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C h a p t e r  2

MAXIMUM LIKELIHOOD AND 
MULTIPLE IMPUTATION MISSING 
DATA HANDLING: HOW THEY 
WORK, AND HOW TO MAKE 
THEM WORK IN PRACTICE

Timothy Hayes and Craig K. Enders

The goal of this chapter is to provide an overview 
of maximum likelihood estimation and multiple 
imputation, two major missing data handling 
strategies with strong support from the methodo
logical literature. The theoretical and computational 
underpinnings of these methods were mostly 
developed in the 1970s and 1980s (Dempster 
et al., 1977; Rubin, 1976, 1987) and both became 
a practical reality in the 1990s when multiple 
imputation methods came online (Schafer, 1997) 
and structural equation modeling software 
packages began implementing maximum likeli
hood missing data estimators (Arbuckle, 1996). 
Both approaches have developed since then, and 
several important developments have appeared in 
the methodology literature since the first edition 
of this handbook.

Many missing data methods have been proposed 
and investigated in the literature, and there is 
now broad awareness that older approaches like 
deleting incomplete data records or filling in 
missing data with a single prediction (e.g., mean 
imputation, regression imputation) are seriously 
flawed. For example, the American Psychological  
Association’s Task Force on Statistical Inference  
characterized deletion as “among the worst 
methods available for practical applications” 
(Wilkinson & Task Force on Statistical Inference, 
American Psychological Association, Science 

Directorate, 1999, p. 598). Because descriptions 
of these older methods abound in the literature, 
we focus strictly on the two major missing data 
handling frameworks that have broad theoretical 
and empirical support: maximum likelihood 
estimation and multiple imputation.

To set the stage for the material that follows, 
imagine a researcher who has collected data for 
a particular study and decided in advance on an 
analysis model (or set of models) that they intend 
to run—say, a linear regression analysis—but, 
upon sitting down to analyze the data, finds 
themselves confronted with missing values on 
one or more variables in their intended model. 
If the researcher is aware that discarding cases will 
lead to inaccurate model results (e.g., estimated 
regression coefficients that may be too large or 
too small, potentially inflated Type I or Type II 
error rates), they must now think carefully about 
what should be done instead. At the broadest 
level,  our goal in this chapter is to help 
empower researchers facing this prototypical 
dilemma to make informed choices about how 
to use and configure modern missing data 
handling approaches in a manner tailored to the 
unique features of their intended analyses. A major 
theme of this chapter is that because each analysis 
one intends to run may involve different sets of  
variables containing missing data potentially  
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attributable to different causes and because each 
analysis may, further, contain unique features (e.g., 
interactions, categorical predictors, outcomes) 
that require specialized approaches to estimation,  
a onesizefitsall approach to missing data  
handling is rarely appropriate; instead, missing 
data handling must generally be customized to 
the needs of each specific analysis.

To help researchers understand how to choose 
missing data handling methods appropriate for 
their intended analyses, we begin with a detailed 
review of the mechanisms that might generate 
missing data on the variables in a given model. 
We then provide overviews of missing data  
handling in the maximum likelihood and multiple 
imputation frameworks, describe the foundations 
of these methods as well as more recent exten
sions, and apply both methods to an illustrative 
example using simulated data based on a study  
of N = 300 chronic pain patients. Following this, 
we provide a brief overview of models for data 
that are missing not at random and close with a 
set of recommendations for reporting the results 
of one’s missing data analyses.

MISSING DATA MECHANISMS

The manner in which missing data affect the 
accuracy and precision of one’s model estimates 
depends on the reason why the data are missing. 
Broadly, scores on a given variable could be  
missing for purely haphazard reasons unrelated  
to the data, they could be missing systematically  
due to scores that are observed in the data, or 
they could be missing systematically due to the 
unseen values themselves (Little & Rubin, 1987; 
Rubin, 1976, 1987). Each of these missing data 
mechanisms (Rubin, 1976) carries distinct implica
tions for how best to handle missing data as well  
as the potential consequences of mishandling it.

To build an intuition for these concepts, 
consider a researcher interested in understanding 
the relationship between levels of selfreported 
chronic pain (measured with a trichotomous 
indicator coded: 1 = low pain, 0 = moderate pain, 
+1 = severe pain) and levels of psychosocial dis
ability due to pain (a construct capturing pain’s 

impact on emotional behaviors such as psycho
logical autonomy and communication, emotional 
stability, and so on) in a sample of chronic pain 
patients. Now, imagine that not all chronic  
pain patients in the sample choose to report 
their psychosocial disability scores. As summarized 
in Table 2.1, the missing data mechanism that  
applies in this case depends on whether the 
probability of missing data on disability (y) is 
systematically related to the patients’ chronic 
pain levels (x) and whether, within each level  
of chronic pain, the probability of missing data  
is related to the unseen values of disability (y). 
The combinations of these two scenarios in the 
four cells define three missing data processes 
or mechanisms: missing completely at random, 
missing (conditionally) at random, and missing 
not at random (with focused and diffuse subtypes).

Correspondingly, the four panels of Figure 2.1 
use simulated data to illustrate how the conditional  
distributions of the disability scores within each  
level of chronic pain might appear under each  
missing data mechanism from Table 2.1. Observed 
scores are shown as circles and missing (unseen) 
values are asterisks. Before proceeding, it is 
important to emphasize that in Figure 2.1 we 
present the distributions of missing values along
side the observed values for purely pedagogical 
reasons: to illustrate the underlying missing data 
theory by providing a “God’seye view” of how 

TABLE 2.1

Rubin’s (1976) Missing Data Mechanisms  
for a Simple Regression of y on × Classified  
by Whether or Not the Missing Data Are  
Observed at Random and Missing at Random

Question 2: Is the  
probability of missing  
data on y equal for all 

possible values of y after 
conditioning on x?

Question 1: Is the probability of 
missing data on y equal for all 
possible observed values of x?

Yes No

Yes MCAR MAR
No Focused MNAR Diffuse MNAR

Note. MCAR = missing completely at random, MAR = 
missing at random, MNAR = missing not at random.
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the distributions of unseen values might appear 
under each missing data mechanism if they could 
be observed. With real data, however, one would 
only have access to the observed values (circles) 
and would never know the distributions of the 
wouldbe scores (asterisks) that participants might 
have reported if their data were not missing.

Returning to the chronic pain scenario,  
what if the patients who opt not to report their 
disability scores are a random subsample of 
patients with respect to both their pain levels 
and their disability levels—as would occur, for 
example, if a glitch in the survey software used 
to collect data caused the software to randomly 
crash when assessing disability levels? Figure 2.1A 
shows the conditional distributions of both 
observed (circles) and missing (asterisks) disability 
scores within each level of chronic pain in this 
type of scenario. Here, we see that the percentage  
of patients opting not report their disability scores 
is equal for all observed pain levels (missing 

values are random with respect to x), and the  
distributions of the observed and unseen values  
are roughly the same (i.e., have the same center  
and spread) within each level of chronic pain. 
Because in this situation the probability of missing 
data is random with respect to both the observed 
and missing values, the pattern of missing data is,  
in essence, as random as it could ever possibly be— 
hence, the designation missing completely at random 
(MCAR, e.g., Little & Rubin, 1987; Rubin, 1987). 
This condition is reflected in the upper left of 
Table 2.1.

By contrast, what if individuals experiencing 
higher levels of chronic pain were systematically 
less likely to report their levels of disability (e.g., 
because their pain levels interfered with their 
ability to participate)? Figure 2.1B depicts such a 
scenario. Here, the percentages of missing scores 
on disability (presented above each distribution 
of asterisks) are systematically higher at higher 
levels of chronic pain (i.e., missing values are no 
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longer random with respect to x), but the distri
butions of the observed and unseen values are 
once again roughly the same within each level of 
chronic pain (i.e., missing y values are randomly 
distributed after conditioning on x). Although 
such a mechanism can no longer be said to be 
completely random, the missing data are said to 
be missing at random (MAR) because the unseen 
(missing) yvalues (disability scores) remain  
randomly distributed within each level of x 
(chronic pain). This condition is designated in 
the upper right of Table 2.1.

Typical applications of the maximum likelihood  
and multiple imputation methods described below 
operate under the assumption that all missing data 
are MAR. Importantly, under a MAR mechanism, 
the observed data distributions (circles) act as 
reasonable proxies for what the complete data 
distributions (circles + asterisks) would have 
been, and inferences based on the observed data 
should yield accurate estimates. In line with this 
idea, maximum likelihood missing data handling 
utilizes all of the observed data to help identify 
the optimal parameter estimates, and multiple 
imputation uses the conditional distributions of 
the observed data as the basis for filling in the 
missing values. We describe these methods in 
detail in later sections.

Finally, consider next what would happen if 
patients with higher levels of disability (y) were 
less likely to report their disability scores than 
those with lower levels of disability, as depicted 
in Figure 2.1C and D. As the bottom row of 
Table 2.1 implies, any time that the probability 
of missing data is unequal across values of y, 
the data are considered missing not at random 
(MNAR; see Little & Rubin, 1987; Rubin, 1976). 
Following Gomer and Yuan (2021), the exact type 
of MNAR mechanism depends on whether the 
probability of missingness is also related to  
the observed values of x. The scenario depicted 
in Figure 2.1C, in which the probability of missing 
data is systematically related only to the unseen 
scores on y (disability) but not to the observed 
values of x (pain), is called a focused MNAR 
mechanism, whereas the scenario depicted in 
Figure 2.1D, in which the probability of missing 

data is systematically related to both the unseen 
scores on y (disability) and the observed values 
of x (pain,) is called a diffuse MNAR mechanism. 
Whether focused or diffuse, under an MNAR 
mechanism the observed data distributions 
(circles) do not act as reasonable proxies for what 
the complete data distributions (circles + asterisks) 
would have been, and inferences based exclusively 
on these observed distributions are no longer be 
guaranteed to yield accurate results. We briefly 
discuss approaches to handling MNAR missing 
data later in the chapter.

Auxiliary Variables
In the previous section, we followed an example in 
which a researcher was interested in the relation
ship between chronic pain (x) and disability (y), 
and we considered the consequences that might 
result when missing disability scores (y) were 
generated by a completely random process,  
a systematic process related to the observed values  
of chronic pain (x), or a systematic process related 
to the unseen values of disability (y) itself  
(or a combination of both). But what would 
happen if missing data were caused by a variable 
other than pain or disability—that is, a measured 
variable in the data that isn’t part of the main 
analysis plan?

Continuing with the bivariate example depicted 
in Figure 2.1, what if stress was correlated with 
both pain and disability and was also the cause of 
missing data, such that individuals with higher 
levels of stress were less likely to report their  
disability scores than individuals with moderate  
or low levels of stress? In such a scenario, the 
probability of reporting one’s disability score would 
be completely random within levels of stress 
(that is, the missing data would be MAR, if one 
conditioned on stress), but it would not necessarily 
be so within levels of chronic pain. Although pain 
and stress may be correlated, because they are not 
perfectly correlated, the conditional distributions 
of disability within levels of stress are not identical 
to the conditional distributions within levels of 
pain depicted in Figure 2.1B. For this reason, the 
probability of missing data on disability within each 
level of chronic pain does not necessarily remain 
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equal across all values of disability, as required 
by a MAR process (i.e., Question 2 in Table 2.1).

Omitting an important determinant of 
missingness that is also correlated with the main 
analysis variables leads to what may be termed 
an MNAR-by-omission process (see Collins et al., 
2001, for a detailed discussion of this topic; see 
also Enders, 2021, Chapter 1, for this terminology).  
Applied to our bivariate example, omitting the  
stress scores from the analysis requires the relation 
between pain severity and disability to absorb the 
entire influence of the stress scores on missingness.  
Depending on the magnitude of the correlations,  
the net result is that the analysis partially rather 
than fully conditions on the determinants of 
missingness. Because the distinction between 
MAR and MNAR data is defined in terms of the 
probability of observing each value of y after 
conditioning on x, it follows that this MNAR-by-
omission mechanism is more severe to the extent 
that the missing data cause (e.g., stress) is highly 
correlated with the residuals of y (disability) after 
conditioning on x (chronic pain; see Collins et al., 
2001; Raykov & West, 2016)—in effect, there is 
more information about the distribution of missing 
values being omitted from the analysis, leading  
to greater misspecification and nonresponse bias.

In order to avoid preventable MNARby 
omission mechanisms and increase the plausibility  
that the data are MAR, researchers must decide 
which auxiliary variables (e.g., demographic 
variables, participants’ responses to additional 
psychological questionnaires) from outside of the 
substantive model of interest should ultimately  
be included to aid missing data estimation, raising  
an important question as to how one can best 
approach this task (Collins et al., 2001). Ideally,  
plausible determinants of missing data (e.g., 
stress in the bivariate example) could be identified 
through a combination of substantive theory, prac
tical experience, and data exploration. As noted 
previously, the goal is to identify variables that both 
predict missingness and have salient correlations 
(or more accurately, semipartial or residual cor
relations) with the incomplete analysis variables.

Although a variety of statistical approaches 
might potentially be applied to this task, one 
particularly useful search strategy is to include 
auxiliary variables that exhibit at least moderate 
(e.g., |r| = .3) correlations with the residuals of 
each incomplete variable (i.e., external variables 
with moderate semipartial correlations). To help 
accomplish this, Raykov and West (2016) devel
oped a latent variable approach to estimating 
these correlations within the structural equation 
modeling (SEM) framework. As a simpler alter
native to this method, users could first estimate 
the matrix of bivariate correlations between the  
substantive model variables and candidate auxiliary 
variables using a modern approach to missing 
data handling such as the maximum likelihood  
or multiple imputation procedures described 
below and then scan these bivariate correlations 
for entries greater than .3 in absolute value. 
Screening based on correlations is an effective 
strategy for identifying auxiliary variables because 
strong predictors of missingness (i.e., variables  
on which participants with and without missing  
values differ) are only capable of introducing 
nonresponse bias if they are also correlated with 
the analysis variables.

MAXIMUM LIKELIHOOD ESTIMATION

The goal of maximum likelihood (ML) estimation is 
to identify the model parameter values most likely 
responsible for producing the data. The missing  
data handling aspect of maximum likelihood 
happens behind the scenes as a part of the same 
process. Importantly, ML estimation does not  
discard incomplete data records nor does it impute 
them. Rather, when confronted with missing  
values, maximum likelihood uses the normal 
curve to deduce the missing parts of the data as  
an optimization algorithm iterates to a solution.1  
The resulting parameter values are those with 
maximum support from (or best fit to) the 
observed data. To understand how this procedure 
accommodates missing data, it is first necessary 
to understand a bit about how ML estimation 

1Technically, the estimator marginalizes over the missing values.
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works in the context of complete data, beginning 
with what exactly is meant by the concept of a 
likelihood, a quantity that essentially functions 
as a measure of fit between a person’s data and 
a set of model parameters.

Likelihoods are closely related to probabilities. 
One way of understanding probabilities is as the 
relative frequencies with which one would expect 
to observe a set of events or score values over 
many repeated trials (e.g., Hoel, 1984, p. 8). For 
example, if one flipped a fair coin many times, one 
would expect roughly half of those flips to come up 
heads, assuming that the true population propor
tion was .50. The idea of a likelihood inverts this 
logic by asking what population parameters could 
most plausibly have generated the observed data 
(i.e., given an observed sample of 50 heads and  
50 tails from 100 flips, what population proportion 
of heads is most likely to have generated it?).

These same principles can be applied to  
continuous statistical distributions such as the 
normal curve displayed in Figure 2.2A. The relative 
probability of obtaining a particular score from 
a normal distribution with a known mean and 

standard deviation can be calculated using the 
univariate normal density function. More formally, 
the probability density, pi, that individual i’s score 
in a data set, yi, was obtained from a univariate 
normal distribution with mean µ and standard 
deviation σ, may be written:

( ) ( )

( )( )

µ σ = × − × − µ
σ
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where exp( ) indicates the exponential function 
and “constant” represents a collection of terms that 
ensure that the area of the normal density curve 
sums (integrates) to 1. Because these constant 
terms do not change with new input to the 
function, they can be ignored in order to simplify 
our present discussion. Importantly the vertical 
pipe in the notation pi(yi⎜µ, σ2) makes clear that
Equation 1 returns the relative probability of  
a given score, yi, conditional or dependent on  
a known mean and variance, µ and σ2. Visually, 
the probability density, pi is the height of the 
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normal distribution at a particular value of yi. 
The bottom row of the expression makes clear 
that the term in the exponent contains a squared 
zscore. In Equation 1, smaller squared zscores
associated with scores closer to the mean result
in larger probability densities than those of larger
squared zscores further from the center.

To illustrate, Figure 2.2A graphs the density 
function from Equation 1 applied to scores from 
a standard normal distribution. Panel A shows 
the probability densities associated with three 
different scores in a standard normal distribution: 
a score at the mean (0), one standard deviation 
(SD) above the mean (1), and two standard  
deviations above the mean (2). As the figure shows, 
in the context of a standard normal distribution, 
the relative probability of obtaining a score at  
the mean, p(0) = .40, is roughly twice as large 
(i.e., twice as high in vertical elevation) as the 
relative probability associated with obtaining  
a score one SD above the mean, p(1) = .24, and  
it is eight times larger than the relative probability 
associated with obtaining a score two SDs above 
the mean, p(2) = .05.

To move from probability densities toward 
the idea of likelihoods, Figure 2.2B shows the 
probability densities associated with drawing a 
score of approximately 0 from three hypothetical  
normal curves with the same variance (σ2 = 1) 
but different means. Panel B highlights that a 
score of 0 has a high relative probability of being 
drawn from a distribution with mean 0, p(0) = .40,  
a comparatively lower relative probability of being 
drawn from a distribution with mean 1, p(0) = .24,  
and a very low relative probability of being drawn 
from a distribution with mean 2, p(0) = .05. 
Although these statements concern relative prob
abilities rather than likelihoods, we might utilize 
the knowledge that drawing a score approximately 
equal to 0 is a far more probable outcome for 
some population means than for others: as noted 
previously, a likelihood reverses this logic and 
asks, what population mean is most likely to  
have produced the data on hand (i.e., a particular 
score of 0). Based on this single observation,  
we can infer that µ = 0 is most likely responsible 
for the datum.

A univariate normal likelihood has the same 
formula as Equation 1. The key difference is that 
after obtaining a sample of data, the y values 
become known, and the parameters become 
unknowns. Symbolically, we can write this as 
Li(µ, σ2⎜yi). To illustrate, Figure 2.2C graphs the
likelihood of different parameter values based  
on a single observed data point, yi = 0. Because 
the parameters and data have switched roles,  
the horizontal axis now lists the unknown 
parameter values instead of hypothetical score 
values. Importantly, the meaning of the vertical 
coordinates has also changed; the likelihood is 
no longer a relative probability but an index of 
support for different parameter values. Panel C 
shows that a score of yi = 0 has the most support 
for a population mean of 0 and decreasing support 
for a mean of 1 and 2.

Shifting from individual scores to an entire 
data set, the overall likelihood, L, for a sample  
of N individuals can be calculated as the product 
of the individual likelihoods. The resulting graph 
would look like Figure 2.2C, but the vertical 
coordinates would represent the entire sample’s 
support for different unknown parameter values. 
Note that, in practice, ML optimization algorithms 
work with the natural logarithm of the overall 
likelihood in order to turn the product of proba
bilities into a more mathematically tractable sum. 
The purpose of our discussion of ML estimation 
here is to provide readers with a broad conceptual 
overview of the logic of the method, however, 
so we omit that detail here (for further information 
on the details of ML, readers are encouraged to 
consult Eliason, 1993).

In practice, ML estimation is typically  
implemented using iterative optimization algorithms. 
Iterative optimization algorithms begin with a 
blunt guess—a starting value—for a proposed 
parameter estimate and iteratively improve 
upon this guess until finding the estimate(s) that  
maximize the likelihood of producing the observed 
data (i.e., the parameter values that have the most 
support from the data). This process is visualized 
in Figure 2.2D for a sample of N = 100 standard 
normal observations, with circles representing 
sequential iterative updates and tangent lines 
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representing the slope of the curve at each guess. 
The flat tangent line at the peak of the likelihood 
function is a mathematical indication that the 
optimizer has found the optimal estimate for 
the data.

Building up to a bivariate analysis example,  
it turns out that the univariate normal density 
function of Equation 1 is all that is needed to 
estimate a linear regression model with complete 
data. To understand how this is so, examine 
Figure 2.3, which depicts a hypothetical bivariate  
scatterplot from the regression of disability on 
chronic pain levels. The normal curves convey the 
distributions of the disability scores at the three 
different pain levels. The regression line cuts 
through these distributions at their (conditional) 
means, which are just the predicted scores shown 
as black dots. As the annotations in the figure 
imply, one way of understanding the regression  
of disability on pain levels is to view the analysis 
as attempting to estimate a single regression  
intercept, single regression slope, and single 
estimated residual variance that best capture 
the conditional means ( ŷ values) and constant 
(residual) variance of the conditional distributions 
of disability for individuals with each level of 
selfreported pain. With this in mind, we can use 
ML estimation to estimate a bivariate regression 
model by setting µ = ŷi and σ2 = σ e

2 in Equation 1 
as follows:
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Following the earlier example, the likelihood 
represents a single score’s support for the three 
unknown parameter values in the equation  
(b0, b1, and σ e

2), and the entire sample’s support  
for different parameter values combines N indi
vidual likelihoods. Although there are now  
multiple parameters, the iterative optimization  
algorithm updates each parameter one at a time  
following the same process depicted in Figure 2.2D. 
Note that, although both xi and yi appear in 
Equation 2, it is only the univariate distribution 
of yi that determines the likelihood; the predictor  
values, xi, are simply considered to be fixed 
constants used to define the conditional mean of 
each yi. Applied to Figure 2.3, the analysis makes 
no assumptions about the distribution of pain 
severity nor does it make any attempt to estimate 
the parameters of such a distribution.

Moving to missing data, how can we compute  
Equation 2 if either xi or yi is missing? The 
fundamental idea behind full information maximum 
likelihood (FIML, Arbuckle, 1996) estimation 
procedures is to utilize all available data on all  
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model variables to inform the final model estimates.  
However, to do so requires switching from a 
univariate estimation procedure whose only goal 
is to estimate the parameters associated with 
yi to a multivariate estimation procedure that 
also considers the parameters of xi as estimated 
quantities in the analysis (i.e., instead of treating 
the predictor values as fixed, x is also assigned 
a distribution). We can accomplish this by first 
incorporating the observed values of both the 
predictors and outcome(s) into a multivariate 
normal density function, and then quantifying 
their support for a set of proposed parameters 
by rewriting this density as a multivariate normal 
likelihood function:

,

constant exp .5
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where “constant” again indicates a collection  
of terms that can be ignored for our present 
purposes, yi is a vector of scores on k multivariate 
outcomes for person i, µ is a vector of k model
implied means, and S is a k × k modelimplied 
variance–covariance matrix corresponding to 
the same multivariate outcomes. In the bottom 
expression, the zi

2 is a shorthand notation that 
now represents the Mahalanobis distance for  
case i—a multivariate analog of a squared zscore 
quantifying the standardized distance of an 
individual’s scores on the outcomes in yi from  
the center of the proposed multivariate normal 
distribution. Conceptually, the equation works 
exactly the same as before. That is, each likelihood 
is essentially a vertical coordinate that measures 
the scores’ support for a particular combination  
of unknown parameter values. The goal of 
estimation is to find the parameter values that 
maximize fit to the data.

The simple regression model can be readily 
extended to a multivariate estimation framework 
by setting yi′ = [xi  yi]′ and by populating m and S 
with predicted parameter values derived from the 
regression model—obtained using algebraic mean 
and covariance expectations (e.g., Bollen, 1989, 

pp. 21–36)—such that the squared zscore from 
Equation 3, the Mahalanobis distance, becomes

. (4)

2 1

0 1

2
1

2

1
2

1
2 2

1

0 1

( ) ( )= − ′ −

=








 −

µ

+ µ

















′ σ σ

σ σ + σ



















 −

µ

+ µ


















−

−

m S my yz

x

y b b

b

b b

x

y b b

i i i

i

i

x

x

x x

x x e

i

i

x

x

In the context of this model, an iterative optimi
zation procedure would search for estimates of 
the unknown regression parameters, b0, b1, σ e

2,  
µx, and σ x

2 that maximize the overall sample 
likelihood or fit to the data.

To extend such a multivariate model to handle 
missing data, the FIML function (Arbuckle, 1996) 
strategically alters Equation 3 as follows:

,

constant exp .5 .

(5)
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m S m
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y y

Li
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i i i

i i i i i

( )

( ) ( )= × − × − ′ − −

The crucial elements of Equation 5 are the  
i subscripts added to m and Ŝ, implying that the 
likelihood for the ith individual is calculated with 
a mean vector and covariance matrix subsetted 
to contain elements corresponding to only those 
variables on which individual i has complete 
data. For example, if an individual has observed 
data on y but not x, Equation 5 calculates the 
individual’s likelihood by ignoring all quantities 
related to x and setting yi = [yi], mi = [b0 + b1 µx], 
and Si = [b1

2σx
2 + σ e

2]. Conversely, if an individual 
has observed data on x but not y, Equation 7  
calculates the individual’s likelihood by ignoring 
all quantities related to y and setting yi = [xi],  
mi = [µx], and Si = [σx

2]. Finally, individuals with 
complete data on both x and y have matrices yi, 
mi, and Si defined as in Equation 4. In this way, 
FIML incorporates all observed values on every 
variable into the estimation process.

Importantly, FIML estimation does not discard 
incomplete data records nor does it impute them. 
Although it isn’t obvious from the equations, 

2
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maximum likelihood uses the normal curve 
to deduce the missing parts of the data as the 
optimization algorithm iterates to a solution. 
To illustrate, reconsider Figure 2.3. Intuitively, 
knowing an individual’s pain level provides 
important information about disability, as an  
individual with high pain is much more likely to 
have a higher rather than lower disability score. 
In a similar vein, knowing an individual’s dis ability 
score also carries information about their pain. 
Although the missing values are never filled in, 
maximum likelihood can nevertheless be viewed 
as an “implicit imputation” routine (Widaman, 
2006) in the sense that it intuits the missing parts 
of the data based on the observed scores.

Incorporating Auxiliary Variables  
in an FIML Analysis
Revisiting earlier ideas, recall that an MNAR 
byomission process occurs when the analysis  
or imputation procedure fails to condition on a 
correlate of missingness that also correlates with 
the residuals of the analysis variables. Because 
FIML estimates may become biased when missing  
data on an outcome or predictor variable are 
MNAR, researchers are welladvised to guard 
against this possibility by introducing auxiliary 
variables pertinent to both predictors and outcomes 
with missing data. Note that auxiliary variables 
can themselves have missing values (see Enders, 
2008), although their utility diminishes if their 
values are missing with the analysis variables.

Because FIML handles missing data directly as 
a part of the model estimation process, auxiliary 
variables that lie outside of one’s substantive 
analysis model of interest must be incorporated 
into this model in some way. One intuitive  
possibility would be to specify all auxiliary  
variables as additional exogenous covariates 
in the substantive model—for example, adding 
stress as an explicit predictor in the regression 
of disability on pain. However, doing so would 
convert this bivariate regression into a multiple 

regression, changing the meaning of the coeffi
cients. In this new model, the partial regression 
coefficient for pain would reflect the influence 
of pain on disability after removing overlapping 
variance between stress and pain rather than  
the intended bivariate regression coefficient 
reflecting the total influence of pain on disability.

To avoid this undesirable side effect, Graham 
(2003) proposed that auxiliary variables in  
a FIMLestimated SEM could be specified as 
saturated correlates—freefloating variables in one’s 
model specified to covary with (a) all predictors 
in the model, (b) the residuals of all outcomes, 
and (c) each other. Figure 2.4A shows a path 
diagram2 of a substantive model involving two 
predictor variables (x1 and x2) and two outcome 
variables (y1 and y2), with the focal model  
parameters drawn in light gray, and two auxiliary 
variables (a1 and a2) specified as saturated  
correlates. Because the auxiliary variables in  
a saturated correlates model are related to all 
other model variables via twoheaded arrows  
(i.e., correlations or residual correlations, 
depicted using solid black lines), they are able 
to assist missing data estimation in all parts of  
the model without altering the meaning of the 
partial regression coefficients.

Alternatively, Graham (2003) suggested that 
one might specify all auxiliary variables as extra 
dependent variables (extra DVs) —additional 
outcomes regressed on the predictors, with their 
residuals covarying with one another and with 
the residuals of the outcome variables. Mirroring 
Figure 2.4A, Figure 2.4B shows a path diagram 
of the same model with the auxiliary variables 
reconfigured as extra DVs. The diagrammatic 
conventions of Figure 2.4B are the same as those 
of Figure 2.4A, with the exception that black 
oneheaded arrows are now used to indicate  
the regressions of the auxiliary variables on the 
predictors. The logic of this method is analogous 
to the logic of the saturated correlates approach: 
the extra variables pass their information to  

2 In conventional path diagrammatic notation, rectangles indicate observed (manifest) variables, circles indicate unobserved (latent) residuals, 
twoheaded arrows indicate variances when attached to a single rectangle or circle and covariances when connecting two rectangles or circles, 
and oneheaded arrows connect regression predictors to outcomes.
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every other variable but, because the auxiliary 
variables are modeled as additional outcomes 
rather than covariates, the meaning of all partial 
regression coefficients associated with the focal 
analysis (the gray arrows in Figure 2.4) will  
once again remain intact.

In sum, both of Graham’s (2003) models  
provide conceptually straightforward strategies 
for incorporating auxiliary variables into one’s 
model when using FIML estimation with missing  
data. The saturated correlates and extra DV 
approaches do come with some limitations, 
however. Importantly, including more than a few 
auxiliary variables in these models can result in 
matrices with an improper structure and, thus, 
an increased probability of convergence failures 
(Savalei & Bentler, 2009). One possible solution 
is to include one or two auxiliary variables with 
the highest correlation (or residual correlation) 
with the incomplete variables. In practice, it is 
often difficult to find more than one or two extra 
variables that meaningfully increase explained 
variance, so there is often little benefit to including 
large numbers of auxiliary variables. A second 
solution, proposed by Howard et al. (2015), is 
to first select a large number auxiliary variables 
for inclusion, then utilize principal components 
analysis to extract a smaller subset of compo

nents that, in turn, function as auxiliary variables. 
Their simulations show that even a single prin
cipal component score is an effective surrogate 
for a large number of auxiliary variables.

Maximum Likelihood:  
Recent Developments
Maximum likelihood analyses have evolved 
considerably in recent years. The estimators that 
were widely available when the first edition of this 
handbook was published were generally limited 
to multivariate normal data (e.g., Equation 3).  
This is still a common (and very reasonable) 
assumption for missing data analyses, but flexible 
estimation routines that accommodate mixtures 
of categorical and continuous variables are now 
widely available (Lüdtke et al., 2020; Muthén 
et al., 2016).

Estimators for mixed response types generally 
deploy a socalled factored regression strategy  
that breaks the overall likelihood function into  
a set of component likelihoods (Ibrahim, 1990). 
To illustrate its simplest incarnation, reconsider 
the bivariate normal example from Equation 3. 
Factored regression models use the probability 
chain rule to convert the bivariate distribution  
into the product of two or more univariate  
distributions, each of which corresponds to 

(B) Extra DV Model(A) Saturated Correlates Model

x1 y1

x2

y2

a1

a2

x1 y1

x2

y2

a1

a2

FIGURE 2.4.  Graham’s (2003) models for incorporating auxiliary variables 
into a FIML analysis.
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a regression model. Using generic notation,  
the factorization for the bivariate regression 
analysis is

, (6)( ) ( ) ( )= ×f Y X f Y X f X

Where each “f of something” represents a 
probability distribution (or likelihood) induced 
by a regression model; the leftmost term repre
sents the multivariate distribution of the variables 
from Equation 3, the first term after the equals 
sign corresponds to the focal regression model 
(the linear regression model depicted in Figure 2.3), 
and the rightmost term is a supporting (empty) 
regression for the incomplete predictor. By avoid
ing the multivariate distribution on the left and 
working with the univariate distributions on 
the right, we can mix and match distributions 
that honor the metrics of the data. For example, 
reconsider the linear regression depicted in 
Figure 2.3. Suppose instead that the three pain 
levels represented qualitative rather than quanti
tative differences among participants. Mixtures 
of categorical and numeric variables are at odds 
with a multivariate normal distribution, but the 
factored approach readily accommodates this by 
specifying f(X) as a logistic regression.

Factorizing a multivariate distribution into 
component univariate models also paves the way 
for estimating interactions and nonlinear effects 
with missing data (Lüdtke et al., 2020; Robitzsch 
& Luedtke, 2021). For example, consider the 
following moderated multiple regression analysis 
where the influence of depression varies by sex 
(0 = female, 1 = male) to influence psychosocial 
disability:

.
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Note that, in line with the example data pre
sented later in the chapter, SEVERE PAIN refers 
to a binary indicator where 0 = no/little/moderate 
pain and where 1 = severe pain. Using generic 

notation, the factored regression specification for 
the model is

, ,
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where the first term corresponds to the moderated 
regression analysis, and the remaining terms are 
supporting regression models for the predictors. 
Two points are worth noting. First, two of the 
predictors are binary, and their supporting models 
would be logistic regressions, as previously noted. 
Second, the focal analysis involves the product of 
two variables, but the product term itself is not  
a unique variable (i.e., it does not get predicted 
by other regressors). Factored regression models  
are an important recent innovation, as classic  
estimators based on multivariate normality are  
known to introduce bias when applied to models  
with interactions and other types nonlinear effects 
(e.g., socalled just-another-variable approaches; 
Cham et al., 2017). The analysis examples illustrate 
the factor regression approach.

MULTIPLE IMPUTATION

To review, maximum likelihood is a direct  
estimator that incorporates missing data handling  
into each analysis in a single step. Because 
maximum likelihood addresses both the missing 
data model and the substantive analysis model 
simultaneously, users must choose the maximum 
likelihood estimator that best captures the 
important features of both models, for example, 
relying on the multivariate normal likelihood 
function of Equation (5) to handle simple scenarios 
in which all analysis variables and auxiliary vari
ables are continuous and all relationships in the 
model are linear (nomoderated) but switching to 
the factored likelihood of Equation (8) to handle 
more complex scenarios in which key model 
variables are categorical, key relationships in the 
model are nonlinear (e.g., moderated), or both. 
In this way, maximum likelihood estimation  
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proceeds on an analysisbyanalysis basis, tailoring 
the estimation approach to the specific features 
of each model. Importantly, because maximum 
likelihood integrates missing data handling into 
the estimation of the substantive model, auxiliary 
variables must be actively incorporated into the 
substantive analysis model as saturated correlates, 
extra DVs, or additional terms in a factored 
likelihood.

In contrast to maximum likelihood, multiple 
imputation is a twostage procedure that separates 
missing data handling from the analysis. The first 
stage creates multiple copies of the data (e.g., at 
least 20), each containing different estimates of 
the missing values. A typical imputation routine 
uses the estimated model parameters to compute 
predicted values of the missing data that are  
augmented with random noise to preserve varia
tion. Having created a set of filledin data sets,  
the second stage consists of analyzing each data 
set and using “Rubin’s rules” (Little & Rubin, 1987; 
Rubin, 1987) to combine estimates and standard 
errors into a single package of results. These 
pooled point estimates and standard errors average 
over many plausible values for the missing data.

Separating missing data imputation from 
data analysis can be a benefit or an Achilles heel. 
On the one hand, because numerous auxiliary 
variables—both continuous or categorical—can 
be easily included as predictors in the initial 
imputation stage, these variables are no longer 
required to be incorporated into the analysis 
model as somewhat awkward saturated correlates 
or extra DVs. On the other hand, this separation 
also creates the possibility that the model charged 
with constructing the imputations contradicts or 
is somehow incompatible with the secondstage 
analysis model (Bartlett et al., 2015; Meng, 1994). 
For example, this could happen because the first
stage imputation model omits one of the analysis 
variables (all analysis model variables must be 
included in the imputation model, regardless of  
whether they are complete or incomplete, in order 
to preserve their correlational structure in the 
resulting imputations), incorrectly specifies an 
incomplete variable’s distribution, or fails to 
preserve a structural feature of the data such as 

clustering or grouping. The importance of these 
issues cannot be overstated: an incorrectly specified  
imputation model that does not preserve the key  
features of an intended analysis can actually inject 
bias into one’s results, potentially compounding 
existing bias caused by missing data or even 
creating bias where none previously existed.

For this reason, we find it useful to distinguish 
imputation methods according to the similarity  
between the imputation and analysis models. 
When the analysis model(s) one intends to run 
are relatively straightforward, it is sometimes 
possible to create a single, general set of multiple  
imputations that serve a variety of different analytic 
goals. For example, a researcher could use a  
multivariate regression model (or a series of 
univariate regressions) for imputation and then 
fit any number of subsequent linear regression 
models to the filledin data sets, so long as these 
models do not feature interactions or polynomial  
terms that add complexity to the analysis. Although 
this option does not have a common name, Enders 
(2021) used the phrase “agnostic imputation” 
to convey that imputations aren’t tailored to 
one specific analytic goal. Common examples 
of agnostic imputation approaches include the 
popular joint model (Schafer, 1997) and fully 
conditional specification frameworks (Raghunathan 
et al., 2001; van Buuren et al., 2006).

By contrast, when the analysis model(s) one 
intends to estimate are more complex, it is best 
to apply the same models at both stages in order 
to tailor the imputations to the unique features of 
each specific analysis. For example, a researcher 
could use a moderated regression approach to create 
imputations that accurately reflect the nonlinearity 
caused by the product term(s), and the second 
stage analysis would be an identical moderated 
regression model. The literature has described 
this option using numerous labels, including the 
sequential specification, modelbased imputation,  
fully Bayesian imputation, and substantive model 
compatible multiple imputation (Bartlett et al., 
2015; Enders et al., 2020; Lüdtke et al., 2020; 
Zhang & Wang, 2017).

By classifying procedures according to the 
alignment between the imputation and analysis 
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models, our goal is to emphasize that an analysis 
model’s composition—in particular, whether it 
includes nonlinear effects such as interactions, 
polynomial terms, or random effects—determines 
the type of imputation strategy that works best.  
A tailored, modelbased approach is preferable for 
analyses that feature these types of nonlinearities, 
whereas agnostic imputation schemes are well 
suited for descriptive summaries and additive 
models that do not include such terms. It is also 
perfectly acceptable to mix and match these two 
approaches within a given project as needed,  
and it is similarly acceptable to use some com
bination of maximum likelihood estimation and 
multiple imputation.

Stage 1. Creating Imputed Data Sets
Digging a bit deeper into the mechanics, most 
multiple imputation procedures use Bayesian  
estimation and Markov chain Monte Carlo 
(MCMC) algorithms for the initial imputation
stage. These algorithms iterate between two steps:
update the parameter estimates conditional on
the filledin data, then update the missing values
conditional on the new parameter estimates.
To illustrate, suppose it is of interest to estimate
a bivariate association between pain levels and
psychosocial disability. To simplify the notation,
we generically refer to these variables as y and x,
respectively. For now, assume that y (disability)
has missing values and x (pain) is complete.

Agnostic imputation is appropriate for this 
model because the analysis does not involve 
interactive or nonlinear effects. A typical agnostic 
imputation scheme would use linear regression 
such as the one depicted in Figure 2.3 as the  
firststage imputation model, and the supporting  
MCMC algorithm would repeatedly alternate 
between estimating the regression model param
eters and imputing the data. Focusing on the 
imputation step, each missing data point is 
replaced by an estimate that equals the sum of 
a predicted value and a normally distributed 
random noise term. Using generic notation, the 
following equation defines the imputations

ˆ (9)Imp 0 1 Imp= + + = +( ) ( )� �y b b x e y ei i i i i

where yi(Imp) is the imputation generated for the 
ith observation on incomplete variable yi (e.g., 
disability), xi is a complete variable (e.g., pain), 
b0 and b1 are regression coefficients updated to 
reflect the current iteration of the MCMC algo
rithm, yi(Imp) is the predicted value of yi given an 
individual’s observed xi score, and e.i is a synthetic 
residual term (i.e., a random number) sampled 
from a normal distribution, the spread of which 
depends on the estimated residual variance.

To illustrate, Figure 2.3 can be reconstrued as 
depicting the distributions of plausible disability 
imputations at three values of pain. The black dots 
on the regression line are the predicted values 
and the spread of the normal curves reflects the 
estimated residual variation (i.e., the variation of 
the e.i terms). Candidate imputations fall exactly 
on vertical lines, but Figure 2.3 uses horizontal 
jitter to improve visibility of the circles in high
density portions of the distribution.

The MCMC algorithm imputes missing  
values by selecting circles from each distribution  
at random, depending on one’s pain level. This 
agnostic imputation procedure can easily be 
extended to multivariate missing data (e.g., esti
mating the correlations among three incomplete 
variables, such as pain, disability, and depression) 
by using a round robin sequence of linear regression  
models, each of which features an incomplete 
variable regressed on all other variables (complete 
or previously imputed; see van Buuren et al., 2006, 
for a description of this fully conditional specification 
[FCS] procedure).

As a second example, suppose the analysis 
model is the moderated regression from Equation 7.  
An agnostic imputation scheme is no longer 
appropriate for this analysis (Bartlett et al., 2015), 
as the presence of a product term requires a 
modelbased approach that tailors imputation  
to this specific analysis. In fact, modelbased 
imputation invokes the same factored regression 
specification shown in Equation 8; in lieu of the 
round robin scheme described in the previous 
paragraph, imputation uses a collection of equations 
that consists of the focal analysis variable and  
supporting regression models for each incomplete 
predictor. Although the basic idea is still the 
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same—imputation equals a predicted value plus 
noise—modelbased imputation is more complex  
because the distribution of imputations can depend 
on more than one regression equation.

The MCMC algorithm repeats the twostep 
estimation procedure (update the parameters, then 
update the imputations) for many computational 
cycles. A typical application saves a relatively 
small number of complete data sets—a common 
recommendation is to use M = 20 data sets  
(Graham et al., 2007)—from a much longer MCMC 
process consisting of hundreds or even thousands 
of computational cycles. One way to do this is to 
save each imputed data set from the final iteration 
of a unique MCMC process or chain. In order  
to ensure that the MCMC algorithm produces 
accurate, representative imputations, it is critical  
to determine an appropriate total number of 
iterations T (also called the burn-in period), as the 
MCMC algorithm must iterate long enough to 
escape its dependence on random starting values 
and converge to a steady state. To determine this 
number, T, researchers must assess one or more 
MCMC convergence diagnostics. Although graphical  
displays such as trace plots (Schafer, 1997) might 
be used for this purpose, the potential scale 
reduction factor (a measure capturing the simi
larity of MCMC chains initiated from different 
random starting values; Gelman & Rubin, 1992) 
is especially useful because simple rules of 
thumb nearly always produce acceptable results 
(e.g., determine the number of iterations required 
for the index to drop below 1.05, then set T to 
that value).

Stage 2. Analyzing Imputations  
and Pooling Estimates
The product of the first stage is a set of M filledin 
data sets. Although it might seem reasonable to 
do so, averaging the filledin values themselves is 
inappropriate; the correct procedure is to analyze 
each filledin data set separately and combine 
multiple sets of estimates and standard errors 
into one package of results. Repeating an analysis 
many times sounds tedious, but most software 
packages have builtin routines that automate  
this process.

Rubin (1987) provided the rules or equations 
for pooling estimates and standard errors. The 
multiple imputation point estimate is simply 
the arithmetic average of the M estimates

1 ˆ (10)
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where θ̂m is a parameter value from data set m,
and θ– is the average estimate. Pooling standard 
errors is a bit more complicated because a simple 
average of the completedata standard errors 
would overstate precision. The correct pooling 
expression is
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where the first term under the radical represents 
the average squared standard error (the within
imputation sampling variance, VW), the second 
term depends on the variance of the M parameter 
estimates around their average (the between
imputation variance, VB), and the final term  
represents the squared standard error of the pooled 
estimate (SEθ–

2). Conceptually, the first term 
estimates the sampling error of a completedata 
analysis, and the next two terms are essentially 
correction factors that inflate the standard  
error to compensate for uncertainty due to  
the imputations–that is, additional uncertainty 
(sampling variability) in the parameter estimates 
caused by missing data. We note that this addi
tional missing data uncertainty is also reflected  
in FIML standard errors, though their calculation 
is not as straightforward.

Because different variables in an analysis 
(e.g., the predictors and outcome in the regression  
of Equation 7) may be more or less affected by 
missing data, it follows that their associated  
standard errors may be correspondingly influenced 
by different degrees of missing data uncertainty.  
To quantify the degree of this influence, it is useful  
to divide the second and third terms under the 
radical in Equation 11 by the entire quantity under 
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the radical to calculate a useful R2like quantity 
known as the fraction of missing information 
(FMI, Rubin, 1987), which gives proportional 
impact of missing data on the squared standard 
error. For example, FMI = .20 means that variation  
due to missing data accounts for 20% of the 
squared standard error.

In addition to using the FMI to quantify  
missing data uncertainty in each standard error 
in a single model, it can also be useful to examine 
changes in the FMI values that result from adding  
one or more auxiliary variables to an initial model. 
To understand why, consider that if an auxiliary 
variable correlates highly with a certain variable  
in the substantive analysis model and also contains 
comparatively more complete data than that 
variable (e.g., because the auxiliary variable was 
collected at baseline, before later measurements  
were affected by participant dropout), the com
plete values of this auxiliary variable, to some 
extent, act as proxies for the unseen values of the 
analysis variable, contributing information to the 
analysis that might serve to reduce missing data 
uncertainty (Collins et al., 2001). The success of 
an auxiliary variable (or set of auxiliary variables)  
in reducing missing data uncertainty in parameter 
standard errors is naturally captured by decreased 
FMI values.3 Although there is no firm rule 
regarding how steep a decrease in FMI values 
must be in order to be considered meaningful, 
reporting information about which auxiliary 
variables seem useful for repairing parameter 
standard errors and recovering lost power can 
help alert researchers working in the same sub
stantive area to the possible benefits of including 
these auxiliary variables in their future research. 
We note that the FMI can also be calculated using 
FIML estimation, although this option is not 
available in all software packages (for details, 
see Savalei & Rhemtulla, 2012). We report these 
diagnostics in the upcoming analysis examples, 
where available.

FULL INFORMATION MAXIMUM  
LIKELIHOOD AND MULTIPLE IMPUTATION 
DATA ANALYSIS EXAMPLES

To illustrate maximum likelihood and multiple 
imputation, we present illustrative analyses using  
synthetic data based on a real study of 300 chronic 
pain sufferers. The data set includes a number 
of psychological correlates of chronic pain. The 
focal variables for the analyses are a gender dummy 
code (0 = female, 1 = male), a binary severe 
pain indicator (0 = no, little, or moderate pain, 
1 = severe pain), a depression composite, and a 
scale measuring psychosocial disability. We also 
considered four selfreport auxiliary variables: 
perceived control over pain, pain interference with 
daily life activities, anxiety, and stress.

All data and analysis scripts are available for 
download at https://case.fiu.edu/about/directory/
profiles/hayestimothy.html. We provide scripts 
for all multiple imputation examples using Blimp 
software (Enders & Keller, 2021) for the imputation 
step and Mplus 8 (Muthén & Muthén, 2017) for 
the analysis and pooling steps as well as R scripts 
(R Core Team, 2021) for all FIML examples using 
the lavaan package (Rosseel, 2012) for analyses 
requiring multivariate normal likelihood functions 
and the mdmb package (Robitzsch & Luedtke, 
2021) for analyses requiring factored likelihood 
functions. This list of software packages is far 
from exhaustive, and the software choices used 
in our supplemental materials represent only one 
configuration among a dizzying number possible. 
Because the software landscape is evershifting, 
with new software packages constantly being 
developed and existing packages frequently 
releasing updated functionality and syntax, we do  
not focus on detailed descriptions of software 
here, referring readers instead to the supplemental 
materials (see also Grund et al., 2021; Hayes, 2019; 
Lüdtke et al., 2020; Rosseel, 2012).

Table 2.2 displays descriptive statistics for these 
variables, computed by analyzing and pooling 

3 We note, however, that it may require pooling the results of many imputed data sets to achieve stable enough FMI values to compare across 
analyses (e.g., von Hippel, 2018, for a primer on the number of imputations needed in multiple imputation analyses).

https://case.fiu.edu/about/directory/profiles/hayes-timothy.html
https://case.fiu.edu/about/directory/profiles/hayes-timothy.html
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100 imputed data sets. The bolded entries in 
Table 2.2 indicate correlations between auxiliary 
variables and model variables greater than |r| = .30. 
Because all four auxiliary variables correlated 
with at least one substantive model variable at  
or above this level, we included all four auxiliary 
variables as extra DVs in the FIML analyses and 
as additional variables in the imputation models.  
Table 2.2 also reports covariance coverage infor
mation for all variables: the main diagonal provides 
the percentage of observed data for each variable, 
whereas the offdiagonals in the upper triangle 
provides the percentage of data present for each 
pair of variables. As described below, in our expe
rience, covariance coverage tables provide a quick 
and convenient way for readers to assess the preva
lence of missing values in a given data set.

The first analysis example compares FIML 
estimation to multiple imputation in the following 
linear regression model:
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Agnostic imputation is appropriate for this analysis 
because the model does not feature interactive or 
nonlinear terms. In the first section of Table 2.3 
we present a sidebyside comparison of results 
from this linear regression analysis using (a) 
standard multivariate normal FIML estimation, 
(b) the factored FIML estimation procedure
that treats each binary predictor more appropri
ately with its own logistic regression submodel
(for more information, see Lüdtke et al., 2020),
and (c) the agnostic FCS imputation method
described two sections earlier, with dichotomous
variables imputed using latent probit imputation
methods.

TABLE 2.2

Pooled Descriptive Statistics by Sex

Bivariate correlations (lower triangle) and covariance coverage (upper triangle)

M SD 1 2 3 4 5 6 7

Males

1. Depression 15.29 6.59 91% 77% 65% 91% 91% 91% 91%
2. Severe pain 0.40 0.49 .36 86% 62% 86% 86% 86% 86%
3. Disability 22.35 4.73 .22 .17 72% 72% 72% 72% 72%
4. Anxiety 12.06 4.82 .57 .18 .34 100% 100% 100% 100%
5. Stress 4.14 1.76 .54 .21 .26 .69 100% 100% 100%
6. Control 20.33 5.58 –.35 –.21 –.48 –.30 –.16 100% 100%
7. Interfere 27.92 8.53 .30 .36 .40 .28 .20 –.45 100%

Females

1. Depression 13.85 5.66 88% 77% 63% 88% 88% 88% 88%
2. Severe pain 0.19 0.39 .07 85% 60% 85% 85% 85% 85%
3. Disability 21.80 4.97 .46 .28 71% 71% 71% 71% 71%
4. Anxiety 11.19 4.37 .59 –.02 .27 100% 100% 100% 100%
5. Stress 3.73 1.82 .53 .11 .30 .69 100% 100% 100%
6. Control 21.03 5.11 –.30 –.03 –.29 –.30 –.36 100% 100%
7. Interfere 27.15 8.75 .36 .25 .24 .23 .19 –.36 100%

Note. Descriptive statistics were pooled across M = 100 multiply imputed data sets, with imputations generated 
separately for males and females. For each group, entries in the lower triangle of the correlation matrix represent 
bivariate correlations, whereas entries on the main diagonal and upper triangle indicate covariance coverage 
(percentage of data present). Bolded values indicate correlations between auxiliary variables and model variables 
exceeding values of |r| = .30.
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Note that all three missing data handling 
methods incorporated the same model variables 
and auxiliary variables. Additionally, the factored 
FIML and agnostic multiple imputation methods 
used comparable procedures to treat all dichoto
mous variables appropriately. Because it has long 
been known that FIML and multiple imputation 
converge on similar solutions when the same input 
data is used for both (see Collins et al., 2001, 
pp. 336–338 and Table 1), it comes as no surprise 
that the results of all three methods are near 
identical. In fact, despite ignoring the correct 
scaling of the dichotomous predictors in the 
model, the results produced by multivariate normal 
FIML estimation in this analysis were even com
parable to the other methods. This finding mirrors 
simulation results from Muthén et al. (2016).

The second analysis example compares FIML 
estimation to multiple imputation in the moderated 
regression model from Equation 7. Because the 
analysis model includes an incomplete interaction  
effect, standard multivariate normal FIML esti
mation and agnostic imputation routines are no 
longer appropriate. Instead, a tailored approach 
is necessary for this situation. Thus, in the second 

section of Table 2.3, we present a sidebyside 
comparison of results from this moderated regres
sion model using (a) the factored FIML estimation 
procedure from Equation 8 and (b) the model
compatible imputation method described above, 
with dichotomous variables once again treated 
appropriately using either logistic regression (ML)  
or latent probit methods (imputation). Because 
these methods incorporated the same model vari
ables and auxiliary variables (e.g., they employed 
comparable strategies both to address the scaling 
of the dichotomous predictors and the presence of 
the product term in the moderated regression  
analysis), it is again unsurprising that their 
resulting estimates, standard errors, and patterns 
of significance are nearly indistinguishable.

METHODS FOR MNAR MISSING DATA

In contrast to a missingatrandom mechanism, 
in which the unseen scores are unrelated to the 
probability of missingness after conditioning on 
or controlling for the observed data, a MNAR 
mechanism is one where the unseen scores still  
carry information about missingness even after 

TABLE 2.3

Estimates and Standard Errors From Linear and Moderated Regression Model by Estimation Method

Linear regression Moderated regression

FIML: Multivariate 
normal FIML: Factored

Agnostic multiple 
imputation FIML: Factored

Model-based multiple 
imputation

Parameter Est. SE FMI Est. SE Est. SE FMI Est. SE Est. SE FMI

Intercept 17.91*** 0.90 .44 17.93*** 0.90 17.98*** 0.86 .38 21.38*** 0.41 21.55*** 0.43 .30
Depression 0.25*** 0.06 .45 0.25*** 0.06 0.26*** 0.06 .40 0.40*** 0.07 0.41*** 0.08 .44
Severe Pain 1.92* 0.76 .40 1.85* 0.75 1.85* 0.82 .45 1.89** 0.73 1.88* 0.74 .40
Male –0.30 0.62 .27 –0.30 0.62 –0.31 0.63 .27 –0.10 0.61 –0.20 0.63 .30
Depression × Male — — — — — — — — –0.30** 0.11 –0.30** 0.10 .34
Residual Variance 19.3*** 2.14 0.46 19.34*** — 19.90*** 2.30 .50 18.31*** — 19.10*** 2.22 .50
R2 .16 — — .16 — .16** 0.05 .45 .20 — .20***  .06 .47

Note. * = p < .05, ** =. p < .01, *** = p < .001. FMI = fraction of missing information. Listwise and multivariate 
normal FIML estimation were conducted using the lavaan package in R (Rosseel, 2012), which returns estimates 
of the FMI upon request, facilitating comparison with the FMI values returned by the multiple imputation analysis 
in Mplus (L. K. Muthén & Muthén, 2017). Factored likelihood estimation was conducted using R package mdmb 
(Robitzsch & Luedtke, 2021). Multiple imputations were generated using Blimp software (Enders & Keller, 2021) 
and subsequently analyzed and pooled using Mplus version 8.6 (L. K. Muthén & Muthén, 2017). Both agnostic 
and modelbased imputation methods were used to impute, analyze, and pool M = 100 data sets.
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conditioning on the observed data. When this 
is true, the analysis model must include an 
additional component that describes the occur
rence of missing data. The two major modeling 
approaches for MNAR mechanisms—selection 
models and pattern mixture models—do just that,  
albeit in different ways. A selection model includes 
an additional regression equation with a binary 
missing data indicator (0 = observed, 1 = missing)  
as the dependent variable, whereas a pattern 
mixture model uses that missing data indicator  
as a predictor.

To illustrate the two models, reconsider the 
simple regression model where x predicts y  
(see Figure 2.3), and suppose that the unseen 
values of y determine whether the outcome is 
missing (e.g., the individuals with the highest 
disability levels opt not to report their scores, as in 
the MNAR mechanisms of Figure 2.1C and D). 
We also need a dummy variable My that codes 
whether Y is missing. Figure 2.5A shows the 
selection model as a path diagram. Notice that 
the composition of the diagram resembles a single
mediator model where the analysis variables 
predict missingness via direct and indirect effects. 
In contrast, a pattern mixture model resembles a 

moderated process where My defines qualitatively 
different subgroups with unique parameter values. 
Figure 5B shows the path diagram; the arrow 
connecting My to Y is an intercept difference, 
and the dashed line indicates that x’s slope differs 
between groups.

MNAR analyses require strict, unverifiable 
assumptions (e.g., a correct missingness model 
with the right configuration of effects), and simple 
misspecifications can produce biased estimates. 
Consequently, methodologists often suggest using 
these models as part of a sensitivity analysis 
that explores different missingness assumptions. 
A simple example is one where the researcher 
augments the main MAR analysis with one or more 
selection or pattern mixture models. An online 
supplemental document can present sidebyside 
comparisons of two or more sets of analysis results, 
with any discrepant estimates noted in the main 
body of the manuscript.

REPORTING THE RESULTS  
OF A MISSING DATA ANALYSIS

Although many of the principles summarized in 
this chapter have been known in the methodo
logical literature for decades, misconceptions about 
missing data remain prevalent (van Ginkel et al., 
2020), and surveys of the published literature 
have repeatedly found missing data reporting 
practices to be woefully inadequate (e.g., Jeliĉić 
et al., 2009; Nicholson et al., 2017). As a result, 
researchers aspiring to learn good reporting prac
tices may find themselves without trustworthy 
examples to refer to, left to simply do their best 
to describe missing data analyses to an audience 
of readers (and reviewers) whose knowledge of 
the topic may be incomplete or even misguided. 
To help researchers navigate this landscape, in this 
section we provide several broad recommendations 
for missing data reporting.

The first thing researchers must report is descrip
tive statistics for all variables in the sample, 
including the prevalence of missing data on  
all model variables. With this in mind, our first 
recommendation is to use a modern method like 
FIML or multiple imputation to appropriately 

(A) Selection Model

(B) Pattern Mixture Model

x

x

y

y

My

My

FIGURE 2.5.  Conceptual diagrams 
of MNAR missing data approaches.
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deal with missing data when estimating and 
reporting descriptive statistics, including all 
auxiliary variables deemed useful to estimation. 
We highlight this recommendation because, in our 
experience, many researchers use modern missing  
data handling methods only when estimating 
their main analysis models, often using specialized  
software, but return to their favorite general 
software package to estimate descriptive statistics 
using default deletion settings (e.g., using FIML 
in Mplus to estimate an SEM but computing 
descriptive statistics using listwise deletion in 
SPSS). This is unfortunate, because descriptive 
statistics based on marginal (unconditional)  
distributions tend to be even more severely affected 
by missing data than regression coefficients based 
on conditional distributions like those shown 
in Figure 2.1. In this way, modern missing data 
handling methods are just as crucial (if not more) 
for estimating descriptive statistics as they are 
for estimating more complex analysis models.

Our second recommendation is to report the 
prevalence of missing data by including covari
ance coverage (a matrix with the proportion of 
complete data for each variable or variable pair) 
in the upper triangle of the reported correlation  
matrix, as we have in Table 2.2. This provides 
readers with a compact yet comprehensive overview  
of the pattern of missing data affecting each model 
variable and pair of variables. If the proportion 
of missing data for a particular model variable or 
pair of variables is high, we recommend reminding 
readers of the general principle that the greater 
the percentage of missing data affecting a particular 
variable or analysis model, the greater the need to 
address missing data using a modern method. Citing 
quantitative simulation studies demonstrating the 
accuracy of FIML and multiple imputation under 
a variety of missing data rates (e.g., Collins et al., 
2001, who showed across four studies that FIML 
and multiple imputation provide unbiased— 
and equivalent—results even under 50% missing  
data)4 can help to counter, or to preempt, the 
commonly held misconception that there is some 

amount of missing data that is simply too much for 
modern methods to handle (e.g., “it is dangerous 
to impute a variable with 50% missing values . . .”).

Our next major recommendation is to provide 
theoretical justification for the missing data 
mechanism(s) one believes to be affecting each 
substantive model. This recommendation stems 
from the reality that, although one could plau
sibly rule out an MCAR (or focused MNAR) 
mechanism by finding any evidence at all that 
the observed variables in one’s data set predict 
the probability of missingness on a given variable 
(e.g., in a ttest of missing vs. nonmissing cases or 
a logistic regression analysis predicting a missing 
data indicator), analogous statistical procedures 
for ruling out a MAR (or MCAR) mechanism by 
finding evidence that the conditional distributions 
of observed and unseen values differ systematically 
from one another (as in Figure 2.1C and D) are 
undefined without access to the missing scores 
(the asterisks in Figure 2.1). As such, the MAR 
mechanism assumed by standard FIML and  
multiple imputation methods can neither be 
proven (or shown) nor ruled out using real  
data but must instead be argued for on the basis 
of theory.

When initially considering which missing 
data mechanisms seem theoretically plausible, 
we recommend starting with the assumption that 
when participants decline to answer a certain 
question or decide to skip a particular testing 
session, they generally do so for a reason, making 
a pure MCAR mechanism highly unlikely. It is 
also unlikely that one’s intended analysis model 
already contains all missing data causes necessary 
on which to condition in order to meet the MAR 
assumption. Instead, it seems most reasonable  
to begin with the assumption that the missing 
data on all model variables are at least MNAR by 
omission at the outset, requiring the identification 
of the auxiliary variables required to make the 
data MAR (e.g., using the bivariate or semipartial 
correlation approaches described earlier). Report
ing information about any auxiliary variables 

4 It might also be useful to point out that planned missing data designs, such as the popular three form design, intentionally produce extremely 
high missing data rates, (e.g., close to 70% between some variable pairs; see Graham et al., 2006).
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identified is crucial to helping future researchers 
know which measures they should consider 
including in their study designs.

In some lucky cases, a combination of substan
tive theory and practical judgment can rule out 
an MNAR mechanism. For example, attrition in 
a study of infants’ spatial skills could only occur 
if the infants’ parents or caregivers declined to 
return them to the study, making it straightforward 
to rule out the infants’ unseen scores as a potential 
source of MNAR missingness. In other cases, 
however, the distinction may not be so clear. 
Take, for example, the missing psychosocial  
disability data described earlier, which could 
plausibly have been caused (a) by the patients’ 
scores on external variable(s) like pain or stress, 
as in Figure 2.1B, (b) by patients’ unseen disability 
scores, as in Figure 2.1C, or (c) by a combination 
of both, as in Figure 2.1D. In such cases, it may 
be necessary to conduct a sensitivity analysis,  
as described earlier, estimating a variety of MAR 
and MNAR models and comparing their results.  
If the pattern of results remains similar across 
these analyses, then the consequences of assuming 
a particular mechanism may make little difference. 
But if the results of these competing analyses  
differ, it may be useful to present all model results 
sidebyside so that readers can compare the 
effects of making different missing data assump
tions. Although this sidebyside approach sacri
fices the parsimony of choosing and displaying 
only one final model, it increases transparency 
and preserves a more detailed account of the 
models’ possible results in the published record.

Next, we recommend providing the details 
of the missing data handling methods applied to 
each substantive analysis of interest, including all 
software packages used (along with their version 
numbers) and any specific settings invoked in 
the process. Because different analysis models 
may contain unique features (e.g., categorical 
predictors, product terms, or multilevel random 
effects) that require special consideration and 

because the variables included in different  
models may be acted upon by different missing 
data mechanisms (requiring different auxiliary 
variables), it follows that missing data handling 
strategies should generally be tailored to, and reported 
with respect to, each specific analysis model one 
intends to run. When using FIML estimation, 
researchers should report how they incorporated 
auxiliary variables into the model (as saturated 
correlates? extra dependent variables?), how 
they incorporated incomplete predictors into 
the likelihood function,5 as well as any special 
estimation procedures required to address specific 
features of the substantive model (e.g., using 
the factored FIML approach described earlier to 
address interactions).

When using multiple imputation, researchers  
should report exactly what variables were included 
in each imputation model. At a minimum, this 
should include all variables from the substantive  
model, regardless of whether the variables are 
complete or missing (leaving a variable out of 
the imputation model results in imputations 
that assume its correlation with all other model 
variables is 0) along with any auxiliary variables 
identified earlier. It is also critical to report any 
special imputation procedures used to accommo
date particular features of a substantive model, 
for example, using modelbased imputation 
methods to generate imputations appropriate 
for a moderation analysis, as described above. 
Following this, one should report how many 
imputed data sets were analyzed and pooled 
(as stated earlier, 20 imputed data sets is a good 
general rule, but more are better, if computational 
time allows).

Additionally, one should report convergence 
information for any imputation models run. 
For example, one might report that, “An initial 
diagnostic run indicated that the worst (highest) 
potential scale reduction factor across all model 
parameters dropped below 1.05 after approxi
mately 2,000 iterations, suggesting converge of 

5 Although we have not emphasized specific software commands in this chapter, we note that one can freely estimate the distributions of 
predictor variables and incorporate them into the multivariate normal likelihood function of Equation 3 by declaring all exogenous variable 
means and variances in the MODEL statement in Mplus, or by setting the argument fixed.x = FALSE in the lavaan() function in lavaan and 
explicitly referencing all exogenous means, variances, and covariances in the lavaan model syntax.
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the MCMC chains.” Although this could seem 
like nutsandbolts technical information not 
worth including in a published paper, we believe 
that providing this information is important 
because it serves to subtly combat a widely held 
misconception that one can multiply impute one’s  
data without assessing convergence, simply trusting 
one’s default software settings. This misconception 
is especially troubling because default settings  
in software packages are often dramatically 
insufficient (e.g., the SPSS multiple imputation 
routine uses only five iterations, when hundreds 
or thousands may be necessary).

Finally, when using multiple imputation to 
address missing data, it is sometimes necessary to 
address readers’ (or reviewers’6) potential unease 
with this approach by clearly and succinctly 
explaining how the method works and rebutting 
possible misconceptions. Toward this end, one 
might assure readers that although the notion 
of filling in missing values may seem to conjure 
images of fraudsters purposefully editing values 
in a data file in order to make an analysis appear 
significant, the synthetic values generated in a 
multiple imputation analysis are driven by the 
data, not by the researcher, with no guarantee 
that they will lead to flattering model results (e.g., 
if the correlation between a pair of variables in 
the data is 0, the correlation between imputed 
values generated for these variables is also 0). 
It can also be helpful to remind readers that 
resorting to listwise deletion methods to avoid 
imputing missing values will necessarily result 
in discarding potentially large amounts of real 
data provided by participants who responded to 
some—but not all—measures. Viewed in this way, 
multiple imputation, like FIML, is as much—if not 
more—about preserving and using all observed 
values in a data set as it is about filling in missing 
values. In fact, despite their surfacelevel differ
ences (e.g., explicitly filling in missing values 
with imputations generated from a multivariate  
normal distribution vs. implicitly assuming a 

multivariate normal distribution is likely to have 
produced the unseen values), both multiple 
imputation and FIML estimation are based on 
the same underlying assumptions and are well
known to produce nearidentical results under 
the same input (as shown by Collins et al., 2001, 
and as reflected in the results of our analysis 
examples presented earlier).

In sum, although far from exhaustive, we hope 
that this brief list of reporting recommendations 
helps researchers think through how best to 
describe the results of their missing data analyses 
to readers who may vary in their levels of famil
iarity and comfort with these analyses. Because 
expertise in missing data analysis among one’s 
readers cannot be taken for granted, we recommend 
that researchers err on the side of reporting too 
much information rather than too little; all else 
being equal, it seems better to describe each and 
every step in a missing data analysis thoroughly 
than to risk incorrectly assuming that some details 
can be treated as “common knowledge” and  
left unsaid. Providing such clear and detailed 
descriptions of each missing data analysis not 
only helps readers understand and, hopefully, 
accept the need for these analyses in a particular 
study but also provides them with a template for 
reporting such analyses in their own future work.

SUMMARY

The goal of this chapter was to provide an overview 
of maximum likelihood estimation and multiple 
imputation, two major missing data handling 
strategies with strong support from the methodo
logical literature. Both approaches have developed  
since the first edition of this handbook, and the 
types of analyses that researchers can perform 
is broader than ever. Given the same data and 
assumptions, maximum likelihood and multiple 
imputation usually produce indistinguishable 
results, so the choice of method often boils 
down to practical considerations and personal 

6 In some cases, when concerns are raised during the review process, this clarifying information may be most appropriate to include in a 
response to peer reviewers. In other cases, however, as when one believes that readers in their subfield are broadly unfamiliar with these 
methods, it may be appropriate to include this information in the main document.
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preference—the analysis examples illustrated  
this conclusion. In truth, the most important 
consideration isn’t which method to use, but 
rather the composition of the analysis model.  
In general, any analysis that features an incomplete 
interaction term, curvilinear effect, random slope, 
or other type of nonlinearity requires newer 
factored regression methods, whereas “classic” 
versions of maximum likelihood and multiple 
imputation are well suited for analyses that  
do not have these special features. Models with 
mixtures of categorical and numeric variables are  
a second example where factored regression speci
fications are useful, and multiple imputation is 
generally more flexible for these types of problems.

In closing, we note that this tailored, analysis
byanalysis approach to thinking about missing 
data handling also implies an important underlying  
principle: The fundamental goal of the missing 
data handling approaches discussed throughout this 
chapter is to accurately and appropriately adjust the 
results of a target analysis for the likely influences 
of missing data. That is, although the problems 
caused by missing data may originate in the form 
of missing scores in one’s data file, these problems 
ultimately manifest themselves in the form of 
potentially distorted, untrustworthy estimates in 
one’s statistical models, and it is these estimates—
not the missing scores, themselves—whose 
accuracy is at stake in a missing data analysis. 
This suggests, for example, that an “impute first,  
decide the analysis later” approach is rarely 
viable7 and is never wise, as such an approach is 
fundamentally backwards: the synthetic values 
generated in a multiple imputation analysis are 
not intended to function individually as perfect 
proxies for participants’ missing raw scores8 but, 
rather, to function together to adjust the estimates  
of a specific statistical analysis model that one  
intends to fit to the filledin data. Thus, to para
phrase a wellknown idiom (Covey, 1989), 
researchers are welladvised to “begin with the 

analysis in mind,” treating the specific features 
of each substantive model as the “true north” 
that guides all subsequent missing data handling 
decisions. By approaching the task in this way, we 
believe that researchers will be able to confidently 
identify the most appropriate methods for address
ing missing data in every analysis of interest.

References
Arbuckle, J. N. (1996). Full information estimation 

in the presence of incomplete data. In G. A.  
Marcoulides, & R. E. Schumacker (Eds.), Advanced 
structural equation modeling (pp. 243–277).  
Lawrence Erlbaum Associates. Inc.

Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, 
J. R. (2015). Multiple imputation of covariates by 
substantivemodel compatible fully conditional  
specification. Statistical Methods in Medical 
Research, 24(4), 462–487. https://doi.org/10.1177/ 
0962280214521348

Bollen, K. A. (1989). Structural equations with latent 
variables. Wiley. https://doi.org/10.1002/ 
9781118619179

Cham, H., Reshetnyak, E., Rosenfeld, B., & Breitbart, W.  
(2017). Full information maximum likelihood 
estimation for latent variable interactions with 
incomplete indicators. Multivariate Behavioral 
Research, 52(1), 12–30. https://doi.org/10.1080/ 
00273171.2016.1245600

Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). 
A comparison of inclusive and restrictive strategies  
in modern missing data procedures. Psychological 
Methods, 6(4), 330–351. https://doi.org/10.1037/ 
1082989X.6.4.330

Covey, S. R. (1989). The seven habits of highly effective 
people. Simon & Schuster.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). 
Maximum likelihood from incomplete data via  
the EM algorithm. Journal of the Royal Statistical  
Society. Series B. Methodological, 39(1), 1–22. 
https://doi.org/10.1111/j.25176161.1977.tb01600.x

Eliason, S. R. (1993). Maximum likelihood estimation: 
Logic and practice. SAGE.

Enders, C. K. (2008). A note on the use of missing 
auxiliary variables in full information maximum 
likelihoodbased structural equation models. 

7 Except in the luckiest cases, for example, when a single set of agnostic multiple imputations might serve the goals of multiple subsequent 
analyses. We note that it is this scenario that is assumed by the current default imputation settings in SPSS, potentially leading users to infer 
that a single set of imputations should serve the goals of any conceivable analysis.

8 Indeed, perfectly estimating participants’ individual true scores is wellknown to be a statistically intractable problem even with complete data 
(e.g., Steiger and Schönemann, 1978).

https://doi.org/10.1177/0962280214521348
https://doi.org/10.1177/0962280214521348
https://doi.org/10.1002/9781118619179
https://doi.org/10.1002/9781118619179
https://doi.org/10.1080/00273171.2016.1245600
https://doi.org/10.1080/00273171.2016.1245600
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1037/1082-989X.6.4.330
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x


Hayes and Enders

50

Structural Equation Modeling, 15(3), 434–448. 
https://doi.org/10.1080/10705510802154307

Enders, C. K. (2022). Applied missing data analysis 
(2nd ed.). Guilford Press.

Enders, C. K., Du, H., & Keller, B. T. (2020). A model
based imputation procedure for multilevel regression 
models with random coefficients, interaction effects, 
and nonlinear terms. Psychological Methods, 25(1), 
88–112. https://doi.org/10.1037/met0000228

Enders, C. K., & Keller, B. T. (2021). Blimp user’s 
manual (Version 3) [Computer software]. Applied 
Missing Data. www.appliedmissingdata.com/ 
multilevelimputation.html

Gelman, A., & Rubin, D. B. (1992). Inference from 
iterative simulation using multiple sequences. 
Statistical Science, 7(4), 457–472. https://doi.org/ 
10.1214/ss/1177011136

Gomer, B., & Yuan, K.H. (2021). Subtypes of the 
missing not at random missing data mechanism. 
Psychological Methods, 26(5), 559–598. https:// 
doi.org/10.1037/met0000377

Graham, J. W. (2003). Adding missingdatarelevant 
variables to FIMLbased structural equation models. 
Structural Equation Modeling, 10(1), 80–100. 
https://doi.org/10.1207/S15328007SEM1001_4

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. 
(2007). How many imputations are really needed? 
Some practical clarifications of multiple imputation 
theory. Prevention Science, 8(3), 206–213. https://
doi.org/10.1007/s1112100700709

Graham, J. W., Taylor, B. J., Olchowski, A. E., & 
Cumsille, P. E. (2006). Planned missing data 
designs in psychological research. Psychological 
Methods, 11(4), 323–343. https://doi.org/10.1037/ 
1082989X.11.4.323

Grund, S., Lüdtke, O., & Robitzsch, A. (2021). Multiple 
imputation of missing data in multilevel models 
with the R package mdmb: A flexible sequential 
modeling approach. Behavior Research Methods, 
53(6), 2631–2649. https://doi.org/10.3758/ 
s13428020015300

Hayes, T. (2019). Flexible, free software for multilevel 
multiple imputation: A review of blimp and jomo. 
Journal of Educational and Behavioral Statistics, 
44(5), 625–641. https://doi.org/10.3102/ 
1076998619858624

Hoel, P. G. (1984). An introduction to mathematical 
statistics (5th ed.). Wiley.

Howard, W. J., Rhemtulla, M., & Little, T. D. (2015). 
Using principal components as auxiliary variables 
in missing data estimation. Multivariate Behavioral 
Research, 50(3), 285–299. https://doi.org/10.1080/ 
00273171.2014.999267

Ibrahim, J. G. (1990). Incomplete data in generalized 
linear models. Journal of the American Statistical 
Association, 85(411), 765–769. https://doi.org/ 
10.1080/01621459.1990.10474938
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