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ABSTRACT
Discovering relations between chemical reaction networks (CRNs)
is a relevant problem in computational systems biology for model
reduction, to explain if a given system can be seen as an abstraction
of another one; and for model comparison, useful to establish an
evolutionary path from simpler networks to more complex ones. This
is also related to foundational issues in computer science regarding
program equivalence, in light of the established interpretation of a
CRN as a kernel programming language for concurrency. Criteria
for deciding if two CRNs can be formally related have been recently
developed, but these require that a candidate mapping be provided.
Automatically finding candidate mappings is very hard in general
since the search space essentially consists of all possible partitions
of a set. In this paper we tackle this problem by developing a genetic
algorithm for a class of CRNs called influence networks, which can
be used to model a variety of biological systems including cell-cycle
switches and gene networks. An extensive numerical evaluation
shows that our approach can successfully establish relations between
influence networks from the literature which cannot be found by
exact algorithms due to their large computational requirements.
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1 INTRODUCTION
A popular model in many natural sciences, chemical reaction net-
works (CRNs) have become popular in computer science in light of
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the convergence between computational processes and molecular
systems [23]. In this paper we study the problem of comparing
CRNs: that is, to decide whether a given source CRN can be related
to a target one in some appropriate sense. This is mainly motivated
by applications in computational biochemistry. For example, one
may want to explain an evolutionary pathway from a simple system
to a more complex one which still exhibits some of the original
behavior [4–6]. In DNA computing, one would like to compare a
specification CRN, representing the observable dynamics of interest,
against an implementation CRN which takes into account constraints
imposed by the materials and the technology used [24]. Seeing
CRNs as a basic programming language for concurrency [3], CRN
comparison resembles to program comparison and minimization, a
fundamental issue in computer science.

Notions of CRN comparison that do not consider quantitative
dynamics ([13, 18, 19]) do not allow answering questions regarding
important dynamical properties: for instance, whether two distinct
CRNs can achieve the same switch-like behavior under appropriate
conditions [6]. A kinetics-aware CRN comparison is presented
in [24], but this is specialized for DNA implementation.

A more general result based on the notion of emulation has been
recently proposed by Cardelli [4]. It is based on the well-known
interpretation of a CRN as a system of ordinary differential equations
(ODEs) whereby each species of the CRN is associated with an
ODE that governs the net change of its concentration as a function
of time (e.g. [26]). Roughly speaking, emulation describes that
the ODE solutions of a source CRN exactly overlap those of a
target CRN at all time points, for a given mapping of species of
one CRN onto the other. However, an algorithm to identify an
emulation (i.e., to synthesize a mapping of species) is not given
in [4]. Recently, emulation has been shown to be a stricter variant
of backward differential equivalence (BDE) [11], an equivalence
relation over the ODE variables. A partition-refinement algorithm
computes the coarsest BDE that refines a given initial partition of
species, running in polynomial time and space [8, 11]. On its own,
however, it does not directly give emulations because a coarsest BDE
refinement is not necessarily an emulation; however, an emulation
must be a refinement of the largest BDE.

Instead, finding all possible emulations between two CRNs is
possible through an algorithm, named CAGE, that computes the set
of all possible BDEs (which thus will contain all emulations) [7].
However often emulations may be a small fraction thereof. This may
waste most of the computation required by the algorithm. In practice,
this means that networks no larger than 30 species can currently be
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(a) MI (b) AM

Figure 1: Examples of influence networks.

analyzed, beyond which the large space complexity of CAGE starts
to have an effect.

In this paper we present an approach to discovering relations
between CRNs through emulations using a genetic algorithm, which
we name EGAC : Emulations through Genetic Algorithm Computa-
tions. We focus on a class of CRNs called influence networks [4],
which is relevant for the formal description of biomolecular interac-
tions such as inhibitions and activations; as such, influence networks
have been used to describe cell cycles and gene networks, for in-
stance [6]. The main features of our approach are (i) a compact
encoding of an individual, which exploits information about the
structure of an influence network and about necessary conditions for
the existence of an emulation; (ii) the design of a fitness function
that uses the BDE partition-refinement algorithm to measure the
distance between the individual and a possible emulation.

We apply our algorithm to the influence networks first introduced
in [4] and then algorithmically analyzed with CAGE [7]. With a
prototype implementation, we find that EGAC recovers previously
found emulations. More important, it can successfully discover
relations in instances where CAGE fails, thus promoting EGAC as
an alternative for the analysis of larger scale networks.

Paper outline. Section 2 briefly reviews background material.
Section 3 discusses the design of EGAC. Section 4 presents its im-
plementation and the numerical results. Section 5 discusses related
work while Section 6 concludes.

2 BACKGROUND
To make the paper self-contained we review of CRNs, we discuss
the notions of emulation to compare CRNs, and BDE, the induced
equivalence relation over species.

2.1 Chemical Reaction Networks
Formally, a CRN is a pair (S,RS) of a finite set of species S and a
finite set of reactions RS . A reaction is a triple written in the form

ρ
k−−→ π , where ρ and π are multisets of species, called reactants and

products, respectively, and k > 0 is the reaction rate. The operator
+ denotes multiset union, e.g., X + Y + Y is the multiset {|X ,Y ,Y |}.
For example, the reaction

A + B
k−−→ C (1)

indicates that species A and B are transformed into species C with
rate k. Throughout this paper we shall consider the well-known
interpretation of a CRN as a system of ODEs with mass-action

kinetics [26]. This associates each species X with a variable VX . Its
ODE describes the net change of the concentration as a function of
time. More specifically, a CRN (S,RS) is associated with the ODE
system ÛV = f (V ), with f : RS → RS , where each component fX ,
with X ∈ S is defined as:

fX (V ) :=
∑

ρ
α−−→π ∈S

(π (X ) − ρ(X )) · α ·
∏
Y ∈S

V
ρ(Y )
Y .

Here ρ(X ) and π (X ) denote the multiplicity of species X in the
multisets ρ and π , respectively. It satisfies a unique solution V (t) =
(VX (t))X ∈S for any given initial conditionV (0). For example, in the
reaction (1), the ODEs are given by

ÛVA = −kVAVB ÛVB = −kVAVB ÛVC = kVAVB

with solutions that can be computed using standard numerical tech-
niques.

2.2 Influence Networks
Influence networks are a special class of CRNs that can be used to
describe a variety of biological processes [4]. An influence network
can be represented as a graph of (stateful) influence nodes connected
via influence edges that express activation or inhibition. Figure 1
shows two networks, MI and AM, which will be used throughout
the remainder of this paper. The AM network models a cell cycle
switch that is needed to avoid genetic instability during replication,
while MI is a mutual inhibition system [4].

Each influence node (e.g., X and Y ) is translated into a pattern
of three species (e.g., X0, X1, X2, and Y0, Y1, Y2) and four reactions.
The reactions realize the influence edges. Each node can have a
connection at each terminal: high output (solid line), representing
the species with subscript 0, low output (dashed line), representing
the species with subscript 2, activation input (circle) and inhibition
input (bar). Species with index 1 introduce nonlinearity in transitions
and are never otherwise connected to the network [4]. If i and a are
the inhibitor and activation input species for the influence node X ,
respectively, then X is associated with the following four reactions:

X0 + i
α01−−−→ i + X1, X1 + i

α12−−−→ i + X2,

X2 + a
α21−−−→ a + X1, X1 + a

α10−−−→ a + X0,

where α01,α12,α21,α10 are given rate coefficients.

Example 2.1. For a choice of rates useful in the forthcoming
examples, MI and AM have the following CRNs (left and right,
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Figure 2: ODE solutions of (a) MI and (b) AM. Trajectories of
MI overlap in pairs (i.e., Y0/Z2, Y1/Z1, Y2/Z0) thus they are not
visually distinguishable in the plot.

respectively):

Y0 + Z0
k1−−→ Z0 + Y1

Y1 + Z0
k2−−→ Z0 + Y2

Y2 + Y0
k3−−→ Y0 + Y1

Y1 + Y0
k4−−→ Y0 + Y0

Z2 + Z0
k1−−→ Z0 + Z1

Z1 + Z0
k2−−→ Z0 + Z0

Z0 + Y0
k3−−→ Y0 + Z1

Z1 + Y0
k4−−→ Y0 + Z2

x0 + x2
k1−−→ x2 + x1

x1 + x2
k2−−→ x2 + x2

x2 + x0
k3−−→ x0 + x1

x1 + x0
k4−−→ x0 + x0

Hereafter, with the aim of distinguishing between source and
target CRN we will use upper-case and lower-case symbols, respec-
tively, for both influence nodes and their respective species names.

2.3 Emulation
The notion of emulation has been introduced in [4] to compare CRNs.
Roughly speaking, a source network is said to emulate a smaller
target network if it is possible to find appropriate initial conditions
such that the ODE trajectories of the two networks coincide. For
instance, let us consider the ODE trajectories of MI and AM shown
in Figure 2. For that choice of initial conditions the trajectories of MI
overlap in pairs, Y0/Z2, Y1/Z1, Y2/Z0, and each pair does match one
of AM, i.e., x0, x1, and x2, respectively. The intuitive interpretation
of emulation is that, while a more complex network exhibits richer
behavior than a simpler one, under appropriate conditions it can
reproduce the simple dynamics. This underlies an evolutionary
argument that the complex network may descend from the simple
one conservatively.

Formally, an emulation can be defined as a mapping µ from
species of the source network to species of the target network that
satisfies certain criteria. For instance, the overlappings in Figure 2

correspond to the emulation defined by the mapping:

µ(Z0) = x0 µ(Z1) = x1 µ(Z2) = x2 (2)

µ(Y0) = x2 µ(Y1) = x1 µ(Y2) = x0 (3)

Since nodes of influence networks correspond to triplet species,
one is interested in biologically meaningful emulations by means
of a node mapping that relates nodes with nodes, with the further
constraint that 1-indexed species are mapped to 1-indexed species
since those represent internal behavior. For instance, (2) and (3)
are such a node mapping. Given target and source nodes x and Y ,
respectively, we denote by Y → x a mapping that does not swap the
indices 0 and 2. Else, the mapping is denoted byY → ∼x . Therefore,
(2) and (3) can be equivalently represented as Z → x and Y → ∼x .
A node mapping which is an emulation is called node emulation.

We do not provide the original definition of emulation. Rather,
we state an alternative characterization that is based on BDE, which
relates ODE variables that have the same solution at all time points if
initialized with the same initial conditions. This will be instrumental
to the development of EGAC .

An emulation µ from a source CRN (S,RS) to a target CRN
(T,RT ) is characterized by the following two properties:

i)
{
µ−1(Xi ) : Xi ∈ S

}
is a BDE of (S,RS).

ii) If S ∩ T = ∅, then
{
µ−1(xi ) ∪ {xi } : xi ∈ T

}
is a BDE of the

union CRN (S ∪ T,RS ∪ RT ).
In words, all source species mapped to the same target species are
BDE equivalent in the source CRN, as well as in the union CRN. For
instance, in our exampleHMI = {{Y1,Z1}, {Y0,Z2}, {Y2,Z0}} is a
BDE of MI, whileHAMI = {{Y1,Z1,x1}, {Y0,Z2,x2}, {Y2,Z0,x0}}
is a BDE of the CRN obtained by the union of MI and AM. The
requirement S ∩ T = ∅ is without loss of generality, as it is always
possible to rename the species in a CRN. In particular, this is the
case with the capitalization convention adopted in this paper.

Conditions i) and ii) are important because [4] describes criteria
to check if a given candidate mapping is an emulation but does not
provide an algorithm to search for emulations. The relationship with
BDE goes toward an algorithm treatment. However the possibility
of computing the largest BDE alone does not suffice because, in
general, the largest BDE does not satisfy the emulation criteria. Also,
there might be more than one emulation among two CRNs. This
is overcome in [7] where the authors provide an algorithm, CAGE,
that uses the largest-BDE computation as an inner step and returns
all possible emulations among two CRNs. This is done by first
computing all possible BDEs of the union CRN, filtered through the
above two characterizing properties.

CAGE is general: in fact, it can be used to compute all BDEs
of a large class of nonlinear ODE systems (including, for instance,
mass-action CRNs that are not induced by influence networks). The
algorithm is driven by purely geometric properties of the ODEs.
As a consequence, domain-specific information cannot be encoded
straightforwardly within CAGE, such as:
D1) only search biologically meaningful emulations between influ-

ence networks (i.e., node mappings);
D2) avoid searching for BDEs that are not emulations.

Because of this, in practice CAGE does not scale well with in-
creasing network sizes. In addition to the exact algorithm, a bounded
version (hereafter called bCAGE) is discussed in [7] which provides
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an under-approximation of the set of all BDEs with the aim of re-
ducing memory consumption. With our domain-specific EGAC
we encode domain-specific knowledge directly in the algorithm,
showing its effectiveness with respect to both CAGE and bCAGE.

3 EGAC
In EGAC , we express the domain-specific knowledge D1 and D2
with the encoding of the individual and a specific design of the
fitness function, respectively.

Individual. To encode D1, we only consider partitions of S ∪ T
that represent a node mapping from S to T. For this, we denote by
N(S) (resp., N(T)) the set of influence nodes of the source (resp.,
target) influence network, and equip N(S) with an order, denoted
by v. Then, the individual consists of an array where each element
contains the image of the source node at that position, according
to the given ordering. For instance, the node emulation given by
Y → ∼x and Z → x in our running example is represented with the
individual [∼x ,x] according to the lexicographical ordering.

More precisely, we have the following:

(1) The individual is a sequence of symbols [s1, . . . , sn ] with
n = |N(S)| and si ∈ {x | x ∈ N(T)} Û∪{∼x | x ∈ N(T)}.

(2) An x , with x ∈ N(T), at position 1 ≤ i ≤ n in the individual
induces the mapping X → x , where X is the i-th symbol in
the ordered sequence induced by v.

(3) A ∼x , with x ∈ N(T), at position 1 ≤ i ≤ n in the indi-
vidual induces the mapping X → ∼x , where X is the i-th
symbol in the ordered sequence induced by v.

The partitionH of S ∪ T corresponding to an individual ind is
constructed in Algorithm 1. First, it generates the set of singletons
{{xi } | xi ∈ T}. Then it populates each singleton block with the
source species from S mapped to the corresponding target species.

Selection, Mutation and Fitness. Selection is done with a stan-
dard tournament scheme. At every generation a series of tournaments
determines which individuals are the most fit and then proceeds with
the two-point cross-over and mutation operations on the surviving
individuals. Mutation was implemented using Algorithm 2, perform-
ing a swap between two elements of an individual. In experiments
not reported here, using standard mutation functions such as bit-flip
led to less successful results.

The routine implementing the fitness function relies on the auxil-
iary function isNodeMapping (Algorithm 3), which verifies whether
a given individual does encode a node mapping. Such a check
is necessary because, in contrast to mutation, cross-over does not
transform node mappings to node mappings in general.

Algorithm 4 shows the overall computation of the fitness func-
tion. In case an individual does not encode a node mapping, it
is associated with a constant penalty P . Otherwise, the auxiliary
routine individualToPartition computes H, the partition of S ∪ T
representing the individual ind . ThenH′ is obtained as the coarsest
BDE partition of S ∪ T which refines H. This is done using the
partition-refinement algorithm from [8] whose time complexity is
polynomial in the number of species and reactions of the input CRN.
If H′ = H, then the input partition H is a BDE, hence an emula-
tion. Instead, if H′ , H, then partition H′ has more blocks than
H. Since |N(T)| ≤ |H′ | becauseH encodes a node mapping,H′

Algorithm 1 Routine computing the partitionH underlying an indi-
vidual ind; iX denotes the position in ind associated to X ∈ N(S)
while ind[iX ] gives the element of the individual at iX .

function INDIVIDUALTOPARTITION(ind)
for x in N(T) do

Hx,0 ← {x0}
Hx,1 ← {x1}
Hx,2 ← {x2}

end for
for X in N(S) do

if ind[iX ] ∈ N(T) then
let x ∈ N(T) be such that x = ind[iX ]
Hx,0 ← Hx,0 ∪ {X0}
Hx,1 ← Hx,1 ∪ {X1}
Hx,2 ← Hx,2 ∪ {X2}

else
let x ∈ N(T) be such that ∼x = ind[iX ]
Hx,0 ← Hx,0 ∪ {X2}
Hx,1 ← Hx,1 ∪ {X1}
Hx,2 ← Hx,2 ∪ {X0}

end if
end for
return {Hx, j | x ∈ N(T), 0 ≤ j ≤ 2}

end function

Algorithm 2 The mutation function.

function MUTATE(ind)
pick randomly i, j ∈ {1, . . . , |N(S)|}
swap the nodes ind[i] and ind[j]
return ind

end function

Table 1: Influence networks used for the experiments.

Network AM MI CCR GW QI NCC

Size (number of species) 3 6 9 12 12 18

encodes an emulation if and only if |N(T)| = |H′ |. This motivates
to set the fitness of a node-mapping partition to |H′ |.

In other words, with the objective of minimizing the fitness func-
tion, EGAC favors individuals such that the number of equivalence
classes of their largest BDE refinement is closer to that of an em-
ulation, |N(T)|. In the worst case, re�neBDE returns a partition
with singleton blocks, of size |S| + |T |. Thus, it suffices to set
P ≥ |S| + |T | in order to further penalize individuals which do not
represent a node mapping.

4 EXPERIMENTAL RESULTS
Set-up. In this section we evaluate EGAC on influence networks

from the literature, as collectively studied in [4]. These are depicted
in Figure 1 and Figure 3, and summarized in Table 1. We performed
three kinds of experiments. First, we studied the soundness of EGAC
by comparing it against the exact CAGE algorithm of [7]. Then,
we performed scalability experiments by considering networks of
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(a) QI (b) CCR (c) GW (d) NCC

Figure 3: Further considered influence networks.

Algorithm 3 Auxiliary routine verifying whether a given individual
encodes a node mapping.

function ISNODEMAPPING(ind)
H ← ∅
for X in N(S) do

if ind[iX ] ∈ N(T) then
let x ∈ N(T) be such that x = ind[iX ]

else
let x ∈ N(T) be such that ∼x = ind[iX ]

end if
H ← H ∪ {x}

end for
if H = N(T) then

return true
else

return false
end if

end function

Algorithm 4 The fitness function.

function FITNESSFUNCTION(ind)
if not isNodeMappinд(ind) then

return P
end if
H ← individualToPartition(ind)
H′ ← re f ineBDE(H)
return |H′ |

end function

larger size which could not be handled by CAGE. Finally, we studied
the sensitivity of the performance of EGAC on its parameters (i.e.,
cross-over and mutation probabilities, population and maximum
number of generations).

For the scalability analysis, we compared EGAC against bCAGE,
the bounded version of CAGE discussed in Section 2 that under-
approximates the set of emulations. The set-up of bCAGE was such
that it ran with the best possible settings to increase the likelihood
of finding emulations: For every model that could not be covered by
CAGE, the memory bound of bCAGE was set to 75% of the memory
requirement that made CAGE issue an out of memory exception.
This was possible because CAGE reports on its memory consumption
during execution.

Table 2: EGAC settings

Initial Population Randomly generated

Selection Tournament size 3

Cross-over probability 0.50

Cross-over function Two-point

Mutation Probability 0.25

Mutation Function Custom Mutation (Alg. 2)

Fitness Function Custom Fitness Function (Alg. 4)

Type of optimization Minimization

Stopping criterion Max number of generations

We chose representative instances of source/target CRNs so as
to explore increasingly larger search spaces. The cardinality of the
search space can be computed using the following.

PROPOSITION 4.1. For a given source network (S,RS) and
target network (T,RT ), the search space size is (2 · |N(T)|) |N(S) | .

The networks for assessing scalability were synthesized by cre-
ating multiple independent copies (via appropriate renaming) of
networks from Table 1. Thus, for example, NCC2 is formed by two
copies of the original network NCC. This choice of set-up has a
twofold motivation. First, it affords a biological interpretation in
terms of an evolutionary pathway from smaller to larger networks,
driven for instance by gene duplication [6]. Second, although for all
of the as-constructed instances CAGE ran out of memory, we can
provide an estimation for the number of node emulations there exist
based on the knowledge of the number of node emulations between
the same networks with a single replica.

PROPOSITION 4.2. Fix an influence source network (S,RS),
an influence target network (T,RT ) and assume that there are
m ≥ 1 node emulations from S to T. Let further (S⊗n ,RS⊗n )
and (T⊗ν ,RT⊗ν ) denote the corresponding CRNs with n and ν in-
dependent replicas of species and reactions, respectively. In the
case n ≥ ν , the number of node emulations from (S⊗n ,RS⊗n ) to
(T⊗ν ,RT⊗ν ) is at least

mn ·
∑

k1+...+kν=n,
k1, ...,kν ≥1

(
n

k1, . . . ,kν

)
,
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Table 3: Numerical results

Soundness Experiments

Setting EGAC CAGE RS

Source Target Search space Pop. Gen. Found Runtime Found Runtime Found

CCR AM 8 100 10 2 6 s 2 1 s 2
QI AM 16 100 10 2 8 s 2 14 s 2

GW AM 16 100 5 2 4 s 2 1 s 2
NCC AM 64 100 20 1 17 s 2 1 523 s 2

QI MI 256 100 5 2 5 s 2 15 s 2
GW MI 256 100 5 2 5 s 2 1 s 2
QI CCR 1 296 500 5 2 27 s 4 15 s 4

NCC CCR 46 656 1 000 5 1 70 s 4 1 564 s 0
NCC QI 262 144 1 000 20 1 268 s 4 1 556 s 1

Scalability Experiments

Setting EGAC bCAGE RS

Source Target Search space Pop. Gen. Found Runtime Found Prop. 4.2 Runtime Found

NCC2 AM 4.0E+03 200 10 1 35 s 0 4 4 024 s 3
NCC2 AM2 1.6E+07 500 20 1 174 s 0 ≥ 8 4 117 s 0
NCC2 CCR 2.0E+09 1 000 20 2 367 s 0 16 4 037 s 0
NCC6 AM 6.8E+10 1 000 20 9 918 s 0 64 2 576 s 0
NCC3 CCR 1.0E+14 1 000 20 2 512 s 0 64 17 611 s 0
NCC3 QI 1.8E+16 10 000 20 1 5 249 s 0 64 19 973 s 0
NCC4 CCR 4.0E+18 10 000 20 2 6 588 s 0 256 15 835 s 0
NCC4 AM4 4.7E+21 10 000 30 2 9 610 s 0 ≥ 384 15 598 s 0

Table 4: Sensitivity results: soundness

Source Target
Cross-over and Mutation

0.30, 0.15 0.50, 0.25 0.70, 0.35

CCR AM 2 1 1
QI AM 2 1 2

GW AM 2 1 2
NCC AM 1 1 1

QI MI 1 1 2
GW MI 2 1 2
QI CCR 4 1 4

NCC CCR 1 1 1
NCC QI 0 1 1

where
( n
k1, ...,kν

)
denotes the multinomial coefficient. The above

expression simplifies to ν ! ·mn in the case of ν ∈ {1,n} and provides
the actual number of node emulations for ν = 1.

As a consequence, this set-up allowed us to study instances which
guarantee the existence of at least one emulation (since EGAC can-
not clearly prove the absence of emulations between networks),
and to have a measure of the relative frequency of occurrence of
emulations with respect to the overall search space.

To study the effectiveness of the genetic algorithm, we addition-
ally performed a comparison against a random sampler (RS) that

Table 5: Sensitivity results: scalability.

Source Target
Cross-over and Mutation

0.30, 0.15 0.50, 0.25 0.70, 0.35

NCC2 AM 4 4 4
NCC2 AM2 8 7 7
NCC2 CCR 4 3 4
NCC6 AM 63 58 51
NCC3 CCR 2 6 9
NCC3 QI 7 4 5
NCC4 CCR 9 18 11
NCC4 AM4 0 1 0

generated a number of randomly generated individuals equal to the
total number of individuals explored by EGAC . In particular, the
stopping criterion was set as a limit on the number of generations.
This allowed EGAC to search possibly multiple emulations rather
than stopping after the minimum fitness is reached. Instead, popula-
tion sizes and maximum number of iterations were varied depending
on the total search space of a specific problem instance.

Implementation. A prototype of EGAC was implemented in
Python, using the DEAP package for genetic algorithms [12]. EGAC
relies on the Eclipse-based tool ERODE [9], in order to execute the
re�neBDE function of Algorithm 4. ERODE implements a recently
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proposed polynomial-time algorithm to compute the coarsest BDE
refinement of a partition of species for CRNs with mass action kinet-
ics [8, 10]. CAGE and bCAGE were taken from the supplementary
material accompanying [7], developed as Matlab scripts interfaced
with ERODE. Runtimes were taken on a laptop machine equipped
with a 2.20 GHz Intel Core i5-5200U and 8 GB RAM.

Results. The results are presented in Table 3. For each problem
instance, we show the source and target CRN, the search space com-
puted using Proposition 4.1, and the model-specific EGAC settings
concerning the population size and maximum number of generations.
For EGAC , CAGE, and bCAGE we report the number of distinct
emulations found at the end of one execution as well as its overall
runtime. For RS we only report the number of emulations found
since the runtime is comparable to EGAC .

For the soundness tests, the first main observation is that the en-
coding of the individual yielded a dramatic reduction of the search
space, such that emulations can be feasibly found by enumerating
all possible candidates. This shows the effectiveness of the encoding
provided. Nevertheless we ran EGAC for completeness, always
returning at least one emulation in all cases. Instead emulations
were not found in the instances with the largest search spaces. We
remark that with those settings the EGAC runtimes were consider-
ably smaller than CAGE. The results of RS confirm that the smaller
instances are not challenging due to the compact representation, but
no emulations are found already between NCC and CCR.

As discussed above, CAGE issued out-of-memory errors in all
scalability experiments. This is because its major bottleneck is in the
computation of all BDE partitions of the source network, which has
at least twice as many species as in the previous batch of instances.
Running bCAGE with its best memory settings on the scalability
instances did not find any emulation; for comparison, alongside we
also report the estimations on the number of emulations computed
using Proposition 4.2. By contrast, EGAC was able to find at least
one emulation in all cases, running at most within 3 h; Except for
the smallest instance, in all cases RS found no emulation. This can
be justified by the fact that the fraction of emulations with respect to
the total search space becomes increasingly smaller, thus defying a
random sampling.

In Tables 4 and 5 we report the experiments regarding the sen-
sibility of EGAC on both batches of networks. We experimented
with three different configurations. The middle case is the same as
in the experiments reported in Table 3. However, here we changed
the initial population and the maximum number of generations. In
particular, for the soundness experiments we considered a population
of 1000 and a generation limit of 25. Instead, given the fact that
the search space of the scalability experiments is significantly larger
than the networks used in the soundness experiments, here we used
a population formed by 20 000 individuals and a generation limit
of 25. Throughout all the sensitivity experiments we used the same
random seed in order to start with the same initial population for
every experiment.

Unexpectedly, with the same crossover and mutation parameters
used in Table 3 EGAC returns a different number of emulations
because of the different population size and generation limit. In
general, however, EGAC is robust to parametric changes in that it
was able to find at least one emulation in almost all cases. It is worth

noticing that with this setup EGAC explored up to 500 000 different
individuals, which, in most of the scalability experiments, is a very
small percentage of the whole search space.

Summary. In summary, we highlight the major strengths and
weaknesses of our approach.

• EGAC is capable of discovering emulations between influ-
ence networks that can neither be handled by exact algo-
rithms nor be approximated by heuristic variants.

• Being based on a genetic algorithm, it can be trivially par-
allelized, unlike CAGE. By tuning its parameters larger
explorations of the search space are possible, to discover
further emulations than those found with our parameter
set-ups.

• On the other hand, unlike CAGE, EGAC cannot prove the
absence of an emulation, an equally biologically interesting
question that may help rule out certain evolutionary paths
between networks.

• Finally, EGAC is designed specifically for influence net-
works with mass-action kinetics. CAGE instead, is more
general because it allows finding all BDEs of a given system
of ordinary differential equations.

5 RELATED WORK
Genetic algorithms and programming [15, 22] have been used in
the past to compute analytical ODE solutions [1, 2], to simplify
the optimal control of continuous systems [17], and to solve partial
differential equations [21]. However, to our knowledge they have
not been used for comparing systems.

Formally, a CRN can be understood as a labeled directed hyper-
graph, hence an equivalence relation over the species such as BDE
corresponds to a specific (hyper-)graph partitioning. In this respect,
our present work can be related to an established line of research
on graph partitioning via genetic programming (see, e.g., the re-
view [14]). The optimization goal in the graph partitioning problem
is to find a minimal-cost edge cut such that the graph obtained after
the cut is splitted in k balanced blocks. The blocks are balanced
if and only if the difference in size between any two blocks of the
partition is at most one. On the other hand, in the emulation prob-
lem our minimization goal is different, we do not regard the cost
of splitting the partition but we focus on the fitness of the partition
based on the notion of BDE. However, our approach shares various
concerns with graph partitioning techniques. For instance, in [14]
a comparison is made between encodings of individuals based on
group numbers or edge encoding. In group-number encoding each
node of the graph is assigned a number that identifies the block of
the partition to which the node belongs. In edge encoding every
chromosome of a genome is bound to an edge and the encoding
expresses how the cut will be made. Different techniques such as
node-clustering and gene reordering are presented in [14] but they
hold no relation with our problem. Our approach is based on group-
number encoding. However, differently from the group-number
encoding technique presented in [14], our encoding does not suffer
the problem of redundancy (i.e. different individuals representing
the same partition).

In the graph partitioning problem, the main constraint is balance.
In EGAC, individuals are constrained to represent a node mapping.



GECCO ’17, July 15–19, 2017, Berlin, Germany S. Tognazzi et. al.

Two main techniques are proposed to solve the problem of individu-
als violating the constraint [14]. One suggests to repair the individual
immediately after crossover and mutation. The other is based on
giving a penalty to violating individuals, which is the scheme also
adopted in EGAC because we want keep individuals that violate
the constraint as those individuals can become fit after a series of
cross-overs or mutations thus justifying the choice of the penalty
scheme rather than the immediate repair scheme.

6 CONCLUSIONS AND FUTURE WORK
In this paper we presented EGAC , an approach based on a genetic al-
gorithm to formally relate influence networks. Future work will aim
at generalizations to other types of chemical reaction networks. Ex-
tensions that account for different kinetic mechanisms (such as Hill’s
kinetics) can already be accommodated. Indeed, this essentially
amounts to using a fitness-function evaluation that invokes a more
general partition-refinement algorithm for ordinary differential equa-
tions with rational derivatives [11]. Another interesting direction
is to explore how to embed prior knowledge or assumptions within
the genetic algorithm; for instance, the re-use of computations in
new comparisons where the source or the target network share some
structure with previously computed ones. Since parameters are often
not known precisely due to finite precision measurements, stochastic
noise or lack of information, it would be also interesting to extend
CAGE and EGAC to CRNs with uncertain parameters [16, 20, 25].

Finally the relative strengths and weaknesses of EGAC with
respect to the exact algorithm of CAGE call for a combined approach.
Here, future work will investigate the development of an exact oracle
that can effectively decide the absence of emulations, leaving it to
the genetic algorithm to find them if there is at least one.
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A PROOFS
PROOF OF PROPOSITION 4.1. Note that |N(S)| is the length of

individuals, while 2|N(T)| = |{x | x ∈ N(T)} Û∪{∼x | x ∈ N(T)}|
accounts for the number of possible values any entry in an individual
can attain. This yields the claim. �

PROOF OF PROPOSITION 4.2. Define Si = S × {i}, T j = T ×
{j}, S⊗n = ⋃n

i=1 Si , T⊗ν =
⋃ν
j=1 T j , let µ1, . . . , µm denote all

node emulations from S to T and let µi, jk : Si → T j arise from µk
by replacing the source and target species X and x with their copies
X × {i} and x × {j}, respectively. Noting that any µ1, j1k1

∪ . . .∪ µn, jnkn
,

where 1 ≤ kl ≤ m and {j1, . . . , jn } = {1, . . . ,ν }, is a node emulation
from S⊗n to T⊗ν , we infer that there are at least

mn · ν ! ·
��{H ��H is partition of {1, . . . ,n} with ν blocks

}��
node emulations from S⊗n to T⊗ν because ν ! corresponds to the
number of ways ν blocks can be mapped to ν target networks. Using
elementary combinatorics, the above formula can be rewritten to

mn ·
∑

k1+...+kν=n,
k1, ...,kν ≥1

(
n

k1, . . . ,kν

)
In the case of ν = 1, the lower bound can be seen to coincide with
the actual number of node emulations. To this end, let us assume that
µ : S⊗n → T1 is a node emulation. Since S1, . . . ,Sn are pairwise
disjoint sets, the ODEs of Si do not depend on the species in Si′

whenever i ′ , i. Hence, µ |Si : Si → T1 must be a node emulation,
where µ |Si denotes the restriction of µ to the set Si . This, in turn,
implies that µ |Si = µi,1k for some 1 ≤ k ≤ m, thus showing the
claim. �
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