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Abstract
We formalise the reward corruption problem, where
noise or deterministic changes in the reward chan-
nel can make agents suffer large regret with respect
to the true reward. For example, a reinforcement
learning agent may prefer states where a sensory
error gives it the maximum reward, but where the
true reward is actually small. We show that the gen-
eral reward corruption problem is unsolvable, and
investigate various simplifying assumptions that are
likely to hold in practice. We find that traditional
reinforcement learning agents can suffer large regret
despite simplifying assumptions, but that a minor
modification allows them to manage the reward cor-
ruption problem with a sometimes reasonable cost in
(expected) performance. We also develop an abstrac-
tion of inverse reinforcement learning, and find that,
under some reasonable assumptions, it can solve
the problem completely with no loss in asymptotic
performance.

1 Introduction
In many application domains, artificial agents need to learn
their objectives, rather than have them explicitly specified.
For example, we may want a house cleaning robot to keep the
house clean, but it is hard to measure and quantify “cleanliness”
in an objective manner. Instead, machine learning techniques
may be used to teach the robot the concept of cleanliness, and
how to assess it from sensory data.

More abstractly, we may consider the problem of teaching
the robot the value of different world states. In the fields of
reinforcement learning (RL) [Sutton and Barto, 1998] and
inverse reinforcement learning (IRL) [Ng and Russell, 2000],
this corresponds to the learning of a reward function mapping
states to real numbers. Other authors frame it as a value learn-
ing problem [Dewey, 2011; Bostrom, 2014], emphasising that
the agent should learn the values of its owner or designers. In
RL, the reward function is learnt from a reward signal pro-
vided by a human supervisor and reflecting the utility of the
present state; in (IRL), the reward function is learnt by observ-
ing the actions, state-action trajectories, or the policy, of a
supervisor who is at least somewhat competent at optimising
the reward function.

The problem we are concerned with in this paper is how
robust different approaches and algorithms are to sensory er-
rors in the value learning process. In particular, how big a
loss of (true) reward can various agents suffer due to a corrupt
observed reward signal? The corruption may be caused by
(accidental) errors in the agent’s sensors, by a misspecified
reward function, or by an adversary that wants to control the
agent for his own purposes [Future of Life Institute, 2015].

Example 1 (Running example). A house robot discovers that
standing in the shower short-circuits its reward sensor and
gives it maximum observed reward, though the true reward is
actually low in this state. ♦

Other examples include an agent in a boat racing game that
found a way to achieve a high observed reward by going in
a circle instead of trying to win the race [Amodei and Clark,
2016], and a cleaning robot that closes its eyes to avoid seeing
dirt Amodei et al. [2016]. The reward corruption may also
be more directly manufactured by the agent itself, as in the
example of an RL agent taking control of its reward signal to
get maximum reward [Ring and Orseau, 2011; Bostrom, 2014;
Hutter, 2005, p. 245].1 In common to all these scenarios is
that the agent’s observed reward differs from the true reward
that the designers want it to optimise.

Definition 2 (Reward corruption problem). The reward cor-
ruption problem is to learn (an approximation of) the reward
function from potentially corrupt reward data.

In this paper we formalise the problem (Section 2) and
show that it is unsolvable in general (Section 3). Under some
simplifying assumptions introduced in Section 4, we suggest
solutions based on randomisation (Section 5) and on alterna-
tive value learning methods such as IRL (Section 6).

2 Formalisation
We begin by defining a natural extension of the MDP frame-
work [Sutton and Barto, 1998] that models the possibility of
reward corruption. To clearly distinguish between true and
corrupted signals, we introduce the following notation.

Definition 3 (Dot and hat notation). We will let a dot indicate
the true signal, and let a hat indicate the observed (possibly

1 Also known as the wireheading [Bostrom, 2014; Yampolskiy,
2014] and self-delusion [Ring and Orseau, 2011] problem.



corrupt) counterpart. For example, although Ṙ = R̂ = R are
formally the same set of rewards, for clarity we use Ṙ when
referring to true observations and R̂ when referring to possibly
corrupt observations. Similarly, we use ṙ for true reward, and
r̂ for possibly corrupt, observed reward.

Definition 4 (CRMDP). A corrupt-reward MDP (CRMDP)
is a tuple µ = 〈S,A,R, T, Ṙ, γ, C〉 with

• 〈S,A,R, T, Ṙ, γ〉 an MDP with2 a finite set of states
S, a finite set of actions A, a finite set of rewards R =
Ṙ = R̂ ⊂ [0, 1], a transition function T (s′|s, a), a (true)
reward function Ṙ : S→Ṙ, a discount factor γ ∈ [0, 1),
and

• a reward corruption function C : S × Ṙ → R̂.

Definition 5 (Observed reward). Given a true reward function
Ṙ and a corruption function C, we define the observed reward
function R̂ : S → R̂ as R̂(s) := Cs(Ṙ(s)). A CRMDP µ

induces an observed MDP µ̂ = 〈S,A,R, T, R̂, γ〉, but it is
not R̂ that we want the agent to optimise.

The corruption function C : S × Ṙ → R̂ represents how
rewards are affected by corruption in different states. We write
the state dependency of the corruption function as a subscript,
so Cs(ṙ) := C(s, ṙ). For example, if in Example 1 the agent
has found a state s̃ (e.g., the shower) where it always gets full
observed reward R̂(s̃) = 1, then this can be modelled with a
corruption function Cs̃ : ṙ 7→ 1 that maps any true reward ṙ
to 1 in the state s̃.

Typically, T , Ṙ, and C will be fixed but unknown to the
agent. To make this formal, we introduce a class of CRMDPs:

Definition 6 (CRMDP class). For given sets T , Ṙ, and C
of transition, reward, and corruption functions, let M =
〈S,A,R,T , Ṙ, γ,C〉 be the class of CRMDPs containing
〈S,A,R, T, Ṙ, γ, C〉 for (T, Ṙ, C) ∈ T × Ṙ× C.

Following the POMDP [Kaelbling et al., 1998] and general
reinforcement learning [Hutter, 2005] literature, an agent fol-
lows a policy π : S × R̂ × (A× S × R̂)∗ → A that selects a
next action based on the history hn = s0r̂0a1s1r̂1 . . . ansnr̂n.
A CRMDP µ combined with a policy π defines a measure Pπµ
on the set of all histories

Pπµ (hn) = Pπµ (s0r̂0a1s1r̂1 . . . ansnr̂n) :=
n∏
i=1

P (π(hi−1) = ai)T (si | si−1, ai)P (R̂(si) = r̂i) (1)

When we condition on an action sequence a1, a2 . . . , we
can drop the superscript π, and just write Pµ(s0r̂0 . . . snr̂n |
a1 . . . an). Let Eπµ denote the expectation with respect to Pπµ .

We will measure the impact of the corruptible reward chan-
nel in terms of regret [Puterman, 1994]:

2 We let rewards depend only on the state s, rather than on state-
action pairs s, a, or state-action-state transitions s, a, s′, as is also
common in the literature. Formally it makes little difference, since
MDPs with the rewards depending only on s can model the other two
cases by means of a larger state space.

Definition 7 (Regret). For a CRMDP µ, let Gt(µ, π, s0) =

Eπµ
[∑t

k=1 Ṙ(sk)
]

be the expected cumulative reward until
time t of a policy π starting in s0. The regret of π is

Reg(µ, π, s0, t) = max
π′

[Gt(µ, π
′, s0)−Gt(µ, π, s0)] ,

and the worst-case regret for a classM is Reg(M, π, s0, t) =
maxµ∈MReg(µ, π, s0, t), i.e. the difference in expected cu-
mulative reward between π and an optimal policy πregret

µ that
knows µ.

Bayesian agents for a class M of CRMDPs can be con-
structed from a prior probability distribution b onM. Given
that the agent has seen a history hn, the updated belief is

b(µ | hn) =
b(µ)Pµ(s0r̂0 . . . snr̂n | a1 . . . an)∑

µ′∈M b(µ′)Pµ′(s0r̂0 . . . snr̂n | a1 . . . an)

Definition 8 (CRMDP value function and optimal agent). The
CRMDP value function for a policy π and history hn−1 in a
CRMDP µ is the expected, accumulated, discounted (true)
reward V πµ (hn−1) :=∑
sn

T (sn|sn−1, an)
[
Ṙ(sn) + γV πµ (hn−1ansnR̂(sn))

]
(2)

where an := π(hn−1). The value function with respect
to a belief b is V πb (hn) :=

∑
µ∈M b(µ|hn)V πµ (hn). Let

πCR
b := π∗b := arg maxπ V

π
b be the (Bayes-)optimal policy.

The optimal value function is V ∗b = V
π∗b
b .

A traditional RL agent πRL that is optimal in the observed
MDP µ̂ (Definition 5) can be defined in the same way, except
R̂(s) replaces Ṙ(s) in the value function (2).

3 Impossibility Result
In this section, we give a negative result. Theorem 9 shows that
reward corruption makes the true reward function unlearnable
in general classes of CRMDPs, and shows that additional
assumptions are necessary for them to be solvable.
Theorem 9 (General CRMDPs cannot be learnt). Let R =
{y1, . . . , yn} ⊂ [0, 1] be a uniform discretisation of [0, 1],
0 = y1 < y2 < · · · < yn = 1. If the hypothesis classes Ṙ
and C contain all functions Ṙ : S → Ṙ and C : S × Ṙ → R̂,
then for any π, s0, t,

Reg(M, π, s0, t) ≥
1

2
max
π̌

Reg(M, π̌, s0, t) (3)

That is, the worst-case regret of any policy π is at most a factor
2 better than the maximum worst-case regret.

Proof. Recall that a policy is a function π :

S × R̂ × (A× S × R̂)∗ → A. For any Ṙ, C in Ṙ and C,
the functions Ṙ−(s) := 1 − Ṙ(s) and C−s (x) := Cs(1 − x)

are also in Ṙ and C. If µ = 〈S,A,R, T, Ṙ, γ, C〉, then
let µ− = 〈S,A,R, T, Ṙ−, γ, C−〉. Both (Ṙ, C) and
(Ṙ−, C−) induce the same observed reward function
R̂(s) = Cs(Ṙ(s)) = C−s (1 − Ṙ(s)) = C−s (Ṙ−(s)), and



therefore induce the same measure Pπµ = Pπµ− over histories
(see Eq. (1)). This gives that for any µ, π, s0, t,

Gt(µ, π, s0) +Gt(µ
−, π, s0) = t (4)

since

Gt(µ, π, s0) = Eπµ

[
t∑

k=1

Ṙ(sk)

]
= Eπµ

[
t∑

k=1

1− Ṙ−(sk)

]

= t− Eπµ

[
t∑

k=1

Ṙ−(sk)

]
= t−Gt(µ−, π, s0).

The maximum and minimum return for all µ, π is M =
maxµ,π′ Gt(µ, π

′, s0) and m = minµ,π̌ Gt(µ, π̌, s0), respec-
tively. Let µ∗, π̃ be the CRMDP and policy that max-
imises Gt(·, ·, s0). It follows from (4) that µ−∗ , π̃ min-
imises Gt(·, ·, s0). Further, the maximum worst-case regret is
maxπ̌ Reg(M, π̌, s0, t) = M −m, and M +m = t.

To complete the proof, recall from Definition 7 that the
worst-case regret of an arbitrary policy π is:

Reg(M, π, s0, t)

= max
µ,π′

(Gt(µ, π
′, s0)−Gt(µ, π, s0))

≥ max{M −Gt(µ∗, π, s0),M −Gt(µ−∗ , π, s0)}

≥ 1

2

(
M −Gt(µ∗, π, s0) +M −Gt(µ−∗ , π, s0)

)
=

1

2

(
2M − t) =

1

2

(
2M − (M +m))

=
1

2
(M −m) =

1

2
max
π̌

Reg(M, π̌, s0, t).

For the robot in the shower from Example 1, the result
means that if it tries to optimise observed reward by stand-
ing in the shower, then it performs poorly according to the
hypothesis that “shower-induced” reward is corrupt and bad.
But if instead the robot tries to optimise reward in some other
way, say baking cakes, then (from the robot’s perspective)
there is also the possibility that “cake-reward” is corrupt and
bad. Without additional information, the robot has no way of
knowing what to do.

The result is not surprising, since if all corruption func-
tions are allowed in the class C, then there is effectively no
connection between observed reward R̂ and true reward Ṙ.
The result therefore admonishes us to make precise in which
way the observed reward is related to the true reward, and to
investigate how our agents might handle possible differences
between true and observed reward.

4 Limiting Reward Corruption
As illustrated by Theorem 9, general classes of CRMDPs
are not learnable. In this section, we suggest some natural
simplifying assumptions. We find that they help neither the
traditional RL agent nor the CRMDP agent. The simplifying
assumptions will come in handy in later sections, however.

The designers of the agent are likely to put some effort into
limiting the number of corrupt states. This may be formalised
as:

Assumption 10 (Limited number of corrupt states). At most
q < |S| of the |S| states are corrupt; i.e. for each C ∈ C,
Cs : r 7→ r for at least |S| − q states s.

Depending on how small q is, the assumption can be made
more or less strong. However, we believe that q = 0 is infeasi-
ble in at least some important applications of RL.

As an additional simplifying assumption, the designers may
also be able to ensure that some subset of the states are guar-
anteed to be free from corruption. For example, they may give
the agent the option of returning to the lab, in which they have
a very controlled setup where it can be made (virtually) certain
that no reward corruption occurs.

Assumption 11 (Safe states). The set of states S can be par-
titioned as S = Ssafe

⋃̇
Srisky, where all states in Ssafe are

non-corrupt; i.e. for all C ∈ C and all s ∈ Ssafe, Cs : r 7→ r.

If only a few states have high reward, then it is enough
that the same few states are corrupt to make the learning
task impossible. In such cases, Assumption 10 is weak. We
therefore add the following assumption, which roughly says
that the number of high reward states is large:

Assumption 12 (Many high reward states). For every δ ∈
[0, 1], minṘ∈Ṙ |{s ∈ Srisky : Ṙ(s) > 1− δ}| ≥ δ|Srisky|.

Unfortunately, Assumptions 10 to 12 save neither the tra-
ditional RL agent πRL nor the optimal CRMDP agent πCR

b
(Definition 8) from the reward corruption problem, as demon-
strated by the following theorem.

Theorem 13 (High regret with simplifying assumptions).
For a wide range of priors b and for any |Srisky| > q >
1 there exists a CRMDP class M that satisfy Assump-
tions 10 to 12 such that πRL and πCR

b suffer worst pos-
sible time-averaged regret limt→∞

1
tReg(M, πRL, s0, t) =

limt→∞
1
tReg(M, πCR

b , s0, t) = 1.

The idea of the proof (available in [Anonymous, 2017]) is
that when the πCR

b agent has no way to tell which states are
corrupt and which are not, then it typically ends up with a pref-
erence for a particular value r̂∗ of the observed reward signal
(the value that, from the agent’s perspective, best corresponds
to high true reward). The πRL agent always prefers observed
reward r̂∗ = 1. Sometimes r̂∗ is most easily obtained by
reward corruption, in which case the true reward may be small.
Theorem 13 shows that the even under the fairly strong As-
sumptions 10 to 12, there is a risk that both the πCR and πRL

agents use the corrupt reward channel to obtain their preferred
r̂∗, and that even if there are just a few corrupt states, this may
still impede the performance of both them substantially.

5 Quantilisation
In this section, we discuss one possible way around the prob-
lem of Theorem 13 where the agent takes a liking for a par-
ticular observed reward r̂ and then obtains r̂ through reward
corruption. The idea is that when the fraction of corrupt states
q/|S| is small, we can design agents that rather than choosing
the state with best observed reward, instead randomly choose
a state from a top quantile. This is the idea of quantilisation.
Taylor [2016] argues that quantilisation leads to more robust



performance when misspecifications in the target function are
possible. Reward corruption may be viewed as a misspecifica-
tion of the target function for RL agents.

In order to give a simple definition of a quantilising agent
for RL, we make the following assumption.3

Assumption 14 (Agent control). Let T (s′ | s, π) be a random
variable for the time it takes a stationary policy π : S → A
to reach s′ from s. The diameter of a CRMDP is D :=
maxs,s′ minπ:S→A E[T (s′ | s, π)]. Assume that the CRMDP
has finite diameter D <∞, and that there is an action astay ∈
A such that T (s | s, astay) = 1 for all s ∈ S.

Definition 15 (Quantilising Agent). For δ > 0, the δ-
quantilising agent πδ explores all states. Then it stays in a state
s chosen uniformly at random from Sδ = {s : R̂(s) ≥ 1− δ},
the top quantile of high observed reward states.

For example, a quantilising robot in Example 1 would first
try to find many ways in which it could get high observed
reward, and then randomly pick one of them. If there are many
more high rewards states than corrupt states, this will give it
high true reward with high probability.

Theorem 16 (Quantilisation). In any CRMDP satisfying As-
sumptions 10 and 14, the δ-quantilising agent πδ suffers
time-averaged regret at most limt→∞

1
tReg(M, πδ, s0, t) ≤

1− (1− δ)(1− q/|Sδ|).

Proof. The observed reward R̂(s) in any state in state s ∈ Sδ
is at least 1− δ. At most q of these states are corrupt; in the
worst case their true reward is 0. The other |Sδ| − q states
have true reward at least (1 − δ). Thus, with probability at
least (|Sδ| − q)/|Sδ| = 1 − q/|Sδ| the δ-quantilising agent
obtains true reward at least (1− δ) at each time step.

The informed agent gets at most true reward 1 at each time
step. The difference gives the stated regret bound.

The strength of the bound depends heavily on the prob-
lem. The time-averaged regret gets close to zero when q/|Sδ|
is small for small δ, i.e. when high reward states are more
numerous than possibly corrupt states q. For example, if the
fraction q/|S| of corrupt states is 0.001% due to various safety
features of the reward channel, and if Sδ contains the 1% high-
est reward states, then with probability 0.999 the quantilising
agent will avoid the corrupt states. If in addition the rewards
are distributed evenly between 0 and 1 (Assumption 12), then
the agent only needs to sacrifice ≈ 1% in performance for a
0.999 probability of avoiding corrupt states. In other cases, the
performance loss may be much more substantial (e.g. when q
is large or when high reward states are scarce). Even so, we
consider the quantilising agent to be a promising modification
of a traditional RL agent, offering enhanced robustness for a
sometimes reasonable price in (expected) performance. Fur-
ther research may investigate more efficient implementations
and empirical performance of quantilising agents, as well as
extensions to infinite state spaces. Taylor [2016] discusses
some general open problems related to quantilisation.

3 Anonymous [2017] gives a more technically involved definition
that requires less strong assumptions.

6 Decoupled Reinforcement Learning
The problem hampering RL agents is that each state is self-
estimating its own reward, since the agent only learns about
the reward of s when in state s. Thereby, a “self-aggrandising”
corrupt state where the observed reward is much higher than
the true reward will never have its false claim on reward chal-
lenged. In this section, we argue that several alternative value
learning frameworks have in common that the agent can learn
the reward of states other than the current state. We also
investigate when this solves the reward corruption problem.

6.1 Alternative Value Learning Methods
Reinforcement learning (RL) is not the only value learning
scheme proposed in the literature. A few alternatives are:

• Inverse reinforcement learning (IRL) [Ng and Russell,
2000]. Here the agent observes the actions of an expert or
supervisor that knows the true reward function Ṙ. From
the supervisor’s actions (or state-action trajectories), the
agent may infer Ṙ to the extent different reward functions
endorse different actions.

• Learning values from stories (LVFS) [Riedl and Harrison,
2016]. Stories in many different forms (including news
stories, fairy tales, novels, movies) convey cultural values
in their description of events, actions, and outcomes. If
Ṙ is meant to represent human values (in some sense),
stories may be a good source of evidence.

• In (one version of) semi-supervised RL (SSRL) [Amodei
et al., 2016], the agent will from time to time receive a
careful evaluation of a given situation.

These alternatives to RL have one thing in common: They
let the agent learn (something about) the value of some states
s′ different from the current state s. For example, in IRL
the supervisor’s action informs the agent not so much about
the value of the current state s, as of the relative value of
states reachable from s. If the supervisor chooses an action a
rather than a′ in s, then the states following a must have value
higher or equal than the states following a′. Similarly, stories
describe the value of states other than the current one, as does
the supervisor in SSRL. We therefore argue that IRL, LVFS,
and SSRL all share the same abstract feature, which we call
decoupled reinforcement learning:

Definition 17 (Decoupled RL). In a CRMDP with decoupled
feedback, in state s the agent sees a pair 〈s′, R̂s(s′)〉, where
the observed reward R̂s(s

′) pertains to a state s′ that may
differ from the current state s. We let R̂s(s′) :=Cs(Ṙ(s′)) or
R̂s(s

′) := #, depending on whether the reward of s′ is observ-
able from s or not (more about observability in Section 6.3).

The observed reward R̂s(s′) = Cs(Ṙ(s′)) depends both on
the reward state s′ being evaluated, and on the current state
s that determines the reward corruption via the corruption
function C. The agent therefore has one observed reward
function R̂s : S → R̂

⋃
{#} for each state s. When reward

corruption is limited, many of these will match. RL is the
special case of decoupled RL where the agent can only observe
the reward of s′ = s in each state s. In other instances of



decoupled RL, the agent can learn about the reward of states
s′ distinct from the current state s. Depending on whether s is
a state with sensory corruption, the agent’s information about
the reward in s′ may be accurate or not.

The possibly corrupt reward in decoupled RL corresponds
to other types of sensory errors in IRL and LVFS. In IRL, if
the agent is in a “good” non-corrupt state s, then the agent
will make an accurate observation of the supervisor’s action
or state-action trajectory. But if the agent is in a “bad” cor-
rupt state, then the observed supervisor action may have little
connection to the optimal action, and the agent may make
the wrong inference about the true reward function Ṙ. In our
decoupled-RL abstraction, the two situations correspond to
an observed reward R̂s(s′) equalling Ṙ(s′) or not (see Ex-
ample 21). Similarly, in LVFS, stories may only make sense
or reflect human values in non-corrupt states, but not in cor-
rupt ones; in SSRL, the supervisor’s evaluation need only
correspond to the truth when in non-corrupt states.

6.2 Example
We begin with an example of an agent in a CRMDP with de-
coupled feedback. The example illustrates how the agent can
cross-check states against each other, to rule out hypotheses
and learn which states are corrupt and which are not.
Example 18 (Decoupled RL). Let S = {s1, s2} and letR =
{0, 1}, and assume that all states can observe the reward of
each other, so R̂s(s′) is never #. Assume that the agent knows
that at most q = 1 state is corrupt.

We can represent any true reward function Ṙ with a
pair (ṙ1, ṙ2) := (Ṙ(s1), Ṙ(s2)), and any observed reward
function R̂s(s′) by a list of pairs [(r̂11, r̂12), (r̂21, r̂22)] :=

[(R̂s1(s1), R̂s1(s2)), (R̂s2(s1), R̂s2(s2))], where the ith pair
represents the rewards the agent sees from state si. Assume
that the agent observes the same rewards from both states s1

and s2, so R̂ = [(0, 1), (0, 1)]. What can it say about different
hypotheses about the true reward Ṙ?

R̂s1 R̂s2 Ṙ possibilities
Decoupled RL (0, 1) (0, 1) (0, 1)
RL (0,#) (#, 1) (0, 0), (0, 1), (1, 1)

First note that an observed pair (r̂i1, r̂i2) differs from the true
reward (ṙ1, ṙ2) if and only if the state si is corrupt. Therefore,
any other hypothesis than Ṙ = (0, 1) must imply that both
states s1 and s2 are corrupt. Since the agent knows that at most
q = 1 states are corrupt, it can safely conclude that Ṙ = (0, 1),
i.e. that Ṙ(s1) = 0 and Ṙ(s2) = 1.

In contrast, an RL agent only sees the reward of the
current state. In our representation, this would look like
R̂ = [(0,#), (#, 1)]. If one state can be corrupt, this means
that the RL agent can only rule out Ṙ = (1, 0). The hypothe-
ses Ṙ = (0, 0) can be explained by s2 being corrupt and
Ṙ = (1, 1) can be explained by s1 being corrupt. ♦

6.3 Managing Corrupt Rewards
Depending on the problem, not all states s′ may be observed
from all states s; that is, not all combinations of state s and

reward state s′ may be possible. For example, in RL only the
reward of s′ = s can be observed from s, whereas in LVFS
the reward of any “describable” state s′ can be observed from
any state s where it is possible to hear a story. One way to
visualise this is through observation graphs (Figure 1).
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(a) Observation graph for RL.
Only self-estimations of reward
are available. This prevents ef-
fective strategies against reward
corruption.
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(b) Observation graph for decou-
pled RL. The reward of a node
s′ can be observed from several
nodes s, and thus assessed under
different corruption functions.

Figure 1: Observation graphs.

Definition 19 (Observation graph). The observation graph
(S, E) of a decoupled RL problem is a directed graph on the
set S of states, with an edge (s, s′) ∈ E if a (possibly corrupt)
reward of state s′ can be observed from s.

For example, in SSRL, there may be no limitation to the
states the supervisor can evaluate. The supervisor’s evaluation
may not be available in all states, however. This would imply
an observation graph where all states have ingoing edges, and
states where the supervisor performs evaluations having many
outgoing edges.

Note that the general impossibility result in Theorem 9 can
easily be adapted to the decoupled RL setting for an arbitrary
observation graph, since the agent still has no way of distin-
guishing between a situation where no state is corrupt and a
situation where all states are corrupt in a consistent manner.
However, a difference between RL and decoupled RL appears
under Assumptions 10 and 11:
Theorem 20 (Decoupled RL manages corrupt rewards under
simplifying assumptions). Assume a CRMDP with decoupled
RL feedback with finite diameter and where the agent can visit
all pairs (s, s′) ∈ S × S. Assume further that the CRMDP
satisfies Assumptions 10 and 11 with some q and partition
S = Ssafe

⋃̇
Srisky. Let Sobs

s′ = {s ∈ S : R̂s(s
′) 6= #}. If for

each reward state s′, either Sobs
s′
⋂
Ssafe 6= ∅ or |Sobs

s′ | > 2q,
then there exists an agent π with sublinear regret; i.e. with
limt→∞

1
tReg(M, π, s0, t) = 0.

The proof is elementary, since for every state s′ either a
safe (non-corrupt) state s or a majority vote of more than 2q
states is guaranteed to to provide the true reward Ṙ(s′). For
the showering robot of Example 1, decoupled RL allows the
robot to infer the reward of the showering state when in other
states. For example, the robot can ask a human in the kitchen
about the true reward of showering (SSRL).

Without the conditions of Theorem 20, a cluster of mutually
endorsing, corrupt nodes can take the role of a single corrupt
state overestimating its reward in RL. The conditions prevent
such a cluster of corrupt nodes. Due to the “self-estimation”



property of the RL observation graph, the conditions can only
be satisfied in RL when S = Ssafe or q = 0. A similar
theorem can be proven under slightly weaker conditions by
letting the agent iteratively figure out which nodes are corrupt,
and then exclude them from the analysis.

6.4 Implications
Theorem 20 gives an abstract condition for when a value
learning method is able to safely avoid the reward corruption
problem. The decoupled RL model is tightly related to SSRL,
and the theorem directly applies to this setting. However,
decoupled RL is not a perfect model of either IRL or LVFS, as
in these models the reward information about different states
is often implicit. Further work will therefore be required to
adapt the abstract decoupled RL insights to specific IRL and
LVFS contexts.

In spite of the imperfect abstraction, Theorem 20 can be
used to decide whether IRL agents solve the reward corruption
problem or not. This question has generated substantial dis-
cussion among AI safety researchers. Views range from IRL
agents being completely safe, to the view that IRL agents only
observe a function of the reward function (the optimal policy
or action), and are therefore equally susceptible to reward cor-
ruption as RL agents. The following example shows that in
a generalised model where sensory corruption applies to the
supervisor actions that IRL agents observe, IRL agents can
suffer large regret due to sensory corruption in some contexts
that fail to meet the conditions of Theorem 20.

Example 21 (IRL sensory corruption). Consider the CRMDP
depicted below, with its observation graph displayed on its
right side. Arrows show the transitions induced by different
actions, with labels giving the probabilities for stochastic tran-
sitions. Assume that when in state si ∈ {s1, s2}, the agent
observes a supervisor action a in that state si. As before,
sensory error is possible, so the observed action â may not
correspond to the true supervisor action ȧ.

s1 s2

a1

p=0.99 p=0.01a1

a2
â = ȧ = a1

ȧ = a2

â = a1

s1 s2

In this particular example, assume that s2 is corrupt while s1

is non-corrupt, and that the supervisor prefers the non-corrupt
state s1. Neither of these facts are available to the agent.
The agent assumes that states are non-corrupt unless there is
evidence to the contrary,4 and tries to infer the supervisor’s
preferences from their actions.

In the non-corrupt state s1, the agent (correctly) observes
the supervisor taking (the only) action a1. In the corrupt state
s2, the supervisor takes action ȧ = a2 to move to s1, but the
agent incorrectly observes the action as â = a1. Based on
the agent’s imperfect observations, the best explanation is that

4 Letting the agent trust a reward estimate of a state only after
it has multiple sources of evidence about it may help somewhat.
However, a similar example can still be constructed by replacing s2
with a cluster of mutually consistent states.

the supervisor prefers s2 to s1, while in reality the supervisor
prefers s1 to s2. The fact that s2 cannot be reached from s1

means that no information about the relative reward between
s1 and s2 can be gained while in the non-corrupt state s1. In
the observation graph (depicted to the right of the CRMDP),
this corresponds to no arrow from s1 to s2.

Consider the alternative, where an extra action a2 in s1

permits the supervisor to reach s2 from s1. The agent (still,
correctly) observes the supervisor taking action a1 in s1. This
indicates that the supervisor prefers s1 to s2, and contradicts
the information obtained in s2. The contradicting information
allows the agent to infer that at least one of the states is corrupt.
In the observation graph, adding the extra action a2 in s1

corresponds to adding an extra observation link s1 to s2. This
alternative CRMDP is depicted below, with its observation
graph to the right.

s1 s2

a2

a1

p=0.99 p=0.01a1

a2

â = ȧ = a1

ȧ = a2

â = a1

s1 s2

♦

The example shows how, similarly to the case of RL and
Theorem 13, IRL agents may also suffer high regret even if
just a few states are corrupt. Thus, in situations where it is
uncertain whether the observation graph satisfies the condi-
tions of Theorem 20, quantilisation (Section 5) may offer more
robust performance in the face of possible reward corruption.

7 Conclusions

Our aim was to study the consequences of a corrupt reward
channel. While it is impossible for any agent to learn from an
arbitrarily corrupt channel (Theorem 9), we had greater hopes
for cases where the number of corrupt states was limited.
We found that traditional RL agents still perform poorly in
this case, as they may get stuck in a low reward state with
high corrupt observed reward. More surprisingly, CRMDP
agents that are aware of possibility of reward corruption also
performed poorly, since they had no way of learning whether
a high reward was due to high true reward or a corrupt signal.

We investigated two ways around this problem. The first,
based on quantilisation, lets the agent reduce the risk by ran-
domly choosing between many states with reasonably high
reward. When high reward states are much more numerous
than corrupt states, this greatly reduces the risk to a small cost
in expected performance. We also tried giving the agent richer
observations that allow the agent to learn which states have
high true reward, and which states are corrupt. We argued that
several proposed value learning schemes, including IRL, give
the agent richer observations than RL. Theorem 20 provided
a sufficient condition for how rich the information needs to
be in order to avoid the reward corruption problem. Our re-
sults indicate that there are promising ways around the reward
corruption problem, both within the RL framework and in
alternative frameworks such as IRL.
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