingale inequality can be applied to Brownian motion. Another important
inequality is given in the following theorem.

Theorem 1.1. Let x(t) be a Brownian motion and let 0= t, < t, <
< t,. Then, for any X\ > 0,

| Jmax x(t) > N < 2P[x(t,) > Al (1.3)
P[O?ﬁnu(tm > A] < 2P[jx(t,)] > Al (1.4)

Proof. Let j* = first § such that x(¢ ;) > A. Since x(t,) — x(4) (0 < j < n)
has normal distribution, its probablllty distribution is symmetrlc about the
origin, i.e., P{x(t,) — x(f) > 0] = P[x(t,) — x(t;) < 0]. Using also the facts
that x(¢,) — x(t) is independent of F(x(f), ..., x(t)) and that {j* = j}
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belongs to this o-field, we can write

P[maxx()>)\x() ] 2P**kx()<)\]

0<i<n

<2P (¢)— x(t) < 0] = iP k) Plx(t) ~ x(t) < 0]
=Elp(,-*=k)p[x(tn)-xtk ) > 0] = g Plj* = k, x(t) — (t) > 0]

< i Plj* = k, x(t,) > A] < P[x(t,) > A}

On the other hand,
P[ max x(t) > X, x(t,) > )\] = Plx(t,) > Al

0< j<n
Adding these inequalities, (1.3) follows. Noting that —x(t) is also a
Brownian motion and employing (1.3), we get

P[ omax lx()] > 7\] < P[ Oin?é(nx(t,) > 7\] + P[oznﬂ(n(—x(tf)) > )\]

< 2P[x(t,) > A] + 2P[(—x(8,)) > A] = 2P[|x(t,)| > A].
If X is a random variable with normal distribution N(0, 6%), then
(2n)! 20

EX% = o O EX%*1 =9 (n=0,1,2,...). (15)
In particular, for any Brownian motion x(¢),
E|x(t) — x(s)]™ = C |t — s|*  (C, constant) (1.6)

forn=1,2,.... Taking n = 2 and applying Theorem 1.2.2, we get:
Theorem 1.2. There is a continuous version of a Brownian motion.

Corollary 1.3. Every separable Brownian motion is continuous.

This follows from Theorem 1.2 and Problem 3, Chapter 1.

From now on, when we speak of a Brownian motion, it is always tacitly
assumed that we speak of a continuous version.

From (1.6) we see that Corollary 1.2.3 can be applied to a Brownian
motion with 8 = 2n, a = n — 1, for any n > 1. Consequently:

Corollary 1.4. For any a < 4, almost all the sample paths of a Brownian
motion are Holder continuous, with exponent a, on every bounded t-interval.
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2. Nondifferentiabliity of Brownian motion

We have proved the existence of a Holder continuous Brownian motion x(t),
with any exponent a < 3.
Lévy [1] has proved that the sample paths of x(¢) satisfy:
T ‘x( t) — x(s)|
lim 7
0F25isT {2(t — s) log 1/ (¢ — s)}
for proof see also McKean [1].
We shall prove here only a weaker result:

=1 as, forany T > 0;

Theorem 2.1. For any a > %, almost all simple paths of a Brownian motion
are nowhere Holder continuous with exponent a.

Proof. Let T be any positive integer and let N be a positive integer such
that N(a — 4) > 1. If x(t, @) is Holder continuous at s (s€[0, T]) with
exponent a, then

|x(t, @) — x(s, @)| < Byt — s|* if |t— s/ < N/n

for some B, > 0 and some positive integer n.
Let 8 be a positive number and consider the event

A, = {there exists an s € [0, T] such that |x(t) — x(s)| < B[t — s|*
if |t — s| < N/n}.

Then A, 1 A as n 1 co. If we prove that, for any 8, T, P(A) = 0, then the
assertion of the theorem follows,

Let
x(k+i)_x(M)l (k=0,1,...,nT),

n n

Z, = max
1<i<N

B, = {w; Z; (w) < 2BN*/n" for some k}.

Note that if w € A, and |x(t, @) — x(s, w)] < Bt — s|* when |t — 5| <
N/n, and if we take k to be the largest integer such that k/n < s, then

Z, () < 2B(N/n)™
Consequently A, C B,, so that !
P(A) = lim P(A,)

n—oo

< lim P(B,). (2.1)

n—»00
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Next,
T 28N
P(B) = P{ U |7 < —
k=0
nT 28N 28N
<2P[Zk< ﬁa }=nTP[ZO< Ba }
k=0

Since the random variables

x(—i—-)-—x(i——l) (1<i<N)

n n

are independent and identically distributed,

P(B,) < nT[P[ x(%) 2AN HN

= nT{Vzi‘; Y/ g2 dx} (v = 2BN®).

Substituting n*x = y, we get

<

N

P(B,) = nT{ 1 fy o= ¥V}/ @Y dy] -0 if n— oo,
Vog ne—1/2 J_y

since N(a — 1/2) > 1. Using (2.1) we then conclude that P(A) = 0. This

completes the proof.

Corollary 2.2. (i) Almost all sample paths of a Brownian motion are
nowhere differentiable.

(ii) Almost all sample paths of a Brownian motion have infinite varia-
tion on any finite interval.

The assertion (i) follows from the fact that if a function is differentiable at
a point, then it is Lipschitz continuous at that point. Since a function f(t)
with finite variation is almost everywhere differentiable, (ii) is a consequence

of (i).

3. Limit theorems

Theorem 3.1. For a Brownian motion x(t),

lim i =1 as, (3.1)

tLo \/2t log log (1/¢)
lim 2 =1 as. (3.2)

1= Vatloglogt
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These formulas are called the laws of the iterated logarithm.

Proof. We first prove that

x(1)

Tim <L (3.3)
o \/2t log log(1/1t)

Let & > 0, ¢(t) \/2t log log(1/t) , and take a sequence ¢, | 0. Consider
the event

A, = {x(t) > (1 + 8)¢(t) for at least one t E[t, , , t,]}.
Since ¢(t) T if t 1,
A,cf sup x() > (1 + pltysy) }-

0< 1<,
By Theorem 1.1, if x > 0

P[ sup x()>x\/_]<2P[ (t )>x\/_]—2P[iﬁE)

0<t<t,
VE [remaa)f2 L taenany L e

Taking x = x, = (1 + 8)d(t,,,)/ Ve, , we get

Ha) <Y 3 ool

Now take t, = q" where 0 < g < 1and A = g(1 + §)*> > 1. Then
1/2

= {2 log[a(n + 1)’*]} , a =log(1/q).

It follows that

P(A,) < . (C constant).
(n + 1)" log(n + 1)
Hence = P(A,) < oo, so that, by the Borel-Cantelli lemma, P(A, i0.) = 0
(where “i.0.” stands for infinitely often). But this means that

x(t)

Tim '<1+8.
l \/2t log log(1/¢)
Since & is arbitrary, (3.3) follows.
We shall next prove that

Tim () > 1. (3.4)
4O Vot log log(1/1)
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We again start with a sequence ¢, | 0. Let Z, = x(t,) — x(¢,,,). For any
x>0,€e>0,

) x(tn+1) ) 1 00 —22
Z >x + P = /2 )
( n 1) ( \/t—_T_ > x \/_ j; 14 dz

By integration by parts,

1 e _ °°( i) —2%/2 ( L) ©
xe j; 1+z2 e dz < 1+x2 fx e dz,

so that
co ~1
f e */2 dz > (x + i—) e %12,
Thus
1 — 8
P >Vt — t, > e " /2 if x> 1
(Z ")
Taking t, = ¢",0< g < 1,
t
x=x,=(1 — ¢ Bln) = VZ log[n log(1/q)] \/ﬁ log(an)

“tn—tn-l-l Vl—q

where a = log(1/q), B = 2(1 — €*/(1 — q), and choosing g sufficiently
small so that 8 < 2, we get

Pz, > (1 - €)o(t,)] » €

; nf/2\log n

and, consequently,

(¢ positive constant)

S Pz, >(1 - 9e(t)] = o.

n=}j
Since the events [Z, > (1 — €)¢(t,)] are independent, the Borel-Cantelli
lemma implies that

P[Z, > (1 — €)¢(t,) io] = 1. (3.5)
By the proof of (3.1) applied to the Brownian motion — x(¢),
Plx(toyr) < ~ (1 + €)9(t,4,) i0.] = 0.
Putting it together with (3.5), we deduce that a.s.
x(tn). = Zy + 2(fas1) > (1= €(t) = (L + €)¥(t,11)

D(tya1)
B(t,)

=¢(t)[1—€—(1+¢) i.0.
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For any given § > 0, if we choose € and ¢ so small that
1-—¢e—(1+¢€)Vg >1-3,
and note that ¢(t, . ,)/¢(t,)>Vq if n—>oc0, we get that
Plx(t,) > (1 — 8)¢(t,) io] = L

Since & is arbitrary, this completes the proof of (3.4).
In order to prove (3.2), consider the process

E(t)={tx(%) if t>0,

0 if t=0.
It is easy to check that %(t) satisfies the conditions (i)—(iii) in the definition
of a Brownian motion. Since it is clearly also a separable process, it is a

(continuous) Brownian motion. If we now apply (3.1) to ¥(t), then we obtain
(3.2).

Corollary 3.2. For a Brownian motion x(t),

lim At) = -1 as, (3.6)

t10 \/2t log log(1/1¢)

lim i) = —1 as. (3.7)

t1 V2t log log ¢

This follows by applying Theorem 3.1 to the Brownian motion — x(t).
If £(t) is a continuously differentiable function in an interval [a, b], and if

= {ty 1 s tom) (3.8)
is a sequence of partitions of [a, b] with mesh [II | = max(t, ; — ¢, ,_,)
converging to 0, then

™y,
;Jﬂ%g—ﬂ%kﬂtw if n—oo.

Such a conclusion does not hold for a Brownian motion. Instead we have:

Theorem 3.3. Let x(t) be a Brownian motion, and I1, a sequence of
partitions (3.8) of a finite closed interval [a, b] with mesh |I1,|—-0 if n—o00.
Let

S, = 2 [x(tn,i) - x(tn,f-—l)]2'

j=1
Then S,—b — a in the mean.
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Proof. Write ¢, = t, , m = m,. Then

m

S, —(b—a) = 2 [(x(t,) - x(tf—l))2 - (t1 - t;-l)]-

=1
Since the summands are independent and of mean zero,

E[S, ~ (b— a)]*=E i [(x(ti) - "(t1~1))2 = (4~ ti—l)]z

i=1

= i E[(Y,.2 — 1) ~ t,_l)]z.

,=

where
(1) = (s
(1 — 4_,)""

Since the Y, are equally distributed with normal distribution,

f

< E(YZ - 1)2 (b —a)Il | >0 if n—ooo.
4. Brownian motion after a stopping time

Let 7 be a stopping time for a Brownian motion x(¢). Denote by &_ the
o-field of all events A such that

An(r<t) isin  F(x(A),0 < A < ¢).

From the considerations of Section 1.3 we know that x(r) is a random
variable.

Theorem 4.1. If 7 is a stopping time for a Brownian motion x(t), then the
process

y(t) = x(t + 1) — x(7), t>0
is a Brownian motion, and F (y(t), t > 0) is independent of F,.

Thus the assertion is that a Brownian motion starts afresh at any stopping
time,

Proof. Notice that if 7 = s (a constant), then the assertion is obvious.
Suppose now that the range of 7 is a countable set {s}. Let BE %, and
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0< ¢t <t <--+ <t,. Then, for any Borel sets A}, . .., A
Ply(t) €A, ....y(t)EA,, B]

B % P[y(tl)EAla IR | y(tn)EAn’ T = 5 B]

n?

= % Pl(x(t; + s) — x(s)) €A ..., (x(t, + 5) — x(s3))
€A, T=s,Bl (41)

Since
(r=s)NnB=[Bn(r< s)ln(r=1s) isin F(x(A), 0 < A < §)

and F(x(A +s,) — x(s)), A > 0) is independent of F(x(A),0 < A < s),
and since the assertion of the theorem is true if * = s, the kth term on
the right-hand side of (4.1) is equal to

Plx(t, + &) — x(s) €A, . . ., (2(t, + 8) — 2(s) EAJPlr = 5, B]
= Plx(t,)€A,, ..., x(t)EAP[r = 5, Bl.
Summing over k, we get
Ply(t)EA,, .. ., y(t) €A, Bl = Plx(t) €A, .. ., 2(t,) €AI(B). (4.2)

Taking B = {2, it follows that the joint distribution functions of the
process y(t) are the same as those for x(¢). Since y(¢) is clearly a continuous
process, it is a (continuous) Brownian motion.

From (4.2) we further deduce that the o-field % (y(t), t > 0) is indepen-
dent of & _.

In order to prove Theorem 4.1 for a general stopping time, we approxi-
mate 7 by a sequence of stopping times 7,, defined in Lemma 1.3.4. We have
(see the first paragraph of the proof of Theorem 2.2.4)

¥, C9, .

Set y,(t) = x(t + 7,) — x(7,). By what we have already proved, if BE ¥ _,
then

Pln(t) < 1+ - 4a(8) < 50 Bl = Blx(ty) < xy, ... 2(t) < mJP(B)
for any 0 € t; < - -+ < t. Notice that y,(t) — y(¢) a.s. for all £ > 0, as
n — oo. Hence, if (x;,..., x;) is a point of continuity of the k-dimensional
distribution function F(x,, . .., x) of (x(ty), . . ., 2(¢,)), then

Ply(t,) < xp ..., y(t) < %, Bl = Plx(t)) < x;, . . ., x(t) < x]P(B).

(4.3)
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Since (see Problem 1) Fi(x,, . . ., %) is actually an integral

B 91

f—m. . .f*wp(zl, e ,zk) dzl ‘e dzk,

it is continuous everywhere. Thus (4.3) holds for all x,, . . ., x. This implies
that

Ply(t) €A, ..., y(t) €A, B] = Plx(t))EA,, ..., x(t,) EAIJP(B)
for any Borel sets A}, . . ., A;, and the proof of the theorem readily follows.

5. Martingales and Brownian motion

If x(¢) is a Brownian motion and %, = % (x(A), 0 < A < ¢), then

E[(x(t) — x(s))|F,] = 0, (5.1)
E[(2(t) — (s))"|F,] =t — s (5.2)

a.s. for any 0 < s < t. Note that (5.1), (5.2) hold if and only if x(t) and
x%(t) — t are martingales.
We shall now prove the converse.

Theorem 5.1. Let x(t), t > 0 be a continuous process and let %, (t > 0) be
an increasing family of o-fields such that x(t) is ¥, measurable and (5.1),
(5.2) hold a.s. for all 0 < s < t. Then x(t) is a Brownian motion.

Proof. For any € > 0 and a positive integer n, let 7, be the first value of ¢
such that
x(s’) — x(s")] = €
oo ) -2 = 6
0<ys, "<t
if no such ¢ exists, set 7, = o0. Let 1 = 15 A 1. Since, for 0 < s < 1,

(= o]
{(r>s}=U M {Ix(s’)— x(s")| € € — —1-} isin %,
m=1|¢~s"|<l/n m
0<s,8"<s

7 is a stopping time.

Let y(t) = x(t A 7). Since x(t) and x*(t) — t are continuous martingales,
Theorem 1.3.5 implies that y(¢) and y*(#) — ¢ are also continuous martin-
gales. Hence,

~

fA[yz(s)"S/\"]dP=L[y2(t)—t/\fr]dP if A€, s<t
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where &, = F(y(A), 0 < A < s). It follows that
L{ELv2(0) = ¥[8} ap= [ [ y7(e) - y2(s)] ap

=L[t/\7—3/\1']dP<L(t—s)dP.

Since the integrand on the left is 63_3 measurable, we conclude that

E {[ y*(t) — yz(s)“é:’f-s} <t—s as, s<t (5.3)
Our aim is to prove thatif 0 < t, < t; < - - -+ < §, then
k k
E e"P[i > M) - x(ti—i)]} = e"P{_ 2 BN (4 - tf—l)} (54)
j=1 j=l

for any real numbers A;. In view of the result stated in Problem 1(a), this will
show that x(¢) is a Brownian motion.

We begin with the special case k = 1, ¢, = 0, ¢, = 1. Thus, we want to
prove that

Ee™(D) = ¢=7'/2, (5.5)
Our approach will be to write

=5 1) -{57)]

j=1

and make use of (5.1), (5.2) while at the same time, letting n increase to
infinity. However, a technical difficulty arises due to the fact that the
random variables x(j/n) — x((j — 1)/n) are not uniformly bounded. It is
for this reason that we shall work, instead, with the process y(t) and with the
random variables

ol {5Y) ncien

n

In view of the definitions of 7 and y(¢),
8] < e (5.6)
Since y(t) is a martingale and since y*(t) satisfies (5.3),

E& =0, E{§K,....5.0=0 (2<j<n)

1 1

o%:E{f(;, oi2=E{§12|§1,...,§i_1}<; (2< j<n)

(5.7)
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a.s. Hence, if j > 1,
Ee™(/m = E{ eMvl(i~ 1)/")E[ /T ST, 5}—1]}

P51+ o)

— Eea)\y(g 1)/n)\:1 - o

=E exp[i?\y( l—;l) - 0122\;' (1+ 0(1))]

where, in view of (5.6), o(1) — 0 if € — 0, uniformly with respect to A, n
provided A varies in a bounded interval.
It follows that

< C[ ;11- —E(gﬁ)] + 3%2;

we have used here (5.7). The symbol C denotes any one of various different
positive constants which do not depend on n, €, A, provided A is restricted to
bounded intervals, e < 1,n > 1.

The last estimate implies that

i—1 —1
E exp[z?\y( ) + ——?\2] — E exp[z)\y( ) + 72n 7\2]
1 o(1)
< C[ - *E(fiz)] + el
Summing over j and noting that

1> élE(gf) = E(y¥1)), (5.8)
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we get
|E[e™W+¥/2 —1]| < C[1 — E(y*(1))] + o(1).
Consequently,
|E[e?® — e7¥/%)| < C[1~ E(y*(1))] + o(1). (5.9)
Since x(¢) is a continuous process,
P(r=1)->1 and Ply(l) = x(1)]>1 if n—oo.
Hence, by the Lebesgue bounded convergence theorem,
Ee™Y 5 Ee™0)  if 5 o0,
Therefore from (5.9) it follows that, for any y > 0, if n > ny(e, v), then
[E[e?™") — e < C[1 - E(y*(1))] + o(1) + 7. (5.10)
Note next that
1 - B(y*(1) = E[*(1) — ¢* ()] = [ [2(1) - y*()]dP

<1

<f x%(1) dP—0
<1

if P(r = 1)-1. Thus, if n > n,(e, v),
C[l - E(yz(l))] <.
Using this in (3.10) we get
|Ee™M) — =272 < o(1) + 2.

Taking y—0 (and n > ny(e, y), n > n(e, v)) and then e-»0, the assertion
(5.5) follows.

Similarly one can prove that

E exp[i)\j(x(tf) - x(ti—l))] = exp| - %)\,2] (5.11)

forany 0 < t;,_; < &, A, real,
By reviewing the proof of (5.11) one finds that the same proof with minor
changes actually gives a better result, namely,

E {exp[iN(x(8) — x(4_))]|F(x(A). 0 < A < ,_,} = exp[ — 4N}] as.
(5.12)

(Notice that if 7;_, is defined analogously to 7, with ¢ = 0 replaced by
t = t_,, and if y(t) = x(¢ A 7,_,), then

FyA, 0 <A< 4_y) = F(x(\),0< A< ¢_)

since 7,_, > #_,.)
Nowlet 0 € t, < -+ - < f,_, < fpand let A, . . ., A, be real numbers.
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Applying (5.12) successively, we find that

2 A/( - % tf 1))}

{CXP[ 2)‘1( 2(4) — x(4- 1))]
X E {exp[ih(x(&) — x(4-))]|F(x(A), 0 <A < tk—l)}}

= | onl Z 0o~ 14| vl - 180 - 4]

=1

E exp| i

k
== exp{— 2 %K/z(tf - tj—l)]'

j=1
This completes the proof of (5.4).

Remark. By the remark at the end of Section 1.3 we have that y(t) and
y*(t) — t (introduced in the last proof) are martingales with respect to F,.
Hence instead of (5.3) we actually have

E{y%(t) - ¥ ()T} <t—s as, s<t
This implies

E {exp[iNx(t) — 2(s))]|%) = exp[ = 1Nt = 5)].  (513)

6. Brownlan motion In n dimensions

Definition. An n-dimensional process w(t) = (w,(t), ..., w,(t)) is called
an n-dimensional Brownian motion (or Wiener process) if each process w;(t)
is a Brownian motion and if the o-fields % (w,(t),t > 0),1 < i < n, are
independent.

Theorem 6.1. Let w(t) be an n-dimensional Brownian motion. Then

P lim [w(2) =1 as, (6.1)
"% V2t log log(1/1)
— |w(2)]

P lim =1 as. (6.2)

12 V2t loglog ¢t
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Proof. 1t is enough to prove (6.1). If (6.1) is false, then there is a § > 0
such that

Ny |w(2)] L o
lim > 14 § with positive probability.

40 Vat log log(1/¢)

Given any € > 0, cover the unit sphere by a finite number of spherical
regions K; with opening € with respect to the origin. Then, for some i,

— |w(#) w(#)
P llm b 1+ 8, "l'——?— EK.- > 0
‘YO Vat log log(1/¢) w(®)l

But if z is the center of K, and (1 + &) cos € > 1, then

— z - w(l)
P4 lim >(1+d8)cose >1:>0.
=% Va2t log log(1/1)
This is impossible since z - w(t) is a Brownian motion (cf. Problem 7).
Theorem 4.1 and its proof extend immediately to n-dimensional Brownian

motion.
We shall now extend Theorem 5.1 to n-dimensions.

Theorem 6.2. Let x(f) = (x,(t), ..., x,(t), £ > 0 be a continuous, n-di-
mensional process and let %, (t > 0) be an increasing family of o-fields
such that x(t) is %, measurable and, for all 0 < s < t < o0,

Elx(t) — x(s)|F] =0 as.,

E[(x1(t) - x,-(s))(xi(t) - x,-(S))] = 8,.,-(t - s) a.s.

where 6, = 0 if i # {, §, = 1. Then x(¢) is a Brownian motion.

Proof. For any y ER"™ |y| = 1,the conditions of Theorem 5.1 are satisfied
for vy - x(f). Hence y - x(t) is a Brownian motion, Thus, in particular, each

x,(t) is a Brownian motion. It remains to show that these motions are

mutually independent. For this it suffices to show that % (x,(f), ¢t > 0) is
independent of F(x(¢), ¢t > 0) if i = j. Take, for simplicity, i = 1,§ = 2.

Since y,x, + ¥,%, is a Brownian motion if yf + y§ = 1,

Elvy%(8) + voxe(t)]*= t.
Since also Ex(t) = ¢,
Ex,()x,(t) = 0.
But then _
Ex,(t + $)x(t) = E{xy(t)E[x,(t + 5)|F,]} = Exy(t)x,(#) = 0,
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ie.,, x,(t + s) is independent of x,(f). Similarly x,(¢ + s) is independent of
x,(t). Since t and s are arbitrary nonnegative numbers, it follows that
% (x,(A), A > 0) is independent of F (x,(A), A > 0). This completes the proof.

One can easily check that an n-dimensional Brownian motion satisfies the
Markov property with the stationary transition probability function

p(t, x, A) =L-(—-2:t15;‘75exp[— Lx-—;;y—l- ] dy. (6.3)

By the method of Section 2.1 we can construct a time-homogeneous
Markov process corresponding to the transition probability (6.3). The sample
space consists of all R"-valued functions on [0, co). But we can also
construct another model {&,, I, IM,, &t), P} where {, is the space of all
continuous functions x(-) from [0, co) into R™, 9N, is the smallest o-field
such that the process

&(s, x(-)) = x(s) (6.4)
is measurable for all 0 € s < ¢, and
Pix(-); &(t)EA, ..., t)EAL)
= P{w; x+ w(t)EA, ..., x + w(f)EAL (6.5)

Theorem 6.3. (&, I, I,, §¢), P,} is a time-homogeneous Markov
process with the transition probability function given by (6.3).

Proof. For any set B in 9N, define
P.(B) = P{w; x + w(-, ) is in B}.

It is easily seen that P, is a measure on (8, L), satisfying (6.5). The rest
follows from Theorem 2.1.3.

To any continuous pr-dimensional Markov process {{*, F* F*5 x*(¢),
*.} we can correspond a Markov process {2, I, I3, &(¢), P, 8} havmg
the same transition probability function p. @ is the space of all continuous
functions x(+) from 0 € ¢ < oo into R”, O} is the smallest o-field such that
x(A) is measurable for any s < A < ¢, M = MY, &¢, x(-)) = x(t) and,
finally, ifs S < < gy,
P {x(); &(tp)eA, ... tt)EA =P lw; x*(H)EA, ..., x* () EAL}.
(6.6)
In fact, for any set B in GJK define
P = P* {w, w) EB}.
It is easily seen that PM is a measure on (SZ, M), and it satisfies (6.6). In
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view of Theorem 2.1.3, {&, O, O3, &(¢), P, ,} is then a Markov process
with the same transition probability function as for (Q*, %*, F*

x*(t), P, ). )

PROBLEMS
I. Recall that n random variables X,,..., X, are said to have joint
normal distribution (p, T), where p = (p;, ..., p,), T'=(Ty)]-, sym-

metric, if the characteristic function

flu) Eexp[zux} (0= (g o)

has the form
flu) = exp{ 21 it — % kElrikuiuk .
= k=

Prove that if this is the case then:

(a) The random variables X,, ..., X, are independent if and only if
Iy = 0 whenever i # j.
(b) 1f X, X; are independent for any pair (i, j), i # f, then X, .. ., X,

are mutually independent.
() If Y, =2%.,a;X; (1 < i < m) where g;; are constants, then

=1
Y, ..., Y, have jo'int normal distribution. '
@ w = EX, Ty = E(X — w)(X; — 1)
(e) If det I' # 0 then (X; — py, ..., X, — p,) has a distribution func-

tion p( y) given by

1
€X
(2m)"/%(det T')/2 P

p(y) =

1 X Ty ly:‘yfjl
if=1
where (I';") is the inverse matrix to T.

2. If x(#),t > 0 is a process with x(0) = 0 such that for any
0<t, <t <+ <t, the random variables x(ty), . . ., x(t,) have joint
normal distribution N (fi, ) where i = (p,..., p), F = (Tu) Ty =
o” min(#, £, then x(¢) is a Brownian motion with drift ¢ and variance o

3. Verify (1.5) for a random variable X with normal distribution N (0, 02)

4. Give a direct proof of (3.2). [Hint: Apply the method of proof of (3.1)
with ¢ > 1.]

5. If x(¢) is a Brownian motion, [x(t)/t]—0 a.s. as t—0c0.

6. Let x(£) be a Brownian motion and let I be an interval in [0, c0). Then
forany § > 0, P{x(nd)Elio0.} = 1.

7. If @ (1) = Zj.,a,w,(t) where (a;) is an orthogonal matrix and
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~

(wy(t), . . ., w,(t)) is an n-dimensional Brownian motion, then (&, . . ., w@,)
is also an n-dimensional Brownian motion.

8. If w(¢) is a Brownian motion then aw(t/a?) is also a Brownian motion,
for any positive constant a.

9. If w(t) is a Brownian motion and z(t) = explaw(t) — a*/2], a positive
constant, then

(i) Ez(t) = 1.
(if) z(#) is a martingale; in fact, if ¥, = % (w(A), 0 < A < ), then
E(z(8)|F,) = z(s)if t > s.
(i) P{maxyc, [w(s) —as/2]>B< e ifa>08>0.

10. Let u,(t) be Brownian motion defined on the same probability space,

P .
and suppose that u_(t)-> u(¢) for each t > 0, as n—oco. Prove that u(t) is a
Brownian motion,
11. If w(¢) is a Brownian motion and A is a positive constant, then, for any
T >0,

EeAvlg ¢ if 0<t< T,

where C is a positive constant depending on A, T.

12. Let %,,t > 0 be an increasing family of o-fields and let x(f) be
an n-dimensional process such that x(t) is %, measurable and
Elx(t + s)|%,] = «(t) for all ¢ >0, s > 0. Prove that if y - x(f) is a
Brownian motion for any y € R", |y| = 1, then x(t) is an n-dimensional
Brownian motion. [Hint: Cf. the proof of Theorem 6.2.]
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The Stochastic Integral

In this chapter we shall define the integral
T
T = t) dw(t
(T) = [ f() dwo(t)

where w(t) is a Brownian motion and f(¢) is a stochastic function, and study
its basic properties. One may define

T
(1) = f(Dw(T) — [ f(Hw(s) de

0
if f is absolutely continuous for each w. However, if f is only continuous, or
just integrable, this definition does not make sense.
Since w(t) is nowhere differentiable with probability 1, the integral
3f(t) dw(t) cannot be defined in the usual Lebesgue-Stieltjes sense.

1. Approximation of functions by step functions

We shall call a stochastic process also a stochastic function or, briefly, a
function.

Let w(t), t > 0 be a Brownian motion on a probability space (2, %, P).
Let %, (¢ > 0) be an increasing family of o-fields, i.e., ¥, C F, if t; < &,
such that %, ¢ %, ¥ (w(s),0 < s < ) isin ¥,, and

F(wA +¢t) — w(t), A > 0) isindependent of F,

for all £ > 0. One can take, for instance, F, = ¥ (w(s), 0 < s < ¢).

t

Let 0 < a < B < o0. A stochastic process f(¢) defined for a < t < B is
called a nonanticipative function with respect to %, if:

(i) f(¢) is a separable process;
55
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(if) f(¢) is a measurable process, ie., the function (¢, w)—f(t, w) from
[a, 8] X @ into R is measurable;
(iii) for each tE[a, B, f(t) is ¥, measurable.

When (iii) holds we say that f(t) is adapted to %,. We dencte by L?[a, 8]
(1 € p < o) the class of all nonanticipative functions f(t) satisfying:

P[j;ﬁ|f(t)[7" dt < oo} =1 (P{esssuplf(t)| < oo} =1lifp = oo).

a<ts fB

We denote by M?[a, 8] the subset of LP[a, 8] consisting of all functions
f with

E fa” F(O)IP di< oo (E[ ess supl £ (1) ] < o0 ifp = oo).

ast< f8

Definition. A stochastic process f(#) defined on [a, B] is called a step
function if there exists a partition a = t, < t, < -+ - <t = 8 of [a, B]
such that

floy=f¢t) if <t<t,, 0<i<r—1

Lemma 1.1, Let f € L2[a, B]. Then:

(i) there exists a sequence of continuous functions g, in L2[a, B] such

that

lim aﬁ F() — g(O)Fdt=0 as; (1.1)

n—o

(ii) there exists a sequence of step functions f, in L2[a, B] such that

n—o0

lim GB f() - f(OFdt =0 as. (1.2)

Proof. Let

t={cexp[—~1/(1-—t2)] if |t <1,
o) 0 if |t >1

where c is a positive constant determined by the condition [* _p(t) dt = 1.
Define f(t) = 0if t < a and let

=1
€

an@ =1 [ o(FE ) ds @e<n. (19

€
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Then J.f is clearly continuous, and

(fef)(t)=‘el‘ftizep(t_8*e) s) ds = f 1t — z — €) dz
(1.4)

By Schwarz’s inequality,

faﬁ(fiﬁzdmfaﬂ{f_ dzf fzt—z—c)dz}dt
< f_ p(z){ fm (1) dt} dz

8, 8
[oupta< [ f a (1.5)

o

Hence

For fixed w for which [#f%(t, w) dt < o0, let u, be nonrandom continuous
functions such that u, () = 0if t < a and

LB lu,(t) — f(t, @)> dt—0  if n—oo. (1.6)

Since u, is continuous, it is clear that
(J.u,)(t)—>u,(f) uniformlyin t€[a, B], as e-0.

Writing
LF 10 0 = fewfae < [P 150 0) ~ wl 0P
+ [ 100 = wa(OF de + [ " u, (1) - £(8 )P de
and using (1.5) with f replaced by f — u,, we get, after taking € -0,
T [P0 ) = flo o) de <2 [ a0 - f(8 o) d

E.I,O o

Taking n-soc and using (1.6), we obtain

hmf (IAH(t) — f(t)Pdt =0 a.s.

Since the integrand on the right-side of (1.4) is a separable process that is
‘f, measurable, the integral is also %, measurable. Consequently the asser-
tion (i) holds with g, = J, ,.f.
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To prove (ii), let

h,,,m(t)=g,,(%‘1-) fa+rEcrcar 21 0 <k<m(B - a)).
Then
Tim [ 7 by () — g dE =0 as. (17)

Now, for any § > 0,

P{fﬁ|f(t) ~ g (O dt >%} <-g— for some n = n,.

From (1.7) with n = n, we get

P [ gaf) = homltl at > 3 <

Hence

o | o

for some m = m,,

P[fﬁ|f(t) ~ By 1) dt > 6} <8

Taking 8 = 1/k and denoting the corresponding h,, . by ¥, it follows
that y, € L2[a, B] and

[ 1506 — wiorpas 5 o

But then there is a subsequence { f,} of {y,} satisfying the assertion (ii).

Lemma 1.2. Let f€M2{a, B]. Then:

(i) there exists a sequence of continuous functions k, in MZ[a, B] such

that
E fﬁlf(t) — k()P dt—0  if n->co; (1.8)

(ii) there exists a sequence of bounded step functions 1, in MZ[a, B8] such
that

E (710~ LOP @0 i noe. (19)

Proof. Let g, be as in Lemma 1.1. For any N > 0, let

[t if |t| < N,
onlt) = {Nt/ltl if |¢| > N.
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Notice that |y (t)— ¢y(s)| < |t — s|. Therefore

faﬂ o (F(2)) — én(ga(1))1* dt <LB 1F(8) = ga(t)2dt >0 as.

Since

S 180(£16) — on(enlt)P dt < 4N*(B ~ )

the Lebesgue bounded convergence theorem gives

E./;BMN(f(t))—¢N(gn(t))|2dt—>0 if n>o.  (L10)

Next,

B [ lo A1) - SO a < ¢ ] IO ar

as N— oo, since f € M?[a, 8]. From this and (1.10) it follows that for every
positive integer k there are N = N(k) and n = n(k, N) such that

B 1
E ["lon(ga(t) - f(OP dt < -
Taking h, = ¢y (g,) where N = N (k), n = n(N, k) and noting that h,(¢) is
nonanticipative, the assertion (i) follows.
The proof of (ii) is similar. The [, are of the form ¢y ( f,) where the f, are
as in Lemma 1.1. Notice that these are in fact step functions.

2. Definition of the stochastic integral
Definition. Let f(t) be a step function in L2[a, 8], say f(t) = f if

t, <t<t,,0<i<r—1wherea=1t<t <--- <t =p. Theran-
dom variable

is denoted by

and is called the stochastic integral of f with respect to the Brownian motion
w; it is also called the It6 integral.
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Lemma 2.1. Let f,, f, be two step functions in L:[a, B] and let A}, A, be
real numbers. Then A, f, + A, f, is in LX[a, B] and

fﬂ A fi(8) + A fol9)] dw(t) = A, fﬂfl(t) dw(t) + A, fﬁfz(t) dw(t).

(2.1)
The proof is left to the reader.
Lemma 2.2. If f is a step function in M_[a, B], then
E fﬁf(t) dw(t) = 0, (2.2)
B 2 8
E f ft) dw(t)| = E f FU1) dt. (2.3)
Proof. Since
B r-1
E [ £ dt=3 Eff(t)(t., — ) 2.4)
a i=0

is finite, by assumption, we deduce that Ef?*(t,) < cc. In particular,
E|f(t)] < . Also, E|w(t;, ;) — w(t)| < co. But since f(t) is ¥, measur-
able whereas w(t,, ;) — w(#) is independent of %, ,

Ef(ti)(w(ti+1) - w(tz')) = Ef(t‘-)E(w(tiH) - w(t,-)) = 0.

Summing over i, (2.2) follows.
Next, since f%(t,) and (w(t,,,) — w(t))* are independent and have finite

expectation, also f2(t,)(w(t;,,) — w(t,))® has finite expectation. By Schwarz’s
inequality it follows that

E| flt)f(£)(w(t, 1) — w(t))] < oo.
If k > 4, then w(t,, ;) — w(t,) is independent of f(t)f(t)(w(t.,) — w(L)).

In view of the last inequality and the finiteness of Elw(t, . ;) — w(t)|, we
deduce that

Ef(t)f(6)(w(t 1) — w(t))(w(try) — w(t)) = 0.
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Hence
2 r—1

= 3 Ef()(wl(t.) — wl(t)’

i=0

= 2 Ef2 (;+1) - w(ti))2

E

B
S ) dut)

B
= 2 Ef(t)(ty — t) = E [ f7(0) dt
by (2.4), and (2.3) is proved.

Lemma 2.3. For any step function fin L2[a, B] and for any e > 0, N > 0,

AL

Proof. Let

1) dw(t >e}<P{ff2 dt>N]+£Y (2.5)

f(t) lf tk t < tk+1 and 20 f2 7+1 - tf) < N,
‘ibN(t) = ’

0 if t, <t<t,, and Efz (41— ) > N,
i=0

where f(t) = f(t) if t <t <, tp=a <, <+ < =pf Then
¢y € Li[a, B] and

f (1) dt 2f2 (1 = 1)

where » is the largest integer such that

> fUt)t, —t) <N, r<r—1
i=0

Hence

B
Ef oa(t) dt < N.
Further, f(t) — ¢y(t) = 0 for all ¢ € [a, B) if f2f%(t) dt < N. Therefore

{faﬁf >e]<P{f¢N dw()>€}

+P{ fa f3(t) dt > N}.
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Since, by Chebyshev’s inequality, the first integral on the right is bounded by

2

1 N
'—§E <;§,

€

[7 owte) do(t

the assertion (2.5) follows.

We shall now proceed to define the stochastic integral for any function f
in L[a, B].

By Lemma 1.1 there is a sequence of step functions f, in L2[a, 8] such
that

Lﬂﬁn—ﬂm%uio i noo. (2.6)
Hence

im P[50 - f.(0P dt S o,

n,m—»o0

By Lemma 2.3, for any ¢ > 0, p > 0,

p{ Lﬂfn(t) duw(t) —j;ﬂfm(t) dw(t)l > e]

It follows that the sequence

<p+P{f

[+ 4

S E(8) = o (0P de > p}

([ 50 det))

is convergent in probability. We denote the limit by

[ o) et

and call it the stochastic integral (or the It6 integral) of f(t) with respect to
the Brownian motion w(?).

The above definition is independent of the particular sequence { f,}. For
if { g,} is another sequence of step functions in L2 [a, 8] converging to f in
the sense that

L7 leat) - floEae 5o

then the sequence {h,} where h,, = f,, hy, ., = g, is also convergent to f
in the same sense. But then, by what we have proved, the sequence

([ nt) duta)
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is convergent in probability. It follows that the limits (in probability) of
/5, dw and of fPBg, dw are equal a.s.
Lemmas 2.1-2.3 extend to any functions from L2[a, B]:

Theorem 2.4. Let f,, f, be functions from L:[a, B] and let \,, A, be real
numbers. Then A, f; + A, f, is in L%[a, B] and

fB I\ file) + A fo(6)] dw(t) = A, fﬁfl(t) dw(t) + A, Lﬁfz(t) dw(t).

o

(2.7)

Theorem 2.5. If f is a function in M2[a, B], then
B[ " 1t) duwlt) = o, (2.8)
E fo(t)dw(t) _E fﬂfz(t) dt. (2.9)

Theorem 2.6. If f is a function from L%[a, B], then, for any € > 0, N > 0,
B B 9 N
P{ fa f(t) dw(t)| > e} < P{ fa f2(t) dt > N] + R (2.10)

The proof of Theorem 2.4 is left to the reader.

Proof of Theorem 2.5. By Lemma 1.2 there exists a sequence of step
functions f, in M?2[a, 8] such that

B
E [TIf(t) = fORd—0  if n—oo.
This implies that

E [ 520 asE [y a (2.11)
By Lemma 2.2,
E f ’ £.(t) dw(t) = 0, (2.12)
= Ef £2(t (2.13)
B B B 2
E| [ f,.(t)dw(t)-L f (£) dus(1) -—-Efa |fu () = fu (O dt— 0

if n,m— 0. (2.14)
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From the definition of the stochastic integral,

[ Ao ey 5 [ o) )

Using (2.14) we conclude that actually

Lﬁfn(t) dw(t)**fff(t) dw(t) in L¥Q).

Hence, in particular,

E fﬁf(t) dw(t) = lim E fﬁfn(t) dw(t),

n—00

2 2

j;Bf(t) dw(t)| = lim E Lﬂfn(t) dw(t)

and using (2.12) and (2.13), (2.11), the assertions (2.8), (2.9) follow.

E

3

Proof of Theorem 2.6. By Lemma 1.1 there exists a sequence of step
functions f, in L2[a, B] such that

fa’g If.(8) - f(OEdt 5o, (2.15)
By definition of the stochastic integral,
B P B
fa £.(8) dw(t) 5 f F(t) dw(t). (2.16)
Applying Lemma 2.3 to f, we have

>e’} <P[fﬁf,?(t)dt>N’}+—N—’.

(¢)?

P{ j;ﬂfn(t) dw(1)

Taking n — oo and using (2.15), (2.16), we get

P{ [ 7 50t) dw(t) >e} <p{f’3f2(t)dt>zv] + X

(€)
for any € > €, N < N’. Taking € 1 ¢, N’ | N, (2.10) follows.

Theorem 2.7. Let f, f, be in L2[a, B] and suppose that

fa’g () - F(OFd 50 as n— oo, (2.17)

[Prinde 5 [Pridoty  as now (@18
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Proof. By Theorem 2.6, for any € > 0, p > 0,

p{| [ (400 - 1000 dota)] > <] < 2 [*1500)~ o ar > @) 40

Taking n—>cc and using (2.17), the assertion (2.18) follows.

The next theorem improves Theorem 2.5,

Theorem 2.8. Let fEMZ[a, B]. Then

5 [0 duls

E{ [ ste) ot 2|%;] - 5{ [" P a5, ) = [ el a
(2.20)
We first need a simple lemma,
Lemma 2.9. If f€LL[a, B] and ¢ is a bounded and ¥, measurable
function, then {f is in L%[a, B] and
[ spte) duote) = ¢ [ g0 ol (2.21)

Proof. It is clear that {fis in L2[a, B]. If f is a step function, then (2.21)
follows from the definition of the stochastic integral. For general f in
L2[a, B]. let f, be step functions in L2[a, B] satisfying (2.17). Applying
(2.21) to each f, and taking n->co, the assertion (2.21) follows.

Proof of Theorem 2.8. Let { be a bounded and %, measurable function.
Then {f belongs to M2[a, 8] and, by Theorem 2.6,

E fﬁff(t) dw(t) = 0.
Hence, by (2.21),

i.e.,

E{;E[ [P 5w dw(t)|Gfa” = 0.
This implies (2.19). The proof of (2.20) is similar.
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Theorem 2.10. If fEL2[a, B] and f is continuous, then, for any sequence
II, of partitions a =1, ( < t, < -+ <t . = f of [a B] with mesh
|11,,| >0,

m,— 1

EJMJWWHJ—MmMLL%MMM) as nooo. (222)

Proof. Introduce the step functions g,:
g.8) =f(toy) i t <t<t ,pp O0<k<m —L

For a.a. w, g,(t) — f(t) uniformly in ¢ € [a, 8) as n — cc. Hence

j;'8|gn(t) — (P dt—0 as.

By Theorem 2.7 we then have

[P ety dw(ty S [P 5 (1) du(t).

Since , m1
[Tl de = 3 flt)lwlt ) = w(b,0)

the assertion (2.22) follows.

Lemma 2.11. Let f, g belong to L%[a, B] and assume that f(t) = g(t) for
ala < t < B, wEQ, Then

faﬁf(t) dw(t) =fﬂ g(t) dw(t)  for a.a. wEQ, (2.23)

[+

Proof. Let y, be the step function in L2 [a, B] constructed in the proof of
Lemma 1.1, satisfying

B P
JUIR0 = wlerde S 0.
Similarly let ¢, be step functions in L2[a, ] satisfying

[ 1a0) - eiFa %o

From the construction in Lemma 1.1 we deduce that we can choose the
sequences ¢, Y, so that, if w €€, ¢ (t, w) = Y4 (t, w) for a < ¢t < B. Hence,
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by the definition ff the integral of a step function,

f‘Pk t) dw(t) f¢k t) dw(t) if we,

Taking k—>co, the assertion (2.23) follows.

3. The indefinite integral
Let f€ L2[0, T] and consider the integral

- fO “fs)dwls), 0<t<T (3.1)
where, by definition, [Jf(s) dw(s) = 0. We refer to I(#) as the indefinite

integral of f. Notice that I (t) is ¥, measurable.
If f is a step function, then clearly

ff ) dwl(s +ff ) duw(s ff Ydw(s) if 0<a<pB<y<T

By approximation we find that (3.2) holds for any f in L2[0, T].

Theorem 3.1. If f € M2[0, T, then the indefinite integral I(t) (0 < t < T)
is a martingale.

Proof. Let0 < t' <t < T. By (3.2) and Theorem 2.8,

E(10I%,) = BI)%,) + B[ f(5) ds|F,) = (1),

Theorem 3.2. If fEL2[0, T], then the indefinite integral I(t) (0 < t < T)
has a continuous version.

Proof. Suppose first that f € M2[0, T]. Let { f,} be a sequence of step
functions in M2[0, 7] such that

Ef dt——>0 if n—oc. (3.3)

Notice that the indefinite integrals
t
t) ==f fu(s) dw(s) (0<t<T)
0
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are continuous functions. By Theorem 2.8, I,(¢) — I, (¢t) is a martingale, for
each n, m. Hence, by the martingale inequality (Corollary 1.3.3)

P sup |1(8) = L,(0] > ¢
0<tgT
2

1
<< E

LT(fn(S) — £.(s)) dw(s)

1 T 2
< S E f | f.(s) — £.(s)]® ds—0 if n,m-—o0,
€ 0
Taking € = 1/2 it follows that for some n, sufficiently large,

P{ sup |I(t) — L,(t)] > 1 } <L if m > n,.

0<t<T ok k?
We can choose the n, in such a way that n, 1 if k 7. Hence,
1 1
P{ sup | (t) — L t>—]<— k=12, ...).
s (0 - L 0> & < )

Since £k 2 < oo, the Borel-Cantelli lemma inplies that

1
P{m L(t) = I, (0> i&]=Q
JSup IL(6) = I, ()] > &

i.e., for a.a. w

1 .
IL(t) — L (8] < oF forall 0<¢t< T, if k> kyw).

But then, with probability one, {I (f)} is uniformly convergent in
t€[0, T]. The limit J(¢) is therefore a continuous function in ¢t €[0, T] for
a.a. w. Since (3.3) implies that

j(-)t £.(s) dw(S)_,fOt fls) duls) in L2(Q),
it follows that
0 = [ ) duls) s

Thus, the indefinite integral has a continuous version.
Consider now the general case where f € L2[0, T]. For any N > 0, let

_ )1 if z<N,
Xol2) {0 if z> N, (3.4)

and introduce the function

i) = flep [ 1) ds). (85)

It is easily checked that f, belongs to MZ[0, T]. Hence, by what was
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already proved, a version of
t

=f fu(s) dw(s) 0<t<T)
0

is a continuous process.
Let

Q, = {fOTfZ(t) dt < N}.

If wey, then f (f) = fy(t) for 0 < t < T, M > N. By Lemma 2.11 it
follows that for a.a. w €Qy

WO =T4t) i 0<t<T
Therefore

J() = lim J(¢)

is continuous in ¢t €[0, T] for a.a. w EQ
Since 2, 1, P(2y) T 1if N T 0, ( t) (O < t € T) is a continuous process.
But since for each t£(0, T,

PLL IS = o) ds > 0] = p{ [ f%4s) ds > b} 0

as M—> o0, we have, by Theorem 2.7,

f) —P>f0tf(s) dw(s) = (1),

Consequently, I() has the continuous version J(#).

Remark. From now on, when we speak of the indefinite integral (3.1) of a
function f € L2[0, T] we always mean a continuous version of it.

Theorem 3.3. Let f&L2[0, T]. Then, for any € > 0, N > 0,

su dw(s
Plom,] o
Proof. With the notation of (3.4), (3.5) we have

_[ f(s) dw(s)| > c}
fotf(s) dw (s) _foth(s) dw(s)| >0

[ futs) dwis)] >

sel <Pl (Tpa>nl+ Y. @36
|><) <o roas )+ X oo

[ )

€

{0<t<T

< P{ sup
0<t<T

+P[ sup

0<t<T

= A + B.



70 4 THE STOCHASTIC INTEGRAL

By Theorem 3.1, f; fy(s) dw(s) is a martingale. Hence, by the martingale

inequality,
2

1
B < —E
€2

= SE [ (fulo) ds<

€

LTfN (s) dw(s)

Mol

Next, on the set

we have f(t) = f(t) for 0 < t < T. Hence, by Lemma 2.11, for each fixed ¢
in [0, T]

ff ) dw(s ffN dw(s) fora.a. wEQ.

Since both integrals are continuous processes, the last relation holds for all
t€[0, T] and for all weQ), CQ, where P({,\Qy) = 0, ie,

T
PNG,) = P{ f F3(s) ds > N}.
0
Combining the estimates on A, B, (3.6) follows.

Theorem 3.4. Let f,, f belong to L2[0, T] and assume that [I|f, — fI?
dt 5 0if n— oo. Then

ffndw ffdw

This is a consequence of Theorem 3.3.

-—> if n—o oo.

0<t<T

Theorem 3.5. Let f € M2[0, T]. Then for any A > 0

P{OS:ET j:f(s) dw(s) >)\} <;\1—2E LTf2(S) ds.  (3.7)

Proof. By Theorems 3.1, 3.2, the indefinite integral of f is a continuous
martingale. The inequality (3.7) then follows from the martingale inequality.
Another estimate is given in the following theorem.

Theorem 3.6. Let f € MZ[0, T]. Then

| sup | [0 duts

Like Theorem 3.5, the present estimate is also a consequence of the fact

2

=4E | " rt) de

0

[ £ de(o

[} <

(3.8)
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that [§f(s) dw(s) is a continuous martingale. The general result for martin-
gales is given in the following theorem.

Theorem 3.7. If X(t) (0 < t < T) is a separable martingale, then, for any
oa > 1,

E{ swp X0} < (2 ) BT (39)

The proof follows immediately from the following lemma.

Lemma 3.8. If { X} is a submartingale and X, > 0 for all n, then, for any
a > 1,

B[ max (X)*] <25 ) E(x)" (3.10)

Proof. Let Y = max, ;.. X;- For any A >0, set ;(A\) = 1 if X; <A for
1<i<k-—1 X, > A and x(A) = O otherwise. Then Z%_ xc(A) =1 if
A< YandZ%o x:(A) = 0if A > Y. It follows that, for any 8 > 0,

Y =8 fwxﬂ'l[ > xk(A)J dA. (3.11)
0 k=1
Since Ax; (A) € Xpxi(A),
A2 a) < 2 AT (A, (3.12)
k=1 k=1
Observing that x, () is measurable with respect to F(X,, . .., X;) and using
the submartingale assumption, we get
E{X,xMIF(X,, ..., X)) > xME{X,[F(X, .. X)) 2 M)XK,

Taking the expectation in (3.12) and using the last inequality, we find that
EAT 3 x{A) < EAC? kil xNX,.
Integrating with respect to A and using (3.11), we get
iEY"‘ < Ei_1 EY* X,

By Holder’s inequality,

EY® < —2— (EY*)" "/ (Ex)/",

and (3.10) follows.

Remark. It is clear that all the results derived so far in this section
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regarding the indefinite integral (3.1) extend to indefinite integrals

fat fs) duls).

Theorem 3.9. Let f € M2[a, B]. Then

5
——
N

4E[ faﬁf2(t) dt|@j,}. (3.13)

The proof is left to the reader.

Definition. Let 7, be a random variable, 0 < 7, < T. If fEL2[0, T], we
define

) “fls) duls)

to be the random variable I(r,), where I(t) is given by (3.1).
From Theorems 3.1, 3.2, and 1.3.5 we deduce:

Theorem 3.10. If f € M2[0, 7] and r is a stopping time with respect to ¥,,
0<7< T ie, {1<t}) €% forall 0 < t < T, then the process
TAL
[ fs)dw(s),  0<t<T
0
is a martingale and
T/t
E [ f(s)dw(s) = 0. (3.14)
0

4. Stochastic integrais with stopping time

If fEL2[a, T] for all T >0, then we say that f belongs to Li[a, o0).
Similarly we define f € M2[a, ).

Let f€ L2[0, T] and let {,, {, be random variables, 0 < §; < {, < T. We
define
&

(41
f(t) dw(t) —fo (1) dw(t).

$2
1

f18) duolt) = |

0

Lemma 4.1. Define x,(t) = 1if t < §{, x,(t) =0if t > {, (i = 1, 2). Then
the x;(t) are %, measurable and

$a T T
[ f) duo(e) = f(, Xat)f(t) dw(t) - f( x(OF() dw(t).  (4.1)

)
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Proof. It is enough to prove the lemma in case {; = 0. It is clear that y,(t)
is %, measurable; in fact, it is a nonanticipative function. In case f is a step
function and ¢, is a simple function, (4.1) follows directly from the definition
of the integral. In the general case, let f, be step functions such that

fOT|fn(t) — f(t)P? dt £0  if nooo,

and let {,, be simple stopping times such that {,, | {, everywhere if n 1 o
(cf. Lemma 1.3.4). We have

§2n

() d(®) = [ xon(0) (1) duo () (42)

where x,,(t) = 1 if t< o, Xen(t)=0if t> §{, . It is clear that
Xzn (£)—>Xo(t) for all w and ¢ # {,(w), as n— 0. Hence

fOTIXQ,,(t) — xo()Pf(t) dt >0 as. as n— oo,

by the Lebesgue bounded convergence theorem. We also have

[ bl OFA0 - AOR 50 s as noee

Putting these together, we find that

T
[ el = xoOf(OF e 50 as oo
Hence, by Theorem 2.7,

fOsz,,(s)f,,(s) duw(s) 5 fOsz(s)f(s) dw(s). (4.3)
By Theorem 3.4,
Sup f fn dw f f dw —-) 0 if n— co.

It follows that

§21‘l §2n

fu(s)dw(s) = [ f(s)dw(s) 50 i n—o0.

Since from the continuity of the indefinite integral we also have
ng"f(s) dw s) —>j:2f(s) dw(s) as. as n-— oo,
we find that
f‘“"f,, dw(s f"f dw(s) if n-— .
Combining this with (4.2), (4.3), the formula (4.1) (in case {, = 0) follows,



Theorem 4.2. Let f € MZ2[0, T] and let §,, {, be stopping times, 0 <
$, € § < T. Then

E ;f(t) dw(t) = 0, (4.4)

[ fie) t]-—Eff2 (45)
Proof. Let x,(t) =1ift <, x(t)=1ift > {,. By Lemma 4.1,

§2 T
£(8) duw(t) = [ () = xa(6)f2) duo(e).
$1 0

Applying Theorem 2.5 to the right-hand side, the assertions (4.4), (4.5)
readily follow.

Note that (4.4) follows also from Theorem 3.10.

Theorem 4.2 is a generalization of Theorem 2.5. The next theorem is a
generalization of Theorem 2.8,

Theorem 4.3. Let f € M2[0, T] and let §,, {, be stopping times (with
respect to %), 0<§'1<§’2< T. Then

Ef [0 dulo)5, | = (46)
{ff dw (¢ H;]—E{f F2(1) dt|F, } (4.7)

Here ¥, denotes the o-field of all events A such that
ANn({<s) isin %, forall s > 0.
Denote by * the o-field generated by all sets of the form
AN >t), A€F, t>0.
We shall need the following lemma.

Gx.

Lemma 4.4. For any stopping time §{, §, = ¢

Proof. Let B= AN({ > 1), AEY,. Forany s > 0, let
C=Bn{ <s)=An >n(¢ < s).
s <t thenC=ge%,. Ifs >t then
C=[Acu(t < T n(¢ < s)

where D¢ is the complement of D. Since A°€ &, and (§ < t)€ €, it follows
that [A°U({ < t)]°E%,. Hence CE%,. We have thus proved that
BN(§ < s)isin %, for all s> 0,ie, Be "Y It follows that F* C ‘F;.
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Conversely let B € %, . Then
B,=Bn({ < s isin %, forall s> 0.
Hence B = B°U({ > s)isin ¥,, and since
B = BN ({ > s),

it follows that BS is one of the sets that generate ¥*. Therefore Bf € F*.
Since % is a o-field, B, belongs to ¥*, and also hmsTwBsE G But thls
limit is the set B. Hence B € ¥*.

Proof of Theorem 43. Let C= A N ({; > s5), A € ¥,. Its indicator func-
tion xc = X,X,(s) is &%, measurable. Consider the functlon

Xc(Xz(t) - x,(t)) = XAXI(S)(Xz(t) - X1(t))-

If s < t, each factor on the left is in ¥,, and so is then the product. If s > ¢,
then x,(¢) = 1, so that x,(t) — x;(t) = 0. Thus the product is again in ,.
We have thus proved that

xclxz(t) — x,(8))  is ¥, measurable for any set C. (4.8)

Let B € %, . From the proof of Lemma 4.4 we have that BS has the form
of the set C for which (4.8) holds. Hence also

Xxa, (X2(t) — x:1(1)) is % measurable.
Taking s 1 o0 we conclude that

Xz (X2(t) — x1(2)) is F, measurable.
We can now proceed as in the proof of Theorem 4.2 to prove that

Exa [ £(0) dwo(t) =,

2
§
= E f * xaf¥(t) dt
$r

® fle) dw(t)

and the assertions (4.6), (4.7) follow.
As an application of Theorem 4.3 we shall prove:

Theorem 4.5. Let fE€L2[0, o) and assume that {Pf*(t) dt = o0 with
probability 1. Let

(t) = inf{s; j: F2A) dA = t},

then the process

is a Brownian motion.
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Let t
t*(t) = fo F3(s) ds

Then  is the left-continuous inverse of t*, i.e., 7(t) = min(s, t*(s) = t). t* is
called the intrinsic time (or intrinsic clock) for I1(t) = (} f(s) dw(s). Theorem
4.5 asserts that there is a Brownian motion u(¢) such that u(t*(¢)) = I(t).

Proof. Tt is easily verified that 7(¢) is a stopping time. Notice next that
FrttyC Frpy if 1 < ty. Indeed, if AE G, ), then AN[r(t)) < s]isin T, for
all s > 0. But since 7(tp) > 7(t)),

An[r(t) < s]={Anl(t) < slinlr(t) < s8]  isin F,.

Thus A € %,,,. We shall now assume that f € MZ[0, ©) and f(t) = 1 if
t > A, for some A > 0. Then 7(t,) < t; + A and, by Theorem 4.3,

E{ f:(tg) f(s) dw(s)|(ff,(tl)} = 0,

T(ty)
: )
7(t,
E{ |fo(f1)} =E { f( )2 fz(s) dSlGJ'T(tl)} = t2 - tl‘
T tI

If we prove that u(¢) is continuous, then Theorem 3.5.1 implies that u(t)
is a Brownian motion. From Theorem 3.6 we deduce that

E{ t’<stléI:’+ lu(t) — u(s)lz} < 4E[ j;:t(:ﬂ) 12(s) ds} = 4e.

7(tg) s dw(s
" f(s) s

t<s<t+e
Since t’ is arbitrary,

P{ sup |u(t) —u(s)|>e°‘} <£
[t—s|<e €
t>0,520

Taking @ = 4, € = 1/k* and using the Borel-Cantelli lemma, we find that

P{ sup  ju(t) —u(s)| > 1/k io. } =0, ie. u iscontinuous.
lt—s|<1/k*

t»0,520
For a general f € M2[0, «0), apply the preceding result to f, where fy(¢)
= f(¢)if £ <A, fy(t) = 1if t > A Since (by Theorem 4.7 below)

f ) £(s) dw(s f 'f(s)ds ae.onthe setA > (),

where 7, is the 7 function of f,, Problem 10, Chapter 3 implies that u(¢) is a
Brownian motion.
So far we have proved the theorem only in case f € M2[0, o0). Now let
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€ L2[0, o) and define xy, fy as in (3.4), (3.5). Then f,, € M2[0, o), so that
w N* N N w

™)

fo fils) dwls)

is a Brownian motion. But 7 (t) = 7(t), fy(s) = f(s)if 0 < s < 7(¢), t < N.
Hence (by Theorem 4.7 below)

fTN Fils) dw(s f fts) duols

if N > t. It follows that the function on the right is Brownian.

Corollary 4.6. Let fEL2[0, ), | f| < K where K is a constant. Then, for
any a > 3,
t
"513 f fls) dw(s)—>0  if t—c0. (4.9)
0

Proof. Let M > K and define
e(8) = [ (fls) + M)* ds,
0

a(t) =j(; (f(s) + M)* dw(s) (7 = inverse of t*).

Since |f+ M| > M — K > 0, the function t*(¢) is strictly monotone in-
creasing to oo as t 7 co. Hence a(t) is defined for all £ > 0 and, by Theorem
4.5, it is a Brownian motion. But then, by the law of the iterated logarithm,

a(t)

s if t-—o00,

or

t*(t
M -0 a.s. if t—o0.
(*(1))

Noting that t*(t) < (K + M), we get

‘t'lE j;t (fls) + M) dw(s)->0 as.  if t—oo.

Using the fact that (w(t)/t*)—0 if t—>00, the assertion (4.9) follows.

Theorem 4.7. Let f€L2[0, ), g€ L2[0, ), and set

gj;t fls) dw(s),  k(¢) ”j: g(s) dw(s)

Let 7 be a random variable, t > 0, and assume that f(s) = g(s) if s < 7.
Then h(t) = k(t) a.s. if t < 7.
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Proof. Construct, by Lemma 1.1, step functions f,, g, which belong to
L2[0, T] and which satisfy
T r P
[ - ferde S0, [ gt - g®lFdt - 0
0 0
as n — co. That construction is such that
fa (s, @) = g.(s, w) if s<rtw)AT (4.10)
Let
t t
ho(f) = [ fu(s) dw(s), k() = [ ga(s) dw(s).
0 0

From the definition of the integral of a step function and from (4.10) it
easily follows that

h.(t, w) = k,(t, w) if t<7(w) AT (4.11)
By Theorem 3.4,
sup |k () — h(t) 5 0, sup 1k () — k(t)] 50
0<t<T 0<t<T
if n—oc. Hence, for some subsequence {n'},
sup |h,(t) — h(t)| =0, sup (k,(t) — k()]0 as.
0<t<T 0<t<T

if n"—>o0. Recalling (4.11), we find that for a.a. w,
h{t, w) = k(t, w) if t<7(w)AT.
The proof is now completed by taking a sequence T = T, 1 o0,

5. Ité’s formula

Definition., Let £(t) (0 < t < T) be a process such that for any
0< <t <T

f(t) — (1) = ® alt) dt + f ® b(t) dwlt)

where a€LL[0, T], b€ L2[0, T]. Then we say that £(t) has stochastic
differential d £, on [0, T], given by

d&(t) = a(t) dt + b(f) dw(?).

Observe that £(t) is a nonanticipative function. It is also a continuous
process. Hence, in particular, it belongs to L’[0, T].

Example }. If 0< ¢, <t;and II, = (¢, =4 |, ¢, ¢,...,¢4, , =10} isa
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sequence of partitions of [#;, t,] with mesh |II,|—0 then, by Theorem 2.10,
fg ﬂ_l

memm=m12wmmmmm—mm»

n-—» o0 k*l

- (w(tn,k+l) — w(t, k))2}

= (w(ty) = d(w(t))’ = 4 lim 3 (w(t, 1) = wlt, 1)

n-—» 00 k=1

where lim,_, , is taken as the limit in probability.
By Theorem 3.3.3, the last limit in probability is equal to ¢,—¢,. Hence
ty

L w(t) dw(t) = § (w(t))*— § (w(t))~ }(t, — t,), (5.1)

or

d(w())’= dt + 2w(t) dw(d). (5.2)

Example 2. By Theorem 2.10,

to n—1
f t dw(t) = lim >ty flw(t, o) — wlt, )] in probability.
f na v T ’ ’

to n—1
J o wl)dt=lim 3wl k) ker = o)
1

n—0o0 k=1

for all w for which w(t, ) is continuous. The sum of the right-hand sides is
equal to

n—1
Jim_ 2t partolty pe1) = toswl(t, )] = tw(ty) — tyw(t,).
k=1

Hence X
d(tw(t)) = w(t) dt + t dw(t). (5.3)

Definition. Let £(t) be as in the definition above and let f(t) be a function
in L[0, T]. We define

) d&(t) = f(t)a(t) dt + flt)b(t) dw(t).

Example 3. f(t) d§(t) is a stochastic differential dn, where

| (1) -j: f(s)a(s) ds + j: f(s)b(s) dw(s).
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Theorem 5.1. If d§,(t) = a,(t) dt + b,(t) dw(t) (i = 1, 2), then
d(£,(0)6(1) = &,(1) d&,(2) + &,(2) d&)(2) + by(t)by(t) . (5.4)

The integrated form of (5.4) asserts that, for any 0 < ¢, < ¢, < T,
£, ()5, (2,) — &,(2)6(¢ £(tay(t) dt + | &
(talt) = &a)ele) = [ E(0autt) de + [ " 4(0bufe) )
+ t)a,(t) dt + &,(t dw(t
| fh £lt)a( f A(2)by(t) dro()

+ ® b (t)by(t) dt. (5.5)

Proof. Suppose first that g, b, are constants in the interval [¢,, ;). Then
(5.5) follows from (5.2), (5.3). Next, if g, b, are step functions in [t,, t,),
constants on successive intervals I, I,, ..., I,, then (5.5) holds with ¢, ¢,
replaced by the end points of each interval I, Taking the sum we obtain
(5.5).

Consider now the general case. Approximate g, b, by nonanticipative step
functions a, ,,, b, ,, in such a way that

[710,406) = afol @0 s,

i, n?

f lei, A1) — bt dt—0 as.
4]

Let
0) + fo a, (s) ds + fo " b, (s) duwls).

By Theorem 3.4,
sup |50 — &0 50 if noo;

0<t<T
hence there is a subsequence § . such that

& (1)—>&(t) uniformlyin tel0, T], as. (5.6)
Using (5.6) and Theorem 2.7 it is easily seen that

S (BB (0) d(t) = [*&(Oh(1) dw(d)

as n = n’ — oo. Clearly also
g (t)a;, (1) dt—af & (t)ay(t

" by a(t)b, o (2) dt— [ by()by(t) dt

t
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a.s. Writing (5.5) for g, ,, b, ,, § , and taking n—co, the assertion (5.5)

follows. Since t,, ¢, are arbltrary the proof of the theorem is complete.

Theorem 5.2. Let d§(t) = ( )dt + b(t) dw(t), and let f(x, t) be a con-
tinuous function in (x, ) ER" X [0, o) together with its derivatives f,, f,..
f,- Then the process f(§(t), t) has a stochastic differential, given by

dfié(r), &) = [£((0), ) + £(£(0), t)a(s) + 3f.(4(2), 6)b%(r)] e
+ f(&(t), )b(t) dw(z). (5.7)

This is called It6’s formula. Notice that if w(f) were continuously
differentiable in ¢, then (by the standard calculus formula for total deriva-
tives) the term } £, b? dt would not appear.

Proof. The proof will be divided into several steps.

Step 1. For any integer m > 2,
d(w(t)"= m{w(®)™ "+ dm(m ~ 1)(w(e)" " dt, (5.8)

Indeed, this follows by induction, using Theorem 5.1.
By linearity of the stochastic differential we then get

dQ(w(t) = Q'(w(t)) dw(z) + 3 Q" (w(t)) dt (5.9)

for any polynomial Q.

Step 2. Let G(x,t) = Q(x)g(t) where Q(x) is a polynomial and g(¢) is
continuously differentiable for ¢ > 0. By Theorem 5.1 and (5.9),

aclw(t), 1) = flul())dgt) + g(t)dflw(s)

=[flw()g'(2) + tg(t)f"(w(t))]dt + glt)f (w(t)) duwl(t),
ie,forany 0 < £, < ¢, < T,
Glw(ty), 1) — ), 1) = L + 3 Cu(w(t), )] dt

1
¢y

+ f C.(ue(), #) duo (). (5.10)

1

Step 3. Formula (5.10) remains valid if
% t) = 2 filx)glt)
i=1

where f,(x) are polynomials and g, () are continuously differentiable. Now let
G, (x, t) be polynomials in x and ¢ such that

Gn(x, t)-)f(x, t),

d d d
I Ga(x, ) > f.(x, t), " alx, t)=f (x, 1), 7 G.(x, )= f(x, t)
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uniformly on compact subsets of x, ) ER! X [0, o); see Problem 11 for the
proof of the existence of such a sequence. We have

Gilelto) ) = Goluwlt. ) = [ | &G, fwle) 0

2 2"
+ f; 2 Gl 0 dwls) (5.11)

It is clear that
j;ltz [ % Cn (w(t), t) + % — (w(t), t)] dt
"*f [fe(w(t). 1) =4 fu (w(2), 1)} dt as,

2
dt—> 0 a.s.

o Cu(t(t), ) = fu(w(t) 1)

Hence, taking n—cc in (5.11), we get the relation

flwlty), ) = flw(t). v) = [ * (Al ) + (o), 0] d

L
t

1

+ ® f (wlt), 1) dw(t). (5.12)

Step 4. Formula (5.12) extends to the process

D(w(t), t) = fl§, + a,t + byw(2), t)
where £,, a,, b, are random variables measurable with respect to ?Ftl, ie.,

@(w(tz), tz) - q)(w(tl)’ tl) =j; [f,(§(t), t) + fx(g(t)’ t)al

+ 3. (E(t), 1)b2] dt

+ j;tzfx(g(t), £)b, dw(t) (5.13)

where £(t) = £, + a;t + byw(2).
The proof of (5.13) is a repetition of the proof of (5.12) with obvious
changes resulting from the formula

dE(e)" = m(E(D)" (o, dt + by dw(0)] + §m(m — VE)" b} dt,
(5.14)
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which replaces (5.8). The details are left to the reader.
Step 5. If a(t), b(t) are step functions, then

fl8(ta). t2) — f((t0): 1)) = j;ltz [ £, (&(8), &) + £ (&(1), Ya(t)
+ § f (8(2), 1)DP(8) | dt

+ftt2fx(£(t), 8)b(t) dw(t). (5.15)

Indeed, denote by I, . . ., I, the successive intervals in [t,, t,] in which a, b
are constants. If we apply (5.13) with ¢,, ¢, replaced by the end points of I,
and sum over [, the formula (5.15) follows.

Step 6. Let a,, b, be nonanticipative step functions such that

i "la() - a(t)] dt>0 as. (5.16)
fOlei(t) —b(t)Par 5o, (5.17)
and let
&(t) = £(0) + fo “ay(s)ds + fo *b(s) duw(s)
Then

sup |&,(1) — £()] 5 o.

0<t<T
Hence, for a subsequence (i},
, Sup Ttg,.(t) — &t)|-0 as. if i=i—00. (5.18)
This and (5.17) imply that
[ 1L, 0bl) - £&6, Db (IR & B0 i = ien
It follows that
[ A0, 0b(0) de(0) 5 [ £(e0, 000 dul) i i = oo
It is clear from (5.16)-(5.18) that also
f: (£ (&0, ) + L&), (1) + 3 fu (6(1), £)(By(1))?] dt

= [ [fle(0). ) + £le(e). Dale) + 3 fu (&0 B2(1)]

ifi =i > o0.
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Writing (5.15) for a=a,, b=b, {=§ and taking i = i'>00, the
formula (5.15) follows for general a, b. This completes the proof of the
theorem,

Théorem 5.3. Let d&(t) = a,(t)dt + b(t)d§ (1 < i < m) and let
flxy, ..., x,.t) be a continuous function in (x,t) where x =
(xp, -« ., x,)ER™, t > 0, together with its first t-derivative and second
x-derivatives. Then f(§,(t), . . ., &,(t), t) has a stochastic differential, given
by

m

df (X (), 1) = | i (X(8), t) + 2 £, (X(2), t)a(2)

i=1

1D fn (X0, Ob()by(1) | de

+ gl fe (X (1), t)by(1) dw(1), (5.19)

where X(t) = (§,(¢), ..., £, (1).

Formula (5.19) is also called Itd’s formula. It includes both Theorems 5.1
and 5.2,
The proof is left to the reader (see Problem 15).

Remark, I1to’s formula (5.7) asserts that the two processes f(£(2), t)

— f(£0), 0) and
f: [fs(-f(s), s) + f{&(s), s)als)+ 4. (£(s), s)b%(s)] ds
+ j: f.(&(s), s)b(s) dw(s)

are stochastically equivalent. Since they are continuous, their sample paths
coincide a.s. Consequently

fE(r). 7) = f(§(0), 0) =f07 [£L£(2), ©) + £A&(0), t)aly)
+ 4, (&(2), ) b2(1)] dt

+f "Fee), Db(D) duwls) (5.20)

for any random variable r, 0 < 7 < T.
If, in particular, 7 is a stopping time, when, taking the expectation and
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using Theorem 3.10, we find that
EAi§(r). 7) = EA§(0), 0) = E [ (LAE(0). 1) de (5.21)

where
Lf = f, + af, + §b¥...
provided
b(t)f(&(t, t))  belongsto  MZ0, T},
(Lf)(&(t),t)  belongsto MO, T].

6. Applications of Ito’s formula

Ito’s formula will become a standard tool in the sequel. In the present
section we give a few strajghtforward applications. First we need two
lemmas.

Lemma 6.1. If fELF[a, B] for some p > 1, then there exists a sequence
of step functions f, in LP[a, B] such that

lim B|f(t) — f.(Pdt a.s.

—» 00

Proof. The proof is similar to the proof of Lemma 1.1. Instead of (1.5) we
now have

B B
[Fufrar< [T 1fir ar (6.1)
Indeed, from (1.4) and Holder’s inequality,

faB IAdld dtgfa'8 [f; o(z) dz]p/q[f‘ p(2)| f(t — z — ¢€)|P dz] dt

- €

<[ p(z>[fafl |F(OlP dt} dz (ip + 3 = 1)

and (6.1) follows. (If p = 1, we do not use Holder’s inequality.)
Using (6.1) we can proceed to show that

fBIJJ— flrdt—-0 i )0, (6.2)

by the argument given the proof of Lemma 1.1. The rest of the proof is the
same as for. Lemma 1.1.
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Lemma 6.2. If fEe ME[a, 8] for some p > 1, then there exists a sequence
of bounded step functz'ons fn in MP[a, 8] such that

Ef | £(2) (t)|P dt—0 if n—o0.

This follows by obvious changes in the proof of Lemma 1.2, exploiting
Lemma 6.1.

Theorem 6.3. Let f € MZ™[0, T| where m is a positive integer. Then
2m
T T
E[f f(9) dw(t)l < [m@Em - 1)]'"T"“1[E f 27 (8) dt}. (6.3)
0 0
For m = 1, there is equality.

Proof. We apply Itd’s formula with f(x, t) = x®™, &(t) = [§ f(s) dw(s), and
obtain

[ dw(s)]2m= o [ [ 500 dwmr'""‘f(s) dos)
miam = 0 [ [ [0 dw]” 0 b 0

Suppose f(t) is a bounded step function. From the definition of
8 f\) dw(\) and the fact that

Elw(t) < C,, (C,, constant)
for any ¢ > 0, r > 0, we find that

o dwmrm—Iﬂ” belongs to [0, T}

Hence, taking the expectation in (6.4) and using Theorem 2.5, we get

2m -2

T am T s
E = — 2 )
L dwis)] = mim - [T [ dop] ) ds
(6.5)
By Holder’s inequality, the right-hand side is bounded by

m(2m — 1){fOTE[j:f(A) dw(?\)rmds} {fOTEfz’" (s) ds}mm.

(6.6)
From (6.5) we see that the function

e~ E| [ f0) dw(s)r'"

(2m—2)/2m
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is monotone increasing in ¢. Hence

fOTE[fosf(A) dw(?\)rm ds<j(;TE[f0Tf(?\) dw(?\)rm ds.

Using this to estimate the first expression { - - - } in (6.6), we then obtain
from (6.5),

e[ 710 dw]
< m(2m - 1){ TE[ INC dw(s)rm}(m Wm{ [ B s ds}l/m,

and (6.3) follows.
To prove (6.3) in general, we can take, by Lemma 6.2, a sequence of
bounded step functions f, such that

E f Ift) — f.()P™ dt—0 i n—soo. (6.7)

Then
ff,, £) dw(t ilff(t ) duw(t

We may assume that the convergence is a.s., for otherwise we can take a
subsequence of the f,. Writing (6.3) for f,, and using Fatou’s lemma and
(6.7), the assertion (6.3) follows.

From Theorems 3.7 and 6.3 we obtain:

Corollary 6.4. If fE€ M2"{0, T] where m is a positive integer, then

T
m—1 2m
[ozggr-{f dw(s }QCmT Efo | f(£)|P™ dt
where C, = [4m3/(2m — D™,

Theorem 6.5. Let f €L2[0, T], and let a, B be any positive numbers. Then
_a ‘ 2 —aff

{MKTU FN) dw(N) 2f0f()\)d?\l > ,8} <ot (68)

Proof. Consider first the case where f is a bounded step function, and set

ff ) dw(A gf F2N) dA,
$(e )===exp[t.t (1)
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Applying It6’s formula to f(x) = e* and the process &(¢), we get
t
() = §(s) + [ e FN) duwn).

Since f is a bounded step function,

l
efN < A, ]I el
i=1

for some positive numbers A,, t. It follows that [exp(£(A))] f(A) belongs to
MZ[0, T]. Hence, by Theorem 2.8,

ER()]F,] = ¢(s), (6.9)
i.e., {(¢) is a martingale. Note also that E§' (0) =

Set
(0 = i) dw —gL

&0 = [ af(h) & U—%Kﬁmﬂ

By what we have already proved, exp(, (1)) is a martingale with expecta-
tion 1. Hence, by the martingale inequality,

P{ Or(ntaé(Tfja(t) > B} = P{ Or<ntaé(T[exp £(0)] > e“ﬂ} < e,

This proves (6.8) in case f is a bounded step function.
Now let f be any function in L2 [0, T] and take bounded step functions f,
such that

f | £.(t) — f(H)]2 de—0 a.s.
Theorem 3.4 implies that
f fuls) duw(s f F(s) dw(s

By taking a subsequence, if necessary, we obtain convergence a.s. It follows
that a.s.
t t
ex A dwd) = £ [ 2N dAa
p| [ £ duot) ~ § £ ar

eexp{fotf()\) dw() - 5 fotfz()\) d)\]

uniformly with respect to £, 0 < ¢ < T. Hence, by writing (6.8) for each f,
and taking n— oo, the assertion (6.8) follows.

The inequality (6.8) will be referred to as the exponential martingale
inequality.

in probability.

0<t<T
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Corollary 6.6. If f€L2[0, T, then the process
¢(t) = exp{f FON) dw(n f £\ d)\} (6.10)

is a supermartingale, i.e., —{(f) is a submartingale.

Proof. Define
= [0 dwl) + [ £,0) dw) ~ & [7 ) dh =} [ £200 dA
£ (1) = exp(,(1))

for s < t < T, where the f, are step functions as in the preceding proof. By
the proof of (6.9), §,(t) is a martingale for s < ¢ < T. Hence, for any event

AEG,
fg t) dP = fg (6.11)

Notice that {, (s) = {(s) where {(¢) is defined by (6.10). If n = n’—o0 ({n’}
a suitable subsequence of {n}), then {,(t)—{(¢) a.s. Hence, taking n—co in
(6.11), and using Fatou’s lemma, we get

ng(t)dP <fA ¢(s) dP

and the assertion follows.

7. Stochastic integrals and differentials In n dimensions

Let w(t) = (w,(t), . . ., w,(t)) be an n-dimensional Brownian motion. Let %,
(t > 0) be an increasing family of o-fields such that w(¢) is %, measurable
and % (w(A + t) — w(t), A > 0) is independent of %,, for any ¢ > 0.

We shall say that a matrix of functions belongs to LE[a, B] (or to
MP[a, B)) if each of its elements belongs to L2[a, B] (or to ME[a, B]).

Let b = (by) be an m X n matrix that belongs to L2[a, B]. The stochastic
integral {Pb(t) dw(t) is an m-vector defined by

faﬁ b(t) dwl(t) = { é faﬁ b, (1) dwi(t)}.

where each integral on the right is defined as in Section 2.
If we substitute a = [ fdw, B = [#gdw, in the identity 4af =
(@ + B)> — (a — B)% and use Theorem 2.5, we find that

E [ fl0) dufe) ﬁ 0) duwt) = E f A(t) (7.1)
provided f and g belong toM2[t,, t,].
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We also have

Ejfﬂﬁmqqfkmd%m=o it (7.2)

because the integrals are independent and with zero expectation.
Using (7.1), (7.2) we easily see that if b = (b;) is an m X n matrix in
M2[t,, t,], then

EU% ) dw(6)? = E [* |b(t)F dt (7.3)
where ] o l
b =2 3 ()
i=1 j=1

Definition. Let &(t) be an m-dimensional process for 0 < ¢ < T, and
suppose that, forany 0 < ¢, < ¢, < T,

&(t,) — &(t)) = fttz a(t) dt +ftt2 b(t) dw(t)

where a = (ay, ..., a,) and the m X n matrix b = (b,) belong to L, [0, T]
and L2[0, T] respectively. Then we say that £(¢) has a stochastic differential
d§(t) given by

d&(t) = a(t) dt + b(t) dw(t). (7.4)

We shall now state It6’s formula.

Theorem 7.1. Let u(x, t) be a continuous function in (x, )ER™ X [0, o0)
together with its derivatives u,, u,, U, . Let £(¢) be an m-dimensional

process having a stochastic dtfferentwl

d&(t) = a )dt + b(t) dw(t)
where a = (a,, ...,qa,) and b= (b)) (1< i< m, 1< j< n) belong to
LL[0, T] and L2[0, T] respectively. Ti;en u(é(¢), t) has a stochastic differen-
tial

m

du((t), 1) =| u,(&(2), 1) + 2 u, (&(2), t)a,(2)

i=1

m

+3 2 2 . (E(2), b,,(t)b,.,(t)]dt

[=1i,j=1
n m

+ 2 X u, ((t), 1)by(t) due). (7.5)

[=1 im=1
We begin with
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Lemma 7.2, If w,, w, are independent Brownian motions, then

d(w,w,) = w, dw, + wydw,. (7.6)

Proof. It is easily seen that w(t) = (w, + w,)/ V2 is a Brownian motion.
Hence, by (5.2)

d(w? = dt + 2w dw.

Since d(w?) and d(wj) are also given by the same formula, d(w,w,) exists
and is equal to

dw? — w? — dwd) = dw? — } dw? — } dw? = w, dw, + w, duw,.

Lemma 7.3. If d§ = a,(t) dt + Z7.,b,(t) dw, (i = 1, 2) where wy, . . ., w,
are independent Brownian motions, then

d,g,) = & dé, + &, dé, + 21 by;by;.
he

Proof. The proof is similar to the proof of Theorem 5.1. It is based on the
special cases (7.6), (5.2), (5.3) and the approximation procedure employed in
the proof of Theorem 5.1.

Proof of Theorem 7.1. We begin with the special case of u({. +
a.t + b.w(t), t) where t, < t < t, and £, a., b. are random variables
measurable with respect to ¥, . The special case where u = x} follows by
induction on m, using Lemma 7.3. The more general case where u
= xf1- - - x¥= follows by using the previous special case and Lemma 7.3.
The case where u = g(f)xf1 .- . xf follows by again using Lemma 7.3.
Now approximate general u by linear combinations of u’s of the last special
form.

Once Theorem 7.1 has been proved in the special case where
§(t) = & + a.t + b.w(t), we can obtain the general case by a proof similar
to that of Theorem 5.2.

Let

n
a; = 12 bilbjl’
=1

—1 3 0 %u S, ou | Ou
Lu —%L,Zslaﬁ TS +i§la,- =t .
Then we can write It6’s formula (7.5) in the form

du(é(t), t) = Lu(é(t), t) dt + u(&(t), t) - b(¢) dwl(t). (7.7)
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Let us define formally a multiplication table:

dw, dt = 0,
dt dt = 0,
dw, dw, =0 if i+ j,
dw, dw'. = dt,
so that
dt, dg, = é}l byb, dt. (7.8)

Then It6’s formula (7.5) takes the form

dulg(t), 1) = w(&(2), 1) dt + i u, (£(1), 1) d,

+3 > ux‘,'(S(t), t) dg dg,. (7.9)
ij=1
From It0’s formula we obtain (cf. (5.20))

ulg(r), 7) — u(£(0), 0) = fo " (Lu)(&(s), s) ds
+ fo " wlg(s), s) - bls) dw(s)  (7.10)

for any random variable 7, 0 < 7 < T. If 7 is a stopping time and Lu,
u_+ b are in M[0, T] and M2[0, T] respectively, then (cf. (5.21))

Eulg(r), 7) — Eu(£(0),0) = E fo " Lu(g(s), s) ds. (7.11)

The results of Sections 2-4 extend with obvious changes to stochastic
integrals in n dimensions. We shall give here the generalization of Theorem
4.5,

Theorem 74. Let f=(f,...,f,) belong to LL[0, o) and suppose that
SR dt = oo with probability 1, and define

(1) = inf{s; fo | FAR dA = t}.
Then the process
u(t) = [ £(5) duo(s)

is a Brownian motion.

Proof. The proof is similar to the proof of Theorem 4.5 once we have
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established that if f € M2[0, c0) and {,, {, are bounded stopping times,
§; € §,, then

B{ [* o) auwlo) 7, ) =0

2
te
E o3 :E{ ste?}
{ |;l} e dsie,

a.s. The proof of these formulas is similar to the proof of Theorem 4.3. It
employs Theorem 2.8 which remains valid for n-dimensional stochastic
integrals.

We conclude this section with an extension of Theorem 6.5 to n di-
mensions.

2
* flo) dels]

Theorem 7.5. Let f=(f,....f,) belong to L2[0, T], and let a, B be
positive numbers. Then

P{oinf‘é‘ru,t fA) dw(A) — % fot RitN d?\] > ,8} < e (712)

The proof is similar to the proof of Theorem 6.5. First we prove (7.12) in
case f(¢) is a step function, using the martingale inequality, and then proceed
to general f by approximation.

The inequality (7.12) is referred to as the exponential martingale inequal-
ity.

Corollary 6.6 also extends to the present n-dimensional case, i.e.,

exp [ w4 ['1fPds)

is a supermartingale.

PROBLEMS

1. Prove (2.20).
2. Prove Theorem 3.9 [Hint: Apply Theorem 3.6 to £f(¢), £ bounded and
%, measurable.]

3. Suppose fEL2[0, ) and { is a stopping time such that
E §f3(t) dt < oo. Prove that

E fogf(t) dw(t)=0, E

4. Let

2

[Frn dw(t) = E [*£0) de
0 0

N = cexpll/ (|x2 = 1)] if |x <1
o) [0 if x| >1
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for x€ R", where ¢ is a positive constant such that {g.p(x) dx = 1. If fis
a function locally integrable, then

=1
(]cf)(x) - €n '[;3" P(
is called a mollifier of f. Prove:

() Jfisin C®(R™);
(ii) If K is a compact set and £ a bounded open set containing K,
then

x —
€

L) y) dy

x —

UpW = J [ ol =2 )y ay

€ €

il

fn<1 p(2)f(x — ) dz  (x€K),

provided € < dist(K, R"\{).
(iii) If f € LP(Al) for some p > 1, then

([ g <{ [ isie ac}”
(iv) If f€ LP(Q) for some p > 1, then

f \If — flIP dx—0 if €—0.
K
5. Let f(x) be a continuous function for &« < x < B, and let

81 — (x — y*]" d
(Pkf)(x)=fa[ 1( y) ]]:(!!) Y k=1 ).
S -1{1 — y?) dy

Let 6 be any positive number. Prove that (P.f)(x) — f(x) uniformly in
x € a+ 8, B~ 8] as k—oo. [Hint: [[L — yB dy/ /A1 — 42 dy] -0
if k — oo, for any € > 0.]

6. Let f(x) be a continuous function in an n-dimensional interval
I={x;a,<x< B,1<1i< n}, and let

b A1 - -y f(y) dy, - dyy

(Pk.f)(x) - k n
[fl—-l(l - y°) dy

(k=1,2, ...).
Let I, be any subset lying in the interior of I. Prove that, as k—co,
(P f)(x)—>f(x) uniformlyin x€I,
Notice that P,f is a polynomial. It is called a polynomial mollifier of f.
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7. 1If in the preceding problem f belongs to C™(I) and f vanishes in a
neighborhood of the boundary of I, then

ax;_l . ax"‘ Pk’f) ax’1 PR ax,}‘ f(x) lf k'—)OO,

uniformly in x € I, for any (4}, ...,4,) suchthat 0 < i; + + + - + i < m.
8. If feC™(R"), then there exists a sequence of polynomials Q, such
that, as k—»00,
811 R in azl [ in ] )
m@c() mf() for 0< i+ +i, <m,

uniformly in x in compact subsets of R™. [Hint: Approximate f by functions
with compact support, and apply Problem 7 to these functions]

9. If in the previous problem it is assumed that f, f, (1 < i < n) and fx
(2 < 4,j < n) are continuous in R" (instead of f € C™(R™)), then

O—F ax O~ oy

9%,
92 0% .
dx; dx; G dx; Ix; @<ij<n)

(1 < i< n),

uniformly on compact subsets of R".

10. Let f(x, ) be a continuous function in (x, £) ER™ X [0, c0) together
with its derivatives f,, f, f . Prove that there exists a function F con-
tinuous in (x, t) € R™ X R together with its derivatives F,, F, , F, . , such
that F(x, t) = f(x, t) if x€R", t > 0.

11. Let f(x,t) = f(x;,...,x,, t) be a continuous function in
(x, )ER™ X [0, o0) together with its derivatives f,, f, . f, .. Then there
exists a sequence of polynomials Qm(x t) such that, as m—>oo

82
Qn—1; @Qm-*f:a ax On=Fs, %, ox, On—F s

uniformly in compact subsets. [Hint: Combine Problems 9, 10.]
12. Prove (5.8).
13. Prove (5.14) and complete the proof of (5.13).
14. Let fEL2[0, ), |f] € K (K constant) and let d§(t) = f(t) dw(¢),
£(0) = 0 where w(t) is a Brownian motion. Prove:

(i) iff < B, then EI{(t)* < B%

(i) if f > a >0, then E|§)]® > ot
153. Prove Theorem 5.3. [Hint: Proceed as in the proof of Theorem 5.2, but
with

O(w(t), t) = flg,o + at + byw(t), ..., &0 + a,t + b, w(t))
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where £, a; are random variables and the b; are random n-vectors; cf. Step
4]

6. Let &(t) = [ib(t) dw(t) where b is an n X n matrix belonging
toL2[0, 00). Suppose that d¥, d§ = 0if i 7 j, d§ d§ = dt (see (7.8) for the
definition of d§; d§), for all 1 < i, j < n. Prove that £(f) is an n-dimensional
Brownian motion. [Hint: First proof: Use Theorem 3.6.2. Second proof:
Suppose the elements of b are bounded step functions and let {(¢)
= exp[iy - &(t) + Y*/2]. By It0’s formula d{ = i{y dw. By Theorem 2.8

Ele'r $0]G | = ol Hp—7vt=5)/2

Use Problem 2, Chapter 3.]
17. Let vy >0, @ > 0, 1 = min{¢; w(¢) = a} where w(t) is one-dimen-
sional Brownian motion. Prove that P(r < «0) = 1 and

Ee™ 7 = exp(— V 2y a).
[Hint: For any ¢ > 0,

_a —c?/2t
P[ Orélgyétw(s) > c] < P[ Orél?it(w(s) 5 s) > B} < e
where & = c¢/t, B = ¢/2. Hence P(r < o0) = 1. Since y(t) = exp[yw(t) —
v%/2] is a martingale, so is y(t A 7). Hence

E exp[yw(t AT)— %yz(t A ‘r)] = 1.

Take ¢t T 00.]
18. Under the conditions of the previous problem
2
(re dt) (2m3)1/2 exp\ — 5 dt

[Hint: Use the fact (see, for instance, Feller [1]) that if the Laplace transform
of two probability distributions concentrated on [0, o¢) coincide, then the
probability distributions coincide.]

19. If w(¢) is a Brownian motion and 0 < y, x < y, then

P(w(t) € dx, max w(s) € dy)

0<s<t
[ 2\ (2y — 2)
= ( — ) (2y — x) exp{ 57 dx dy.
[Hint: Use Problem 12, Chapter 2 and Theorem 3.6.3 to deduce that
t
Plw(t) € dx, max w(s) > y| = [ P(r € ds)Plw(t — s) + y & di]
0

0<s<t

where 7 = min{t; w(t) = y}, and apply the preceding problem.]
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20. Let f(t) be a continuous process in LZA[0, T] and let II, : t o=
0<t, ,<--- <t ,=Tbe a partition w1th mesh |II | - 0 as n —» oc.
Define

Zf nz n a+1) - w(tn,z‘)) + (tn,f)(t - tn,f)

lf tﬂ,i\ t<tn,f+1.

Prove that for some subsequence {n’} of {n},
sup -0 as. if n’ — oo.

t
[ £(s) duw(s) = gl
0<i<T| 70
21. Let o(x, t) be a measurable function in (x, {) € R" such that
lo(x. ) — o(%, t)] < mllx — &), W) L0 f L0,
and let f(t) be an n-dimensional continuous process in L2[0, T]. Let

xtﬂ—f (t_s_c)(x,s)ds (2e < 1)

where p(t) is defined as in Lemma 1.1 and o(x, s) = o(x, 0) if —1 < 5 < 0.
Prove:

i) J3|o(x. t) — o.(x, t)]* dt — O uniformly in x in bounded sets, as
€ - 0.

(i) fg lo(f(t),t) — o.(f(t), 1) dt -0 as. as € — 0.

(iid) 5“P0<t<T|fo (£(s), 5) duws) — f5 o, (f(s), 5) dw(s)| - 0 as. for
some sequence ¢, | 0.

[Hint: for (i), use the uniform continuity in x of [o(x, t)dt and of

fo,(x, t) dt.]
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Stochastic Differential Equations

1. Existence and uniqueness

If 6 = (0,) is a matrix, we write [6® = X, |o,{%

Let b(x, t) = (by(x, t), . .., by(x, t)), o(x, t) = (0,4(x, t))i;=, and suppose
the functions b;(x, ¢), oir.(x, t) are measurable in (x, ) ER" X [0, T]. If &(¢)
(0 < t < T) is a stochastic process such that

d&(t) = b(E(2), 1) dt + o(£(1), t) dw(), (L1)
£0) =¢, as., (1.2)
then we say that §(t) satisfies the system of stochastic differential equations

(1.1) and the initial condition (1.2). Note that it is implicitly assumed that
b(&(t), t) belongs to LL[0, T] and o (£(t), t) belongs to L2[0, T].

Theorem 1.1. Suppose b(x, t), 6(x, t) are measurable in (x, t)ER" X [0, T]
and

|b(x, t) — b(X, t)| < Kujx — x|, |o(x,t) —o(X, t)] < KuJx — %

|b(x, t)] < K1 + |x]), |o(x, t)] < K(1 + |x|) (1:3)

where K., K are constants. Let §, be any n-dimensional random vector

independent of F(w(t), 0 < t < T), such that E|£* < co. Then there
exists a unique solution of (1.1), (1.2) in M2[0, T).

*

The assertion of uniqueness means that if £,(¢), £,(t) are two solutions of
(1.1), (1.2) and if they belong to M2[0, T], then

P{£(t) =&(t) forall0 < t < T} = 1.

Proof. To prove uniqueness, suppose §,(t) and £,(t) are two solutions
belonging to M2[0, T]. Then

a0~ (0 = [ [blti(s), s) — bylksls), )] ds
+f "ol (s), 5) duols) - f Colgy(s), ) duwls).  (14)

QR



Set f,(s) = a(§,(s), s) and note that the stochastic integral { § f,(s) dw(s) is

defined wnth respect to an increasing family of o-fields %, which may

depend on i. If f,(s) is a step function, for i = 1, 2, then using the definition
of the stochastic integral we get (cf. the proof of Lemma 4.2.2 and formula
(4.7.3))

{f (o) duwls) = [ fs) duls —Eflfl fol )P ds. (15)

By approximation we find that (1.5) is true for any pair f|, f, of
nonanticipative functions with respect to %; and % respectively, provided
Efifis)ds < oo (i=1,2).

Taking the expectation of the squares of the absolute values on both sides
of (1.4) and using (1.3) and (1.5) with f,(s) = o(§,(s), s), we find that

E§(8) — &P
< 2K ["Elgi(s) = &(5)P ds + 2K? [ EIg(s) - &) ds
0 0
Thus the function ¢(t) = E|§,(t) — £,(t)|® satisfies
D<C [ sls)ds,  60)=0
0

where C is a positive constant. Therefore ¢(t) =0, and the assertion of
uniqueness is proved.

To prove the existence of a solution we introduce an increasing family of
o-fields ¥, (0 < t < T) such that £ is %, measurable and w(t) is %,
measurable, and such that % (w(t + s) — w(f), 0 < s < T — ¢) is indepen-
dent of &,, for all ¢+ > 0. We can take for instance ¥, to be the o-field
generated by §, and F (w(s), s < t); here we use the assumption that £, is
independent of ¥ (w(s), 0 < s < 7).

Define §i(t) = §, and

buea() = o + [ BEals). 5) ds + [ algn(o)s) duls).  (16)

The inductive assumption is that £, € M2[0, T] and that

, (Mr)+
E|£k+1(t) — £k(t)| < m for 0<k<m—1, (1.7)

where M is some positive constant (depending only on K, K., T).
Since §, € %, £, is well defined if m = 0. Further
2

I£,(8) — &2 < z‘fg'b(go, ) dsr+ zfo 6 (£ 5) dw(s)| .

Taking the expectation and using (1.3), we get
El£(t) — £ < 2K%2(1 + E|&) + 2K(1 + El§f*) < Mt
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if M > 2K3T + 1)(1 + E|§,|*). This implies that £, € M2[0, T] and (1.7)
holds for m = 0.

We now make the inductive assumption for any m > 0 and prove it for
m + 1.

Since £, € M2[0, T) it follows, using (1.3), that b(£,(¢), t) and a({,(¢t), t)
belong to M_2[0, T). Thus the integrals on the right-hand side of (1.6) are well
defined.

Next,

reslt) = £ < 2| [ T2 (018~ Bgorl) o]

2

2

j(.)z[o(im(s), s) — a(&,_,(s), )] dw(s)| .
Taking the expectation and using (1.3),

Elns1(s) = bn (I < 2KHE [, (5) = &y(s) ds

+2 (1.8)

t

+ 2K2E A €, (s) — & y(s)] ds.

Thus,
Elbnealt) = (0 < M [ Elea(s) — gy (9)F s

if M > 2K2(T + 1). Substituting (1.7) with k = m — 1 into the right-hand
side, we get

m+1

Bl - (08 < [0 4= 2

Thus (1.7) holds for k = m. Since this implies that £ ., € M2[0, T], the
proof of the inductive assumption for m + 1 is complete.
From (1.8) we also have

P o1 (0 6l < 2TKZ [ ()0 (s)F ds
0<t< T 0

2
+2 sup

s j(;t[(,(gm(s}’ s) - a(gm_l(s), s)] dw(s)] .

Taking the expectation and using Theorem 4.3.6 and (1.7), we find that

B sup [fnar(t) = 0P < 2K2T [ BI6(6) — fuos(o)f

0Kt T

+ 8K? _];TElgm(s)— ¢ (s)Fds < C (“ﬁ)
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where C = 2K27T2 + 8K2T. Hence
(MT)"

m!

P sup gl = (01> 2 | < 227

0<t<T
Since 2[2™ (MT)™/m!] < oo, the Borel-Cantelli lemma implies that

Pl swp et = €8] > 55 10 | = 0.

<< T
Thus, for almost any « there is a positive integer my; = my(w) such that
1
sup |£m+1( t) = £a(1)] < om

0<t<
It follows that the partial sums

o+ 3 (Eunld) -~ &0 = 600

are convergeht uniformly in tE[0, T]. Denote the limit by £(t). Then £(¢) is a

continuous process. It is clearly also a nonanticipative function and it belongs
to L2[0, T). Since for a.a. w,

b(& (1), t)—b(&(t), t) uniformly in ¢t €0, T),
o{£,(t),t)>o(&(t), t) uniformly in tE[0, T],

if m > mylw).

and hence also

fOT|°(£m(t)> t) — o(g(t), t)|2f,0’

if we take m— o0 in (1.6) we obtain the relation

= ¢, +f s) ds +f wls). (1.9)

Thus £(¢) is a solution of (1.1), (1.2).
From (1.6) we have

Flens(8F < SR + 3E| [ (g (s) o) ds

2

+ 3E

2

fot o(&,, (s), s} dw

<C(1+E[g)+cC fOtE|§m (5)[2 ds

where C is some constant depending only on K, T. By induction we then get

Elnei(t) <

m+1
<lcrcr+ ol 4. pomret

2] oy | EsF]

Therefore
El¢, ()P < C(1 + Elgg|%)e™
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Taking m 1 co and using Fatou’s lemma, we conclude that
E|&(t)]2 < C(1 + ElgP)e. (1.10)
This implies that £(¢) belongs to M2[0, T).

The above method used to prove the existence of a solution &(t) is called
the method of successive approximations; it is modeled after the correspond-
ing proof for ordinary differential equations.

Remark. Very often we shall take the initial value £, to be a constant
function x, i.e., £,(w) = x a.s. Notice that this random variable is indepen-
dent of F(w(t), t > 0).

From (1.9) we obtain

sup 6(0°< 3 + 3] [ b(g(o ) |

0<t<T
2

+ 3 sup
o<t T

J: o(&(s), s) dw(s)

Taking the expectation and using (1.3) and Theorem 4.3.6, we get

E sup [E(0)] < Col1 + El&f?) + G, fTE|g(s)|2ds
0<t<T 0

where C, is a constant depending only on K, T. Making use of (1.10), we
obtain

Corollary 1.2. Under the assumptions of Theorem 1.1,
E[ sup |t(0F] < C*(1+ ElgoP) (1.11)

0<t<
where C* is a constant depending only on K, T.

2. Stronger uniqueness and existence theorems

Theorem 2.1. Suppose b;(x,t), o;(x,t) are measurable functions in
(x, ) ER"™ X [0,T}], fori = 1, 2, satisfying

|bi(x, t) — b(%, t)] < Ku|x — x|,  |o,(x, t) — o,(%, t)| < K.|x — %,
bix 01 < K1+ [¢l),  lofx 0] < K(1+ ).
Let D be a domain in R" and suppose that
bi(x, t) = by(x,t), o,(x,t) =o0,(x,t) if x€D, 0<t< T (21)
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Let £(t) (i = 1, 2) be the solution of
dﬁi(t) = bi(gi(t)’ t) dt + Ui(éi(t)! t), £,(O) = §o

in M2[0, T} (with the same family of o-fields F,) where E|§y < co.
Assume finally that £, = &, for a.a. w for which either §,(w) € D or
£x0(w) € D. Denote by 7, the first time §(t) intersects R™ \ D if such time
t < T exists, and 1, = T otherwise. Then

P(r, = 1) =1,
P{ sup €,(s) — &(s)] = 0} = 1.

0<s< 7

Thus, if two stochastic equation have the same coefficients in a cylinder
Q = D X [0, T] and if the initial conditions coincide in D, then the corres-
ponding solutions agree until the first time they both leave D; they first leave
D at the same time, This is a local uniqueness theorem. It remains true (with
similar proof) for the general domains Q.

Proof. Let ¢,(t) = 1if§(s)ED forall 0 < s < ¢, and ¢;(t) = Oin all other
cases. Then

() (E10 — &59) =0 as.

Hence

¢1(t)[$1(t) = §2(t)] = ¢1(t) j(;t[bl(€1(3)a S) - bz(gl(s)’ 3)] ds

t

[52(51(3)’ 3) - b2($2(8), S)] ds

t

o [01(51(3), s) = ay(£1(s), 3)] dw(s)
+ ¢1(t) j:[oz(&(s)a 3) - 02(52(3)’ 3)] dw(s)

=L+ I+ I+ I,

+ () f
[

+ ¢y(1)

If ¢,(t) = 1, then b (§,(s), s) = by(&,(s), ). Hence I, = 0. If t < 7, then
0,(£,(5), 8) = 05(,(5), s). Hence, by Theorem 4.4.7, I; =0 as. if ¢t < 1,.
Since also ¢,(t) = 0 when t > 7,, we have I; = 0 a.s. Thus

¢1(t)|‘51(t)_52(t)|2 < 2‘1’1(‘)’ fot[bz(ijl(s), 3) - bz('fz(s)s 3)] ds

2

2

+2¢1(t)| fo “(o4(8,(s), 5) — oltals), )] dw(s)| . (2.2)
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2

j(;t[bg(fl(S), s) — by(&,(s), s)] ds
< n{f: ¢1(~9)| b2(§1(s), s) - bz(gz(s), s)' ds}2 (23)

Next, if f € L2[0, T] and t €0, T]
2

or(6)] [ fls) dwls)| <| [ ails)sls) duls)].

Indeed, let A = {¢,(t) = 1}, B = {¢4(t) = 0). If w € B, then the left-hand
side of (2.4) vanishes; hence (2.4) is true. If w €A, then o1(8)f(s) = f(s) if
s < t; hence, by Lemma 4.2.11,

f¢1 ffdw

and (2.4) again follows.
Using (2.3), (2.4) in (2.2), we find that

SO0 = S0 < 2n) [ ou(9bales) ) — baltls) ol ]

s)loa(i(s). 8) — onfés(s).5)] dw(s)| -
Using the Lipschitz continuity of by(x, t), o,(x, t) in x, we get
Eg¢ (0)|€,(1) — & < C '/: Eo,(s)i€,(s) — &(s)[? ds (C constant).

This implies that

(2.4)

Eg,(t)|£,(t) — &(OF = 0.
Hence, by the continuity of &,(¢), §,(¢t),
sup ¢ (1)J€,(t) — &() =0 as.

0<t<T
It follows that &(t, w) = £,(t, «) as. if 0 < ¢t € 1,(w). Consequently,
P(ry 2 1)) = 1. Similarly P(r; > 7,) = 1, and the proof is complete.

We shall now use Theorem 2.1 in order to improve Theorem 1.1,

Theorem 2.2. Suppose b(x, t), o(x, t) are measurable in (x, t)ER" X [0, T]
and

Ib(x, t)] < K(1 + |x]),  lo(x 8)] < K(1 + |x]). (2.5)
Suppose further that for any N > 0 there is a positive constant Ky such that
|b(x, t) — b(%, t)| < Kylx — 7, lo(x, t) — o(%, t)| < Kylx — x| (2.6)
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if |x] < N, |X| < N, 0 < t < T. Let §, be any n-dimensional random vector
independent of F (w(t),0 < t < T) such that E|§,|* < oo. Then there exists
a unique solution &(t) of (1.1), (1.2) in M2[0, T). Further

E[ sup [E(D1F] < C*(1 + El§f) (2.7)

0<t<T
where C* is a constant depending only on T, K.

Thus, Theorem 1.1 and Corollary 1.2 remain true if the condition (1.3) is
replaced by (2.5), (2.6).

Proof. Let
Evolw) = { Llw) if &) < N,

0 if £, (w)] > N,
b(x, t) if |x| € N,

bu(x, t) = {b(x, )2 — (|x|/N)) if N <|x| <2N
0 if |x| > 2N,
o(x, t) if |x| < N,

on(x, 8) =< a(x, )2 — (|x|/N)) if N <|x| < 2N,
0 if [x] > 2N.

By Theorem 1.1 there exists a unique solution £y (#) in M2[0, T of

déy(t) = bylén(t), t) dt + oy(&y(t). t) dw(t),

En(0) = &yor (2.8)

For definiteness we take ¥, to be the o-field generated by w(s), 0 < s < ¢
and £, By Corollary 1.2,

E[ sup |£N(t)|2] < CH1+ EJgf?) (2.9)
0t T

where C* is a constant independent of N.

Let 7y be the first time |§y(f)| > N, if such a time t < T exists, and
v = T otherwise. If N’ > N, then by Theorem 2.1 £,(t) = &.(t) as. if
0 < t < 7. Therefore,

P{ sup [En(t) — &y(8)] > 0} = P{ sup [£y(t)] > N}
0<t<T 0<t<T

2 *
<r Bl s le0l] < 15 01+ ElP)

Notice that the set §y = {supyc,cr |£N (t)) > N} decreases when N
increases, and P(£2y) | O if N 1 o0, Define

£t w) = Jl_r.nw Eult, w) if w& lim Q.
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Then, §(t, w) = &y(t, @) if @ZQy. It is clear that &(#) is in L2[0, T].
By Lemma 4.2.11,

fot o(&(s), s) dw(s) = j: onlEnls), s) dw(s)  as. if wgQy.

From the stochastic differential equation for $N( t) we then obtain

§0+f ds+f w(s)

a.s. if w & Q. It follows that §(¢) is a solution of (1.1), (1.2).

Finally, from (2.9) and Fatou’s lemma we obtain (2.7).

It remains to prove uniqueness. Let £,(1), £,(¢) be two solutions of (1.1),
(1.2) in M2[0, T); £ is nonanticipative with respect to %*. Let ¢(t) = 1 if
SuPocs<r [§i(s)] < Nfori=1,2 and ¢(¢) = 0 in all other cases. Then (cf.
the proof of (2.2)) 2]

)

Es(06) = 6] < 26 | o(0] [To6(5)) = bits) o) b
+ 2E {¢(t) ./: o(§,(s), 5) dw(s) — j: o (£5(s), s) dw(s)

=I+1] (2.10)

It is clear that
I< 2t fo " Kylta(s) — £a(s)Po(s) ds. 2.11)

Next, if f;(s) are step functions, nonanticipative with respect to the
o-fields ¥} and in M2[0, T}, then (cf. the proof of (2.4))

E{o(0) 0] f fils) duls) = [ £ls) duols }<Eflf1 Fls)Po(s) dis.
(2.12)

By approximation, this inequality holds for any f,, f, in M2[0, T]; f, being
nonanticipative with respect to ¥;. Using (2.12) with f;(s) = 6(§(s), s)) and
using (2.11), we obtain from (2.10)

E{¢ |51 - 52(})'2} < (2T + 2)KN j: E¢(8)]$1(3) - 52(3)|2 ds

Consequently

E{o(2)|&,(2) — &) = 0,

ie.,

Pla(t) # &0} < P sup [6(s)] > N} + P sup Jeals) > N).

0<s<T
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Since £,(s) and £,(s) are continuous process, the right-hand side converges to
0 as N—oo. Therefore,

P{£,(1) # &(1)} = 0.
Since both processes &,(t) and 52( t) are continuous,
P{£,(t) = &(t) for0 < t < T} =

We conclude this section with an estimate on the higher moments of the
solution £(t).

Theorem 2.3. Let b(x, ), o(x, t) be as in Theorem 2.2, and let E|§|*™ < oo
for some positive integer m. Then

EJ§(6)P™ < (L + E[¢*")e, (2.13)

E{ sup Iéls) - LI} < C(1+ EfgPm)em, (2.14)

where C, C are constants depending only on K, T, m.
Proof. By Itd’s formula with f(x, t) = |x[*", £y (%),
t
En ()™ = [En(0)*™ +f {2m|£N(S)Izm*2£N(S) + bylén(s), s)

+ 3 omlg(s)Pmta)

i=1

+ 3 amiem - Do g )els )| a

+ f 2m| &y (s)1*" %y (5) - on(£(s), s) dw(s)  (2.15)

where (a,’ ) = 3o N(Ey(s), s) (o (Ey(s), s))* (A* = transpose of A).

Since

£(s) = +f by(éy(s), ) ds +f onlxn(s), s) duw(s)

and E |£(0)|*> < oo, while by(x, t) and oy(x, t) are bounded, it follows (using
Theorem 4.6.3) that E|¢y(s)]*™ < Cy for all 0 < s < T, where Cy is a
constant. Hence the expectation of the stochastic integral on the right-hand
side of (2.15) is equal to 0. We therefore get

Eléy(t)/™™ < EI&(0)*" + L fo CE(DL + o) Pl (o)) ds,

where L is a constant depending only on m, K. Since the integrand on the
right is < 1 + 2E|éy(s)|*™, the inequality (2.13) for &, readily follows. Now
take N 7 o0 to obtain (2.13).
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To prove (2.14) notice that for any A€(0, T]
sup |&(t) — &

O<t<A
2 9Qm

< nz%[ fo " |b(Es), 8)) ds] +2™ sup fo "o (£(s), s) dw(s)

0t A
Taking the expectation and using Corollary 4.6.4 and (2.13) we obtain

A
E sup |&(t) — &> < LA™ fo [1 + E|&(s)>] ds < LA™ + E|£,[2™),

O<t<A

where L, L, are constants depending only on K, T, m; thus (2.14) holds.
Notice that (2.14) implies that

E{Osup E(s)Pm} < €1 + ElgP?), (2.16)

<s<t
where C* is a constant depending only on K, T, m.

Remark. The results proved in this and the previous sections extend
immediately to stochastic differential equations (1.1) with initial condition
§(s) = § where s€[0, T]. Here £ is assumed to be independent of the
o-field F(w(t + s) — w(s),s < t < T —s).

3. The solution of a stochastic ditferential system as a Markov
process

We shall assume:

(A) The n-vector b(x, t) and the n X n matrix o(x, f) are measurable
functions for (x, )€ R" X [0, ) and, for any T > 0,

|b(x, )] < K(1 + |x|), |o(x t)] < K(1 + |x]), (3.1)
|b(x, t) — b(%, £)] < K|x — %], jo(x,t) ~ o{%, 1) < K|]x — & (3.2)

if0<t< T,x&€R", x€R", where K is a constant depending on T.
By Theorem 1.1 there exists a unique solution in M2[0, o) of

d&(t) = b(&(1), 1) dt + ol&(1), 1) dwl(2), (3.3)
£(0) = &, (3.4)

provided £, is independent of F (w(A), A > 0) and E|£|* < oc. Similarly (see
the remark at the end of Section 2), for any s > 0 there exists a unique
solution in Mj[s, oo) of (3.3) and

&(s) = & (3.5)
provided £, is independent of % (w(A + s) — w(s), A > 0) and El¢ 2 < oo.
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If £ = x a.s., where x is a point in R", then we denote the solution of
(3.3), 3.5) by £ ,(?)
For any Borel set A in R" and for any ¢ > s, let

pls, x, t, A) = P& (t)€A). (3.8)

Theorem 3.1. Let (A) hold and let §, be independent of “F(w(t), t > 0),
E|£)* < . Denote by F, the o-field spanned by &, and w(s), 0 < s < t.
Then the unique solution E t) of (3.3), (3.4) satisfies

P(&(t) € A|F,) = P(E(t) € AlE(s)) = pls, &(s), £, A) as.  (3.7)

for all t > s and for any Borel set A. Further, p(s, x, t, A) is a transition
probability function.

Proof. We can write

t t
) = &) + [ BEN. ) dh + [ olEN). A) dw(N).
By the method of successive approximations, if we set
Eo(t) =y (where v = &(s))

= v+ [ BlE 0. N ax + [ ol (). N) )

then £ () — &(t) a.s. By inductior one can show that each £ (¢) is' measurable
with respect to the o-field spanned by % (w(u + s) — w(s), s < u < t) and
y. The same is therefore true of §(t). More specifically, using Problems 20, 21
of Chapter 4 and Theorem 4.3.4, one can approximate a.s. (and uniformly in
t) each § () by a sequence of functions

F(t, v, wln, , +s) — w(s), ..., wly, , +s) = w(s))

where 0 < u,, ; < ¢t~ s and F,(¢, %, x5, ..., %, ) are Borel measurable
functions depending only on the functions b(x, A), o(x, A) in the interval
s € A < t. The same therefore holds for £(¢), i.e., a.s.

£(t) = Jim_ F,(t, &(s), wlu, , + s) — w(s), ..., wlw, , +s) - w(s))

with suitable Borel functions F,, and suitable u,, ,. In particular,

¢ () = Jlim F, (t, % wlu, , +s) — w(s), ..., w(um,pm + 5) — w(s)).

Now, for any bounded measurable function
F(xo, xl, ooy xk) = Fo(xo)Fl(xl, DY xk)
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and for any u;, > 0,
E[F(§(s), w(uy + 5) — w(s), . .., w(y + 5) — w(s))|F]
= Fy(&(s) ELF (w(u, + 5) — ( ) (g + 8) ~ w(s))|F]
= Fol&(s))E[Fy(w(uy + 5) — w(s), ..., w(uy + 5) ~ w(s))]
since the random variables w(u;, + s) ~ w(s ) are independent of %,. Thus,
E[F(&(s), w(u, + s) — w(s), . .., wleg + ) = w(s))|F,]
= {EF(xy, w(u; + s) — w(s), ..., w(wy + s) — w(s))}xo_f(s). (3.10)
By approximation, (3.10) remains true for any bounded Borel measurable

function F(x,, %, . . ., %). Taking, in particular, F = f(F,)) where f is a
bounded continuous function and F,, are as in (3.8), (3.9), we conclude that

E{ fl&(t)|F,} = E{ RE)IE(s)} = &(x)],mgn
where ¢(x) = Ef(£, ,(t).

Taking a sequence of f’s that increase to the indicator function of an open
set A in R™, we obtain the assertions (3.6), (3.7) for any open set A. Since the
class of Borel sets for which (3.6), (3.7) hold form a monotone class, and since
the open sets belong to this class, this class must contain the o-field
generated by the open sets, i.e., it includes all the Borel sets.

It remains to prove that p is a transition probability function,

From (3.8) it is clear that p(s, x, t, A) is a probability measure in A, for
fixed s, x, t. Since £ () is Borel measurable in x (for the same is true of
each function in the sequence that converges to & ,(f) by the method of
successive approximations), p(s, x, ¢, A) is also Borel measurable in x, for
fixed s, ¢, A. Thus it remains to verify the Chapman—Kolmogorov equation.

From (3.6),
[ pls.x 6 dylily) = [ we, (o) ap

for any bounded Borel measurable function {(y). Taking Y(y) = p(t,
y, 7, A) where t < 1, we get

f p(s, x, t, dy)p(t, y, 7, A) =f p(t, & (1), 7, A) dP
= Ep(t. & (#). 7, A) = EP[§, (r)E€A£, (1]

where (3.7) has been used in the last equality. Since the expression on the
right is equal to

EE[x,(&. (0] = Exa(& (7))
= P(gx,s( )EA) = P(S: X, T, A):
the Chapman—Kolmogorov equation holds for all x€R™, 0 < s < t < 7.
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Denote by C the class of all continuous functions x( + ) from [0, o) into
R™. Denote by 9N} the smallest o-field generated by the sets
{«f - hx(u)EA}, s<u<t
where A is any Borel set in R". Denote by 9% the smallest o-field
generated by {x( - ); x(u)EA}, u > s.
Define a continuous process X (t) = X(¢, x( - )) by
X(t, x( - ) = «{2). (3.11)
Finally, let
P(x{-)EB) = Plust, (-, w)EB) 312)

where B is any set in 9I;. Notice that for each w €2, §, ,(t) = § (¢, w) is a
continuous path. This path is the continuous function § ( : , w) appearing
on the right-hand side of (3.12).

It is easily seen that P, | is a probability measure on JW;. We shall now
show that

P {X(t+ h)€A|OM:} = p(t, X(1), t + h, A) as. (3.13)
Since
P{E ,(t+ h)E A|T (g, ALA< ) =p(t. & (1)t + h, A),
forany s < ;) < t, < --:+ <t, <t and any Borel sets A|,...,A,, we
have

P{g (t + h)EAE (t)EA, ... & (1) EA,)

= t, £ At),t+ h A)dP
fﬂ'" &(:.)eA‘} plt &0 )

= [ X! < Xa (e o ()P (8 & (8 £ + b, A) dP.
Using (3.11), (3.12), we conclude that
P [X t+h)€A X(t) €A, ..., X(t,)EA,]
= [ xa (X)) - - x (X(&)ple, X(6), ¢ + b A) dP,,,

f p(t, X(t),t + h, A) dP, .

X(g)eal
This implies (3.13).
We have proved:

Theorem 3.2. Let (A) hold. Then {C, O, I3, X(¢), P, ,} is a continuous
n-dimensional Markov process with the transition probability function (3.6).

We shall call this Markov process also the solution of the stochastic
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differential system (1.1). The process X(t) will often be denoted also by £(¢).

Lemma 3.3. Let (A) hold. Then for any R >0, T > 0,
E sup [&,(t) = &, (OF < Cllx = yP + s — 7)) (3.14)

TRl
if x| < R,|y| < R,0< s <7< T;C is a constant depending on R, T.

Proof. Clearly, if 7 < t,
Sa () = &0 (0) = &0 () = 9+ [ BEL 0. 0) = blg, (). 1)] dA

* f Tole, O N = o(&, . (A N)] dw(h).  (3.15)
By Theorem 2.3,
Bl (7) = P < 2BIE(7) = 2 + 2 =y < Gofr — sl + 2z — of
(3.16)

where C, is a constant. Taking the expectation of the supremum of the
squares of both side of (3.15) and using (3.16), (3.2), we get

E sup & (8) — & () < Cylx— gyl +|s — 7l)

Tttt
+CE [ e ) - g, L dA

where C, is a constant. This easily implies (3.14).

Theorem 3.4. Let (A) hold. Then the solution {C, I, M3, X(¥), P, ,} of
the stochastic differential system (1.1) satisfies the Feller property, and
therefore also the strong Markov property.

Proof. 1If f is a bounded continuous function, then, by Lemma 3.3 and the
Lebesgue bounded convergence taeorem,

Ef(,, (t + 1)) — Ef(§, (t+ 1))>0 if yox, Tos
Also,
Eflg (t + T)—Eflg (t+5) if 1o
Thus, the function

(s, x)~—>f pls, x, t + s, dy)fl y)

is continuous, i.e., the Markov process {C, I, M3, X(¢), P, ,} satisfies the
Feller property. Since it is also a continuous process, Corollary 2.2.6 asserts
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that it possesses the strong Markov property.
Consider a stochastic differential system

d&(t) = b(&(t), t) dt + o(£(), t) db(¢) (3.17)

where (t) is another n-dimensional Brownian motion. According to
Theorem 3.3, there is a Markov process solution {C, I, I3, X(¢), P .}

Definition. If for any Brownian motion (¢), 1.5“ = P, for all «, s, then
we say that there is uniqueness in the sense of probability law. By contrast,
the uniqueness asserted in Theorem 1.1 is called pathwise uniqueness.

Theorem 3.5. Let (A) hold. Then there is a unique solution of (1.1) in the
sense of probability law.

Proof. From the proof of (3.8) one sees that the F,, do not depend on the
particular Brownian motion w(f). Hence, for any s < ¢; <, < - - -
< f < o and for any bounded continuous function ¢(x,, . . ., %), if £(¢) is
a solution of (3.17) with §(s) = &(s) and if {(s) = x, then

Eo(&(ty), . ... &(8)

= lim E¢(F,(t), x, wlt, y + 8) = w(s), ..., w(t, . + ) — w(s),
o Bt x, wlu,  + 8) — w(s), ..., wlu, , +s) — w(s)))

= lim E¢(F,(ty, % ©(tty, 1 + 8)=w(s), . . ., B(t, , + 5)— &(s)),
c Fo( e %, ®(ty, y + 8) — ®(s), ..., @(u, , + ) — i(s)))

= Ep(E(t), ..., E(8)-
Since ¢ is arbitrary, it follows that P, = ﬁx,s on cylinder sets in I,
Therefore also P, ; = P, , on the whole of IN;.

The results of this section can be extended to the case where the
condition (A) is replaced by the weaker condition:

(A) b(x, t) and o(x, t) are measurable; for every T > 0 the inequality
(3.1) holds for 0 < t < T, x€R" with K depending only on T; for every
T >0 R >0,

Ib(x, t) — b(%, t)] < Kglx — x|, Jo(x, t) — o(%, t)| < Kglx — &
if 0 < t < T, |x] < R, |x| < R where Ky is a constant depending on T, R,

Theorem 3.6. Theorems 3.1, 3.2, 3.4, 3.5 remain true if the condition (A) is
replaced by the weaker condition (A').

The proof is left to the reader.
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4. Diffusion processes

A continuous n-dimensional Markov process with transition probability func-
tion p(s, x, t, A) is called a diffusion process if:

(i) foranye>0,t>0,xER",

lim + t,x,t + h, dy) = 0; 4.1
hf’%h s P y) (4.1)

(ii) there exist an n-vector b(x, t) and an n X n matrix a(x, t) such that
forany e > 0, ¢t > 0, x€R",

1
lim = . — t,x,t+ h,dy) = b,(x,t
R R U R LS y) = by(x. 1
(1<i<n), (42)

1
}} h jl‘ (y; — x)(y; — x)p(tx t + h. dy) = a,(x, t)

y—x|<e
(1 i, < n), (4.3)

where b = (b,, ..., b,), a = (a,).
The vector b is called the drift coefficient and the matrix a is called the
diffusion matrix; when n = 1 we call a the diffusion coefficient.

Lemma 4.1. The following conditions imply the conditions (i), (ii):
for some § > 0,t > 0, x€R",
1 2+, -
}%lll:l’}) hf lx — y] (t,x,t + h,dy) =0, (4.4)
(ii*) for anyt > 0,xER",
fim 3 [ (y—xdplbxmt+hd)=b{xt) (1<icn)
(4.5)
lim & f (g, — x )y, — x)p(t, x, t + h, dy) = ax, t)
hlo h R™ i ! !
(1<i,j<n). (46)
Proof. Using (4.4) we have
1 243
t,x,t+ h,dy) < - t,x,t+ h,d
[, W) < 5o [Ny - Pl y)
-0 if h-0,
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so that (4.1) holds. By (4.4) we also have, for j = 1, 2,

1 .
- — x|lp(t, x,t + h,d
A Y)

1 1
< rrr iy j;nly — x2*%(t, x, t + h, dy)—0
)

if h—0. Consequently (4.2), (4.3) hold if and only if (4.5), (4.6) hold.

Theorem 4.2. Let (A') hold and let b(x,t), o(x,t) be continuous in
(x, t)ER™ X [0, o). Then the solution of (1.1) is a diffusion process with
drift b(x, t) and diffusion matrix a(x, t) = o(x, t)o*(x, t).

Here o* is the transpose of o. Thus, if a = (a,), then a; = T} _,0,0,.
Proof. Since p(t, x, t + h, A) is the probability distribution of the random
variable £ ,(t + h),

Efig, (t+ B)=x) = [ fly=pltxt+hdy) (47
for any continuous function f(z) with | f(z)] < K(1 + |z|*) for some K > 0,

a > 0; we use here the fact that E|§ ,(t + h)|* < oo for any a > 0 (see

Theorem 2.3).
In view of Lemma 4.1 it is therefore sufficient to prove that

ZEE (t+B) = 250 i hosO, (4.8)
%E[&,, (t+ h) — x}>blx,f) if h—0, (4.9)

%E(g;, (t+ h) = ) (t+ k) — x)>alxt) i ho0, (410)
where £/ , is the ith component of £, ..
From Theorem 2.3,
ElE (t+ h) — x* < KR*(1 + |x|Y) (K constant);
this gives (4.8).
Next,

Elg,o(t+ h) = x = 3B [ bl (), 3) A

1
= | Eb(§ .(t+ hs), t + hs)ds.
0

S
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Consider the random variables X, (s, w) = b(§, ,(t + hs), t + hs). Since
1 1
f E|X,| ds < cf E[L + & (t + hs)P]ds < C,
0 0
where C, C; are constants independent of h, the random variables X;, satisfy

the condition of uniform integrability, i.e.,

supf |X,| dP—0  if A—>oo. (4.11)
h 1%, >A

We also have that X (s, w) Lt b(x, t) uniformly with respect to s. Hence,
by Lemma 1.3.6, _
1
f EX,(s) ds—b{x,t) as h—0, (4.12)
0

and the proof of (4.9) is complete.
To prove (4.10) we use Itd’s formula (4.7.11) with u(z, £) = zz;

F(EE (t+ ML (¢ + ) = 5,2}

-1k e B E ()N

& Mbi(&, (A A) + ay(é, (M), N)] dA, (4.13)

where x = (x;, ..., x,).
Noting that

1
f E[1 + |& (¢t + hs)|*lds < C,
o .
where C, is a constant independent of h, we can apply the argument used to

prove (4.12) in order to deduce from (4.13) that, as h—0,

%ﬂﬂﬂ+@gﬂ+m—xﬂ$ﬂ@@ﬂ+MM&&+M&&

It follows that

lim { %E(g;;;(t + h) — x )& (¢ + h) - xi)}

h—0

.1 ;
= x,b(x, t) + x;b(x, t) + a(x, 1) — xi’lzgr:) EE[ T (t+h) - xi]

—x lim L E[E -~
xj}l'];% A E[‘gx,t(t + h) xi]

= a,(x, t),

where (4.9) has been used in the last equality.
We shall use Theorem 4.2 in order to compute the infinitesimal genera-
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tors @, of the Markov process solution of (1.1). By definition (see (2.3.7)),

(@, f)(x) =1 (TL,th)}(lx)

where
(T, 1 nf)(x) =f p(s, x, s + h, dy)f( y).
Thus,
(@, f)(x) = hm = f[f Ip(s, x, s + h, dy). (4.14)

Suppose f is bounded and twice continuously differentiable. Then

n

fy) = flx) = 2 (y - xi)fx,(x)

i=

[

1 n
5 2 (0= 20y = 5 (0) + olly — 5P
hj=
Substituting this in the integral in (4.14) for y in a small neighborhood of «x,
then taking h | 0 and using (4.1)—(4.3), we find that
02f & of _
(@, f)(x) 2 a,(x, s) o+ > bx, s) o, = (L(x). (4.15)

1;1 i 9 =1

The operator L f is a partial differential operator. This same operator
arises also in Itd’s formula:

wle(), ) = ulgloh5) = [ 3%+ Luaen). A) an
+ f u (EQ), NolEN), A) dw(d)  (4.18)

where £(¢) is any solution of (1.1). We refer to L, as the differential operator
corresponding to the stochastic system (1.1). Using (4.16) with ¢t = 7, one can
easily derive Dynkin’s formula (2.3.6) when f is twice continuously differen
tiable.

5. Equations depending on a parameter

Let A(x, t), B(x, t) be a random n-vector and n X n matrix respectively,
defined for (x, t)ER" X [s, o) for some s > 0 and assume:

(i) A(x, t), B(x, t) are continuous in (x, t), for each w;
(i) Af(x, t), B(x, ) are measurable in (x, £, w);
(i) A(x, t), B(x, t) are %, measurable for each (x, t), where T, is an
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increasing family of o-fields such that w(t) is &, measurable and ¥ (w(t +
A) — w(t), A > 0) is independent of %, for all ¢t > 0;
(iv) there is a constant K such that

|A(x, t)| < K(1 + |x}), |B(x, £)] < K(1 + |x|) a.s., (5.1)
|A(x, t) — A(X, )] € Klx — x|, |B(x,t) — B(%X, t)] < Kjx — % a.s.
(5.2)
Let ¢(t) be a function in M°[s, T]. Consider the equation
€)= o0 + [ AENLN) AN+ [T BEN N dold).  (53)

We refer to it as a system of stochastic differential equations with random
coefficients.

Theorem 5.1. If (i)(iv) hold and ¢ € M?[s, T), then there exists a unique
soluti_on £(t) in M,ﬁ[s, T); further, £(t) belongs to M (s, T].

We outline the proof leaving the details to the reader.
One defines by induction

() = 9(0) + [ Alg- s8N AN + [ BlEy (N, A) duol)
£o(t) = o(t),
and shows that the £, are well defined and
Elenlt) = (8P < Ko [ Elfnoals) = £noglo)P ds.
Since
ElG() - &(0F < Ky [ E(L+ s()P) an,

L™(t—s)"
m!

EI£, (1) — &, ()" <

Now we proceed as in the proof of Theorem 1.1 to show that lim £ (¢} is a
solution. The proof of uniqueness is the same as for Theorem 1.1.

(L constant).

Theorem 5.2. Let A, (x,t), B,(x,t), ¢,(t) satisfy the assumptions of
Theorem 5.1 for any 0 € a < 1, with the constant K (in (5.1), (5.2))
independent of a, and with sup, ¢, rElo, ()2 < C, C a constant indepen-
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dent of a. Suppose that forany N > 0, tE[s, T], € > 0,

lim P{ sup |Au{x, t) — Aqlx, t)| > e} = 0, (5.4)
all0 ‘<N
lim P{ sup |B,(x, t) — Bylx, t)| > e} = 0. (5.5)

al0 [xl< N
Suppose also that
lim sup Elo,(t) — $olt)F = 0. (5.6)

al0sgt<T
Consider the solutions & (t) of the equations

&(0) = 600 + [ A& N dX + [T B0, N) duld).  (5.7)
Then,
<SI:E TE|£a(t) — &,(t)]2—0 if alo. (5.8)

Proof. Take for simplicity s = 0. We can write

L0 = &o0) = )+ [ TA&L0) 5) = Aulgols), o) ds
+J(;t[Ba(€a(3), s) — B,(£(s), s)] dw(s)

where
nlt) = ¢.l) = oolt) + [ TAulEols), 8) — AglEo(s), )] ds
+f '[Bo(£(s), 5) — Boltols), s)] duols).
Using (5.1), (5.2) for A,, B,, we easily find that
E|£ (1) — &0 < BEIn, () + C fot El(s) — &(s)Pds.  (5.9)

If we prove that

sup E|n,(t)2—=0 as a—0, (5.10)
0<t<T
then the assertion (5.8) follows from (5.9).
Now,
¢ 2
L= E| [ [A&s). 5) = Agléals), )] ds

< tE fot |A(&(5), 8) — Agl&y(s), s)? ds.
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The last integrand is bounded by 2K(1 + |£,(s)|?), which is an integrable
function. In view of (5.4), this integrand also converges to 0, in probability,
as a—{0. Hence, by the Lebesgue bounded convergence theorem, I,—0 if
a—0.

Next,
2

.l: [B,(£o(s), 5) = By(£(s), s)] dw
= E [*1B,{&(s) 5) = Bléels). )P ds

By the previous argument, J —0 if a—0.
Finally, making use also of (5.6), the assertion (5.10) follows.

J,=E

We shall apply Theorems 5.1, 5.2 in studying the behavior of the solution
§, ,(t) in the parameters x, s. Recall that

t
& .(t) =« +f b£, (), A) dA +f N o). (5.11)
We ‘shall use the notation
Da _ aa _ aa1+...+aﬂ _
x—axﬂ_axilx..,ax:ﬂa |a|—al+. C+ a,.

If f = f(x, t), then the vector (3f/0x,, ..., 9f /dx,) is denoted briefly by
D.f or by f..

Definition. Let g(x) = g(x), ..., %,
functions for x in some open set. If

f 1

h lg(xy - oxpy + by oum) — glag oo m)]

), f(x) = f(x,,...,x,) be random

2
~f(xp ..., x,)| dP—0

as h—0, then we say that g(x) has a derivative with respect to x, in
the L2%(Q) sense, and the derivative is equal to f(x). We write
(3/0x,)g(x) = f(x). Similarly one defines the derivative D%g(x) in the L%(Q)
sense, for any a = (a;, .. ., a,).

We shall need the following condition:

db/dx,; 90/9x, exist and are continuous (1 <i < n). (5.12)

Theorem 5.3. If (A) and (5.12) hold, then the derivatives 0§, ,(t)/0x , exist
in the L*Q) sense and the functions {(t) =93¢, (t)/0x, satisfy the
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stochastic differential system with random coefficients

Gl =+ [ L N+ [0 - olg M), N) ded)
(5.13)

where e, is the vector with components &,.

Proof. Take for simplicity i = 1, and write h = (h,,0,...,0) where
h, # 0. Then

i () = £ (0] = e+ [ bl (0 A) = Bl (M) )] dA
+ [ TolEeun O, N) = olt, ,0), N] dw(). (514)

By Theorem 5.1 there exists a unique solution {, of (5.13) with i = 1. We
shall now complete the proof by invoking Theorem 5.2 with a = h, if
h, > 0and a = —h, if h; < 0. First we note that

| Tb(E, 1, /N \) = blE, (), N dA
-1 (o’ TE V) + e ) = £ LA d

Il
mkﬁ =
—
R‘

n%“
éfh-
>
+
=
;{'W
+
-
(%)
S~
A’“‘
“_
=
>
(=
=

. '$x+h,s(x) - 'Exs(}\)

dA.

A similar formula holds for the stochastic integral on the right-hand side of
(5.14). Therefore, the function

£(t) = ,}—1 £ un o (8) = £ ()]

satisfies (5.7) with
1

b€, (1) + plein () — & (1), 1) d,

1

0(&,(t) + plEesn s(t) = & (1), 1) du
if @ 5= 0, and &y ) = {,(t) satisfies the same equation with

Aoz, t) =z - b (& (1), 1), Bz t) =2 ol (1))

Az t) =

il
EN]
- o o

B,(z, t)



Since, by Lemma 3.3,
Esuplé ,, (t) — & (D=0 if h-0,
14

we conclude, upon using (5.12), that (5.4), (5.5) are satisfied. The assertion of
the theorem now follows from Theorem 5.2.

Remark. Notice that 0§,  (t)/dx, satisfies the stochastic differential system
with random coefficients obtained by differentiating formally the stochastic
differential system of § () with respect to x,.

Theorem 5.4. Let (A) hold and assume that Db (x, t), DJo(x, t) exist and
are continuous if |a| < 2, and

|D2b(x, t)| + |Dfo(x, t)] < Kyl + |x|?) (Ja| < 2) (5.15)

where K,, [ are positive constants. Then the second derivatives
9%, (t)/ 0x, 0x; exist in the L*(Q) sense, and they satisfy the stochastic
differential system with random coefficients obtained by applying formally
3%/ dx, 3x; to (5.11).

The proof is left to the reader.

Theorem 5.5. Let f(x) be a function with two continuous derivatives,
satisfying
IDFf(x)l < C(L + |«F)  (la] <2) (5.16)

where C, B are positive constants. Let the conditions of Theorem 5.4 hold,
and set

¢(x) = Ef(¢, (t)). (5.17)
Then ¢(x) has two continuous derivatives; these derivatives can be computed
by differentiating the right-hand side of (5.17) under the integral sign.
Finally,

|ID%(x)] < Co(1 + |x[") if |a| <2, (5.18)

where C,, y are positive constants.

Proof. We shall prove that

‘2% = Ef (& (1)) - {i— g ,(1). (5.19)

Take for simplicity i = 1 and set h = (h,, 0, ..., 0). Then
o(x + h) — o(x) = E[fl&n (1)) — A& ()]

£ L $l0)+ bl (6) = £.(0)) do
= E [ fl () + (s (8) = £ (0)  (Erana(t) =~ &, (0) dus



D e [ el
il o) — & (1) dp - et = Eeell)
(5.20)
As h—0
g"*"’s(t)h” falt) ey i L2Q) (5.21)

We claim that also
on = [ A1) + lEn 1) = &,(0)) d

—f&,(t) in L¥Q) (5.22)

as h—0. Indeed, this follows from Lemma 1.3.6 if we observe that
|y — fx(-‘ix,s(t)|2-—->0 in probability and

Ely, — & () < G

where C, is a constant independent of h; the assumption (5.16) is used here.
From (5.20), (5.21), and (5.22) we see that

o(x + 2)1_ (=) LER(E () 3?5[ L8 as A0

Having proved (5.19), one can now check that the right-hand side of
(5.19) is a continuous function in x and is bounded by Cy(1 + |x|*) for some
positive constants C,, y. The same is then true of 3¢/ 38x,. The proof that
¢(x) has second derivatives, that these derivatives are obtained by
differentiating under the integral sign of (5.17), and that they are continuous
and satisfy (5.18), is similar to the proof for the first derivatives; this is left to
the reader.

Theorems 5.4, 5.5 extend without difficulty to higher derivatives.

6. The Kolmogorov equation

Consider the function

u(x, t) = Ef(‘gx t(T))‘
Notice that
u(x, t) = E_ f&(T))

where {©, M, M3, (1), P, ,} is the Markov process that solves the system
of stochastic differential equations (1.1).
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Theorem 6.1. If f and b, o satisfy the conditions of Theorem 5.5, then u,,
u,, U, are continuous functions in (x, )€ R" X [0, T) and satisfy

du 5 du 13 % . .
I Elb,- ox, T 3 i,,'2=1a:,.,. %, 0%, 0 in R"x[0,T) (6.1)
u(x, t) — f(x) if t1T. (6.2)
Equation (6.2) is called the Kolmogorov equation, or the backward
parabolic equation.

Proof. Let g(x) be a twice continuously differentiable function satisfying
ID%g(x)] < C(1 + |x|#) if |a| < 2, where C, B are positive constants. By
It6’s formula (see (4.16))

Belt o n() — o) = E [ (Lge oo slds  (h>0) (63)

where L, is the partial differential operator defined in (4.15). The argument
used to derive (4.12) ean be applied also here to deduce that

1 t

2B [ (Lo, -als) 5) dso(Lglx, ) as A0,

h ™ Jia
Hence, if we divide both sides of (6.3) by h and let h—0, we get the formula
.1
lim Elglé, (1) — g(x)] = (Lg)(x, t). (6.4)

hio
Next, by the Markov property,
u(x, t— h) = Ex,t—hf(g(T)) = Ex,t—hEx,t—h(f(E(T)”%i—h)
= E, _Eqn. SIET)) = E, ,_nulé(t), t) = Eul, _4(2), t),
so that
u(x, t) — u(x,t — h) Eu(¢, ,_,(t), t) — u(x, t)

7 =~ : 7 : (6.5)

In view of Theorem 5.5, the function g(x) = u(x, t) has two continuous
x-derivatives, bounded by Cy(1 + |x|¥), for some positive constants C,, v.
Consequently the formula (6.4) can be applied. From (6.5) we then conclude
that

o u(x t) — u(x, t — h)
’}111:) 7 = — L,u(x, t). (6.6)

From (6.3) one easily deduces that

= |Bg(E. —a(t) - gla)l < C

where C is a constant independent of h. Applying this to the function
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g(x) = u(x, t) and then using (6.5), we get
lu(x, t) — u(x, t — h)| < Ch.

It follows that, for fixed x, u(x, t) is absolutely continuous in ¢. Therefore,
du(x, s)/ds exists for almost all s and

u(x, t) = u(x, 0) +f

0 ds

t du(x, s)

In view of (6.6),
u(x, t) = u(x, 0) —ft L.u(x, s) ds.
0

But since L u(x, s) is a continuous function, it follows that du(x, t)/ 0t exists
everywhere and (6.1) holds.
Next,

u(x, t) = fx) = Ef (& (T)) — Ef (& ¢(T))-
Using Lemma 3.3 and Lemma 1.3.6, we find that the right-hand side
converges to 0 if ¢ 1 T. This proves (6.2).

PROBLEMS

1. In Theorem 2.2, replace (2.5) by the inequalities
x - b(x, t) < K(I + |x3), |o(x)|] < K,

and prove that the assertions of Theorem 2.2 are still valid. [Hint: Apply
1t8’s formula to £3(f). Prove that
E sup |&(t)PF < C,
0<t<T
C independent of N.]
2. Prove that if (A’) holds, then for every x€R", s > 0,

E|§, o(t) = & ols)* < m(ly — af* + [t — s])
where 9(r)—0 if r—0. [Hint: Use (2.7).]

3. Prove Theorem 3.6.
4. If fEL2[0, T] and 7 is a stopping time, 0 < 7 < T, then

j;Tf(t) dw (1) =f0T”f(f + ) dib(s)

where w(s) = w(s + 1) — w(7).

5. If (@, F, %, &¢), P_,} is a Markov process with transition probability
p(s, x, t, A) and if g(x, t) is a continuous function in (x, t)ER' X [0, o0),
strictly monotone in x, then {Q, %, %], g(&(t), ¢), P, ,} is a Markov process
with the transition probability p(s, x,t, A) = p(s, g7 Yx, 5). t, g (A, 1))
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where g ~!(x, t) is the inverse function to g(x, t).

6. If the Markov process in the preceding problem is a diffusion process
with drift b(x, t} and diffusion coefficient a(x, t) and if g, g,, g,, are
continuous and g_(x, t) # O for all (x, t), then the process {, F, %3,
g(&(1), 1), P, ,} is also a diffusion process with drift and diffusion coefficients
given by:

bx t) =gy t) + by, £)gly. £) +3a(y, ) g (Y. 1),

a(x, t) = a(y, )(gl 4 )" y =g }(x0).

7. Complete the details of the proof of Theorem 5.1.
8. Prove Theorem 5.4.
9. Complete the proof of Theorem 5.5.

10. Consider a linear stochastic differential equation

dg(t) =[a(t) + B(2)&(t)] dt +[¥(t) + 8(t)¢(1)] du(t) (6.7)

where the functions a, 8, y, 6 are bounded and measurable. Prove:

(i) If a =0, y =0, then the solution § = £(t) is given by

£o(t) = &(0) exp [ "[8(5) = 10%s)] s + [ 8(s) ().

(ii) Setting £(f) = £,(t)¢(t) show that £(t) is a solution of (6.7) if and only
if

() = 50 + [ eols)a(s) — v(s)8(s)] ds + i " y(s)gls) ds.

Thus the solution of (6.7) is £,(¢){(¢) with £(0) = £,(0){(0).

11. If an equation of the form d§ = b(x, t) dt + o(x, t) dw(t) can be
reduced by a transformation n(t) = f(§(t), t) to an equation of the form
dn(t) = B(¢) dt + 8(t) dw(t), then

9 ﬂ_._q_(_’Z) 1 }ﬂ
e [o{ 2 o +20xx} 0.

12. Let g(x, t), h(x, t) be continuous functions in (x, )€ R X [0, T] to-
gether with their first two x-derivatives, and assume that
|DZg(x, )] + |D7h(x, )] < Kol + 12|f)  if [o <2
where K, B are positive constants. Let the conditions of Theorem 5.5 also
hold, and consider the function
T
t

aln, ) = Eexp {in [Tal&, o) ds +in [ hlE, (o), o) ) 18, (7).
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Prove that

% +Lu + dphu, + (iAg — $p?hDu =0 if x€RY 0<t< T,
u(x, t)—>flx) if t1T.

13. Verify that all the results of this chapter remain true for a system of n

stochastic differential equations

i
dég = 3 o6 t) dw, + b(Et)dt (1 < i< n)

=1
where (w,, . . ., w) is an [-dimensional Brownian motion.



6

Elliptic and Parabolic Partial
Differential Equations and
Their Relations to Stochastic
Differential Equations

1. Square root of a nonnegative definite matrix

As is well known, if a is an n X n nonnegative definite matrix, then it has a
unique nonnegative square root o, i.e., there is a unique nonnegative definite
matrix o such that o6 = a. If a depends on a parameter x, say a = a(x), then
also 0 = o(x). We shall be concerned here with the smoothness of ¢(x) in x,
assuming that a(x) varies smoothly with x.
RPSet a(x) = (a;(x)), o(x) = (0,(x)). The point x varies in an open set G of
We shall denote by C™(G) the class of all functions f(x) having con-
tinuous derivatives up to order m in G. If the mth derivatives of f(x) satisfy a
Hoélder condition with exponent o in compact subsets of G, then we say that
f belongs to C™**(G); here 0 < a < 1.

Lemma 1.1. If a(x) is positive definite for all x€ G and if a,€C™"*(Q)
for all i, j (or if a, € C™(G) for all i, f), then the elements of o(x) belong to
C™*(QG) (or to C™(Q)).

Proof. Let G, be an open bounded set with closure in G. Let T be a

smooth contour lying in the half-plane Re z > 0 of the complex plane and
containing all the eigenvalues of a(x), x € G, We claim that if x € G, then

a(x) = 5}-— f Vz (a(x) — zI)—1 dz (I = identity matrix). (1.1)
7 T

To prove it, let I'" be another smooth contour in Re z > 0 whose interior

128
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contains I'. Then

o o [ VEVE el ~ ) ale) — a7 de g
¢ (a(x) — ¢D)7" = (alx) — 21)"
n%LMﬁW = &)

1

_ 2Lf _m dz dt

by Cauchy’s theorem. Changing the order of integration and using Cauchy’s
theorem, we get

o¥(x) = — L fr(a(x) —zI)" W3z f Vi d¢ dz

47 -z
= -2—%7-; fr(a(x) —al) 'z dz= % fr(a(x) — zl)"la(x) dz.
Now modify I into the disk 'y = {2; |2] = R}, R large. Since
o) = al) = D7 < i F Bl =R,
’fr (x) = aI) ™" — (aI) 7] dz)gl‘?f;—)o if R— oo

It follows that

6%(x) = lim { L frn a(x) dz } = a(x).

R—oo \ 2mi z

From (1.1) it is obvious that the elements o(x) are as smooth in G as the
elements of a(x). Since Gy is arbitrary, the proof of the lemma is complete.

Theorem 1.2. If a(x) is nonnegative definite for all x € R” and if the a,(x)
belong to C*R™), then the o,(x) are Lipschitz continuous in compact
subsets. If, further,

0 %y (x)
sup sup

< M, 1.2
xER” t,j.k,1 O, 9y (12)

then
joy() — oy (y)] < 20V5 VH [x — . (13)

Proof. Suppose first that a(x) is positive definite and (1.2) holds. Consider
the function {(a(x)§, §> where { , > denotes the scalar product. By Taylor’s
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formula,
0<a(xy sy X+ hxeyy oo 0)6 6

~ a(x)6 £>+h( 88(’:) g,s>+f‘2—2<a§g) s,§>

for a suitable point ¥. Using (1.2) we get

9a(x)

0 < (a )$,£>+h< >+— M |£.

Since the right-hand side is a quadratlc polynomial in h taking only
nonnegative values,

( dals) s) < BMIEPCalx)E, ©. (14)

Denoting by ' the denvatlve with respect to x; and differentiating
o%(x) = a(x) with respect to x,, we obtain
a'(x} = o{x)o’(x) + o'(x)a(x). (1.5)
Let T(x) be an orthogonal matrix such that T(x)o(x)T ~'(x) is a diagonal
matrix A(x). Multiplying (1.5) by T(x) on the left and by T ~'(x) on the right,
we get
@(x) = Tx)a' ()T~ (x) = Y(x)A(x) + A{x)¥(x) (16)
where Y(x) = (y,(x)) = T(x)o’(x) T ~'(x). Denoting by A,(x) the eigenvalues
of o(x), we obtain from (1.6),

a
Ul Wy
Using the estimate (1.4) we find that
@(x)k, £° = (Tx)a'(A)T ™ Hx)§, £° = <a()T ~Hx)§, T~ (x)§)*
< 2oM| T~ x)Ea{x)T 7 (x)6, T~ Hx)E) = 2vMIEFECA%, £

where  @'(x) = (a@(x)). (1.7)

(1.8)

Taking £ = (£, ..., &) with § = 0if j # i, § = 1, we get
()" < 2MA2(x). (19)
Next, taking in (1.8) § = (§,, ..., &) with § = 0 if k # i, k # j (where

i#jfand § =§ =1, weﬁndthat
|a;(x) + 2a(x) + @) < 4vM(AZ(x) + AXx) (x)).
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Hence
a,,(x) 2(1‘7( ) aﬁ(x) < ArM
A+ A, A+ N
Recalling (1.9) we get
C_li’j(x)
2 <V 2rM + 2VeM | (1.10)
NN
Substituting (1.9), (1.10) into (1.7), we obtain
| ya(x)] < 2VeM if 1<4, 1< (1.11)
Since (oy(x)) = T~ Hx)Y(x)T(x) and T(x) = (T, (x)) is orthogonal,
o3l < {max| lx)l) ZATuTy(x)| < 20V . (1.12)

Suppose now that a(x) is nonnegatlve definite and (1.2) holds. Then the
matrix a(x) + €l (€ > 0) is positive definite and satisfies (1.2) with M
replaced by a constant M,, M, | M if € | 0. By what we have already proved,
the square root o°(x) of a(x) + el satisfies

o5 (%) — o5 (y)] < 20VaM, |x — y|.

We can apply the Ascoli-Arzela lemma to conclude that, for some
sequence ¢, | 0, 0"(x) - o(x) uniformly on compact sets. This gives (1.3).
We have thus completed the proof of the theorem in case (1.2) holds.

If the g, belong to C*(R”) but (1.2) is not assumed to hold, then we can
slightly modlfy the previous proof, making use of the fact that forany R > 0

9%a,(x)

dx, 9%, < M(R)  (M(R) constant).

sup sup
|[x|<R 4,4,k1

Remark 1. If a(x) is nonnegative definite in an open set G and g, € C*G),
then the square root ¢(x) is Lipschitz continuous in compact subsets of G.
Indeed, this follows from the proof of Theorem 1.2.

Remark 2. If n = 1 and a,,(x) = |x", then o,(x) = |x[*/% If A = 2, then
a,, is in C* and ¢, is Lipschitz continuous, but if A = 2 — ¢ for any small
e > 0, then a,, is in C*”° and o, is not Lipschitz continuous. This example
shows that assumption that g, € C? in Theorem 1.2 is sharp.
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Remark 3. 1If a(x) is nonnegative definite in a closed domain G with
smooth boundary, and if a,€C>(G), there does not exist in general a

nonnegative definite matrix ¢ in G that is Lipschitz continuous and satisfies

o> = a in G. For example, if n =1 and G = {x; 0 < x < 1}, a;,(x) = «x,

then ¢,,(x) = Vx is not Lipschitz continuous.

2. The maximum principle for elliptic equations

Consider the linear partial differential operator

u=$ X aix) 8 8 +2b mé;+c() (2.1)

hi=1 i
with real coefficients defined in an n—dlmensmnal domain D. L is said to be

of elliptic type (or elliptic) at a point x° if the matrix (a(x %) is positive
definite, i.e., for any real vector § # 0, Ea"(x )& > 0.

Lemma 2.1. Let (a,( )) be a nonnegative definite matrix for x<€ D, and let
c(x) < 0 If u(x) is m C*D) and if it attains a positive maximum in D at a
point x°, then Lu(x ) < 0.

Proof. 1f A and B are nonnegative definite matrices, then tr(AB) > 0.
Indeed, if A is an eigenvalue of AB, then ABx = Ax for some x 7 0. Taking
the scalar product with Bx we see that A > 0. Since tr(AB) is equal to the
sum of the eigenvalues of AB, it follows that tr(AB) > 0.

Applying the previous result to A = (g;(x N B= —(u, Jt'(aco)) we con-
clude that Sa,(x)u, , (x*) < 0. Since also 1, (x%) = 0, c(xHu(x® < 0, the
assertion Lu(x%) < 0 follows.

The weak maximum principle is the following theorem:
Theorem 2.2. Let (ay(x)) be nonnegative definite matrix for all x in a
bounded domain D, and assume that c¢(x) < 0 and

La (x)A2+ b (x)A >0  forsome A >0 andforall xeD.
If ue CYD)N C%D) and Lu > 0 in D, and if maxz u(x) > 0, then
<
Ll ulo) < pagats)

where 3D is the boundary of D.

Thus, if u takes positive values in D, then the maximum of u in D is

attained on 9D; it may also be attained at points of D.

Proof. If the assertion is not true, then there is a point ¥€ D such that
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u(X) > maxy, u(x). Consider the function

k(x) = exp(?\x?) — exp(Ax,)
where x{ is a real number such that x; < x{ forall x = (x}, ..., x,) in D. It
is clear that k(x) > 0 and Lk(x) < 0 in D. If ¢ is positive and sufficiently
small, then the function v = u — ek satisfies: v(%) > max,, v(x). Hence v
assumes a positive maximum in D at some point x° € D. By Lemma 2.1,
Lo(x% < 0, ie., Lu(x®) — eLk(x% < 0. Since Lk(x%) < 0, we arrive at the
inequality Lu(x% < 0; this contradicts the assumption that Lu > 0 in D.

Remark. If we apply the weak maximum principle to — u, we obtain the
following assertion: If the coefficients of L satisfy the conditions imposed in
Theorem 2.2, and if u€CD)N CY%D), Lu <0 in D and u assumes a
negative minimum in D, then

gxél; u(x) > xrg%%u(x).

Definition, If there is a positive constant g such that

i aii(x)'gdgj > pléf

ij=1
for all x€ D, {€ R", then we say that L is uniformly elliptic in D.

The strong maximum principle for elliptic operators is the following
theorem.,

Theorem 2.3. Let L be a uniformly elliptic operator with bounded
coefficients in compact subsets of D, and assume that c(x) < 0 in D. If
u€ CYD) and Lu > 0 in D, and if u(x) Z const, then u cannot attain a
positive maximum in D.

Applying this result to —u we conclude that if Lu < 0 in D and
1(x) Z const, then u cannot attain a negative minimum in D.

Proof. 'We shall assume that u takes a positive maximum M at some point
x°€ D, and derive a contradiction. Since u = const, there is a point leD
such that u(x') < M. Connect x' to x° by a continuous curve y lying in D.
Then there is a first point x* along y such that u(x) < M if x lies on v
between x! and x%, and u(x®) = M (x* may coincide with x°). Take a point
x* on y between x! and x® such that the ball {x; |[x — x*| < [x® — x*|} lies
in D. Let x** be the nearest point of the set {xE€D; u(x) = M} to x*.
Clearly, the closure of the ball B* = {x; |x — x*| < |x** — x*|} lies in D,
u(x) < M for all x€B*, and u(x**) = M. Take a ball B contained in B*
whose boundary B touches the boundary of B* at x**. Then u(x) < M for
all x€ BU 9B, x # x**, Denote the center of B by x.
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Denote by E a closed ball with center x** and radius < |x** — %| lying in
D. Its boundary consists of a part E; lying in B and a part E, lying outside B,
OnE,,u < M — § for some § > 0.

Set R = |x** — |, and consider the function

h(x) = exp] — a|x — #*] — exp[ — aR?].
It satisfies: h > O in B, h < O outside B, h = 0on dB, and Lh > 0 in E if «
is sufficiently large. Consider the function v = u + €h (¢ > 0). If € is
sufficiently small, then v < M on E;, v < M on E,, and Lv > 0 in E. By
Lemma 2.1, v cannot take a positive maximum in the interior of E. Since
however v(x**) = M > 0, we get a contradiction.

Consider the problem of finding a solution u of

Lu(x) = f{x) in D, (2.2)
u(x) = ¢{x) on dD. 2.3

This is called- the Dirichlet problem or the first boundary value problem.
A barrier w,(x) at the point y € 3D is a continuous nonnegative function

in D that vamshes only at the point y and for which Lw,(x) < —1.
If there exists a closed ball K such that KN D = g, K ND = {y}, then

wy(x) = k{]a® = y|7" — |x — y| 7P} (x° = centerof K) (2.4)

is a barrier at y provided k and p are sufficiently large.

Theorem 2.4. Assume that L is uniformly elliptic in D, that c(x) < 0, and
that a, b, c, f are uniformly Holder continuous (exponent a) in D. If every
point of 0D has a barrier and if ¢ is a continuous function on 0D, then there
exists a unique solution u in C*(D)N C%D) of the Dirichlet problem (2.2),

2.3).

For the proof of existence the reader is referred to Friedman [1, 2]. The
uniqueness follows from the maximum principle.

3. The maximum principle for parabolic equations

Consider the partial differential operator

13 du _ du
Mu = > ayx, 1) 8 8 +2b v +c(x, thu Y (3.1)

ij=1 i=1 i
with real coefficients defined in an (n + 1)-dimensional domain Q. If
Zay(x®, )¢ > 0 for all EER™, £ # 0, then we say that M is of parabolic

type at (x° t°). M is uniformly parabolic in Q if there is a positive constant
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such that

zaﬂ(x, )€ > ulél forall (x,t)€ Q, &€ R™
Suppose Q lies in the strip 0 < t < T, and define
Dr={(x, T); (x,T— &) € Qforall 0 < § < &, 8, depending on x},
Q=QuUD;, 9Q =boundaryof @, 3,0 =3Q \ (int D;).

The weak maximum principle is the following theorem:

Theorem 3.1.  Let (a,(x, t)) be nonnegative defmzte matrix for all (x, t) in a
bounded domain Q, and assume that c(x,t) < 0. Ifuc C%Q) and u_, Uy o
u, belong to C%Q,), and if Mu > 0 in Qo and maxg u > 0, then

Llub. u(x, t) < max u(x,t).
(x,5)EQy (%,t) €3Q

Proof. If the assertion is false, then, for some € > 0 sufficiently small, the
function v = u — et takes posxtlve maximum in Q at a point (x t% in
QUD;. If t° = T, then 1,(x% t% < 0; and if t° < T, then v,(x°, to) = 0.
Employing Lemma 2.1 we conclude that Mo(x®, t% < 0. Since however
Mu >0 in Q, and M(—et) = —cet + € > 0, we have Mo(x° % > 0, a
contradiction.

For any point P° = (x° ¢°) in Q, denote by S(P?) the set of all points P in
Q that can be connected to P° by a simple continuous curve in Q along
which the t-coordinate is nondecreasing from P to P°. We denote by C (P?)
the component, in t = t° of Q N {t = t°} that contains P’ Notice that
C(P% C S(PY).

The strong maximum principle for parabolic equations states the follow-

ing.

Theorem 3.2. Let M be uniformly parabolic in a domain Q, with bounded
coefficients, and assume that c(x, t) < 0. If u, Uy s Uy s Uy OTC continuous in
Q and Mu > 0 in Q, and if u takes a positive maximum in Q at a point
P° = (2% t°), then u(P) = u(P°) for all P €S(P").

We need a few lemmas.

Lemma 3.3. Let Mu >0 in Q and suppose that u takes a positive
maximum K in Q. Suppose that Q contains a closed solid ellipsoid E:

3 A5 — x4+ At — t9)°< R? (A >0, R >0),
=]

u < K in the interior of E, and u(%, ) = K for some point P = (%, i) on
the boundary JE of E. Then ¥ = x* where x* = (x}, ..., x%}).
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Proof. We may suppose that P is the only point on 3E where u = K since
otherwise we confine ourselves to a smaller ellipsoid lying in E and touching
OFE at P only. Suppose ¥ # x* and let C be an (n + 1)-dimensional closed
ball contained in Q with center P and radius < | — «*|. Then

|x — x*| > const >0  forall (x,¢t)EC. (3.2)

The boundary of C is composed of a part C; lying in E and a part C, lying
outside E. Clearly

u< K-2§6 on C,, for some constant & > 0.
Consider the function

hx, t) = exp{ —a{ 2N — x¥)? + At — t*)2H — exp{ — aR?)}
i=1

where « is a positive constant. Clearly h > 0 in the interior of E, h = 0 on

dE, and h < 0 outside E.

Using (3.2) one easily verifies that Mh > 0 in C if a is sufficiently large.
Consider now the function v = u + €h in C, where € > 0. I € is sufficiently
small, then v < K on both C; and C,. Since v(P) = K, it follows that v takes
its positive maximum in C at an interior point P= (%,f). By Lemma 2.1,
Mo < 0 at P. Since, however, Mv = Mu + eMh > 0 in C, we get a contra-
diction.

Lemma 3.4. If Mu > 0 in Q and if u takes a positive maximum in Q at a
point P® = (x°, 1%), then u(P) = u(P°) for all P€ C(P").

Proof. 1f the assertion is not true, then there exists a point P! = (x!, % in
C(P°) such that u(P") < u(P®. Connect P! to P° by a simple continuous
curve v lying in C(P°). Then there exists a point P* = (x*, t°) on y such that
u(P*) = u(P% and u(P) < u(P" for all P on y between P! and P*. Take
one such point P = (%, t° whose distance to the boundary of Q is
> 2|P — P¥|,
Since u(P) < u(P*), there exists a sufficiently small interval o = {(%, t);
t— € < t < t°+ €} such that

u(P) < u(P*) forall P&o. (3.3)
Consider the family of ellipsoids E,:
lx ~ 72+ At — O°< R (A > 0).
Take R% = Ae? so that the end points of ¢ lie on the boundary of E,. If A0,
E,~—o. As A increases, E, N {t = t°} increases; for sufficiently large A it will

contain the point P*. Hence, because of (3.3), there is a first value of A, say
A = Ay, such that u < u(P*) in the interior of E, and u = u(P*) at some
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boundary point P= (y,?) of E,. Since u < u(P*) on o, it is clear that
y # %. This contradicts Lemma 3.3.

Lemma 3.5. Let R be a rectangle

- <x<x)+aq (i=1...,n), t®—agy<t<t
contained in Q, and let Mu > 0 in Q. If u takes a positive maximum in R at
the point P° = (x° t°), where x° = (x}, . . ., x0), then u(P) = u(P® for all
PER.

Proof. 1f the assertion is not true, then there is a point P in R such that

u(P) < u P°) Since then u < u(PO) in a neighborhood of P, we may
assume that P does not lie on t = t°. On the straight segment Y connectmg P
to PP there exists a point P! such that u(P') = u(P° and u(P) < u(P) for
all P on y between P and P'. Without loss of generality we may assume that
P! = P° and that P lies on ¢t = t® — a,, for otherwise we can confine
ourselves to a smaller rectangle.

Denote by R,, the subset of R consisting of all points with ¢ < ¢°. Since,
for‘every P! in Ry, C(P') contains a point of y, and since u < u(P°) on vy,
Lemma 3.4 implies that u(P') < u(PP).

Consider the function

hix, ) =t°—t— Alx— 22 (A >0).

Clearly h = 0 on the paraboloid II: t® — ¢t = A|x — x%% h < 0 above II,
and h > 0 below II. Also, as easily seen, Mh >0 in R if 4A3aq, < 1 in R
and if the dimensions of R are sufficiently small.

IT divides R into two regions. Denote by R’ the lower region. Its upper
boundary B’ touches ¢t = t° at the point P° only. Hence on the comple-
mentary boundary B” of R’ we have u < u(P% — 8 for some § > 0. It
follows that if € > 0 is sufficiently small, then the function v = u + €h
satisfies v < w(P°) on B”. Next, v = u < u(P" at all the points of B’ other
than P°. Since Mv = Mu + eMh > 0 in R’, v cannot take a positive
maximum in R’ at an interior point (by Lemma 2.1). We thus conclude that
the maximum of v in the closure of R’ is attained at just one point, namely,
at P This implies that dv(P% /93¢t > 0. Since 0h(P°%) /3t = —1, we con-
clude that

du(P®) /3t > 0. (3.4)

Since however u takes a positive maximum at P°, Lemma 2.1 implies that
Mu < —9u/dt at P°. But since we have assumed that Mu > 0 in Q,
du(P®) /3t < 0. This contradicts (3.4).

Proof of Theorem 3.2. Suppose u & u(P° in $(P°). Then there exists a
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point P in S(P% such that u(P) < u(P?%. Connect P to P° by a simple
continuous curve v lying in S(P®) such that the t-coordinate is nondecreasing
from P to P°. There exists a point P' on y such that u(P') = u(P® and
u(P) < u(P") for all P on y lying between P and P'. Construct a rectangle
R:

x}—a%xi<xl+a (i=1,...,n), L —~a<t< !

where P! = (x], ..., !, t") with a sufflc1ently small a so that R is contained
in Q. Applying Lemma 3.5 we conclude that u = «(P') in R. This contra-
dicts the definition of P’.

Let Q be a bounded domain in the (n + 1)-dimensional space of variables
(x, t). Assume that Q lies in the strip 0 < ¢ < T and that B = @n {¢ = 0},
B, = QN {t = T} are nonempty. Let B, = interior of B,, B = interior of
B. Denote by S, the boundary of Q lying in the strip 0 < ¢ < T, and let
S =5\ By The set 3,0 = B U S is called the normal (or parabolic)
boundary of Q

The first initial-boundary value problem consists of finding a solution u of

Mu(x, t) = f(x,t) in QUB; (3.5)
u(x, 0) = ¢(x)  onB, (3.6)
u(x, t) = g(x,t) onS§, (3.7)

where f, ¢, g are given functions. We refer to (3.6) as the initial condition
and to (3.7) as the boundary condition. If g = ¢ on B N S, then the solution u
is always understood to be continuous in Q.

A function wg(P) (R € B U S) is called a barrier at the point R if wg (P) is
continuous in PEQ, wg(P) >0 if PEQ, P+# R, wg(R) =0, and
Mwy, € —1in QU B,.

Suppose Q is a cylinder B X (0, T), and assume that there exists an
n-dimensional closed ball K with center ¥ such that K N B=¢, K N B
= {x°). Then there exists a barrier at each point R = (x° %) of S (0 < ¢°
< T), namely,

1 1

t

where y > c(x, ), Ry = [x° — %, R = {|x — %* + (¢t — %"/, and k, p are
appropriate positive numbers.

Theorem 3.6. Assume that M is uniformly parabolic in Q, that a, b, c, f
are uniformly Hélder continuous in Q, and that g, ¢ are continuous
functions on B, S respectively and g = ¢ on BN S. Assume also that there
exists a barrier at every point of S. Then there exists a unique solution u of
the initial-boundary value problem (3.5)-(3.7).



4. THE CAUCHY PROBLEM AND FUNDAMENTAL SOLUTIONS 139

The solution « has Holder continuous derivatives u, o Ue iz Uy
For the proof of existence we refer the reader to Friedman {1]. The
uniqueness follows from the inequality

m6x|u| < e“Tg1a§|u| if Mu=0 and c(x,t) < a inQ. (3.8)
U

This inequality follows from the weak maximum principle applied to
v = ue

4. The Cauchy problem and fundamental
solutlons for parabollc equations

Let

1 n
5 2= A{x, t) v 8xi+2b ~—a——+c(x thu  (4.1)

i=1 i

be an elliptic operator in R" for each t€[0, T]. Consider the parabolic
equation

du(x, t)

Mu = Lu(x, t) — = f(x, t) in R"™ X(0, T (4.2)
with the initial condition
u(x, 0) = ¢(x) onR"™ (4.3)

The problem of solving (4.2), (4.3), for given f, ¢, is called the Cauchy
problem, The solution is understood to be continuous in R" X [0, T] and to
have continuous derivatives u, , u, . , 4, in R" X (0, T].

We first prove uniqueness.

Theerem 4.1. Let (a,(x, t)) be nonnegative definite and let
lay(x, )} < C, bz, 1) < C(lx| +1), ez, t) < C(|xP + 1) (4.4)
(C constant). If Mu < 0 in R" X (0, T] and

u(x, t) > — B exp[ B|x|*] in R" X|[0, T] (4.5)

for some positive constants B, B, and if u(x,0) > 0 on R", then u(x, t) > 0
in R X [0, T].

Proof. Consider the function

H( k| x[? 1
x, t) = exp l_.w+vt O<t<2—".
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One easily checks that, for every k > 0, if u and » are sufficiently large
positive constants, then MH < 0. Consider the function v = u/H and take
k > B and p, » such that MH < 0. From (4.5) it follows that

1|1r71 info(x, t) > 0 (4.6)
x|— O
uniformly in ¢, 0 < ¢ < 1/2p. Further, v satisfies

- _ 1 9% ~ _d _ ( 1 )

Mv_zza,i ax,-axi+2b" ax,.+c 5 = 0<t<2#
where f = (Mu)/H < 0 and

8H/8x
, + Ea,, , ¢ = % <0

By (4.6), for any € > 0, v(x, t) +¢€>0if |x1 R, 0 < t £ 1/(2p) pro-
vided R is sufficiently large. Also M(o +e)<ce<0if0<t<1/(2p)and
v(x, 0) + € > 0 if |x| < R. By the maximum principle, v(x, t) + € > 0 if
|x] < R, 0 < ¢t <1/2p. Taking R— oo and then €| 0 it follows that
o(x, t}) > 0if 0 < ¢t < 1/2p. Hence u(x,t) > 0if 0 < ¢t < 1/2p. We can
now proceed step-by-step to prove the nonnegativity of u in the strip
0<t<T

Corollary 4.2. If (a,(x, t)) is nonnegative definite and (4.4} holds, then
there exists at most one solution u of the Cauchy problem (4.2), (4.3)

satisfying
|u(x, t)] < B exp| Bix|*]

where B, B are some positive constants.
The next result on uniqueness has different growth conditions on the
coefficients of L.
Theorem 4.3. Let (a,(x, t)) be nonnegative definite and let
|aii(x3 ) < C(Ix|2 + 1), |b(x, t)] < C(|a] + 1),

c(x,t) < C (C constant). (4.7)
If Mu < 0in R™ X (0, T] and
u(x,t) > —N(|x}+1) in R"™ x[0, T] (4.8)

where N, q are positive constants, and if u(x, 0) > 0 on R", then u(x, t) > 0
in R" x [0, T].

Proof. For any p > 0, the function
w(x, 1) = (|22 + Kt) e
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satisfies Mw < 0 in R" X [0, T] provided K, a are appropriate positive
constants. Take 2p > q and consider the function v = u + ew for any
€ > 0. Then Mv < 0. Since v(x, 0) > 0 and (by (4.8)) v(x, ¢) > 0if jx| = R
(R large), 0 < t < T, the maximum principle can be applied (to ve ™) to
yield the inequality v(x, t) > 0 if |x| < R, 0 < ¢t < T. Taking first R—o0
and then €—0, the assertion follows.

Corollary 4.4.  Let (a;(x, t)) be nonnegative definite and let (4.7) hold. Then

there exists at most one solution of the Cauchy problem (4.2), (4.3) satisfying
ju(x, )] < N1+ |2)

where N, q are some positive constants.

Definition. A fundamental solution of the parabolic operator L — 3 /3t in

R" x [0, T] is a function I'(x, t; § 7) defined for all (x,t) and (§ 7) in
R" X [0, T], t > , satisfying the following condition:

For any continuous function f(x) with compact support, the function

u(x, ) = [ T, & Ifig) ¢ (4.9)
R"
satisfies '
Lu—0u/dt=0 if x€R", 7<t< T, (4.10)
u(x, t)>f(x) if ¢ (4.11)

We shall need the conditions:
(A;) There is a positive constant p such that
Yay(x, &g > e forall (x,¢)eR" x[0, T|, feR™

(A;) The coefficients of L are bounded continuous functions in
R" X [0, T], and the coefficients a,(x, t) are continuous in ¢, uniformly with
respect to (x, t) in R" X {0, T].

(A3) The coefficients of L. are Holder continuous (exponent «) in «x,
uniformly with respect to (x, t} in compact subsets of R" X [0, T]; further-
more, the a;(x, t) are Holder continuous (exponent @) in x uniformly with
respect to (x, t) in R" X [0, T].

Theorem 4.5. Let (A)~(A;) hold. Then there exists a fundamental solution
[(x, t, § 7) for L — 3/ 0t satisfying the inequalities
|x — &

t—T

|DL(x, t; €, 7)| < C(t — r)_("+|ml)/2 exp{ —c l (4.12)

for |m| =0, 1, where C, ¢ are positive constants. The functions
DMPP(x, t; ¢, 1) (0 < im| < 2) and D,I'(x,t; £ 1) are continuous in
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(x,t,§ 7)€ R" X[0,T] X R" X [0, T), t > 7,and LT —3T' /ot =0as a
function in (x, t). Finally, for any continuous bounded function f(x),

fR,, D(x, t; 4, ) f(x) de> f(§)  if tir (4.13)

The construction of I' can be given by the parametrix method; for details
regarding the construction of this I and the proof of the other assertions of
Theorem 4.5, see Friedman [1; Chapter 9]. (The assertion (4.13) follows from
Friedman {1, p. 247, formula (2.29); p. 252, formula (4.4), and the estimate
on' — Z].)

The following theorem is also proved in Friedman [1]:

Theorem 4.6. Let (A))~(A;) hold. Let f(x, t) be a continuous function in
R"™ x [0, T]), Holder continuous in x uniformly with respect to (x,t) in
compact subsets, and let ¢(x) be a continuous function in R". Assume also
that

|f(x )] < Aexp(alx) in R"™ X[0, T, (4.14)

lo(x)] < A exp(a|x®) in R" (4.15)

where A, a are positive constants. Then there exists a solution of the Cauchy
problem (4.2), (4.3) in the strip 0 < t < T* where T* = min{T, ¢/a} and ¢
is a constant depending only on the coefficients of L, and

lu(x, t)] < A’ exp(a’|x[?) in R"™ X[0, T*] (4.16)

for some positive constants A’, a’. The solution is given by

u(x,t)=fn T(x, t; & 0)o(£) d& — ff (x, t; & 7)f(&, 7) dedr.  (4.17)

The formal adjoint operator M* of M = L — 3 /dt, where L is given by
(4.1), is given by
M*p = L*v + dv/0t,

L*v = = 2 —ﬁ + i b*(x, t) 9o +c*(x, t)v  (4.18)
”=1 0x; ax,. =1 AT ox, ’
where
1 n aa,.,.
* = _ ] X —

oo db, 1 & 3y
* — o 14 2 )
t=c- 2 ox; T2 2 dx, dx;

i=1
It is assumed here that da,/ dx;, d%a, / dx, dx,, db,/ dx, exist and are bounded
functions.

(4.19)
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Notice that

o1 2 2 9, 8
M*vp 5 2= igl o ) + co + 5 (4.20)

Using this form of M*v, one can easily verify Green’s identity

n n da,
oMu — uM*v = > 9 [ 1 > (oa..—aﬂ'— —ua..—a—q— —uo—l) + biuv]

=y 0% | 2 =1\ 7 ox; T 9x, dx;
J
5 (uv). (4.21)
Thus, if 4, v have compact support in a domain G, then
f f (oMu — uM*v) dx dt = 0. (4.22)
G

Definition. A fundamental solution of the operator L* +3/9t in
R" X [0, T] is a function T'*(x, ¢; &, 7) defined for all (x, ¢) and (& 7} in
R" x [0, T], t < 7, satisfying the following condition:

For any continuous function g(x) with compact support, the function
o(x, 1) =f T*(x, 4 & 7)g(¢) dé
R'l
satisfies
L*v +dv/0t =0 if x€R", 0 t< 1,

o(x, t)—>g(x) if t1r.
We shall need the following condition:

(A,) The functions

d 32 d
ax, > dx; Ox; i b, 3;; b, ¢

Ay

are bounded functions, and the coefficients of L* satisfy the conditions (A,),
(Ag)-

Theorem 4.7. If (A,)~(A,) hold, then there exists a fundamental solution
P*(x, 8, §, 1) of L* + 8/8t and
C(x, ;& 7)=T*¢ 751, 8) (t > 7). (4.23)

Proof. The construction of I'* can be carried out in the same way as for I
Further, I'* satisfies inequalities similar to (4.12) and L*I'* +9I'* /93¢t = 0 as
a function of (§, 7). Thus it remains to prove (4.23). Consider the functions

u(y.0) =y, 0:£71), oly o)=T*y, 0:x1)
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for yeR", 7 < o < t. Integrating Green’s identity (4.21) over the domain
lyf <R, T+ e<o<t—¢e (R >0) and using the relations Mu = 0,
M*v = 0, we obtain

f u(y,t—e)v(y,t—e)dy—f u(y, 7+ €o(y, 7+ e)dy =1,
lyl<R ly|<R ’

where
I g= i ftﬂf 1 i (Ua’ii Qu
i1 Jr+e Jiyl=r| 2 2 dy;

— ua. do —uv ———) + biuv} cos(v, y;) dS, do;

v is the outwardly directed normal to | y| = R and dS, is the surface element
on |y| = R. Using (4.12) and the corresponding inequalities for T'* we find
that I, p—0 if R—oc0. Hence

f uly, t — eIyt —ex, t)dy=| oly, 7+ el(y, 7+ & 1) dy.
Rﬂ. R’!

(4.24)
Taking € | O the assertion (4.23) follows; cf. Problem 10.

5. Stochastic representation of solutions
of partial difierential equations

Let L be an elliptic operator in a bounded domain D given by (2.1). Assume
that L is uniformly elliptic in D, i.e.,

> aix)EE > plé?  if xED, (€ER™ (p>0) (5.1)
=1
Assume also that

a;. b, are uniformly Lipschitz continuous in D, (5.2)

¢ < 0,c uniformly Hélder continuous in D. (5.3)

Assume finally that the boundary 3D of D is in C2, so that barriers exist at
all the points of 3D (see Problem 2).

Then, by Theorem 2.4, the Dirichlet problem (2.2), (2.3) has a unique
solution u for any given functions f, ¢ satisfying:

f is uniformly Hélder continuous in D, (5.4)
¢ is continuous on 8D. (5.5)

We shall now represent u in terms of a solution of a stochastic differential
system.
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By Lemma 1.1 and (1.1) it is clear that the nonnegative definite square
root a(x) = (0,(x)) of the matrix a(x) = (a;(x)) is Lipschitz continuous in D.
Extend a(x) and b(x) = (by(x), . . ., b,(x)) into the whole space R" so that

lo(x) — o(y)| < Clx—yl,  |b(x) = b(y)| < Clx —yl. (56
Consider the system of stochastic differential equations
d&(t) = o(£(2)) dw(t) + b(&(1)) dt. (5.7)

Denote by V, the closed e-neighborhood of D and let D, = D\V,_. Let v
be a function in C%R") that coincides with the solution u of (2.2), (2.3) in
D, /5, and let 7 be any Markov time with respect to the time-homogeneous

€

Markov process solution of (5.7). By It6’s formula,
Feo(&(r) exp| [ e(6ls) ds | = o(x)
= E, fo " [Lo(&(1)] exp{ fo GO) ds] dt. (5.8)

Take x € D, and 7 = 7. A T where 7, is the hitting time of V. Then
v(é(t)) = u(f(t)) for all 0 < ¢t < 7, A T. Hence (5.8) holds for v = u. Taking
¢ — 0 and using the Lebesgue bounded convergence theorem, we get

AT

u(x) = Eu(§(r A T)) exp{j; c(£(s)) ds]
~E, j(;T/\Tf(é(t)) exp[j: c(&(s)) dsl di (5.9)
where 7 is the exit time from D.

Theorem 5.1. Let (5.1)-(5.5) hold and let 3D belong to C2 Then the
unique solution u of the Dirichlet problem (2.2), (2.3) is given by

ulx) = Elélr) esp) [ clé(s) ds]
_E, fo " AE) exp[ fo  elt(s) ds] dt (5.10)

where 7 is the exit time from D.

Proof. If we prove that
Er < (5.11)

then, by taking T 1 oo in (5.9) and using the Lebesgue bounded convergence
theorem, we get the assertion (5.9).
To prove (5.11) consider the function

h{x) = — Ae™
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for all x = (x, ..., x,) in D. If A, A are sufficiently large (A depending on
A), then

2ah,+ 2bh< -1  inD.

By It6’s formula,
Eh(t AT)) —h(x) < ~E (1t AT).
Since |h(x)| € K in D (K constant), we then have E (1 A T) < 2K. Taking

T 1 o« and using the monotone convergence theorem we get E 7 < 2K this
proves (5.11).

Remark. The proof of (5.11) requires only that a,,(x) > 0 in D. Thus the
right-hand side of (5.10) makes sense even if 3D is not in C?, L is not elliptic
but has bounded coefficients with c¢(x) < 0, a,,(x) > 0in D, a = 00*, and o,
b are Lipschitz continuous in D. Recall that, by Theorem 1.2 and Remark 1
following it, if () is nonnegative definite and in C ? in some neighborhood
of D then o is Lipschitz continuous in D.
Consider next the initial-boundary value problem (written for ¢ replaced
by T — t)
Lu +0u/dt= flx,t) in Q=B x[0,T),
u(x, T) = ¢(x) onB, (5.12)
u(x, t) = g(x, 1) on S,
where B is a bounded domain with CZ boundary 3B, S =3B X [0, T), and L
is defined by (4.1).
Consider also the system of stochastic differential equations
d(t) = o(£(2), 1) dw(t) + b((2), t) dt (5.13)
where (a(x, t))? = a(x, t) in Q. The coefficients o, b here are extensions of
o(x, t), b(x, t), originally defined in Q, such that
lo(x, 1) = o(y, s)| < C(lx ~ y| + |t = s]),
|b(x, t) — By, s)| < Cllx ~ y| + |t — s|).
We shall assume:
Salx 084 > Wi i (n0€Q. (ER" (1> 0),
a,, b, are uniformly Lipschitz continuous in (x, t) € Q,
¢ is uniformly Holder continuous in (x, ¢) € O—, (5.14)
f is uniformly Hoélder continuous in (x, t) € Q, '

g is continuous on S, ¢ is continuous on B and

glx, T) = ¢(x) if xE9B.



By Theorem 3.6 there exists a unique solution u of (5.12).

Theorem 5.2. Let 0B belong to C? and let (5.14) hold. Then the unique
solution u of the initial-boundary value problem (5.12) is given by

(s, = B, glelr) 7) expl [ olét). 9 ds o
+ B, olf(T)) exp| [ eles). ) ds xomr

_Ex,tf;f(g(s), ) exp[f:c(g(x), A) d?\}ds (5.15)

where 7 is the first time A € [t, T) that §(A) leaves B if such a time exists
and 7 = T otherwise.

The proof of Theorem 5.2 is similar to the proof of Theorem 5.1. Here one
applies It6’s formula to

u(4(\), A) exp[ ft Y el(s), 9) dsl. (5.16)

Consider next the Cauchy problem
Lu +0u/dt = flx,t) in R" x[0, T),

u(x, T) = ¢(x) in R"
where L is given by (4.1).
We shall assume:

(B,) (i} The functions g, b; are bounded in R" X [0, T] and uniformly
Lipschitz continuous in (x, t) in compact subsets of R" X [0, T].
(i) The functions a; are Holder continuous in x, uniformly with
respect to (x, t}) in R" X [0, T).

(B,) The function ¢ is bounded in R" X [0, T] and uniformly Hoélder
continuous in (%, t) in compact subsets of R" X [0, T].

We shall also assume:

(5.17)

f(x,t) iscontinuousin R™ X [0, T], Holder continuous in x uniformly

with respect to (x, t) € R" X [0, T], and

|f(x,t)] < A(1 +|x|°) in R" X[0, T], (5.18)
¢(x) is continuousin R®  and  |o(x)| < A(1 + |x|*) (5.19)

where A, a are positive constants.
Under the conditions (A;), (B;), (B), (5.18), and (5.19), there exists a
unique solution u of the Cauchy problem (5.17) satisfying

lu(x, )] € const(l + |x]|%). (5.20)



Indeed, uniqueness follows from Corollary 4.2. The existence of u follows
from Theorem 4.6; the estimate (5.20) on u(x, t) is an easy consequence of
the estimate (4.12) (with m = 0) on I' and the assumptions (5.18), (5.19).
Using (4.12) with |m| = 1 we also get

lu(x, £)] < const(l + |x[). (5.21)

By Lemma 1.1 and (1.1), the nonnegative definite square root o(x, t) of
a(x, t) is Lipschitz continuous in (x, f), uniformly in compact subsets of
R™ X [0, T]. It is also clear that 6(x, ?) is uniformly bounded in R™ X [0, T].
Thus (by results in Chapter 5) the stochastic system (5.13) has a unique
solution for any initial value £(0) = x.

Theorem 5.3. If (A)), (B,), (By) and (5.18), (5.19) hold, then the solution of
the Cauchy problem (5.17), (5.20) is given by

u(x, t) = E_,0(&§T)) exp[ftTc(g(s), s) d.s}

-E,, ft " F(E(s), 5) exp[ ft "o (M), ) d?\] ds.  (522)

The proof follows by applying 1t6’s formula to the function in (5.16) and
the process (5.13), and then taking the expectation. Since, by (5.21),

|u.(x, t)a(x, t)] < const(l + |x|%)
and since

sup E  J&(s)™ < oo forany m >0,
t<s<T

the stochastic integral occurring in It6’s formula has zero expectation. The
assumptions (5.18), (5.19) ensure that the expectations on the right-hand side
of (5.22) exist.

Let
L=l Samt -2+ Shxt) (5.23)
° 9 im1 T e exy 0 ST o

and denote by T%(x, s; y, t) the fundamental solution of Ly +3/9s (s < 1).
Taking f = 0, ¢ = 0 in (5.22), we get

u(x, t) = E, (&T)). (5.24)
By Theorem 4.6 (with ¢ replaced by T — #) we can also represent u in the
form

w(x, ) = [ T3lx ty, To(y) dy.
Rﬂ
Comparing this with (5.24) we conclude that
fn I3z tsy, Dely) dy = E, $(&(T)).

Notice that this relation holds for any function ¢ satisfying (5.19).
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Similarly, for any 0 < s < ¢t < T,

fmrg("’ sy, t)é(y) dy= E, ¢ f o(y t) € dy). (5.25)

Since ¢ is arbitrary function satlsfymg (5.19), we conclude that the
transition probability function

pls, x, t, A) = P, (£(H)€A) = Pl£ (D) EA)
of the Markov process solution of (5.13) has density, and that the density
function is T'§(s, x, ¢, y). We sum up:

Theorem 5.4. If (A,), (B,) hold, then the transition probability function of
the solution of the stochastic differential system (5.13) has density, i.e.,

P (Eea) = [ Tilxsiyddy (s <) (5.26)

for any Borel set A, and T'§(x, s; y, t) is the fundamental solution of
L, + 9 /09t constructed in Section 4.

The density function of the transition probability function is called the
transition density function. From the results of Section 4 we conclude that
the transition density function I'§(x, s; y, t) of the solution £(¢) of (5.13)
satisfies in (x, s) the backward parabolic equation

iI""‘(x s$;y,t +— 2 8
ds "0 TP =1 ax,.ax,

T¥(x, s;y, t)

+ 2 by, 8) 5 T3, 55y, 1) = 0. (5.27)

i=1

Under the assumptions of Theorem 4.7, I'¥(x, s; y, t) also satisfies in (y, )
the forward parabolic equation

3 1 < 32
— 5 BEsyy+ s X e [a;(y, OTF(x, 55y, t)]
ij=1 :

~ El —5— [b:y, T3 (x. 53y, t)] = 0. (5.28)
Notice that under the conditions (A,), (B,) the backward equation (5.27) is
equivalent to the Kolmogorov equation (5.6.1).
If the coefficients ay, b, are independent of t, then I'§(x, s;
y, 1) =T¥x,0; y,t —s) =T(x,t — s, 4); I(x, ¢t y) satisfies in (x, t) the
parabolic equation

_ 3z ty) L1 i . 82F(x, f, y)
ot T2 e u(* dx, Ox,
n ol (x, ¢,
+ 2 b(x) SANCIE) (5.29)
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Under the conditions of Theorem 4.7, it also satisfies in (y, t) the
parabolic equation

T (x, t, n
- —_(—Butm“yl é_ 2=1 ys 8y' La (y)r(x’ #9)]
-3 | 2wy, (530)
PROBLEMS

1. Verify that the function in (2.4) is a barrier for L.

2. If D is a bounded domain with C? boundary 9D, then for any y €D,
there exists a closed ball K such that KND = @ and KN D = { y}; thus, a
barrier exists.

3. Let L be as in Theorem 2.2 and let u be a solution of (2.2), (2.3) where
D is a bounded domain. Prove that

max |u| < max|¢| + A max|f|
b D D

where A is a constant independent of f, ¢.
4. Let Lu = y’u, — 2xyu,, + x%u, — xu, — yu,. Verify that any C?®

function u = f(r) (where r =Vx® + y® ) satisfies Lu = 0. Hence the weak
maximum principle does not hold in any domain e < x® + y® < R2 Notice
that (a,) is nonnegative definite, a;, + ag, > €, but neither a,; nor ay, are
posmve throughout the domain.

5. Let (a,(x,t)) be nonnegative definite, ¢(x,t) < « and
a;(x, A2 + by(x)A > 1 in a cylinder Q = D X [0, T]. Denote the diameter
of D by d. Show that if u is continuous in Q and Mu is bounded in Q (M
given by (3.1)), then

max |u} < e“T{ max ju| + (e — 1) maxIMuI}
Q 3 Q
where d,Q is the normal boundary of Q.
6. Let the coefficients of M satisfy the conditions of either Theorem 4.1 or
4.3. Prove that a fundamental solution I' is uniquely determined by the
requirements:

(i) T(x, t; & 7) is continuous in &, for fixed x, ¢, 7;

(ii) for any continuous function f with compact support, the function
u(x, t) given by (4.9) satisfies: |u{x, )] < C(1 + |x|9) in R™ X [0, T], where
C, q are some positive constants (depending on f).

7. Let the coefficients of M satisfy the conditions of either Theorem 4.1 or
4.3 and let T be a fundamental solution satisfying (i), (ii) of the preceding
problem. Prove that I'(x, ¢; £ 1) > 0.
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8. The operator A —3/9t (where A is the Laplacian operator
n_,02/9x?) is called the heat operator. Prove that

o 1 lijlﬁﬁ.}
T(x, t; & 7) eV ) (i — e’q’{ 40t — )

is a fundamental solution for the heat operator.
9. Let I' be the fundamental solution constructed in Theorem 4.5. Prove
that, for any € > 0,

f I(x, ;¢ 1) dE—>0  if t |,
lx—&|>e
f T(x, t; & 7) dx—0  if ¢} .
[x—§|>e

10. Let f(x, t) be a continuous bounded function in R"™ X [0, T], and let T’
be the fundamental solution constructed in Theorem 4.5. Prove that

Ln [(x, t; & 7)fl§ 1) dE—>flx, 7) if oty

[ Mg fnn doflen) i i

[Hint: Use the preceding problem.]
11. Let I'(x, ¢; £ 7) be the fundamental solution constructed in Theorem
4.5. Prove that

Nnt&ﬂ=f L(x, t;y, 0)l(y, 06 7)dy (7 < o<1

n

12. Give another proof of Theorem 4.1, by applying the maximum principle
tou+ein0 < t < 1/a, where

o(x, t) = exp{ B(|x> + 1)e*}
with suitable constants «, 8.
13. Let M* be an operator of the form M*v = Za,v, . +2 By,
+ yv + 8v, where @y, B, v, § are continuous functions. Prove that if (4.22)
holds for any «, v in C* with compact support in G, then M* is given by
(4.20), i.e., M* is the formal adjoint of M.
14. Prove Theorem 5.2.
15. Consider two stochastic differential systems of n equations

dé=ol§, t)dw + b(E ) dt, d& =o' (¢,t)dw + b'(&,t)dt

where w and w’ are n-dimensional Brownian motions. Suppose that the
coefficients are uniformly Lipschitz continuous and that g¢* is uniformly
positive definite. Prove that if oo* = 0'(0")*, b = b, then the two processes
have the same joint distribution functions, given that £(0), £(0) have the
same distribution functions.
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The Cameron-Martin—-Girsanov
Theorem

1. A class of absolutely continuous probabllities

Any nonnegative random variable g defines an absolutely continuous mea-
sure P, whose Radon-Nikodym derivative is g, i.e., ,(A) = f,g dP for any
measurable set A. In this section we show that the random variable

g = exp [ 1) tols) — & [ 15)P |

defines a probability P,, i.e., Eg = 1, provided f belongs to L2[0, T] and
satisfies a certain growth condition. More precisely:

Theorem 1.1. Let f= (f),...,f,) belong to L2[0, T] and assume that
there exist positive numbers pu, C such that

Eep[ulf()P] < C  for 0<t< T (1.1)
Then
E e)_(p{j;tzf(s) duw(s) — %j;t2|f(s)|2ds} =1 if 0<t,<t,<T.
(1.2)

We first prove two lemmas.

Lemma 1.2. If in Theorem 1.1 the condition (1.1) is replaced by the
condition

E exp{}\j;T|f(s)|2 ds} < oo  forsome A>1, (1.3)

then the assertion (1.2) is valid.
182
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Proof. By Lemma 4.1.1 (see (4.1.5)) there exists a sequence of continuous
functions £, (£) = (Fus(th - « - » fm(#)) in LE[0, T] such that

flfm |2dt—>0 as m— o0, (1.4)

fO |£..(8)]? dt <f0T|f(t)|2 di. (1.5)

We may assume that each f,, is bounded, ie., |f, (¢, w)] < C, as. in
(t, w), for otherwise we replace fm bY fm, n, With components ¢y ( fmi) where
on(r) = rif [r| < N and ¢y (1) Nr/|r|1f|r|>NandNT001fmToo

We claim that

ta
Igexp{2f f.(s) dw(s)] <C, foral 0<t,<t,<T (16)
4

where C, is a constant depending on m,
To prove it notice that

Ee 1w = f eel £
" Vet

Let II, = {s, ..., s,fl} be a sequence of partitions of (¢, t,] with mesh
|IT,]—0. Then

—|xf2 /0t

dx = "2, (1.7)

= tm S £ () [w0(sts) — w0(s)]

< Clim 3 |w(3i+1) - w(3i1)|

l—oo

J* fals) dots)

where C is a constant (depending on m). By Fatou’s lemma,

E exp 21:2 fu(s) dw(s)| < % E exp{QCEi lw(sly,) — w(si')|}

~ tim 1 E ex[2Cl(st ) = ()1

| ) i

By (1.7), the right-hand side is equal to
= lim ]I e);tp[ZCz(s,L1 — si’)] = expl:zcz(t2 — )]

oo

Thus (1.6) follows.
Applying It6’s formula to u = e* and the process

fmﬂmm—qﬂmww
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we obtain
expl [ fuls) dls) =1 [ 11,0 |2ds}—1

= em| [ Al dile) =4 [ 110 o) £l0) el 19

Denote the last integral by J‘tz (s) dw(s). By (1.6) and the fact that
| f.(8)] < C,, it follows that

E f (DR dt < 0.
Hence E f 2 h(t) dw(t) = 0. Taking the expectation in (1.8) we then get
B el [ fuls) duls) -4 [ 1l ds) =1 (19

We shall prove that 1
exp{ff £.(s) dw(s) — %ff £ ()P ds} } <K (L10)

for some € > 0, where K is a constant independent of m. This would imply
that the sequence of random variables

ta
X, =e { "a(8) dw( () ds }
o [ o) dole) =4 [ 1fulo)
is uniformly integrable. Since, by (1.4),

ft, £..(s) duw(s ft f(s) dw(s) as m—oo,
x 5 exp{j; fs) dwl(s) —%ft2|f(s)|2ds}.

Hence, taking m— o0 in (1.19), the assertion (1.2) follows.
It remains to prove (1.10). By Holder's inequality,
() dS]
)
(1+ 6)2e + ) /o
: exp[ 5 [\ () dis
1+ ¢ 4 1/(1+¢)

< {E exp[(l + & [ " fa(s) dw(s) - ( 5 ) ARG ds”

13 t

1+ €22+ ¢ /e
( )2( + €) ff'fm (5)P d.s” .

I=E

ta

I=E{exp[(1+c) tzfm(s) dw(s) —

-{Eexp
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By (1.9) the first factor on the right is equal to 1. Using (1.5) we get
(I+ P2 + ¢

e/(1+e)
2 fttz If(S)IzdS]} =K.

If € is sufficiently small so that (1 + €)*2 + €) < 2A, then, by (1.3), K is a
finite number. This completes the proof of (1.10).

Lemma 1.3. Under the assumptions of Lemma 1.2,

E { exp tzf(s)dw(s)-—-% tﬂ|f($)|2ds|°37,,1 =1 as. (111)
SINECRINE R

fOf any 0 < t]_ < t2 <\T.

Proof. Taking the conditional expectation of both sides of (1.8) with
respect to ¥, , we obtain the assertion (1.11) for f = f,,. Using (1.10) one can
easily justify passage to the limit m— oo in the formula (1.11) for f = f,..

I<{Eexp

Proof of Theorem 1.1. Let A > 1. Since ¢ is a convex function, Jensen’s
inequality (see Problem 7, Chapter 1) gives

exp| M 1f(0)P a5 | = exp| A [ = F (0 s

1 t” " ’ ’ 14
< t—_t-ft exp[A(t" — )| f(s)B] ds (¥ < ).
Hence, if A(t” — t') < u, then (1.1) implies that
.
Eexp[?\f |f(s)|2ds] < .
y

Consequently, by Lemma 1.3,

E[exp{j;t”f(s) dw(s) — %f't” |f(s)|2ds}|°5t,] =1 as (112)

4

Nowlett, = s, < 55 <+ <5, = t; where A(s;,; — §;) < u. Then

E{exp[f:fdw —%f:IfF dﬂ%‘]
- E{exp[Lsm_lfdw —gfhs"‘“ IflzdS}

Eep| [* fav-i[* Iff a)i5, i,
-1 -1

= Bep [ fdu -} [*" a1,
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by (1.12). Proceeding similarly step-by-step, we arrive at the formula

E {exp[j:zf(s) dw(s) — %Ltﬂ | £ ()P ds]|65tl} =1 as. (1.13)

1

Taking the expectation, (1.2) follows.

Corollary 1.4. Under the assumptions of Theorem 1.1, the relation (1.13)
holds for any 0 < t, < t, < T.

Example. If f(¢) = w(t), then condition (1.1) is satisfied with p < 1/2T.
Corollary 1.5. For any f = (f,, ..., f.) in L2[0, T],

Bep| [*£(5) o) =4 [l as| <1 (19

1

E {exp{ft:zf(s) dw(s) — %j;tz |f(s)|2ds}|@7h] <1 as. (1.15)

1

forany 0 < t; < ¢, < T.

To prove (1.14) we take m — oo in (1.9) and use Fatou’s lemma. To prove
(1.15) we first note (by taking the conditional expectation in (1.8)) that (1.15)
holds (with “=") for f = f,. Now take m — co and use Fatou’s lemma.

2. Transtormation of Brownlan motion

A process {w(t), 0 < t < T} that satisfies all the conditions imposed on an
n-dimensional Brownian motion (including continuity) in the interval
0 <t < Tis called an n-dimensional Brownian motion in the interval
[0, T].

Let w(t) be an n-dimensional Brownian motion in an interval [0, T]. Let
%, be an increasing family of ¢-fields such that ¥ (w(A), A < t) is a subset of
F, and F{w(\ + t) — w(t), 0 < A < T — t} is independent of F,, for all
t€[0, T]. As in Chapter 3 (Where w(t) and ¥, were defined for all ¢ > 0),
we can define L2[0, T] and stochastic integrals {§ f dw (0 < t < T) with
respect to the present family %,.

If P is a measure on (2, ¥) given by

ﬁ(A)=fAfdP (A€ F),

then we write dP(w) = f(w) dP(w).

Theorem 2.1. Let w(t) be an n-dimensional Brownian motion in [0, T] and
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let ¢ = (y, . ..,0,) be a function in L2[0, T]. Define

£ 9) = [ olu) duw(u) ~ § [ lo(w)F du (2.1)

(1) = w(t) < [ ¢(s) ds, (22)

’ dP () = exp[ §7(6) ] dP (). (2.3)
P(R) =1, (2.4)

then w(t), 0 < t < T is an n-dimensional Brownian motion in the probabil-
ity space (&, F, P).

Recall that in Section 1 we have established sufficient conditions for (2.4)
to hold. We have also proved (Corollary 1.5) that P({}) < 1 for any
o€ L2{0, T.

Theorem 2.1 is due to Girsanov [1]. Cameron and Martin [1] have
previously established results of the same nature on nonlinear transforma-
tions of Brownian motion. We shall refer to Theorem 2.1 as the Cameron—
Martin—Girsanov theorem.

We begin with some lemmas.

Lemma 2.2. If ¢ €L2[0, T] and if |¢(t)| < ¢ a.s., then, for any a > 1,

E explog? ()] < exp| S5 (¢ = s)c?] (25)

Proof. By Corollary 1.5, E exp[{!(a¢)] < 1. Hence

E explag (¢)] = E exp[{! (a9)] exp[ o [ 1ot du]

< E exp[¢/! (ad)] exp[ “22‘ % (t— 3)02} < exp[ “22‘ 2 (£~ s)cﬂ}.

Denote by E the expectation with respect to P.

Lemma 2.3. Let ¢ € L2[0, T). Then for any nonnegative and %, measur-
able random variable 0,

En < E{nexp[{d¢)]}), O0<it< T (2.6)
If ¢ satisfies (2.4), then
E exp[£ (#)] = 1 27)
E {exp[$,/ (¢)] |%,}) =1 a.s.
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forall0 < s <t < T, and
En = E {n expl£4(0)]) (29)
for any F, measurable random variable 1 for which En exists.

Proof. The assertion (2.6) follows from
En = En exp[$5(9)] = EE{n exp[{5(4)]| F,)
= En exp[t&(0)JE{explt7(#)] 5,
< En exp[Sg(e));

where (1.15) has been used.
Assume now that (2.4) holds. Using (1.15) we have

1= Eexp[{7(¢)] = E exp[{3(9)]E {exp[{‘ (¢)]E[GXP[QT(¢)]|@:]|@.¢}

< E exp[£5()1E (expl! ()11 5,). (2.10)
Dencte by B,, (m > 0) the set on which

Eeplt! (9, < 1-1/m.
Since, by (1.15), E {exp[{f(¢)]| ¥, } € 1 as., we conclude from (2.10) that

1 <f _expl(e)] dP+ (1 - 715)[3 exp[$3(¢)] dP
But since )

fﬂ exp[{3(¢)] dP< 1 and  exp {3(¢) >0 as,

it follows that P(B,) = 0. Since m is arbitrary, the assertion (2.8) follows.
The validity of (2.7) is now obvious, and (2.9) follows from

En = En exp[td(9)JE{exp[{T(9)]|F,} = En explti(e)}

Lemma 2.4. Let ¢ be as in Theorem 2.1 and let n be any ¥, measurable
random variable for which E'n extsts. Then

E[q|F,] = E{n expl{;(#)]F,}. (2.11)

Proof. Set v, = exp {3(9), Y2 = exp {/(¢). Let A be any bounded and ¥,
measurable random variable. Then

E(An) = EXE(n|%,). (2.12)
We also have
E(\) = E(Any,vs) = EAVE(nye| F,). (2.13)

If y is ¥, measurable, then, by (2.8),
Ey = EYE(v5|¥,) = EE[(Y7,)|%,] = Evv,.
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Applying this to v = Ay,E[(ny,)| 9], we get from (2.13)
E(An) = EAy,v.El(ny,)|F,] = EAE(nv,)| F,
Comparing this with (2.12), we get
EXE(n|F,) = EXE(ny,)| F,.

Since A is arbitrary bounded random variable that is %, measurable, (2.11)
follows.

Lemma 2.5. Let ¢ be as in Theorem 2.1 and let {¢™} be a sequence of
bounded functions in L2[0, T] such that {!(¢™)—{!(¢) in probability as
N—oo. Then

fg lexp {f (oY) — exp {f ($)] dP >0  if N-—>oo.  (2.14)

Proof. By Theorem 1.1,
fﬂexp 8t (o) dP=1. (2.15)
Denote by Q. the set where
lexp £,/ (¢) — exp & (#7)} <.
By assumption, P(Qy ,) > 1 — §y(e), y(€) = 0 if N — oo. Since exp {(¢) is
integrable,
[ ewlsi@)dp=1-[ exp[t/(#)]dP>1—¢ (2.16)

QN, € ﬂ\g N. e
if N is sufficiently large. Hence

j;z exp[fs’ (¢N)] dP> 1 — 2e.

N, e

From (2.15) it then follows that

F(o™)] dP< 2e. 2.17
Jog,, L (67)] dP< 2 1)
Since ¢ satisfies (2.7), (2.16) implies that
[ esplti ()] dP< e (2.18)
o\Q

N, ¢

Making use of (2.17), (2.18), we find that
j;z lexp &, (¢) — exp {; (V)| dP
<[, lesp 8:(9) — exp ()] dP
+f [exp §, (¢) + exp 8, (¢7)] dP> 4e
if N is sufficiently large, and the proof of (2.14) is complete.



In proving Theorem 2.1 we shall rely upon Theorem 3.6.2. Since @(t) is a
continuous process, it will suffice to prove that, for any 0 < s <t < T,

~ El@ (1) - &(3))I%, =0 as, (2.19)
E[,(1) - &(s)][d(6) - ()T, = 8,(t — ) as  (220)

Lemma 2.6. The assertion of Theorem 2.1 is true if ¢(t) is bounded.

Proof, We shall verify (2.19), (2.20).
We need the following special cases of the integrated form of Itd’s

formula d(§,{,) = §, dis + §, d§, + d§, di,:

Here f and g are n-dimensional functions in L2[t, t] and h is a scalar
function in L} [#,, t].
We shall also need (1.8) with f,, = ¢, i.e,

By Lemma 2.4,

E[@t) — @,(s)]|F, = E[w,(t) — w(s)] exp[$] (4)] 7,

= E{ [ o) explie(e)] du|%"s} - E( [ aw du) expl{(¢)] %, (223)

s s

In the last equation we have used (2.21) and also the fact that

E[fth(u) dw(u)]l@, =0

180



if .
E f h(uwPde <o (h=(hy..., h,) (2.24)

where, for one stochastic integral,

hiu) = [ eplr@)olo) dwle), B =0 if j#i

§

and, for another stochastic integral,
h(u) = (w{u) — wis)) exp[{* (8)]6(u).

Using the fact that |¢| < ¢ (¢ constant) and the estimate (2.5), one can easily
see that these two functions h(u) indeed satisfy (2.24).

In view of (2.8) the right-hand side of (2.23) is equal to zero. Thus (2.19)
holds.

In order to prove (2.20), set

§(t) = wlt) — wls),  n(e) = exp {g(9).

[B,(t) — @ (s)][&(2) - w,(s)] n(t)

AL d"H AR
t[l+f ‘[f‘hW)ﬁﬂﬁﬁmﬁ)

[f & (u) dut, Uq, u) du [£'¢,(u)du]n(t)
—&()“31()+11+12+13+J4

where J, (i = 2, 3, 4) denotes the (i + 1)th term on the right.
Denote by = equality moduli stochastic integrals, i.e., A =B if A
= B + Z[;h(u) dw,(u). Then, using (2.21), (2.22), we find that

=400 [ [ a018(0) do(e) | () + 0§ () (w)0() ol

+ g,(t)f n () (1)

&

=8| ["no)e(o) du)

s

+ [ () dut [ (un(w)h(w) du.

Then

il
m r——i

du

Jo = ——[f"qsi(u) dtt]&,(t)n(t) ~ —[f_'%(u)d»,(u) du]n(t),
|

13-.—[f"¢,(u)du

() = = [ 4 (u)0(0)

161
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Notice that due to the boundedness of ¢ and Lemma 2.2, all the
stochastic integrals { { h(u) dw(u)which were dropped in the final expres-
sions for J}, J,, I, are such that (2.24) holds. Consequently,

E[&,(t) — ®())[&(2) — &(s))|F, — 8(t — s)

8

= _E[f‘ [wi(t) — w(u)]e;(u) duiln(t)]?f,

n(6)|F, + ELJG,. (2.25)

=5 [ L) = o))

The first term on the right-hand side is equal to

- 2| [ [l - Bl du S,
~5|['[ [ a0 dofwinte) du 5., (2.26)

The first term in (2.26) is equal to

= —E{ [ (a(wEla() - &(a)] 18} du}l, =0

by (2.8) and (2.19). Hence the first term on the right-hand side of (2.25) is
equal to the second term in (2.26).

Treating the second term on the right-hand side of (2.25) similarly, we
conclude that

E[@,(t) — &,(s)][®(8) — & (s)]|F, — 8 (t — s)

- E{f' % {[f: ¢, (0) do”f:@(v) dv]}'q(t) du]]@r’, + EJ| 9,

s

t t
= £ ([ [ ot ]| [ g0 dulnce |15, + 215, = 0
by the definition of J,. This completes the proof of (2.20).

Proof of Theorem 2.1. Let ¢~ = (¢, ..., ¢) be bounded functions in
L210, T] such that

[o%0) - (0 dt0 a5 as Nosoo.
0
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Define ®¥(f) = (HM), . .., &N(#) by

Notice that
BN(t)—»B(t) as. (2.27)
In view of Lemma 2.6, &™(t) is a Brownian motion in the interval [0, T],
with respect to the probability space (2, &, P,) where Py, is defined by (2.3)

with ¢ = ¢~. Consequently, for any 0 < t;, < t, < --- < < T and
Ay« ooy A real,

E exp{ V-1 fg} )\i[zbiN(tf) - tBiN(t,._l)]] exp §0T(¢N)

k
= exp[ o 2 %A-,z(tf - t,‘—-]_)}s (2.28)
j=1 :
and for any 0 € ¢, s < T and A, p real,
E exp{ V=1 piM1) + pd¥(s)]} exp {50 ™)
= exp[— (A2/2)t] exp[~ (p2/2)s]  if i+ (2.29)
We shall need the following fact:

If ay—a as., lay| < ¢ (c const), and E| By — B|—0,

then E|ayBy — afB|—0. (2.30)
To prove (2.30) write
ElayBy — af| < Elay| | By — B| + Eloy — af | B]
< ¢E|By — Bl + E|ay — af | B].

The first integral on the right converges to zero by assumption, and the
second integral converges to zero by the Lebesgue bounded convergence
theorem. Thus (2.30) follows.

Taking ay to be the first exponent on the left-hand side of (2.28) and
taking By = exp §g(¢"), and recalling (2.27) and Lemma 2.5, we see that the
assumptions in (2.30) are satisfied. Hence, letting N—>c0 in (2.28) we obtain

o| V=T 3 Malg) - a4 = ow| - 3 104 - g0

This implies (see Problem 2, Chapter 3) that @(t), 0 < ¢t < T is a Brownian
motion in the space (Q, ¥, P).

If we let N— oo in (2.29) and apply (2.30) (again using (2.27) and Lemma
2.5), we obtain

E exp{m A@(8) + pti'),(.!)]} = exp[— (A%/2)t] exp[— (u%/2)s].
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This proves that ¥ {,(?), 0 < ¢t < T} is independent of ¥ (&(¢),
0 <t < T}ifi+j Thus w(f) is an n-dlmensmnal Brownian motion in the
space (2, ¥, P).

Remark. Since @7 satisfies (2.19), (2.20), the remark at the end of Section
3.5 implies that, f 0 < s <t < T,

Eexp[ik « (@"(f) — &V (s))||F, = exp[ - §AP(t — )] as. (231)

If ay, By are as in (2.30) then E(ayfBy — af)|%, — 0 in probability, as
N - 0. Using this fact we get, as N — oo in (2.31),

E exp[iX - (B(t) ~ ©(s))]|F, = exp[ — 1AP(t ~ 5)] as. (232)

Now, if X has n-dimensional normal distribution, then E|X|" < ¢™*'m!
for some ¢ > 0. Hence the series

§ i X)"
o0 m/
is absolutely convergent in L}(Q) if [A| < 1/¢. It follows that
LA - X)"
-y '——(-1;2-,——)~ 15.50  if l-co. (2.33)
m=1] :

(For if E|ay, — a|—0, then E(ay — a) @FSLO.) If
Ee™ X|F, = exp[— 1Nt — 3)]

then (2.33) implies that

2 N 1
m2-0 H E(A X m2=0 ——2_'—"—%_ a.s, (P\' < ; )
(2.34)
In view of (2.32), (2.34) can be applied to X = w(t) — w(s). Comparing
coefficients for m = 1, 2 we deduce:

E(b(f) — ®(s))|F, =0 if 0<s<¢t<T, (2.35)
E[&,(t) ~ ®,(s)][&(8) — &(s)]|F, = 8,(t—s) if 0<s<t<T.
(2.36)

3. Girsanov’s formuia

Let w(¢) be an n-dimensional Brownian motion in the interval 0 < ¢t < T. In
Chapter 4 we have defined the concept of the stochastic integral
ST f(s) dw(s) for functions f in LZ[0, T], where L2[0, T] is defined with
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respect to an increasing family of o-fields @t satisfying:

(i) F(w@), A< f)isin F,, forany 0 < t < T;

(i) F(w(t+ A) — w(£),0 <A < T - ) is independent of F,, for any
0<t< T

(More precisely, we have assumed that the %, are defined for all t > 0
and satisfy (i) for all £ > 0, and (ii) with 0 < A < o0 and for any t > 0.
However we have actually made use only of (i), (ii).)

Suppose we replace (ii) by the weaker condition:

(i) Foral0 < s<t< T,
E[w(t) - w(9))|F, =0,

E[w,(t) = w(s)][w () — w(s)]IF, = §(t - s).

Then we can still define the stochastic integral and derive all the formulas
and estimates as in Chapter 4. In fact we first define the stochastic integral
for any step function, next derive Lemmas 4.2.2, 4.2.3 (see Problem 1), and
then approximate any f in L2[0, T] by bounded step functions and use the
procedure of Section 4.2. All the results of Chapters 4,5 and of Sections 1, 2
of this chapter remain valid, without any change, for this slightly more
general notion of the stochastic integral.

b

Definition. From now on we shall assume only that the family %, satisfies
(i) and (ii"). We shall say that ¥, is adapted to w(%).

Let ¢(t) be as in Theorem 2.1. In view of (2.35), (2.36), %, is adapted to
w(t). I f € LE[0, T}, then

p{foTxf(s, W) ds < oo} =1

Since P is absolutely continuous with respect to P,

PL P ds <o) -1

Hence, if f € L2[0, T}, with any ¥, adapted to w(t), then f € LZ[0, T]
with the same %,.
Let f, be a sequence of step functions in L2[0, T] such that

](;T | f{s) — f(s)]> ds—0 as.  in P.

Then f, € L3[0, T] and

Id

j;T |fi(s) = As)P ds—>0 as. in P.
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Consequently

Hence, for a subsequence {k'},

j: fils) dw(s)—éj(;tf(s) dw(s) as. inP,
fot fils) dﬂ)(s)——aj(;t f(s) dib(s) as. in P.

From (2.2) we easily see that

[} fels) duls) = [ ls) di) + [ flsdols) s (32)

It is also clear that

[ fuls)ols) ds_>ff s)ds as. P,
0
Hence, taking k'—oc in (3.2) and using (3.1), we get

ff ) dw(s ff ) dib(s +f £(s) if feLo, 1], (3.3)

a.s. in P (or in P).

Definition. A stochastic process x(f) (0 < ¢t < T) is called an It6 process
with respect to {w(t), P, ¥,} (where ¥, is adapted to w(¢)) relative to the

pair o( ) (t) if
+f f (s) du(s) for 0<t< T (34)
where b = (b, ..., b,)isin Ly[0, T] and o = (0,)} ;. is in L} [0, T].

Theorem 3.1. Let x(t) (0 < t < T) be an Ité process with respect to
{w(t), P, F,} relative to the matrix o(t) and the vector b(t). Let
alt) = (¢1() ...,¢,,(t>> belong to L2[0, T] and set

f (1) dw(u) — § f |b(w)[2 du, (3.5)
@m%wm~ﬁ¢mw, (3.6)
dP () = exp[ $3(9) ] dP (). (3.7)

Assume that
ﬁ(ﬂ) = 1. (3.8)
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Then w(t) is an n-dimensional Brownian motion in the probability space

(@, F, P), 9, is adapted to ©(t), and the process x(t) is an It process with
respect to {1 (t), P, ¥, } relative to the matrix o(t) and the vector

b(t) = b(t) + o(t)s(2). (3.9)

This follows by combining Theorem 2.1 with (2.35), (2.36), and (3.3).

Denote by €% the space of continuous functions x(¢) from 0 < ¢ < T into
R™. Denote by 9N, the o-algebra generated by the sets {x(t) € A} where
0 < t < T and A is any Borel set in R".

A continuous n-dimensional process £(t) (0 < ¢ < T) in (2, ¥, P) induces
a probability u, on (C, Dy) as follows:

Denote by £, the sample path t — &, w) (0 < t € T), and denote by
C% (£) the set of all elements £, w € Q. For any set B € 9, define
ue(B) = P{w: £, € B). (310)
It is clear that g, is a probability, and pp(B) = up[B N C3(§)]. In
particular
[.LP{:C; x(tl)EA}_, “ e, x(tk)EAk} = P{w; g(tl’ OJ)EAI, ey g(tk, W)EA*}.
(3.11)
Suppose now that Q is another probability on (€, %) given by
dQ(w) = p(w) dP(w); (3.12)
thus f p(w) dP(w) = 1. Introduce the probability p, on (C%, M;) corre-
sponding to Q:
#o(B) = Q{w; §,€B}.

Lemma 3.2 Under the foregoing assumptions,

d
72 (8 = olo), (3.13)
i.e., for any B€ M., BC C3(§),
ro(B) = [ ple) di(s,). (3.14)

Proof. 1t suffices to verify (3.14) for sets of the form
B={£;&t,w)EA,, ..., w)EA.
Let
B={uwft,weEA, ..., 4 «)EA).
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|fi] > k, then
fTIf— 2de5o fT dwh [ i 2
e - f mdes [fde i ferzo, 7]

EfT|gk—f|2 dt—0, E ngk dw—fodw 2_>0 if feMz2o, T]

0 ’ 0 0 v s
() Use (a), (b) in order to prove Lemmas 4.2.2, 42.3 for any step

function f in L2[0, T].

2. Consider a system of n stochastic functional differential equations

x(t, w) = (0, ) +j:o(x( -, w), 8) dw(s, w) +ft b(x( -, w),s)ds (3.23)

where b = (by, ..., b,), 0= (0y)] =1, and by(x( - ), 1}, oy(x( - ) t) are
measurable functions on C} X [0, T], measurable with respect to 9N, for
each ¢ (where I, is the o-algebra generated by the sets {x(s) € A},
0 < s < ¢, A a Borel set in R™). Assume that

lf((-) ) < K1+ (<)),
| £ ~f&(- ) ol < Kfix( - ) = (-

for f = gy and f = by, where ||x( - )| = maxy,r|x(?)|.

(i) Prove by the method of successive approximations that for any
x(0, w) in L% ) which is independent of ¥ (w(s), 0 < s < T) there exists a
unique solution of (3.23) satisfying E|x(¢, w)|> < const (0 < ¢ < T).
(i) Prove uniqueness in the sense of probability law.
3. Extend Girsanov’s formula to stochastic functional differential equations.
4. Let b(x) be uniformly Lipschitz continuous in x&R', Consider the
stochastic differential equatlon d&(t) = dw(t) + b((t)) dt. Prove that

P(s, x, 8 y) (y — x)
rlex=f Gred el sy |
where
®(s, x, t,y) = E exp[ f t b(E, , (u)) dw(e) — } f ' bYE, , (u)) du]léx’, (%)

and £ ,(t) = x + w(t) — w(s).

5. Let w(¢) be an n-dimensional Brownian motion. The processes w(t) and
2w(t) induce probability measures in (C}, IMy), u, and py,, respectively.
Prove that p,, and pg,, are mutually singular.

6. Lety = f(x) be alocal diffeomorphism in R". A given stochastic system
dx = o(x) dw + b(x) dt is then transformed, by means of It6’s formula, into
dy = 6(y) dw + b(y) dt. Denote by L and L the differential operators
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corresponding to the first and second stochastic systems, respectively. If
u(x) = 4(y) where y = f(x), prove that Lu(x) = fﬁ(y); thus the relation
between a stochastic differential system and its differential operator is
invariant under diffeomorphism.
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Asymptotic Estimates for Solutions

In this chapter (except for Section 1) we consider the behavior, as t— o0, of
solutions of a stochastic differential system in case the diffusion matrix is
nondegenerate for all (x, )€ R" X [0, o0).

1. Unboundedness of solutions

Consider a system of n stochastic differential equations
d£(t) = o(£(t), 1) dw(t) + b(£(¢), t) dt (L.1)
with initial condition
£(0) = & (1.2)
where £, is independent of F {w(t), t > 0} and E|£|*> < 0. Set

n
b=(by,....b,), 0= ("i;'):_,--p a= (aif)’ a; = kzl Ok O -

If C is the matrix (c,), we write
1/2
2
IC| = {Z(Cﬁ) } .
. il
We shall need the following conditions:

(Ag) o(x, t) and b(x, t) are measurable functions in R" X [0, co0) and, for
any T > 0, R > 0, there are positive constants Cp, Cr g such that

la(x, t)| + |b(x, 8)] < CH1 + |«|)
if x€R®, 0<t< T,
lo(x, t) — o(%, t)] + |b(x, t) — b, t)] < Cp glx — 7|
if <R, |x] <R, 0<t<T.
172
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(A;) For any R > 0 there exist positive constants yg, I'p such that
a;(x, )T + by(x, t) > vg if |[x] <R, t>0.

This condition is satisfied, for example, if a;(x,t) > A, by(x, t) < C
where A, C are positive constants,

Theorem 1.1. Suppose (A,) and (A,) hold. Let £(t) be the solution of (1.1},
(1.2). Then

lim sup |£(¢)] = o a.s. (1.3)
t— 00

Proof. Since £(t) is a continuous process, the assertion (1.3) is equivalent to
the assertion that
sup [£(t)] = oo as. (1.4)
>0
Consider first the case where the range of £, lies in a bounded set K. Let
B be any open ball containing K and denote by r(B) the exit time from B,
ie.,

7(B) = first £ such that £(f) & B if such # exists,
7(B) = oo if no such # exist.

For any T > 0 let 7, = 7(B) A T. Set B =B X {t =T}, S§; =

9B X {0 < t < T} where 9B is the boundary of B.
Suppose ¢(x, t) is a smooth function satisfying

0
Lo = aqt,+12a(xt aa+2b —82 -1
%

ij=1

(1.5)
in BX[0,T], ¢>0 on BruU S

If we apply It6’s formula to ¢(£(t), t) and substitute ¢t = 7., we get after
taking the expectation (cf.» Theorem 6.5.2)

E¢(£(0), 0) > Er, (16)
provided the range of £(0) is in K.
If1+ x, < af for all (x, x,, . . ., x,) EB, then we can take

¢(x, t) = Alexp(ax?) — exp(an,)],
where a, A are suitable positive constants. The condition (A,) is used here in
verifying (1.5). Since ¢ < C where C is a constant independent of T, (1.6)
yields Er, < C.
Now, 7, 1 7(B) if T 1 . Using the monotone convergence theorem we
conclude that 7(B) satisfies

Er(B) < C. (1.7)
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In particular,
7(B) < 0 as. (1.8)

Take a strictly increasing sequence of open balls B, with center 0 and
radius R,,—co. Let

2, = {fgpoﬁ(t)l >R,}, @ = Fﬁ -

m=1
Denote by x,, the indicator function of B,, and let £ () be the solution of
(L.1) with the initial condition £,(0) = x,£(0). Denote by 7,(B,,) the exit
time from B,, of the solutiori £ ,(¢#). By Theorem 5.2.1, 7,,(B,) = 7(B,,) a.s.
and £, (t) = £(¢) if 0 < ¢ < 7(B,,). Hence,

P{suple(s)] > R,} = P{suplé,(9)] > R,)

and the right-hand side is equal to 1, by (1.8). We conclude that P(2,,) =
Since the sequence {2,, is monotone decreasing to &* = () »_,Q |

P(Q*) = mli_l’nao PR,) = 1.
Now, if @ €Q*, then w€Q,, for all m, so that

sup |§(t)] > R,, forall m, e, sup [£(t)| = cc.
>0

t>0

m=1]

This completes the proof.
From the proof of (1.7) we have:

Corollary 1.2. Let £(t) be a solution of (1.1) with |£(0)] < R a.s. Suppose
ay(x, t) > A, by(x, t) € Cif |x}] < R, t > 0, where A, C are positive con-
stants. Then

Er® < 0
where TR is the exit time from the ball |x| < R.

2. Auxiliary estimates

In the sequel we shall assume that o(x, t), b(x, t) are measurable and £(t) is
any solution of (1.1), (1.2} such that
sup E|((t)P < 0  forany T >0,
0<t<T
If the condition (Ag) holds, then, of course, there exists a unique solution.
Set

=31 = du _ du
= 2_ ')axax,+2b TR

jml dx
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Theorem 2.1. Assume that

> ay(x, t)< C, > b(x,t) < C
i=1 i=1
where C is a positive constant. Then
E(H)P< Kt + K’  forall t > 0, (2.1)

where K, K’ are positive constants.

Proof. Using It6’s formula with u(x) = |x|* and £(t), and taking the expec-
tation, we get

t
EIE(0)* = Ell + E [ glé(s), s) ds
where
glx, t) = L|af* = X a,(x, ¢) + 22 x by (x, 1).
Since, by our assumptions, g(x, ) < C; where C, is a positive constant, (2.1)

follows.

Notation. We shall denote the eigenvalues of a(x, t) by A,(x, t) where
Alx, 1) € Ag(x, t) € -+ - < A (x, 2).

Lemma 2.2. Assume that

2 lay(x,t)] < C  forall x€R"” ¢t>0 (Cconst); (2.2)
for any R,’> 0 there is a positive constant u(R) such that

izia,,('x, )EE > n(R)EF if |x] <R, t>0, £€R”, (23

1+ |x|)2 |b(x, t)| < €(|x])  for x€R" t >0,

where €(r)—>0 if r—>o0; (2.4)
\(x,t)>y>0 for x€R" t>0  (yconst) (2.5)

Let ¢(x, t) be a bounded measurable function such that ¢(x, t) = 0 if xE G
where G is a compact set. Then, for any 7 > 0,

t
|, #&(s). ) ds
where K|, K, are positive constants. If further,

AN_ix,t) >y >0 for xER", t>0 (v’ const), (2.7)
then (2.8) holds for some —1 < n < 0.

E < K, + K t't+m/2 (2.6)
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Proof. Let r = |x — x°| where x° is a point lying outside G. For simplicity
we shall assume in what follows that x° = 0. It is clear that there exists a
continuous function {/(r) such that

oz, 8)] < ¥(7) (2.8)
and Y(r) =0 if r < ryorif r > r, for some0<r0<r1<oo We shall
construct a function F(r) such that the function f(x) = F(|x]) is in C*(R")
and

(Lf)(x, 2) > (|al). (2.9)
One can easily verify that
iy 4 E40)
2Lf(r) = A(x, )F"(r) + - [B(x,t) — A(x, t) + C(x,1)] (2.10)
where
1 n n
Alx, t) = = 2- xx;, B(x t) = .glau(x t

C(x,t) =2 2 x,;by(x, t).
=1
Let 8(r) be a continuous function, vanishing for r < r,/2 and satisfying,
for r > 1,

(1+ 8(rN)A(x,t) < B(x, t) + C(x, t) (2.11)

Since, for any R >0, A(x,t) > u(R) >0 if t > 0, |x| < R, and since
B(x, t} > 0 and |C(x, t)| is bounded, one can certainly construct such a
function #(r). Noting that

AMlx, 1) < Alx, t) < N(x,t),  Blx,t) =A(x, t) + -+ +A(x, ¢)
and using (2.5) and (2.4), we can construct 6(r) such that
(r) = —n if ris sufficiently large (for any n > 0). (2.12)

If (2.7) holds, then we can take
6(r) = —n if ris sufficiently large (for some —1 < 7 < 0); (2.13)

in fact, we can take any 1 such that

- n<7vy/8  where &' =limsup { sup A, (x, t)}-

x| > " £>0
Introduce the functions

I(s) = du,
- (2.14)
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for some A > 0, r = |x|. Since F is in C? and F(r) = 0 if r < 1, f(x) is in
C%R™). One can easily check that

Fo(s) + i:) Fi(r) = "”)(\’) (2.15)
and that F'(r) > 0. Using (2.10), (2.11), we then get

0 (r r
2Lf(x) >[F”(r) + —()-F’(r)]A(x, t) 2 A(x, t) \b}(\) > 2¢(r)

r

if 2\ = u(r,) (since A(x, t) > p(r,) if |x| < 7., ¢ > 0).
Having proved (2.9), we now use It6’s formula to get

[ olets) s) ds|< E [ u((s)) ds< E [ (LF)(E(s). o) ds

= EF(E(8)) — EF (o) < EF(&(8)
Noting that F () < Cr'*7", we obtain

E

E

j: ¢($(s): S) d§‘|< CE|§(t)]l+"l + C< C{Elg(t)lz}(1+ﬂ)/2+ c

for suitable constants C. Using Theorem 2.1, the assertion (2.6) follows.
We shall now extend Lemma 2.2 to the case where ¢(x, t) does not
necessarily vanish if |x| is large, but either

C
lo(x, t) — @| < TrmEr
e(]x])

(1 + |2)®

(a > 0), (2.16)

or

lo(x, t) — @] < (a >0, €(r)—0 if r—0), (2.17)

where ® is a constant.

Lemma 2.3. Let the conditions (2.2)—(2.5) hold and let ¢(x, t) be a bounded
measurable function satisfying (2.16). Then

E; f 5) ds — Qt}-— o(t1+1/2) 4 O(¢1=%/%)  (2.18)

for any m > 0; if (2.7) also holds, then (2.18) holds for some —1 < 7 < 0. If
the function ¢(x, t) satisfies (2.17) instead of (2.16), then

‘ f o(£(s), s) ds — d)t‘ = O(tM*7/2) + o(1~4/2) (2.19)
with the same 7 as before.

Proof. Suppose first that (2.17) holds. Then, for any ¢ > 0, there exists an
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R, such that
\¢(x,t)—‘1>|<—r% if |x|>R, t>0.
Let x.(x) = 1 if |x] < R,, x.(x) = 0if |x| > R,, and write
$(x, 1) = @ =[@(x, 1) — D]x(x) +[#(x, 1) — @][1 — x(¥)]
= ¢,(x, 1) + dy(x, t). (2.20)
By Lemma 2.2,

E = O({1+"/3), (2.21)

[ e, o) as

Next, let ¢/(r) be a continuous function such that

0 if 0<r<ry/2

, (2.22)
e/r* if r>n

) = |
for some 0 < r, < R.. We shall slightly modify the definition of #(r) by
replacing the condition (2.11) by the stricter condition

(1 + 8(r))A(x, t) < pB(x, t) + C(x, t) (2.23)

where p is any positive number < 1. We can still satisfy (2.12) for any
n = n{p) > O provided p is sufficiently close to 1; if (2.7) holds, then we can
even satisfy (2.13) if p is sufficiently close to 1.

Let f(x) be defined by (2.14) with A > 0 to be determined later. Then, by
(2.10), (2.23),.

8 (r) F'(r)
2Lf(x) >[Fu(r) + . F'(,)]A(x, t) + " (1 — p)B(x, t)
F’(T) c 1 1 r
—_ L 1 ,-1r 1(s) €
>—=(1-pB(xt)>% e ffoe < ds
c _€ ~1I(r " I
P X iva e 1) j:o el ds (2.24)

where c is a positive constant < (1 — p)B(x, t). Since e’® ~ 777 if r — o0,
we find that

fx) > 55 & > lealm el | > R, (2.25)

where ¢, is a positive constant independent of €, provided 2A < ¢,. If
lx| < R,, then clearly Lf(x) > 0 = |¢g(x, t)|.
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From It6’s formula and (2.25) we obtain

e [ salelo) s)ds} < E [ loufels) o) d

<Ef “(LAE(s), 5) ds
= EF((9)) — EF(&)) < EF(E(0).  (2.26)

Since Cer? ¢
T+ C it 2- 1+
F(r) < { €r i a > 7,
Cerl*7+ C if 2—a <1+,
and since we may assume, without loss of generality, that a + n # 1, we
deduce, after using Hélder's inequality and Theorem 2.1,
Cet!= %2+ C if a+1n<]1,
ccetM*M2 4 C if a+7m > L

EF (1) < {

Substituting this into (2.26) and combining the resulting inequality with
(2.21), (2.20), we get

El fot o(§(s), s) ds — (I)t\ < Cyt /2y C et —o/2 (2.27)

where C, is a constant independent of €. Since ¢ is arbitrary, (2.27) implies
the assertion (2.19) with n replaced by 7', for any 5" > 7. But this clearly
completes the proof of (2.19). The proof of (2.18) (for ¢ satisfying (2.16)) is
similar.

We proceed to evaluate (under additional conditions) more precisely the
number 7 occurring in Lemma 2.3. We shall assume that, for 1 < i, j < n,
a(x, )8, as |x|>co, uniformly with respecttot, (2.28)

where G, are constants. Let
d = number of positive eigenvalues of 7 = (a,). (2.29)

Observe that if (2.3) holds, then (2.5) holds if and only if d > 1, and (2.7)
holds if and only if d > 2.

Note that the assumptions and assertions of Lemma 2.3 remain unchanged
if we perform a nonsingular linear transformation x—Ax. Such a transforma-
tion changes a(x, t) into Aa(x, t)A*. We can therefore choose A such that

;=0 if i#j,
=1 if i=12...,4d
d, =0 if i=d+1,...,n;
d = 0 means that @, = O for all i, and d = n means that g, = 1 for all i.



If d > 2, then we can take, in the proof of Lemmas 2.2, 2.3, 8(r) = » for
any v < 1 provided r is sufficiently large. This leads to the assertions of
Lemmas 2.2, 2.3 with any —1 < 5 < 0.

If d > 3, then we can take 8(r) = § provided r is sufficiently large. This
leads to the assertion of Lemma 2.2 with n = — 1. If ¢ satisfies (2.16), then,
instead of (2.18), we have

EL%M¢Q¢—®t=qn+owﬂ@ if a#2 (2.30)

We sum up:

Lemma 2.4. (a) Let the conditions (2.2)-(2.4), (2.28) hold, and let d > 2.
Let ¢(x, t) be a bounded measurable function. If ¢ satisfies (2.16), then
(2.18) holds for any —1 < m < 0, and if ¢ satisfies (2.17), then (2.19) holds
forany —1 < n <0.

(b) Let the conditions (2.2)—(2.4), (2.28) hold and let d > 3. If ¢(x, t) is
a bounded measurable function satisfying (2.16), then (2.30) holds.

3. Asymptotic estimates

Theorem 3.1. Let the conditions (2.2)-(2.5) hold. Then
E|¢t)* > Kt — K forall t> 0 (3.1)
where K, K' are positive constants.
Proof.
Lix2 =Y a,x, t) + 2D x,b{x, t) > v — ¢{x)

where ¢(x) is a bounded measurable and nonnegative function having
compact support. By It6’s formula,

EIE(0F — ElgP = E [ (LIsf)(&(s) o) ds > vt = E [ 9(¢ls)) ds.
Since, by Lemma 2.2,
E [ olels)) ds = ol2)
0
the inequality (3.1) follows.

Remark. Lemma 2.2 and Theorem 3.1 remain true if the condition (2.4) is
replaced by the weaker condition

(1+ le)g|b,(x, t) < € (3.2)

provided ¢, is a sufficiently small positive constant.
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We shall need the following condition:

1+ 2)'* S |bi(x ) < €(|x]), €(r)—0 if r—0, § >0.(33)
T i=1
Theorem 3.2. Let (2.2), (2.3), (2.28), (3.3) hold and let d > 1. Then
E|£(t)]? = (tra)t + O(£"*™/%) + o(s7%/%) (3.4)
where tr @ = X,8, and n is any positive number; if d > 2, then 7 is any
number > ~1.
Proof. Notice that
Lo ~ ra| < &(|x])/ (1 + |«f°)
where €'(r)-»0 if r—oo. Hence, by Lemmas 2.3 and 2.4(a) with
o(x, t) = L|xf%, ® = tr a,
BIE(OF — Bl = E [ (LIx)Els). o) ds

= (tra)t + O(t"*7/2) + o(t'~%/2)
where 7 is any positive number if d > 1 and any number > —1ifd > 2.
This yields (3.4).
The special case 8§ = 0 gives
Corollary 3.3. Let (2.2)-(2.4), (2.28) hold and let d > 1. Then
E|E0)? = 2(tr a)t + o(t). (3.5)
We can now state a key lemma needed for deriving the main results of

this section.

Lemma 3.4. Let the conditions (2.2), (2. ) and (3.3) hold with 0 < § < 1,
and let d > 2. Then, forany j = 1, 2, . n,

El [ Bies). 9 dsr = oft19), (3.6)

Proof. For any € > 0 we can write

Bz, )] < gi{x) + gl=])

gl = /(1 £ NS oS (2 7)
52‘\ -—E/ \11‘!/ 11 f/ll, L i)
and gy(r) = 0 if r < r, for some 0 < r; < 00. Clearly
[ "< 2| [ * 4 o [ *
E| [ blels), ) do| < 2E| [ g,(e(s), s) ds| +2E| [ gylle(s)]) ds
| Jo | | Jo | | Jo |



182 8 ASYMPTOTIC ESTIMATES FOR SOLUTIONS

Let 2% be a point outside the support of g, and let p = |x — 9.
Let F(p) be the function constructed in the proof of Lemma 2.2 for
¢ = g,. Then, for any —1 < 9 < 0,

F(r) < e’ F'(r) < cr"  (c positive constant) (3.9)
provided r is sufficiently large By It&’s formula,
t
[ aiels) ds|< [ (L), ) ds
< F&(0) f D,F - o(£(s), s) dw(s).
Consequently

2

g (4(s)) &

Next, for large r,

f
< Ct'*" + C + 2E f ID,F - ot ds.  (3.10)
0

|D.F - of?> < Cr™" forany —1 < 5 <0. (3.11)
Hence, by Lemma 2.4(a) with a = — 2,
t
Ef ID,F - off ds < C'*" + C, (3.12)
0

and (3.10) then yields
2
< Ct'*" + C. (3.13)

E| [ g:ls(s)) ds

To evaluate the integral corresponding to g,, let Fy(r) be the function F(r)
constructed in Lemma 2.3 when ¢, = g,. We can take —1 <9 < —8.
Then

Fy(r) < Cer'™® + Ce,  F§(r) < Cer™% + Ce (3.14)

where C is a positive constant independent of €. Analogously to (3.10), (3.11)
we get

E| [ ealle(o)) as|

t
< Cet'™% + C + 2E f ID,F, - o2ds  (3.15)
0

|D.Fy - o < Ce®/r%, (3.16)
By Lemma 2.4(a),

E [ ID,F, - o2 ds < CE1*V/24 Cedl % 4 C. (3.17)
0

£ [ ) |

Combining (3.18) with (3.13) and (3.8), and recalling that n < —§, the
assertion (3.8) follows.

Hence

< Cet'~% + Ct*n/24 C, (3.18)
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The following lemma is a variant of LLemma 3.4 in case d > 3.

Lemma 3.5. Let the conditions (2.2), (2.3), (2.28) hold, let d > 3 and let
(3.3) hold with some & > 1. Then, forany j=1,..., n,

E1 fo “by(8(s), s) dsr - o(1). (3.19)

Proof. The function F(r) occurring in (3.9) is now given by
F(r) =fre_’(‘) ds fs e™y(u)du i r> p,,
Po

Po
where ¥(r) = 0 if r > p,, for some 0 < p, < p, < 0. We can take n(r) =
for large r, so that I(r) ~ log +*/2. Therefore

Firy< C, F(r)<C/r2 (3.20)

Hence (3.11) is replaced by

|ID.F - of* < C/7° (3.21)
Lemma 2.4(b) with a = 3 gives
t
E f ID,F - oft ds = O(1), (3.22)
0

and this estimate is to replace (3.12). We conclude that (instead of (3.13))
14

[ elels)) as

Let 0 < r, < r; and let g,(r) be a continuous function satisfying

"(r)=[€/(1+r) if r> 1,
0 if r<ry/2.

2
E < C. (3.23)

1+8

Take
r $
Fy(r) = cf e"(‘)f e g (u)du  (C > 0).
0 0
Since & > 1, F, satisfies (instead of (3.14))
Fo(r) < C,  Fi(r} < C/r* k= min(3, }). (3.24)
Using Itd’s formula we find that
t 2 t
E‘ [ aligts)) d.s’ <C+E ['|DF, of ds. (3.25)
0 0
Since, by Lemma 2.4(b) with a = 2k,
t
Ef |D,F, - ot ds < C,
0

the right-hand side of (3.25) is bounded by a constant. Combining this with
(3.23), (3.8), the assertion (3.19) follows.



Remark. 1If in Lemma 3.4 we replace the condition (3.3) by
Shhix Ol <c/1+ )" (<8<, (3.26)
then

2

E = O(t*~9). (3.27)

t

f b(£(s), s) ds
0

We shall need the following conditions:
o e(|x)

2 |Ui‘(x’ t) - 6:" S %>

=1 o+ Ix))°

where §; are constants. Note that

8§ 20, €nrn—-0 if rooco, (3.28)

a = §0*, tra = |g)°
We shall also need the condition
n
> logn ) -5l < C/(1+]), §>0. (3.29)
hi=1
We shall now state the main results of this section.

Theorem 3.6. (a) Let (2.2), (2.3), (3.3), (3.28) hold with 0 < 8 < 1, and let
d > 2. Then

E|&(t) — sw(t)|® = o(t'°). (3.30)
If (3.3), (3.28) are replaced by (3.26), (3.29) and 0 < &§ < 1, then
E|§(t) — sw(¢)® = O(¢~°). (3.31)

(b) Let (2.2), (2.3), (3.26), (3.29) hold for some 8 > 1, and let d > 3.
Then

Ei&(t) — sw(t)* = 0O(1). (3.32)

Proof. Let (2.2), (2.3), (3.3), (3.28) hold with 0 < 8 < 1, and let d > 2.
Consider the expression

ft (o — 3) dw(s)
0
Since |o(x, t) — &| < €¥(|x|)/(1 + |x|)*°, Lemma 2.4(a) implies that

E j;t lo(&(s), s) — &> ds = o(t!7?).

2

E

t
—_ _ =2
—Efo|o &2 ds.

Writing
§(t) — sw(t) = £, +f0t [0(&(s), 5) — 5] dw(s) +f0’ b(4(s), 5) ds

and using the previous estimate and Lemma 3.4, the assertion (3.30) follows.
The proofs of (3.31), (3.32) are similar. In proving (3.31) we make use of
the remark following Lemma 3.5. In proving (3.32) we employ Lemma 3.5.
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4. Applications of the asymptotic estimates

We shall need the following conditions:

lim o(x, t) = 8, uniformly with respectto ¢, 1< 4,j<n, (41)

|2} — 00

D |b(x, )| € forall x € R" t>0 (C const),

i 4.2
llgim (1 + |x|) 2 |by(x, t)]=0 uniformly with respect to t. (42)
X{—» 00 fam]
Theorem 3.6(a) with 6 = 0 states:
If (2.2), (2.3), (4.1), (4.2) hold and if d > 2, then
E|&(t) — sw(t)]” = oft). (4.3)
From (4.3) we see that, as t—>00,
t t
E(_) —0 w(t) -0 in L%
\4; Vit

consequently also in probability. This immediately yields the following
theorem on convergence in distribution of £(¢):

Theorem 4.1. Let the conditions (2.2), (2.3), (4.1), (4.2) hold, let & be
nonsingular matrix, and let n > 2. Then

lim P{£(t) < 2Vt |

1 x] Xy 1 A
=——— ce expy — a dy, - - d 4.4
(277)"/2 det 5 f_oo f_w P{ 2 2 ifyiyj} Yn Yy (44)

where a is the inverse matrix to a.
Suppose next that (2.2), (2.3) hold and that

; |og(x, t) — 5yl < C/ (1 + )", (4.5)

)1+8

S Ibx ) < ©/ (1 + I+ (46)

for some 0 < 8 < 1. Suppose @ is nonsingular and n > 2. Denote by G the
inverse of 5. Then

G&(t) — w(t) _ 8
Vet log log ¢ V 2t log log ¢

~

g to s), 8} — ol dw(s
+mfo[(£<>> ] do(s)

6&,

V2t log log ¢
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We shall denote various positive constants by the same symbol C. Let
t, = m) A = 4/8, m a positive integer. By the proof of Theorem 3.6(a),

P[ sup |]1(t)|>;1;] ft'"H |ds>—}

tn < IR byl
2
[ftm+1 |dSl

C
.

Cm2 -
< s (tm+1)l b<
m m

Next, by the martingale inequality and the proof of Theorem 3.6(a),
1
p{ s Inol>2)

tn S < 41

<P[——C—— sup
Vi, t<t<tme
C

1-8
Pl

Cm?
m

Since, finally,
i Cm 2 C
P{ i, <stu<pt,,,+1l]3(t)| “m } t, & El&l < m?’
we conclude that
3 C
P ap 01>3) <
<t tm+1|J( ) m m?
Applying the Borel-Cantelli lemma we deduce
3 . A
P{ sup |J(t)| > po 1.0.} =0,

tn <L byt
consequently

P{ Jim |J(t)] = 0} = 1. (48)
From (4.7) and the law of the iterated logarithm for w(t) (Theorem 3.3.1,
Corollary 3.3.2 and Theorem 3.6.1) we obtain:

Theorem 4.2. Let the conditions (2.2), (2.3), (4.5), (4.6) hold for some

8 > 0, let & be nonsingular, and let n > 2. Then, foranyi=1,...,n,
Im Zi-04) 1 as., (4.9)
V 2t log log ¢
*10.:6:(t
lim =104 =1 as (4.10)

=% Votloglogt
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Further,

lim 154(t)] =1 a.s. (4.11)

% Vet log log ¢

The next application is to the Cauchy problem:

b3 g i+ ) Ly i xeR t>0,
ij=1 Xy =1 o, ot
(4.12)
= flx) if xER" (4.13)
We shall assume:

(i) o4(x), b(x) are bounded functions in R", uniformly Lipschitz
continuous, and the matrix (a,(x)) is uniformly positive definite.
(ii) Forall x, ¥ in R",
Ifla) — Al < Clx -2 (0<y<2 C>0)

By Sections 6.4, 6.5, there is a unique solution u(x, t) of (4.12), (4.13)
bounded by O(|x|*) uniformly in ¢ in bounded intervals, and it is given by

ulx, ) = EfIE(1) (4.14)

where £_(t) is the solution of (1.1) with £(0) =
Let us further assume that

;f |°i1(x) - 8ij| <C/(L+ |x|)8s (4.15)

S lbx)| < €/ (1 + E (4.16)

for some § > 0.

If a; = §; and b; = 0, then the solution @ is given either in the form
Ef(w(t) + x), or in terms of the fundamental solution for the heat equation,
namely

. |x = yf*
i(x, t) = m fﬂexp{ y }f(y (4.17)

From (4.14) and (ii) we get
julx, ) =z ] < C(EIE(D) - wlo) - =}

We can now apply Theorems 3.6(a), 3.6(b) to estimate the right-hand side. A
careful review of the proof of (3.31) and (3.32) for £(t) = £, (t) shows that

07 < C[ 8 + |08 + 1], o1 <C

where C is a constant independent of the initial condition £(0) = x. Hence:
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0 < 8 <1, then forall x€R", t > 0,
lu(x, t) — d(x, t)] < C(1 + ¢t + |2
Ifn >3and 8 > 1, then forall x€R", t > 0,
lu(x, t) — @{x, t)) < C  (C const). (4.19)

Y12 const).  (4.18)

5. The one-dimensional case

In proving Theorem 3.6(a) or even in deriving (4.3), we have assumed that
the matrix @ has at least two positive eigenvalues. To see what may happen
when @ has only one positive eigenvalue, we resort to the case n = 1. For
simplicity, consider first the equation

d&(t) = dw(t) + b(&(t)) dt. (5.1)
We assume that b(x) is measurable and
[7 1b(a) dx < 0. (5.2)

One can construct comparison functions explicitly by solving differential
equations of the form

Lf = 3f"(x) + b(x)f"(x) = Y(x). (5.3)
Setting A (x) = 2 % _b(y) dy, the general solution of (5.3) is given by

fls) = e reas2 [Mer9y(n) dy + €| +
0 0

where C,, C, are constants. Using this solution in the proof of Theorem 3.6,
one can derive the estimate

E\t(t) — w(t)]® = olt) (5.4)
provided A(+ c0) = 0, i.e., provided
f_°° b(x) dx = 0; (5.5)
if further
b)) < c/(1+ ) (0<s<) (5.6)
then
El&1) — w(t)? = O(+'%); (5.7)

the details are left to the reader.
Consider next the more general stochastic differential equation

d(t) = a(&(1)) dt + b(4(4)) dt. (5.8)
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We assume that a(x) > 0 for all x, and set

h(z) = fz dy . g inverse to h.
As easily verified, the process n( ) h(£(t)) satisfies the equation
dn(t) = dw(t) + b(n(t)) dt (5.9)
where
o obla)

The condition (5.5) for the equation (5.9) becomes

[o Mz elidle) 5.11)
— o*(x)
If

blg®) o ¢

g Pl < (>0 Gy

and if (5.11) holds, then, by the assertion (5.7) applied to the solution 7(t) of
(5.9),

En(t) — w(t)? < C % + C.
If we further assume that
|Gh(x) — 2| < C(1 + [x*™*) (0< p<1,6>0) (5.13)
for some constant &, then we easily conclude that
E|¢(t) — ow(t)? < K"+ K’ forall t >0 (5.14)

where » = min(8, p) and K, K’ are positive constants.
Observe that if

_ C
olx) — ol < ——— 5.15
o)~ 3l < (5.15)
then (5.13) holds and, further, (5.12) is equivalent to
b(x) C
— — o) < —=—— (5.16)
o(x) ° (1 + |2+
We can therefore state:
Theorem 5.1.  If (5.15), (5.16), and (5.11) hold, then for any solution £(t) of

(5.8) the estimate ( ) 4) holds with v = min(§, p).
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If (5.15) is replaced by

= lim o(x) exists, &0,
| x|—00

if the left-hand side of (5.12) is in Ll(—- 0, o), and if (5.11) holds, then, by
applying the assertion (5.4) to the solution 1(¢) of (5.9), we easily obtain
E|(t) — ow(t)* = o(1). (5.17)

The condition (5.11) is essential for the validity of Theorem 5.1. Taking
for simplicity the case ¢ = 1, where the condition (5.11) reduces to the
condition (5.5), we shall prove:

Theorem 5.2. Let b(x) satisfy (5.2). If £(t) is a solution of (5.1), then the
estimate (5.4) holds if and only if (5.5) holds.

Proof. We only have to prove that if
f°° b(x) dx # 0 (5.18)

— o0
then (5.4) does not hold. We shall assume that (5.18) and (5.4) hold, and
derive a contradiction.
Clearly

E£(f) = Et, + E fo "b(E(s)) ds. (5.19)
A particular solution of (5.3) for ¢ = b is

flz) = [" eA@ A ~ 1] da.
0

Since A(— o0) = 0 and (by (5.18)) A(+0) # 0,
flx) =Ax* +o(x]) as |x]>o (5.20)

where A is a nonvanishing constant.
By It6’s formula

E [ bltls) ds = BAE(0) ~ Efiéo).
Substituting this into (5.19), we get
E&(r) = E£, — Efl&,) + Ef(&(t)). (5.21)

Since f(x) satisfies a uniform Lipschitz condition,

|Ef(&(2)) — Ef(w(1))| < CE[4() — w(t)]  (C const),

and, in view of (5.4),

Efi§(t)) = Eflw(t)) + o(t'/?). (5.22)
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From (5.20) we have, for any € > 0,
| flx) —Ax*| < €|x] + Cle)  {C(e) const).
Combining this (when x = w(t)) with (5.22), we find that
|Ef(£(2)) — Ew* (¢) | < €E|w(t)] + Cle) + o(t'/?) < 2et!/2
if ¢ is sufficiently large. Upon substituting this into (5.21), we obtain
E&(t) = AEw™ (t) + 8t/ + C'  (C’ const, |#] < 2).
But, by (5.4),
E&(t) = Ew(t) + o(tY?) = o(¢1/2).

Consequently,

' A|Ew* (t) < 3et™/2  if tis sufficiently large.

Since, however, Ew™* (t) = (t/27)'/2, we get a contradiction if 187e® < A2,

There is an intuitive reason why for n =1, 0 = 1 the assertion (5.4)
cannot hold unless (5.5) is satisfied. In order for the distribution of £(t)/ V¢
to approximate the normal distribution as t—oc the particles represented by
&(t), or £(t, w), must be able to move without significant “resistance” from
intervals (a, 8) near + co to intervals (— 8, — a). Since in performing this
move they must cross the interval (— a, a), they are subject to the influence
of the drift term b(x). This drift coefficient will resist the motion if
S 2.b(x) dx > 0; thus this inequality cannot take place. Similarly, the re-
verse inequality cannot take place.

If n > 2 and & is nonsingular, then £(t) may move from one n-dimensional
interval in a neighborhood G of infinity to another without leaving G. If the
drift coefficient b(z, t) is “small” in G (ie., if |b(x, t)] < C(1 + |x|)7'7¥,
p > 0), then there will be negligible resistance by the drift coefficient to the
movement of £(¢) in G. Thus, no condition analogous to (5.5) is required in
the case n > 2.

6. Counterexample

We shall give an example of a system of n equations (n > 1)

d&(t) = dw(t) + b{&(t)) dt (6.1)
for which
b(x) = o( '°ng:"' ) if |x]o>o0 (6.2)

such that the estimate
El((t)?’ < Kt + K* forall ¢t > 0 (K, K’ positive constants) (6.3)
is false.



192 8 ASYMPTOTIC ESTIMATES FOR SOLUTIONS

Let f(x) be a function in C*(R") such that

flx) =r*/logr if r=|x] > 2. (6.4)
If b,(x) = x,B(r) for |x| > 2, then
n of(x)
i=1 i
_ 1 _m+2 1 1 2r2 1
"~ logr 1 2 logr+ (10g,.)2]+logr[1 2logr]B(r)'
Take
log r
B() = =2 [1+ (7]
where y(7) is defined so that
n d
3 Af(x) + X bi(x) gix) =1 if |x|]>2. (6.5)
i=1 i
It is easily seen that y(r) = O(1). We now define b,(x) in R" such that
b(x) = x [log |x| + y(|«)]/2)x>  if |«| > 2 (6.6)

we can make the b,(x) as smooth in R" as we wish.
By It6’s formula and (6.5),

EfiE(0) = Efié) + E [ " cle(s)) ds (6.7)

where ¢(x) — 1 = 0if |x| > 2.

We wish to apply the proof of Lemma 2.2 to ¢(x, ) = ¢(x) — 1. Here the
b,(x, t) = b,(x) are not bounded by €(|x|)/(1 + |x|) where €(r)—0 if r— o0,
Nevertheless (2.11) takes the form

i+0(nN] <in+ ;(aci — ¢)b(x) (6.8)

where r = |x — ¢| and e = (e}, ..., e,) is a point outside the support of
c(x) — 1, ie., |e| > 2. In view of (6.6) and the boundedness of y(r) as r— o0,
we can actually construct a continuous function @(r) satisfying (6.8) such

that, for any A > 0, lim, ,_#(r) = A. Hence, by the proof of Lemma 2.2,

E fO‘ [c(&(s) — 1] ds= O(1)  as t—cc.
Combining this with (6.7) we get
Elflé(t) —t|<C, for t>0  (C,const) (6.9)
For any € > O there is a constant B such that
|x/log |x| < €|xP+ B if |x| > 2.
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Hence
flx) < elx* + C  forall x&R",
where C is a constant depending on e. This implies that
Efig(t)) < eBIE(0)* + C. (6.10)
Now, if (6.3) holds, then from (6.9), (6.10) we obtain
t<eKt+eK'+ C+ C, forall ¢t > 0.

But this is impossible if € < 1/K.

If the function log |x| occurring in (6.2) is replaced by other functions that
increase to infinity more mildly, as |x|—> o0, such as log log |x|, then one can
again show by the above method that (6.3) cannot hold. If however

O(1/|x|), then (6.3) does hold (by Theorem 2.1). Recall that if (3.2)
holds, then the estimate (3.1) is also valid.

PROBLEMS

1. All the results of Sections 2, 3 remain valid if the condition (2.4) is
replaced by the condition that

(1 + [x) 2 |blx, 8)] < €  forall x€R", >0

provided e is sufficiently small. Check this in the case of Theorem 3.6(a).

2. The methods of Sections 2, 3 can be used to estimate E |§(t) — w(#)[*,
provided 0 < 8§ <%. Show that under the assumptions (2.2), (2.3), (3.26),
(3.29) with 0 < & <%,

E|&(t) — sw(t)|* = O(21~9).

3. Prove that if (5.2) and (5.5) hold, then any solution of (5.1) satisfies the
estimate (5.4).

4. Prove that if (5.6) and (5.5) hold, then the estimate (5.7) is valid for the
solution of (5.1).

5. If

Tag(x, t) < C1+ [xR), | Zablx )] < €1+ |xP)°
for some constants C >0, 0< u <1, then
E|(PF < Kt+ K’ forall t >0,
where K, K’ are positive constants.
6. Let b(x,t) = b(x, 0)/(1 + [x)*, &(x, 1) = a(x, t)/(1 + |x*)*/2,
i = G6*. Let the assumptions of Lemma 2 2 hold for a, b replaced by a, b.

Let ¢(x) be any bounded measurable function with compact support. Prove
that if £(¢) is a solution of (1.1), then

)
E\ [ olets) as

< K (1 + (1+0/@-20)  forall ¢ > 0,
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where K, is a constant and 7 is as in Lemma 2.2. [Hinf: Construct

f(x) = F(r) satisfying Lf(x) > (1 + | (lz]).]
7. Let (2.2)—(2.5) hold with a, b replaced by a, b (as in Problem 6), and let
0 € p < 1. Prove that

E|£(H*% > Kt — K forall t > 0,

where K, K’ are positive constants.
8. Extend Theorem 5.2 to the case of Eq. (5.8).
9. Let £(t) be a solution of (1.1) and assume that |o(x, t)] < C,

|b(x, )] < C, |b(x, t) — b| > 0 if t — oo, uniformly with respect to x. Prove
that £ -

lim — =b as.

t—00 t

10. Consider one-dimensional equations

ag(0) = dult) + B, ) (i =1,2)
Assume that b,(x, t) < by(x, t) for all x€R"', t » 0. Prove that if
£,(0) = £,(0) then £,(t) < &(t) for all ¢ > 0.

11. Let £(t) be a solution of a one-dimensional equation

di(t) = dw(t) + b(§(x), ) dt,  £(0) = =

and assume that

b(x,t)>B() forall xER',
“B(s) ds > 1.

lim
% Vat log logt ~°

Prove that lim,_, §(t) = oo as.
12. Consider a stochastic differential equation

dé(t) = o(£()) dw(t) + b(é(1)) dt
and assume that o(x) > 0 in the interval @ < x < b. Denote by 7,(a, b) the
exit time from the interval (a, b), given £0) = x. Denote by p,(x; b) the
probability that (7, (a, b)) = a. Prove:

(a) If do(x)u”(x)+ b(x)u’(x)= —1 in a < x < b, and u(a)

=u(b)—0thenE1'(ab)— (x).
(b) If ®(x) = exp{— [Z(2b(z)/ 6%(2)) dz}, then
x y dz y dz
ul) = —-[; 20(y) -l; 0%(z)®(z) dy+ -]; 20(y) -l; oz(z)(b(z)— 4y,

y=j:(l)(z)dz/fb(l>(z) dz.

a
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(©) If o*)(x)w”(x) + b(x)w'(x) =0ina < x < b, then
Pa(x; b) =[w(x) — w(b)]/[w(a) — w(b)].

13. If (2.2), (2.3), (3.3) hold with 6 >0, and if (2.5) is replaced by
Az, t) > ¢/(1 + |x|)® (c > 0), then the assertion (2.8) of Lemma 2.2 is
valid for any n > 0.

14. If (2.2), (2.3), (2.5), and (3.3) hold with § > 0, then (2.6) holds with
n = 0. [Hint: Take 8(r) = —D/r® for large r, where B is any positive
constant < & and D is a positive constant.]

15. Suppose, in Lemma 2.3, ¢ satisfies (2.16) and the condition (2.4) is
replaced by the stricter condition (3.3) with § > 0. Prove that

E'ft o(£(s), s) ds — cpt‘m O(#1/%) + O(¢'~(@-Ar2)
0
for any B > 0. [Hint: Take 1 — p = D/(2rF), 8(+) = —D/rf. In (2.14)

replace Y(u) by ¢(u)u?; this gives (2.24) with « replaced by a — B.]
16. Under the same conditions as in Problem 13, if ¢ satisfies (2.16), then

E fo " o((s), 5) ds — ‘Dt‘= O(11+7/2) 4 oL =ta=/2)

for any n > 0. [Hint: Replace, in (2.14), () by ¢(u)u®.]
17. Under the assumptions of Theorem 3.2,

ElCe, £()) "= (e, @e) + O(#1+7/%) + o(t1-9/2)

where e is any unit vector and { , ) denotes the scalar product.
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Recurrent and Transient Solutions

Consider a stochastic differential system of n equations

dé(t) = o(£(1), t) dw(t) + b(é(2), ) dt (0.1)
Let G be an open set in R”. Suppose that for any x € G and for any open
subset V of G,

P {&(t,)eV for a sequence of finite random times ¢,
increasing to o0} = 1. (0.2)

Then we say that the solution of (0.1) is a recurrent process in G. If G = R™,
then we say simply that the solution of (0.1) is a recurrent process.
If, for any x € G,

P{ lim |5()} = o} =1, (0.3)

then we say that the solution of (0.1) is a transient process in G. If G = R",
we simply say that the solution of (0.1) is a transient process. .

The condition (0.2) says that, given £(0) = x, the solution §(t) “visits” any
open subset V of G at a sequence of times increasing to infinity. The
condition (0.3) says that, given §0) = x, §(f) “wanders out to infinity” with
probability one.

It is well known (see It6 and McKean [1]) that an n-dimensional Brownian
motion is recurrent if n € 2, and transient if n > 3. This fact will follow as a
very special case of the results of this chapter.

1. Translent solutions

For simplicity we shall consider only temporally homogeneous processes, i.e.,
solutions of systems of n stochastic differential equations with time-
independent coefficients,

dé(t) = a(§(t)) dw(t) + b((¢t)) dt. (1.1)
198
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Set

n
n
o = (oif)z‘,f-d’ b=(b,....b,), a;= k§1 O O

S a0 g+ 3 hin

i j=1 ox, 0 /2 i

DO | =

We shall assume:

(A;) Forall x€R",

n

S b+ D Jo(x) < CO+xl)  (C const)

i=1 i, j=1
for any R > 0 there is a positive constant Cg such that
n
3 10 = b+ 3 1o~ oyl < Calx —
1= 1 i=

if (x| < R, |y| < R.
(Ag) The matrix (a,(x)) is positive definite for each xER".
Let

Al =L 3 a(tg,

|£|2 ih,j=1
B(e) = 3 a(x)
Gs.8) =23 th()
and set
S(x, &) = B(x) — A(x, §) + C(x, §) O S(a) = Sla, ).

Alx, £)
We shall need the assumption:
(A3) There is a positive constant R, such that
S(x) > 1 + €(Jx|) if |x| > Ry
where ¢€(r) is a continuous function satisfying:

Lw%exp[—j: c—(——)-ds]dt<oo.

0 0

Notice that (1.5) holds for any of the functions
es) =d, e€s)=A/s, ¢s)=B/logs

197

(1.2)

(13)

(1.4)

(1.5)
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where d, A, B are positive constants and B > 1.

Theorem 1.1. Let (A,)~(A;) hold. Then the solution of (1.1) is transient,
i.e., for any x€R",

B{ lim |&(f)] = o0} = 1. (1.6)

t—oco

Proof. Let a > 0. By (A;), there is a continuous function #(r) defined for
r > a such that

S(x) > H|x|) if |x| > a, (1.7)
8(r) =1+ ¢€(r) if r> R, (1.8)

We shall construct a function f(x) = F(r), where r = |x|, such that
Lf(x) < 0 if |x| > a. As easily verified,

2Lf(x) = A(x, x)F”"(r) F’( " (x) — Alx, x) + C(x, x)). (1.9)
Hence, if
F'(r) <0 for r > a, (1.10)
0(r)
F"(r) + — F(r)=0 for 7> a, (1.11)
then, by (1.7)—(1.9),
Lfix) <0 if |x| > a. (1.12)
Set
r 6(s)
Then a solution of (1.11) is given by
F(7) =f°° =10 s, (1.14)

the integral is convergent, by (1.5), (1.8). Notice that (1.10) is also satisfied.
Hence (1.12) holds when F is given by (1.14).
By It6’s formula and (1.12), if |x| > a, then

E, F{&(7)]) — E,F(ja) = Ef Lfl£(s)) ds < O (1.15)

where 7 is any bounded stopping time such that [{(s)] > a if 0 < s < 7. Let
B > a, and let 7,5 denote the exit time from the shell {y; a < |y| < B8}.
Denote by P,(a) the probability that |§(r,z)| = a (given §0) = x) and by
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P,( B) the probability that |§(7,5)| = B (given £0) = x). Setting 7 = T A 7,4
in (1.15) and taking T — o0, we get (since 7,54 < 0 a.s.; see Theorem 8.1.1),

Fa)P(a) + F(B)P(B) < F(|x]).
Taking 800 and using the fact that F( 8)—0 if B—o0, we get

F(}x])
i . 1.16
Jim P(a) < ) (1.16)
Introduce the balls
B,={y: |yl <p} (0<p< )
and the event
Q(a) = {£(¢) hits the ball B, for some t > 0}. (1.17)
Then we can write (1.16) in the form:
F(|x])
PR < 1.18
(0(a) < 75 (1.1

Denote by t; the hitting time of the boundary of the ball B; by £(¢). By
Theorem 8.1.1, if |x| < R, then P, {t; < o} = 1. Introduce the event

Q*(a) = {£(¢) hits the ball B, at a sequence of times increasing to  }.
(1.19)

Thus 2*(a) is a subset of {(a).
Let a < |x| < R. Since P,{tg < 0} =1,

P(9*(a)) = P .{£&(t + tg) hits B, at a sequence of times increasing to o }.
Using the strong Markov property (see Problem 3) we get

F(R Fi
P(Q*(a)) = E Py, y(2*(a)) < E Py,y(@(a)) < E, F((a)) = F((ﬁ)) ,

where (1.18) has been used. Taking R—o0, we get P,(2*(a)) = 0. This
means that

B{ lim [&(6)] > af =1.
Since «a is arbitrary, we get

E{ lim J&(8)] = o} =1,
i.e., (1.6) holds.
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We shall now replace the condition (A,) by:
(A3)  As |x[—>c0,

a,(x)—>ay, (1.20)
2 xb(x)-0, (1.21)
i=1

where the matrix (g;) has at least three positive eigenvalues.

Theorem 12. Let (A}), (Ag), (A3) hold. Then the solution of (1.1) is
transient.

Proof. We can perform an orthogonal transformation x—x" in R" which
takes () into (a)), where a} = 0if i % j,at = 1ifi =12, 3anda} =0
or 1 if 4 < i < n. In the new coordinates the condition (A;) holds with
€(s) = d where d is any positive constant < 1. Now apply Theorem 1.1.

2. Recurrent solutions

We shall replace the condition (A,) by:
(A For any z€R" there is a positive constant R, such that

S(x,x—2) <1+ e(lx—2z|) if |x—2z >R, (2.1)

where €(r) is a continuous function satisfying

) €(s
f 1 exp[—ft —(—l ds} dt= oo forsome R* > 0. (2.2)

- t - §

For simplicity we have taken €(r) to be independent of z; but the
subsequent results are unaffected if €(r) is allowed to depend on z.
Notice that the function e(r) = 1/(log 1) satisfies (2.2).

Theorem 2.1. Let (A)), (A,), (A, hold. Then the solution of (1.1) is
recurrent, i.e., for any x€ R" and for any ball B, (z) = {y;
ly — 2 <a},a>0

P {&(t) hits B,(z) at a sequence of times increasing to o} = 1. (2.3)

Proof. We take, for simplicity, z = 0 and write B, = B, (0). We shall first
construct a function f(x) = F(r) for r = |x| > « such that

LAix) >0 if |x| > a. (2.4)
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Let 8(r) be a continuous function such that
S(x) < 6(|x]) if |x| > a, (2.5)
#(r) =1+ ¢r) if r> R, (2.6)

In view of (1.9), if F(r) satisfies (1.10), (1.11), then (2.4) holds. With the
definition (1.13), the function

F(r) = — [ RPN (2.7)
satisfies both (1.11) and (1.10). In view of (2.6), (2.2),
Flr)» — 0 if r—oco. (2.8)

We shall now apply the equality in (1.15) to the present function F(r).
Making use of (2.4) and taking 7 = 7,, A T, we get, after letting T — oo,

F(a)P(a) + F(B)B(B) — F(|x]) > 0. (2.9)

Taking f—c0 in (2.9) and using (2.8), we conclude that P ( 8)—0 if 8—cc.
Hence, P.(a) = 1 — P.(f8)—1 if B—o00. This means that
P(Q(a)) =1 (2.10)
where () is defined in (1.17).
For any p > 0, let B, = {y; | y| = p}. Let

@« <R <Ry<---<R,<- -, R,»0 if mooo,
Introduce Markov times:
7, = first time &(t) hits B,;
o, = first time > 7, such that £(t) hits 9B ;
in general,
7., = first time > o, _, such that £(¢) hits B,;
o,, = first time > 7,, such that £(¢) hits 3By .

By Theorem 8.1.1, on the set where 7, < oo also o, < c¢. By (2.10),
P (r, < o) = 1. Hence P (0, < ) = 1, and by the strong Markov prop-
erty (see Problem 4),

P, (13 < 00) = E Eg(g)Xr,c0 = 1. (2.11)

where (2.10) has been used in the last equality.
We now proceed by induction. Assuming that 7,, < oo a.s., we get

Px(7m+1 < OO) = Efo(Um)x’h(OO = 1L
Now, at each time ¢ = 7, §(t) hits B,. Further, since |§(0,,)] = R,, = o©

as m — oo, lim,,_, ¢, = oo; hence also lim,, , 7, = oo. This completes the

proof of (2.3) (in case z = 0).
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We shall now replace the condition (A,) by:
(A) As |x|—>o00,

_ g0 = ;)
a’:‘j(x) ay 0( Tog 2] / (2.12)

S0 = of i ) .19

and the matrix (ag) has precisely two positive eigenvalues.

Theorem 2.2. Let (A,), (Ay), (A}) hold. Then, the solution of (1.1) is
recurrent,

Proof. We perform an orthogonal transformation x—x’ that takes (a,.?) into
a new matrix (gf) with af =0 if i»jorif i={>3, and g7 =1 if
i=1,2. In the new coordinates, the condition (A,) is satisfied with
€(r) = 1/(log r). Now apply Theorem 2.1.

Remark. Suppose (A}) is replaced by
1
aii(x)ﬁag as |x| — oo, Elbi(x)|= o(m) as |x| — oo
where the matrix (g) has precisely one positive eigenvalue. Then the
assertion of Theorem 2.1 remains valid, with the same proof; here e(r) =
— d where d is any positive constant < 1.

Example. Consider the case where n > 2, b, = 0, and ¢ is such that

g(r)

og* = (aij)’ a; = 811 + ";2_ XX (" = |x|);

g(r) is a Lipschitz continuous function vanishing near r = 0, and
p<g(r)<M where p> -1, M< o  (u M const).

The eigenvalues of (a,(x)) are 1 (with multiplicity n — 1) and 1 + g. Hence
(ay(x)) is positive definite for all x€R". Clearly,
n—2~— gr
1= ——=L = ¢(r).
S(x) e =<l
Hence, if g(7) is such that () = A /(log r) for some A > 1 (and all large 7),
then the assertion of Theorem 1.1 holds. If g(r) is such that ¢(r) = 1/(log r)
for all large 7, then (A,) holds with €(s) = 1/(log s) + C/s for some positive
constant C; consequently the assertion of Theorem 2.1 holds, This example
shows that conditions (A;), (A,) made in Theorems 1.1, 2.1 are rather sharp.
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This example also shows that the behavior asserted in Theorems 1.1 and
2.1 does not depend exclusively on the dimension n. In fact, given any (r)
which converges to 0 as r—c0, take

n—2—c¢

8= T+ (for all large )

in the above example. Then the behavior of £(t) does not depend on n; if
€(r) > A/log r for some A > 1, then £(t) is transient, whereas if
€(r) < 1/log r then §(t) is recurrent.

3. Rate of wandering out to Infinity

In this section we return to the situation of Theorem 1.1. We shall
assume:

(As) ay(x), b;(x) are bounded functions in R", the a,(x) are uniformly
Holder continuous in R™, and, for all x€R", §ER",

> ax)éE > alé®  (a, positive constant).
ij=1
We shall also assume that the function ¢(r} occurring in the condition (A,)
satisfies, for some 7, sufficiently large,

er)=d if r>ry, (dpositive constant). (3.1)

Theorem 3.1. Let (A;), (A5) hold and let (A;) hold with €(r) satisfying (3.1).
Then, forany 0 < 8 <}, x€ER",

Px{ lét(:)l i oo] = 1. (3.2)

We first prove two lemmas.

Lemma 3.2. Let (A,), (Ag), (A3), and (3.1) hold. Then there exists a positive
constant C such that for any a > 1y, xER",

P {|&(2) |<aforsomet>0}<C(||)d (3.3)

Proof. Let R > a. Consider the Dirichlet problem:
Lug(x) =0 if a < |x| <R,
up=1 if |[x)ma, uz=0 if |x|=R.
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Let f(x) = F(r) (r = |x|) be the function constructed in the proof of
Theorem 1.1, Then

o(x)

) (r=lxl)

satisfies:
Lv <0 if a < |x| <R,
=1 i |x{=a ©>0 if |x/=R.

Hence, by the maximum principle,

0 < up(x) < o(x). (3.4)
By It’s formula, if & < |x| < R,
ug(x) = P{£(¢) hits 3B, before it hits 0By} (3.5)
Hence ug(x) T u(x) as R 1 oo, where
u(x) = P_{£(t) hits 3B, for some ¢ > 0. (3.6)

From (3.4) we get

_ [P exp[—1(s)] ds
J2 exp[—1(s)] ds

Using (3.1) to estimate the right-hand side, we obtain

d
0 < ulx) < C% (3.7)

0 < u(x) < v(x)

where C is a constant independent of a, x.
Now, if |x| < a, then the assertion (3.3) is trivially true (with C = 1). If,
on the other hand, |x| > a, then the assertion (3.3) follows from (3.6), (3.7).

Lemma 3.3. Let (A)), (Ay), and (A3), (3.1) hold, with d < n. Then there is a
positive constant C’ such that, if a > 1y, |x| < a/4, T > 0,

P{|&(t)| € a for somet > T} < C’( T‘:/z )d. (3.8)

Proof. By the Markov property and Lemma 3.2,
P {|&(t)] < a for some t > T} = E,Pyp{|&(t)| < o for some ¢ > 0}
d
=Px{|£(T)|<a +Ez{x a[c——a_'—:l}
} &> |£(T)|d
I+ , (3.9)
Denote by I'(x, ¢, y) the fundamental solution of the parabolic operator

i
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L —9d/0t. By Theorem 6.4.5 and Problem 7, Chapter 6,

plx — yf ]

- (3.10)

M
0 <T(x, t,y) < Py exp[_

where M, p are positive constants.
We can write

I= I(x, T, y) dy,
f|y1<a( y) dy

1
J = Cad ——T(x, T, y) dy.
'Il‘yl>a |y|d e

We shall subsequently denote various positive constants by the same symbol
C. Substituting |y — x| = pVT in the integral I and noting that

pVT = |y — x| < 2a  (since|y| < a, |x] < a),

we get

1I<C n—lg—w' g <C(—°‘—).
-],;\/‘T<2ap e VT

Substituting | y — x| = pVT in the integral J and noting that
pVT = |y — 2] > a/2 (since |y| > a, |x| € a/2),
gl > |y — x| — s > pVT /2 (since |s] < a/4 < |y — 11/2)

we get

pn-—l .
J< Catf e *dp
p\/T >a/2 (p\/T)

d d
< C(J_) ”“1—de—#P3dp< C(_a_)’
VT 'l;>0p VT

since n — 1 — d > —1. Substituting the estimates for I, J into (3.9), the
assertion (3.8) follows.

Proof of Theorem 3.1. Without loss of generality we may assume that
d < n. We apply Lemma 3.3 with T = 2™ a = 2"+ ghere m is a
positive integer such that |x] < 2™+ 1 /4, We get

P{|&(t)] < t° for some t, 2™ < ¢ < gm+1}

2(m+ 1)8
2m/2

d
< P {§(1)] < 2™+ for some ¢t > 2™} < C[ ] < Comé-1/21d
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Since 3 2m®-1/24 « & the Borel-Cantelli lemma implies that, with prob-
ability 1, the sequence of events

{1&(9)| < ¢® for some t, 2™ < t < 2™*+1})
(where £0) = x) occurs only finitely often. Hence
P {|&(t)| > ¢° for all ¢ sufficiently large} = 1.

Since this is true also for 8 replaced by any 8', § < 8’ < }, the assertion of
the theorem follows.

Corollary 3.4. Let (A,), (As), and (A;) hold. Then, for any 0 < 8 < 4,
xE R", the assertion (3.2) holds.

Indeed, perform an orthogonal transformation as in the proof of Theorem
1.2. In the new coordinates the conditions (A;), (3.1) hold.

Remark 1. By Theorem 3.6.1,

= _ ()l
P, thm =1} =L
7% Vitloglog t

More generally, under the conditions of Theorem 8.4.2,
— o&(t
Px{ Jlim 150 = 1} =1 (3.11)
7 Vitloglogt

where 6 is the inverse of lim, , ,o(x). From (3.11) it follows that

{ &l

t]irga t?

P

g = 0} =1 if n>3.
Thus the assertion (3.2) (for any # < }) is rather sharp. However, this
assertion can still be strengthened as follows.

Let g(t) be a positive and monotone decreasing function for ¢ > 0,
satisfying

oo

> (g2m)< w (3.12)

m=1
where d is any constant < n such that (3.1) holds. If in the proof of
Theorem 3.1 we replace t? by t/%g(t), then we conclude that the events
{1&(8)] < t'/%g(t) for some t, 2™ < ¢t < 2™+1})

occur only finitely often. Consequently
L&)l |
Px{‘g_r?o tl—/?ﬁ > 1 1. (3.13)
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It can be shown (see Dvoretsky and Erdos [1]) that if the function g(t)
satisfies

S (geM)f=o0 (d=n-2n33) (3.14)

m=]

instead of (3.12), then

— |w(t)|
x{ :1_11& W <1} =1 (315)

Remark 2. Consider the example at the end of Section 2. If n = 2 and
g=—-1/(1+1/d)(d > 0), then the assertion of Theorem 3.1 holds. Thus,
even when n = 2, a diffusion process £(f) may wander out to co at a rate
> t% forany 0 < 0 < }.

4. Obstacies

We shall maintain the condition (A,) but relax the condition (A,).

Let G be a closed bounded domain with C® connected boundary 3G, and
let G = R"\G.

Suppose the diffusion matrix (a,(x)) degenerates on 3G in such a way that

n

.121 aif(x)v,.vi =0 if x€93G, (4.1)
where v = (v, ..., »,) is the outward normal at x to 9G. This condition is

equivalent to
2
$ (5 w0
ie.,
2 ou(x)y, =0 if x€0G, 1<k <n. (4.2)
i=1
The expression X a,(x)v¥, is called the normal diffusion to 3G at x.
Let p(x) = dist (x, GG) for x€ G U 3G, and let
= {x€G; plx) < €).
Since 9G is in C3, p(x) is in C 2(G,OLJ 9G) for some ¢, > 0 sufficiently small.
Noting that
v(x) mdp(x)/3x, x€3G, 1<i<n,
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we deduce from (4.2) that

3 n
2 o (x %( ) = O(p(x)) as p(x)—>0, xE€QG,.

Taking the squares, we get

i a,z) E%(:.—) ag(xj)

i,j=1

< Clp(x)?  if xEéCO (4.3)

where C is a positive constant.

Let (4.1) hold and suppose o,€ c! (C J)- By (4.2), the vector
T, = (044 - + + , Op) IS tangent to 3G. Since the function 2 o 9p/ dx;
vanishes on 9dG, its derivative with respect to the tangent vector of T, also
vanishes on 0G. Consequently

3 dp
% 27_0,1 axigoik_gx:"o.

This gives, after using (4.2) once more,

n a2p n aa,#
a, ——m— = — - on 9G. 4.4
1',7'2=1 ¥ ox; ax,. i,j2=1 axj ¥ ( )

The vector with components

7 da
b, — 1 o]
2 =1 dx,
is called the Fichera drift. We shall impose the condition:
é bv+-1- i a 2% >0 on dG (4.5)
i=1 2 i, j=1 oo axf . .

fo,eC 1((i%) then, by (4.4), this condition is equivalent to

i (b - = E )v >0 ondG, (4.6)
i=1 7=1 f

i.e., the Fichera drift at 3G points into the exterior of G.
Notice that (4.5) implies that

= dp i1 & 32p A
b 224 L R -
igi : axi 2 i,1'2=1 ai, axi ax’ > cp n G‘o (4'7)

where ¢ is a positive constant.

Theorem 4.1. Let (A)) and (4.1), (4.5) hold. Then
P{¢(t)eCforallt >0} =1 if x€G. (4.8)
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Proof. Let R (x) be a C%C) function such that
R (x) = {p(x) if xe éq (for some 0 < ¢, < ¢),
i x> M,

and €; < R(x) < M elsewhere; M is chosen so large that écoc {x; x| < M}.
(To construct R (x), let
(x) = p(x) if x€ é%,
TAM i xeR™G,
and take R (x) to be a mollifier of R (x); see Problem 4, Chapter 4.)

Let V(x) = 1/(R (x))* for some € > 0. We have

_— —e—1 a_R
LV = —¢eR 2 b, =,
l —-e—2 Q_R_ Qli _ —e—1 823
*3 421 a#[c(c + R dx, Ox; <R dx; Ox, }
e, B, 1% R OR _ _ 'R
_V{ R 2 b 8x,+2 i R® e(e+1) dx, dx, R Bxiax,]}'
(4.9)

In view of (4.3) and (4.7), the right-hand side of (4.9) is bounded by pV if
xEG,, where p is a positive constant. In view of the condition (A,), the
same estimate is valid also if [x| > M. It follows that

LV< pV  forall x€G. (4.10)
Further,

Vix)> o0 if p(x)>0, xE€G. (4.11)
We shall now use (4.10), (4.11) in order to prove (4.8).

Denote by 7, the hitting time of the set G, s (p=12...) By Ité’s

formula,
LAYAN T

eHIIV(E(r, A T)) = V(x) + [ €MV, (E(s))o(E(s)) duo(s)

[¢]
TP/\T

+ f (LV — uV)((s))e ™ ds.  (4.12)
0
Taking the expectation and using (4.10), we get
Ex[e—“(TpAT)xP(E(T’AT))“l/p] pc < V(x)s
and, as T 1 o0,

Ee "X, <o < pV(%). (4.13)

%
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Now, if (4.8) is not true then the exit time 7 from G is finite on a set B of
positive probability. Since 7, 1 7 on B, the monotone convergence theorem
gives

Ee ™ xg € lim [p™V(x)] = 0.

p—>®
Since 7 < o0 on B, we must then have P, (B) = 0, but this contradicts the
definition of B.
Theorem 4.1 motivates the following definition.

Definition. If the conditions (4.1), (4.5) are satisfied, then we say that 9G is
an obstacle from the outside.
Suppose (4.5) is replaced by
S hp+ 134 % o ondc (4.14
s 2 " o, ox, 14)
with the same function p(x) as before. Define p(x) = dist (x, 0G) for x € G,
and denote by # = (#,, ..., #,) the inward normal to 3G. Then (4.14) holds
if and only if

S piel S 9%
‘21 .V, + E ,-’7-2,1 ay W >0 on GG (4.15)

where the left-hand side is evaluated by taking the limit as x tends to the
boundary from inside G. Using (4.1), (4.15), we can now duplicate the proof
of Theorem 4.1, taking R (x) as a C*(G) function which coincides with p(x)
near 3G, and taking V(x) = 1/(R (x))*. We thus conclude:

Corollary 4.2. If (A)) and (4.1), (4.14) hold, then

P{¢(t)eint G forallt >0} =1 if xE€intG. (4.16)

Definitions. If the conditions (4.1), (4.14) are satisfied, then we say that G
is an obstacle from the inside. If (4.1} holds and if

n 1 & a2p
igl b'.l"- + -2"" i’z’l ay *'a-xT—a;; =0 on 9G, (417)

then we say that 9G is a two-sided obstacle. In case (4.17) is replaced by
either (4.5) or (4.14), we speak of a one-sided obstacle.
We shall now consider the case of degeneracy at one point z, and assume:

ag(z) =0, b(z)=0 for 1< i,j<n (4.18)

Notice that ay(z) =0 for 1 < i,j<n if and only if oy(z) = 0 for
1<4,j<n.
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Using (4.18) one can show that
P{&t)#2z forall t>0}=1 if x#z (4.19)

Indeed, the proof is similar to the proof of Theorem 4.1. Here we take
V(x) = 1/(R(x))* where R(x) = |x — 7|

A point z for which (4.18) holds is called a point obstacle or a point of
total degeneracy.

We shall extend the previous considerations to the case where there are
several obstacles.

Let Gy, . . ., G; be mutually disjoint sets in R™; if 1 < j < k, G; consists
of one point #, and, if k, + 1 < j < k, G; is a closed bounded domain with
C* connected boundary 3G,. Let

k
¢=U G, G=R"G
j=1
p,(x) = dist (x, 0G,)  if xgZint G,
We shall assume:
ai(%) =0, bz)=0 i 1<ij<n 1<h<k, (420)

7
> ary=0 on 3G, for ky+1<h<k (421
hi=1

n 1 n a2ph
>bhr+= D a —— >0 on 3G, for ky+1< h <k
=2 Li=1 " ox, ox,

(4.22)

Theorem 4.3. If (A,) and (4.20)—(4.22) hold, then
Plt(t)eCforallt >0} =1 if z€GC. (4.23)
The proof is similar to the proof of Theorem 4.1. Here one takes
V = 1/R* where R(x) is a C? function in G, satisfying:
R(x) = {p,,(x) if py(x) <¢ (1<h<K),
Ed if |x{>M

and ¢ < R(x) < M elsewhere, where ¢, is sufficiently small and M is
sufficiently large.

In the following two sections we shall replace the condition (A,) by the
weaker condition:

(Az) The matrix (a;(x)) is positive definite for all x€ G.

We shall also assume that (4.20)-(4.22) hold and

G, is C? diffeomorphic to a sphere, fork, + 1 < h < k. (4.24)
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We shall then extend the results of Sections 1, 2. The following lemma
will be needed.

Lemma 4.4. Let (A;), (A), and (4.24) hold. Then there exists a continuous
function R(x) in R" having the following properties:
@) R(x)is in CYG);
i) R(x)> Oiné
(i) R(x) = p4(x) if py(x) < € R(2) > & if miny py(x) > g for
some €, sufficiently small;
(iv) R (x)— oo if |x| > oo;

n 3%R (x) n
™ > a,(x) <0 if x€G, D_R(x) = 0; there exist pre-
=1 ax,. dx,

cisely k — 1 points x in G where D R(x) =
The number ¢, will be smaller than
min dist (G, G).
i*j !

Notice that the conditions (4.20)-(4.22) are not assumed in this lemma.

Proof. By the proof of the Schoenflies theorem (see Morse [1]) there is a
dlffeomorphlsm y = f(x) of the exterior of u* ,G; onto the exterior of
U,=1G’ in R", where G, ..., Gy are points sﬁuated on the y,; axis and
G415 - - - » Gy, are balls with centers on the y, axis; the center of G/ lies to
the left of the center of G/, ,. Furthermore, this diffeomorphism preserves
the distance functions (to U .G, and to U ,G/) as long as the distance is
sufficiently small. (The condltlon (4.24) is needed in order to apply the

Schoenflies theorem.) Suppose for simplicity that k, = 0, k = 2. Denote by

(1, 0,...,0) the midpoint of the segment connecting the center
(a;, 0, ..., 0) of G to the center (a,, 0, ..., 0) of G,; it is assumed that
a; < ay. Construct a positive C? function ¢(y’) (where ¢’ = (y,, . . - , y,)))

on the plane y, = ¢,, which increases radially, with grad ¢(y") # 0 if
y' # 0, such that 3¢/dy, = 0, 3% /3y, 3y, =0 (2 < i,j < n)aty = 0.
Denote by g, the radius of G, Construct a C* function Y(y,), positive for
a, + p; < y; < ag — o, such that
Yy T oy Ty for 0< yl—ax—u1<3p
a = pg — Yy for 0<a;—py —y <9
where &, is sufficiently small, and such that §'(y,} # 0 if y;, # ¢, and
Y(c,)) =¢0,...,0), Y(c)=0, ¢"{¢) <0

We now construct a C? positive function A(y) for y £ (G; U Gg), which
extends the functions ¢, y and the distance function from G| U Gy (as long
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as the distance is sufficiently small). This function is to satisfy:
grad A\(y) #0  if y+#(c,0,...,0);

rad A =0 2?\( ) = ( if (i ')#(1 1)
a 3 3 t: b ?
g (y) dy, Byi 1

(2)<0 at y——(cl,O,...,O);

Yy

My) = |y| if |y| is sufficiently large.

The construction of such a function A{y) can be accomplished by intro-
ducing a family of curves v, connecting («,, 0,. .., 0) to (ay, 0, ..., 0) and
intersecting the plane y; = ¢, orthogonally at (¢, y'). A(y) is defined along
Y, such that its tangential derivative vanishes only at y, = c,.

Define R (x) = A(f(x)). Clearly D R (x) # 0 if x # x* where f(x*) is the
point (c;, 0, . . ., 0). Furthermore, as easily seen,

& 3°R -
H2=1 ay(x) 3, 0x <0 at x=2x*

This completes the proof if k, = 0, k = 2. The proof for any k, k is similar.

Lemma 4.5. Let (A)), (Ay) hold and suppose that

Gy, is C? diffeomorphic to a closed ball, forky + 1 < h < k. (4.25)
Then there exists a function R(x) satisfying (i)—(v) of Lemma 4.4 and, in
addition,

(iv') R (x) = xif |x] is sufficiently large.

For proof see Problem 8. By Milnor [1], (4.24) implies (4.25) if n > 5; the
same is true, by conformal mappings, if n = 2.

5. Translent solutions for degenerate diffusion

We shall extend the results of Section 1 to the case the diffusion matrix
(ay(x)) degenerates in such a way that (A;) holds, and G;, G are as in Lemma
4.4.

For later references we state the following condition:

B) @ G,={z}ifh=1,...,k, G, is a bounded closed domain
with C? connected boundary if h = k, + 1,..., k.
(ii) The conditions (4.20)—(4.22) and (4.24) hold.

. (i) The matrix (@,(x)) is nondegenerate for 1€ G, where
C=R"G G= U;_ G,
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Let R (x) be the function constructed in Lemma 4.4 or 4.5, and set
1 dR OR
@=13% o &

2,71 dx; Ox;
_ & g R 12 9°R
B = i§1 bi(x) %, + 9 i,fzal a’li(x) axi axf ’
1 @
o-%(%-%)
Then, if g(x) = ®(R(x)),
Le(x) = @[@”(R) + %@’(R)] + RO®'(R). (5.1)
If R (x) is as in Lemma 4.5, then the function § (x) defined in (1.3) satisfies
R2
S(x) =1+ M if |x| is sufficiently large.

@(x)

As will be proved in Chapter 11, if Tim Q(x) < 0 as R(x)—0 and as
R(x)—>0o0, then

Px{lglin [ph(§(t))]—>0ift—>oo}=l if xeG.

Thus, in this case, §) neither wanders out to oo nor visits any open
neighborhood in G at a sequence of times increasing to co. Hence, in order
to obtain the type of behavior asserted in Sections 1, 2, we shall have to
impose different conditions on Q(x).

As will be shown, in order to generalize the results of Sections 1, 2 to the
present case where (B;) holds, we do not need to change the conditions (A;),
(A, near infinity. We only need to impose a condition on Q(x) near
R(x) = 0. This condition is:

(B;) For some 0 < §, < ¢, there is a continuous function €(r), defined
for 0 < r < §,, such that

Olx) > R(i((z)) (R(x) if 0< R(z) < b, (5.2)
and
L . X exp[ f " 5@ dt} ds>oo  if 0. (5.3)
We can take, for example, €(s) = —1/[log (1/5)].

Remark. The condition: lim Q(x) < 0 as R(x)—0 is a “stability condi-
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tion,” meaning that G attracts £(¢) near the boundary. The condition (B,) can
be interpreted as a weak “repelling condition.”

Theorem 5.1. Let (A)), (B}), (By), and (Ay) hold. Then the solution of (1.1)
is transient in G, i.e.,
P{Jim|g(t) =} =1 if x€C. (5.4)

Let G be contained in a ball B, = { y; |y| < R.}.
We shall first prove a lemma.

Lemma 5.2. Let (A,), (B)), (B,) hold and let 8 > R.. Then
P, {§(t) hits the set 0B, for some t > 0} =1 if xeG N Byg. (5.5)

Here By is the ball { y; |y| < B} and 9By is its boundary.

Proof. We first construct a function g(x) = ®(R(x)) for x€CGn By, such
that

Lg(x) <0 if x€ G NBy. (5.6)
Denote by ¢, ..., {_, the points in G where D, R(x) = 0. By slightly
modifying the proof of Lemma 4.4, we obtain a modified function R (x) for
which the points {j, . .., §_; lie outside the ball B;. We shall work, in the
present proof, with this modified function R(x); it coincides with the original
R(x) in the €;-neighborhood of G.
We claim that there is a continuous function 8(r) satisfying:

1+§%§7§Q >0(R(x)) if x€CnB, (5.7)
B(r) =1+ ¢(r) if 0< 1<, (5.8)

Indeed, since @ (x) # 0 if x& G, D, R(x) # 0, the left-hand side of (5.7) is a
bounded function if x € G N By, min,p,(x) > Jy. Using the assumption (5.2),
the existence of 8(r) (satisfying (5.7), (5.8)) follows.

Let ®(r) be a solution of
6(r)
T

& (r) + ®(r) =0 if 0<r <1, (5.9)

P(r) <0 if 0<r<mr (5.10)

where 7, = max, ¢ s R(x). Then, upon using (5.1), (5.7) we conclude that
g(x) = O(R(x)) satisfies (5.8).
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A solution of (5.9), (5.10) is given by

9
o) = [* exp{ ‘s"—gl dt} ds. (5.11)
In view of (5.3),
&(r)—> o0 if r—0. (5.12)
By It6’s formula and (5.6),
ES((0) - E&(x) = E [ Lelels) ds <0, (513)

where 7 is any bounded stopping time such that &(s) € én Byif 0<s
< 7. Denote by G, (¢ > 0) the closed e-neighborhood of G, and denote by
0.5 the hitting time of the set G, U 9B;. By Theorem 8.1.1, P (0,4 < 00) = 1
if x & G, x € By. Denote by P, (¢) the probability that §(¢.8) € G, (given
£(0) = x), and by P,(8) the probability that §(a.5) € 9B, (given §(0) = x).
Substituting 7 = 6,4, A T in (5.13), and taking T — o0, we get

D(e)P () + D(BP(B) < ®(|x).

Taking €—-0 and using (5.12), we deduce that P, (e)—>0 if e—0. Hence
P.(B)—1 if ¢—0. But this implies the assertion of the lemma.

Let Rx < a < R and denote by t; the hitting time of the ball B;. By
Lemma 5.2, P,(tz < o) = 1if x€ G. Hence, by the strong Markov property
(cf. the proof of Theorem 1.1),

P(2%(a)) = E Py ,(2*(a) < E Py, (Ra)),

where the notation (1.17), (1.19) is used.

Now, in the domain { y; |y| > R} the matrix (g;(y)) is nondegenerate.
Since the condition (A;} holds, the estimate (1.16) remains valid for
x = {(tz). Hence

P(Q*(a)) < (F(r)—>0 if r—>c0).

We can now complete the proof, as in the case of Theorem 1.1, by taking
R— o0 and noting that a can be arbitrarily large.

Theorem 5.3. Let (A,), (By), (B,), and (A}) hold. Then for any x€ G the
assertion (5.4) holds.

Proof. Proceeding as in the proof of Theorem 5.1, it remains to establish
the estimate (1.16). We now perform an orthogonal transformation as in the
proof of Theorem 1.2.
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6. Recurrent solutions for degenerate diffusion

Theorem 6.1. Let (A)), (B)), (B,), (4.25) and (A,) hold. Then the solution of
(1.1) is recurrent in G, i.e., for any ball B,(2) = {y; |y — 2| < a}, a >0,
lying entirely in G, the assertion (2.3) holds.

Proof. For simplicity we take z = 0. Let R be any positive number such
that R > a and such that G is contained in the interior of the ball B;. We
shall prove: if x € dBg, then

P_{£(t) hits the ball B, for some ¢t > 0} = 1. (6.1)
Let § > 0 be sufficiently small so that § < ¢, the closed §-neighborhood
G; of G lies in the interior of G, and Gy N B, = @.

We shall construct a function f(x) = F(R (x)) (R (x) as in Lemma 4.5) in
R"™\ Gj such that

Lf(xy >0 if x€ R"\ G, (6.2)
F(r)»> — if r— oo. (6.3)
Notice that at the points {, (m = 1,...,k — 1) where D,R(x) =0, & =0

and, therefore, by the property (v) of R(x ), @ < 0. Hence Q(x)<0ina
neighborhood of each point {,. It follows that there is a continuous function
@(r), 8§ < r < o0, such that

1+%2<0(R) if x€R"\G, (6.4)

In view of (A,), we can choose #(r) so that, for all r sufficiently large,
f(r) = 1 + €(r) where €(r) satisfies (2.2). If we now define F(r), forr > §, by

F(r) = -fsre‘“s) ds, I(s) =j:'-}--— dt

then F'(r) < 0, and (6.2), (6.3) hold. Arguing as in the proof of Theorem 2.1
(fﬁ)llowmg (2.8)) with the present function f(x) = F(R(x)) and with the set
{y; |y| < a} replaced by G, we conclude that for any x &€ R"\G;,

P, {£&(¢) hits the set G5 for somet > 0} = 1. (6.5)

Let 8 > R and denote by CA#,,BS the domain bounded by 3G,, dB,, 3B,.
Denote by 7, the exit time from this domain. By Theorem 8.1.1,
P(7,p < 0) = 1 if x& G,p;. Using the strong Markov property we get, for
any x € 0By,

P, {§(t) hits B, for some t > 0} = P, {§(t + 7,4) hits B, for some ¢ > 0}
= E Py, {&(t) hits B, for some ¢ > 0}
> P {&(r,5) EOB, } + P, {£&(7,5) EOGy )

inf P _{§(t) hits B, for some t > 0}.
y € a0,
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Denote by o, the hitting time of B, dB;. By Lemma 5.2, if y € 9G;,
then P (0,5 < o0) = L. Hence, by the strong Markov property,

P, {&(t) hits B_ for some t > 0}
= P,{&(¢ + 0,5) hits B, for some ¢ > 0}
= Efo(ad){é(t) hits B, for some t > 0}

= P{£(o,r) €9B,} + (1 — P,{¢(0,4)€0B,}) inf P{&(t)hitsB,
x e aBn
for some ¢ > 0},

Combining this with the previous inequality, and setting
P{a) = P_{£(t) hits B, for some ¢t > 0},
Yop(x) = P{&(70p) € 9B, },
'}'B(x) = P, {5(%,8) = aG.s},

ply) = Py{é(aaﬁ) € 9B, },
we arrive at the inequality

P.(0) > vap(x) + 7(x) inf { w(y) +[1 = n(y)]_inf B ()}. (66)

zE aBn %
Note that v,,(x) is the solution u(x) of the Dirichlet problem:

Lu=0 in éaﬁ ,
u=1 on 0B,
=0 on 9Gs U dB,.

Hence, by the strong maximum principle, yaﬂ(x) is positive on 3Gg. Further,
Yap(x) Tif B 1. Similar assertions are true for yg(x). Since y,5(x)
+ yp(x) < 1, we conclude that

v(x) € 8 <1  {x€3Gp) (6.7)

where § is a constant independent of B.
Notice that (6.5) implies that

Yepl®) + 1a(x)—>1  if Booo (x € 0Gp). (6.8)
Let

P, i, 2o

Let 7 be a positive number, and choose x, in 3B; so that
Pa > Pxo(a) - N
Let y, be a point in G, such that

b (n(9) +[1 = w(9)]B )} > (u(yo) +[1 = w(vo)]}P. - .
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Applying (6.6) with x = x,, we get
Py 2 Yap (%) + va(x){ r(yo) +[1 — p(yo)] P } — 2m.
Hence
P, {1 Yp (%o)[1 ~ M(yo)]} > Ya,e(xo) + Yﬁ(xo)!‘(yo) — 29.
Taking B sufficiently large and using (6.8) with x = x,, we get

F, {1 g (%0)[1 — 1{yo)]} > {1 — Ya(%)[1 — 1(yo)]} — 3m.

Denote the expression in braces by Ag. From (6.7) it follows that
Ag > 1 — 6 > 0. Hence

31 31
P >1 AB > 1 15"
Since 7 is arbitrary, P, = 1. This implies that P,(x) = 1 for all x €3Gy, i.e.,
(6.1) holds.

Having proved (6.1), we can now easily complete the proof of Theorem
6.1 by the argument given in the proof of Theorem 2.1 (from (2.10) on).
Instead of (2.10) we use (6.1), and instead of Theorem 8.1.1 we use Lemma
5.2.

Remark. Theorem 6.1 remains true if the condition (A,) is replaced by (A}),
or by the conditions in the remark following Theorem 2.2.

7. The one-dimensional case

Consider the case of one stochastic differential equation

dé(t) = o(4(2)) dw(t) + b((1)) dt. (7.1)
We shall assume that the condition (A;) of Section 1 holds in the present
case of n = 1, and that o(x) > 0 for all x. Let

x z Zb(U)
= - du | dz. 7.2
#(z) = [ exp[ ki u] (72)
This is a particular solution of
jo%” + bv' = 0. (7.3)

Notice that ¢(x) is strictly monotone increasing. Set ¢(oc) = lim,_, (),
¢(—o0) = lim__, _ . &(x). These numbers may be finite or infinite.

Theorem 7.1. (a) If ¢{—oc0) = — oo, then
P{sup(r) = o0} = 1. (7.4)

t>0
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If ¢(0) = oo, then

B{inf&(t) =~} = 1. (75)

(b) If ¢(c0) = 0, ¢(—0) > —c0, then
Px{ §1>1p0£(t) < oo] = 1, (7.6)
P Jim &() = —o0} = L. (7.7)

() If ¢(—0) = —c0, ¢p(0) < oo, then
Px{tigg £t > -0} =1, (7.8)
B Jim &) = 0} =1 (79)

(d) If ¢(o0) < o0, p(—o0) > — oo, then

: _ (o) — ¢(x)
Px{fglgi(t) <o) =Pf lim &)= ~oo} = e (7.10)
. _ . v olx) = ¢(— )

P{inf&(t) > ~oo}f = B.{ Jim &(t) = 0} = TS (7.11)
P { lim |§(t) = o0} = 1. (7.12)

It follows that if ¢(—~ o) = ~ 00 and ¢(0) = 00, then the solution of (7.1)
is recurrent; in all other cases the solution of (7.1) is transient.

Proof. Let x; < x < x, and denote by 7 [x,, x,] the first time £(f) leaves
(x,, %), given £(0) = x. By Itd’s formula (cf. Problem 12(c), Chapter 8),

o(x} ~ ¢(x;
P, {&(m[x0, :p)) = x5} = ¢((x2)) - ¢((x1)) '

(7.13)

Noting that

P, { :glg.ﬁ(t) > xz} > P {&(7,[x), x5]) = x,}, (7.14)

and taking x;— — oo in (7.13) we obtain
Px{ sup £(t) > xz} =1,
t>0

provided ¢(— o) = — 0. Since x, can be arbitrarily large,
P{supt(t) = w0} = L.
t>0

This proves (7.4). The proof of (7.5), in case ¢(%0) = 00 is similar.
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To prove (b), take x;,— — o0 in (7.13) to obtain

o) — ¢(—w)
ﬂ@%“”>%}"mm—¢vw)'
This implies that
Pﬁ%““”ﬂﬁ¢zﬁ;ﬁir 715

Taking x,—>cc the assertion (7.6) follows.
To prove (7.7), let y < x and denote by 7, the first time £(¢) = y. By (a),
P(r, < o) = 1. Hence, by the strong Markov property, for any x, > y,

g+ 1 o) - g > o] - 420

t>0 t>0 d(xg) — ¢(— ) .
But
Px{ fl;;(),g(t +1,) > xz} = Px{ ts:%.f(t) > x2} > Px{ti_i:roﬁo &(t) > xz}.
Therefore,
Px{ 'hﬁg(t) > xz} < ¢(y) ~ ¢(—c0)
#=00 ¢xy) — ¢(— 00

Taking y— — oo we conclude that
P{ Jim £() > x,} = 0.

Here x, is any real number. Taking x,— ~ o0, (7.7) follows.
The proof of (c) is similar to the proof of (b), and will be omitted.
We proceed to prove (d). The relation

__9lo0) — ¢(x)
| suplt) < o) = 6(0) — o(— ) (7.16)
follows by taking x,—cc in (7.15). Similarly one proves that
| o) = (- )
P={t1§%£(t)> —oo} = o) = e—0) (7.17)

If we prove (7.12), then the second equalities in (7.10), (7.11) follow from the
equalities in (7.17), (7.16) respectively. Thus it remains to prove (7.12).

For any small € > 0 and large M > 0, choose x, < —M and x, > M so
that 2, < x < =g,

>1—c¢ (7.18)

o(— M) — o(x,)
P e < M) = S oo
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and
| _ o{m) ~ ¢(M)
sz{:ggg(t) >M} = o) —a) C LT (7.19)

Let 7 = 7_[x,, x,]. Then, by the strong Markov property,
P {&(t) €[— M, Ml fort > 7} = E P,y[&(t) €[— M, M] for t > 0}

= RJ&(r) = mlB[ mE&(0) > M] + RI&(r) = %8, supt(e) < ~ M]

>1—¢
by (7.18), (7.19). Consequently

P,C{t___hi_mFO 5B > M} > 1 - e

Taking first € — 0 and then M — co, the assertion (7.12) follows.

PROBLEMS

1. The solution of (0.1) is recurrent in G if and only if for every x € G and
for any open set V in G, (0.2) holds with “finite random times ¢,,” replaced
by “finite Markov times ¢,,.” [Hint: Let W be a closed domain contained in
V. Define t, = first time > #,_; + 1 such that §(¢) hits W]

2. Let £(t) be a continuous process for t > 0, with values in R". Let
E = {£(t) hits a closed set I at a sequence of random times ¢,, increasing to
infinity}. Prove that there exists a sequence of bounded, Borel measurable
functions f; (x,, . . ., ) such that

fi((t), - - -, &) > xg  as.,

and the sequence f;, does not depend on the process £(t). [Hint: Let { y,} be
a dense set in I'. Show that E = {B,, i.0.} where

B, = ﬁ U G {I&r) — wl < 1/1}

[=1 m<r,<m+1 im}

where {1} is the sequence of positive rational numbers; then cf. Problem 9,
Chapter 2.]

3. Let I be a closed set, r the hitting time of I" by the solution £(¢t) of (1.1).
Suppose P, (1 < o0) = 1. Prove:

P_{£(t + ) hits T at a sequence of times increasing to oo }
= E P,(,,{&(t) hits T at a sequence of times increasing to oo }.

[Hint: Use the preceding problem and the method of solution of Problem 10,
Chapter 2.]
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4. Prove the first relation in (2.11). [Hint: Use the method of proof in
Problem 10, Chapter 2.]

5. Let G be a bounded domain with C?® boundary 9G. Suppose that (A;)
holds and that the condition (By) holds with R{x) replaced by
p(x) = dist (x, 9G), xE G. Suppose further that (a,(x)) is nonsingular for all
x € int G. Prove that £(t) is recurrent in int G.

6. Consider (7.1) and set

x z 2b(u)
I,(x) =f exp{ —j(; o) du} dz,

L(x) =fxooexp{—foz %g((-g)z du] dz.

Prove that if I;(x) < 0, I(x) < oo, then

P{ lim £(t) = oo} = P{ supg(t) = w}=E

t— 00 >0

P{lim £(t) = —oo} = P{inf£(t) = —0) = E

t—ao0 >0

where £(f) is any solution of (7.1).
7. Let x = 0 be a two-sided obstacle for (7.1), i.e., a(0) = b(0) = 0. As-
sume that o(x) > 0 if x > 0 and set

d(x) = a(e®e™™,  b(x) = bleNe ™ + }o?(e*)e 2
Let y(x) be the solution of

Y+ B =0, ¢(0)=0, y(0)=1
Prove that if y(00) = oo, Y(—0) > — o, then

P{t) >0, lim &) =0} =1 if x> 0.

8. Prove Lemma 4.5. [Hint: Let ky = 0, k = 1. By Palais [1] there is a
diffeomorphism y = f(x) of R™\ {int G,) onto |y| > 1 such that f(x) = «
for x outside a neighborhood of G,. Take

R(x) = Bp,(x) + (1 — B)|f(x)| (*)
with suitable 8, 8 = 0 outside a neighborhood of G,, 8 = 1 in a smaller
neighborhood. For kg = 0, k = 2 there exists (by applying Palais [1] twice) a
diffeomorphism y = f(x) of R* \int(G, U G,) onto R" \int{G; U Gg) and
G;, Gg are as in Lemma 4.4. Replace in (*) | f(x)| by A(f(x)) where A(y) is
constructed as in the proof of Lemma 4.4.]
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