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1. Algorithm for Finding All Equilibria Using Interval Analysis

The algorithm presented in this section is a simplified and adapted version of the algo-

rithm described in Hansen and Walster (2003, Chapter 11). We have two major adap-

tations relative to Hansen and Walster (2003). First, we exploit the specific structure of

our equilibrium system to remove parts of intervals for wages and labor allocations that

cannot contain a solution (this is what Hansen and Walster (2003) call hull consistency

checks; see Sections 10.3-10.5 in the book). Our second adaptation concerns the way

we work with interval vectors that have zeros as (some of) their left endpoints. Evalua-

tion of the Jacobian of our equilibrium system on such interval vectors yields intervals

with infinite endpoints. In these cases an (interval) Newton method cannot be used.

Consequently, we can only use bisection in these cases, and this is significantly more

time consuming than a Newton method. To take advantage of a Newton method even

in these cases, we first split interval vectors along all dimensions with zero endpoints in

such a way that any component of any resulting interval vector is either very “narrow”

and “close” to zero or is bounded away from zero. After that we never process com-

ponents that are “narrow” and “close” to zero and apply a Newton method only to the

components that are bounded away from zero. Details of both of the adaptations are

described below.

In the algorithm description below we use math blackboard font to denote intervals,
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interval vectors, and interval matrices: X, B, J, etc. For brevity, we use the word “box”

to mean “interval vector”, and we use the word “interval” to mean a one-dimensional

box. Components of boxes are denoted by subscripts: for example, the i-th component

box X is denoted by Xi and is an interval. In this notation, X = (X1, . . . ,XN )T , where N

is the dimension of X. Lower and upper bounds of any interval Y are denoted by Y and

Y correspondingly, so that Y =
[
Y , Y

]
. In this notation an N-dimensional box X can

be written as X =
([
X1, X1

]
, . . . ,

[
XN , XN

])T
. For any box X its midpoint is given by

mid (X) ≡
(
X1 +X1

2
, . . . ,

XN +XN

2

)T
.

For any interval X its diameter is given by

diam (X) ≡ X1 −X1,

diameter of a box is the maximum over diameters of its components:

diam (X) ≡ max
i

diam (Xi) .

Our system of equations and inequalities is given by expressions (3), (4) and (5) from

the main text, plus an equation for normalization of wages:
∑

iwi = 1. We transform

this system in two ways. First, for all industries k with αk < 0 we leave only the equality

part of the complementary slackness conditions and divide these equalities byw−εki Lαki,k

for each country i.1 Second, we divide all remaining complementary slackness condi-

tions by w−εki for each country i, and use interval arithmetic to turn the inequality part

of the complementary slackness conditions into equations. To see how the latter trans-

formation can be done, consider an inequality f(x) ≥ 0. We can write this inequality as

f(x) = [0,+∞] or, equivalently, as f(x) + [−∞, 0] = 0.2 With these transformations, our

1Division by w
−εk
i L

αk
i,k reduces the number of occurrences of wi and Li,s in our equations. A general

recommendation for calculation of interval function extensions is to minimize the number of occurrences
of each variable. This typically helps to calculate sharper bounds on the range of values of a function over
an interval.

2Here, the arithmetic is done over the set of extended real numbers R ∪ {−∞,+∞}. See Chapter 4 in
Hansen and Walster (2003).
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full equilibrium system is given by the following set of equations:

w1+εk
i L1−αk

i,k −
∑
n

Si,k [τni,k]
−εk∑

l Sl,kL
αk
l,k [wlτnl,k]

−εk βn,kwnL̄n = 0, (1)

for i = 1, . . . , N, and all k such that αk < 1;


w1+εk
i Li,k −

∑
n

Si,kL
αk
i,k [τni,k]

−εk∑
l Sl,kL

αk
l,k [wlτnl,k]

−εk βn,kwnL̄n = 0,

w1+εk
i −

∑
n

Si,kL
αk−1
i,k [τni,k]

−εk∑
l Sl,kL

αk
l,k [wlτnl,k]

−εk βn,kwnL̄n + [−∞, 0] = 0,

(2)

for i = 1, . . . , N, and all k such that αk ≥ 1;∑
k

Li,k − L̄i = 0, i = 1, . . . , N ; (3)

∑
i

wi − 1 = 0, i = 1, . . . , N. (4)

Inequalities for labor allocations, Li,k ≥ 0, are automatically satisfied in our algorithm,

because we solve for equilibrium labor allocations using intervals with non-negative

values only. Therefore, we do not include these inequalities into the system.

Let IRdenote the set of intervals over the extended set of real numberR∪{−∞,+∞},

IR = {[x, x] |x, x ∈ R ∪ {−∞,+∞} , x ≤ x}. Let F : RN+N∗K
+ → IRM be the vector-

function corresponding to the left-hand sides of equations (1)-(4), whereM is the num-

ber of equations. We need to formally define the image of F to be in IRM because of

inequalities (2) turned into equalities — evaluations of the LHS of the other equations

produce degenerate intervals [Fi, Fi]. Interval arithmetic methods allow us to extend

the domain of F to IRN+N∗K
+ (here IR+ is the set of intervals over real numbers with

nonnegative left endpoints). Such extension is called “natural extension” and is au-

tomatically handled by special software packages. Following the notation we use for

intervals, we employ the same math blackboard font to denote the natural extension

of F to intervals. That is, if X is a box corresponding to intervals for wages and la-

bor allocations, then evaluation of the LHS of our equilibrium system (1)-(4) on box X

produces box F (X). Similarly, evaluation of the Jacobian of our system on X produces

interval matrix J (X). In the algorithm description below, we drop the argument X from

the function and Jacobian notation, when it does not cause any confusion.



4 KUCHERYAVYY-LYN-RODRı́GUEZ-CLARE

We say that the equilibrium conditions are not violated when evaluated on box X,

if 0 ∈ Fi(X) for all i. As was mentioned in Section 3.3.2 of the main text, using interval

arithmetic for evaluation of a function on a box generally results in overestimation of

the true range of values of this function on the box. Overestimation occurs for at least

two reasons: interval dependency and rounding errors due to finite precision arith-

metic.3 Overestimation is the reason why we use the term “equilibrium conditions are

not violated” rather than “equilibrium conditions are satisfied”. Because of overestima-

tion, the fact that equilibrium conditions are not violated in a box does not imply that

this box contains an equilibrium.

One of the most important parts of our algorithm is the set of hull consistency checks,

HCC, that we perform in order to remove parts of intervals that cannot contain a solu-

tion. We use the following HCCs:
(HCC 1) For each industry k, given a set of intervals for labor allocations L1,k, . . . ,LN,k,

find a country i with the widest interval Li,k. Calculate

L̃i,k = Li,k ∩

Li −∑
j 6=i

Lj,k

 .

If the resulting interval L̃i,k is empty, then the original set of intervalsL1,k, . . . ,LN,k
does not contain a solution.

(HCC 2) Given a set of intervals for wages W1, . . . ,WN , find a country iwith the widest

interval Wi. Calculate

W̃i = Wi ∩

1−
∑
j 6=i

Wj

 .

If the resulting interval W̃i is empty, then the original set of intervalsW1, . . . ,WN

does not contain a solution.

(HCC 3) Given a set of intervals for labor allocations, L1,k, . . . ,LN,k, and wages,

W1, . . . ,WN , for each (i, k) use equations (1) for industries with αk < 1 to

3For example, in interval computations, multiplication X · X over interval X = [−1, 1] is treated as
if it were applied to two independent intervals. The result of this operation is interval [−1, 1], while the
true range of values of function f(x) = x · x over interval [−1, 1] is [0, 1]. This phenomenon is called
interval dependency. For more details see, for example, Section 5.2 in Moore, Kearfott and Cloud (2009) or
Section 2.4 in Hansen and Walster (2003).
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calculate

L̃i,k = Li,k ∩

(∑
n

Si,k [τni,k]
−εk W−1−εki∑

l Sl,kL
αk
l,k [Wlτnl,k]

−εk βn,kWnL̄n

) 1
1−αk

,

and use equations (2) for industries with αk ≥ 1 to calculate:

L̃i,k = Li,k ∩

(∑
n

Si,kLαki,k [τni,k]
−εk W−1−εki∑

l Sl,kL
αk
l,k [Wlτnl,k]

−εk βn,kWnL̄n

)
.

Next, for each i calculate

W̃i = Wi ∩

(
1

Li

∑
k

∑
n

Si,kLαki,k [Wiτni,k]
−εk∑

l Sl,kL
αk
l,k [Wlτnl,k]

−εk βn,kWnL̄n

)
.

If any of the resulting intervals L̃i,k or W̃i is empty, then the original set of

intervals does not contain a solution.

(HCC 4) Given a set of intervals for labor allocations, L1,k, . . . ,LN,k, and wages,

W1, . . . ,WN , for each (i, k) calculate

GMCi,k = WiLi,k − [0, 1]×
∑
n

βn,kWnL̄n.

If for any (i, k), 0 /∈ GMCi,k, then the given set of intervals for labor allocations

and wages does not contain a solution. Here we exploit the fact that all trade

shares are between 0 and 1.

In our simulations, introduction of the above set of consistency checks resulted in an

almost 60-fold speedup of the algorithm relative to the algorithm with just the Newton

and bisection steps.

We are now ready to describe the algorithm. When describing the algorithm, we aim

at outlining the steps conceptually while skipping many of the details. The in-depth

coverage of the details of the algorithm is contained in Hansen and Walster (2003), al-

though in a more general context.

Algorithm Input:

(i) System of equations is given by (1)-(4).
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(ii) Unknowns are intervals for labor allocations Li,k and wages wi for i = 1, . . . , N and

k = 1, . . . ,K. Initial intervals for labor allocations are
[
0, L̄i

]
for each Li,k; initial

intervals for wages are [0, 1] for each wi. Thus, the initial (base) box is:

B ≡
( [

0, L̄1

]
, . . . ,

[
0, L̄1

]︸ ︷︷ ︸
K times

, . . . ,
[
0, L̄N

]
, . . . ,

[
0, L̄N

]︸ ︷︷ ︸
K times

, [0, 1], . . . , [0, 1]︸ ︷︷ ︸
N times

)T
.

Algorithm Output:

(i) ListR of boxes consisting of intervals for labor allocations and wages such that for

each box inR: (a) diameters of its components are all smaller than a specified value

ε > 0; (b) the equilibrium conditions evaluated on this box are not violated.

(ii) List U of boxes of the same size asR: each box X inR has a corresponding box Y in

U . If Y is non-empty, then X ⊆ Y, and it was successfully verified that there exists

a unique equilibrium within box Y and this equilibrium is in the box X. In other

words, box Y is a region of uniqueness.4 If Y is empty, then the algorithm was not

able to verify neither existence nor uniqueness of equilibrium within box X.

(iii) List L of boxes that have not been processed. This array might be non-empty if the

algorithm stops because the time or iteration limit is reached.

Algorithm Steps:

Step 0: Split the base box B into boxes X(1), . . . ,X(M) such that for any X(`) we have that

either X(`)
i = [Bi, Bi+δ] or X(`)

i = [Bi+δ,Bi] for i = 1, . . . , N ∗(K+1), and where

δ > 0 is small. Here Bj and Bj are endpoints of component j of the base box

B. As a result of this splitting, we deal with boxes such that their components

are either bounded away from the left endpoints of B (that is, zeros), or, if they

include the left endpoints of B, then they are “narrow” and do not require any

processing. Thus, after this splitting we neither do bisection nor try to apply

the Newton step to the components [Bi, Bi + δ].

Create list L =
{
X(1), . . . ,X(M)

}
and go to Step 1.

Step 1: If list L is empty, then finish. Otherwise, choose a box from L and call it Xc (“c”

for “current”). Remove Xc from L. Go to Step 2.
4Typically, this region of uniqueness is not much “larger” than box X.
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Step 2: Perform consistency checks HCC 1-4 on boxXc. If any of the consistency checks

finds that there is no solution in Xc, stop any further processing of this box and

go to Step 1. Otherwise, proceed further with current Step 2.

Consistency checks HCC 1-3 produce a new box X̃c. If X̃c is a “significantly” re-

duced version of box Xc, then replace box Xc with X̃c and repeat current Step 2.

Otherwise, replace box Xc with X̃c and go to Step 3.

Step 3: Evaluate the equilibrium system on the box Xc. If any of the equilibrium con-

ditions is violated, stop any further processing of box Xc and go to Step 1. Oth-

erwise, go to Step 4.

Step 4: If diam (Xc) is “too large”, go to Step 12, the bisection step. Otherwise, go to

Step 5. We avoid applying the Newton step to “large” boxes, because this step

is expensive and gives significant reductions of boxes only when they become

relatively “small”. The criterion for determining if the diameter of the current

box is “too large” is described in Section 11.11 of Hansen and Walster (2003).

Step 5: Find all components of Xc that are of type [Bi, Bi + δ]. Let Xcz (“z” for “zero”)

be the box with these components, and let Xcl (“l” for “large”) be the box with

the rest of the components of Xc. For simplicity of exposition (and at the risk of

abusing notation) let Xc be represented as Xc =
(
Xcl,Xcz

)
.

Let Xsl ≡
(
mid

(
Xcl
)
,mid

(
Xcl
))

, that is, Xsl is a degenerate box that is a mid-

point of box Xcl. Let Xs ≡
(
Xsl,Xcz

)
.

Go to Step 6.

Step 6: Calculate the Jacobian matrix of the equilibrium system on box Xc. Call it J.

Calculate the first-order Taylor expansion of the equilibrium system around

Xs using J. Check the equilibrium conditions: if any of them is violated, stop

processing the current box and go to Step 1. Otherwise, go to Step 7.

Step 7: In this step we are going to choose a part of the Jacobian matrix J to apply the

Newton step to box Xcl. Recall that we have more equations than unknowns.

So we are going to use only a subset of equations for the Newton step: one

equation for one unknown.

For each component of Xcl corresponding to country-i-industry-k labor allo-
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cation choose the row of J corresponding to country-i-industry-k goods mar-

ket clearing condition. For each component of Xcl corresponding to country-

i-wage for i < N choose the component of J corresponding to country-i la-

bor market clearing condition. If Xcl contains a component for country-N

wage, then choose the row of J corresponding to the wage normalization con-

dition (4). Call the resulting Jacobian matrix Jl.

Go to Step 8.

STEP 8: Apply the Newton step to Xcl using Xsl and Jl. This step produces a new box

Xnl such that either some components of Xnl are empty or Xnl ⊆ Xcl. If some

components of Xnl are empty, then there is no solution in box Xcl. If this is the

case then stop processing this box and go to Step 1. Otherwise, go to Step 9.

STEP 9: If box Xnl is strictly inside of box Xcl, then for any point in box Xcz there exists

a unique solution within box Xnl. Record this fact: we will use box Xc as a re-

gion of uniqueness when we find a solution inside of box Xcl (that is, when we

further reduce box Xnl so that it is narrow enough). Go to Step 10.

STEP 10: If diam
(
Xnl
)
< ε, the interval is narrow enough and we can record it as a solu-

tion. Replace box Xc with
(
Xnl,Xcz

)
and go to Step 14. If diam

(
Xnl
)
≥ ε, go to

Step 11.

STEP 11: If box Xnl is a “significantly” reduced version of box Xcl, this means that the

Newton step made good progress in reducing box Xcl. So, we should try to

apply the Newton step again (and, actually, all the previous steps as well). Put(
Xnl,Xcz

)
in the list L and go to Step 1. If the progress was not “significant”,

replace box Xc with
(
Xnl,Xcz

)
, and go to the bisection Step 12.

STEP 12: Let i∗ ≡ argmaxi diam (Xc
i ). If diam (Xc

i∗) < ε, the box is narrow enough. If that

is the case, go to Step 14, otherwise go to Step 13.

STEP 13: Create two new boxes X′ and X′′ by splitting box Xc along dimension i∗. Boxes

X′ and X′′ are such that X′j = X′′j = Xc
j for all j 6= i∗, and X′i∗ = [Xc

i∗ ,mid (Xc
i∗)]

and X′′i∗ =
[
mid (Xc

i∗) , X
c
i∗
]
. Stop processing box Xc. Put boxes X′ and X′′ into

the list L and go to Step 1.

STEP 14: Put box Xc into list R. Get back to the representation of Xc as
(
Xcl,Xcz

)
. If in

Step 9 of some of the iterations we recorded the fact that there is a box X̃cl such
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that the Newton step resulted in a box X̃nl that is strictly inside of X̃cl, and if

Xcl ⊆ X̃nl, then X̃cl is a region of uniqueness for Xcl given any point from box

Xcz. Put box
(
X̃cl,Xcz

)
in the list U . If there is no such box X̃cl, then put an

empty box corresponding to Xc in the list U : uniqueness of solution inside of

Xc cannot be verified.

Go to Step 1.

We implemented the algorithm in Matlab. The source code is available online on

our web sites. We use the INTLAB library for Matlab (Rump, 1999) for the implementa-

tion of interval arithmetic.

Several comments are in order. First, instead of normalizing one of the wages to 1,

we use normalization (4). With this choice of normalization we can specify the base

intervals for wages to be [0, 1]. If we were to normalize one of the wages to 1, then the

base intervals for other wages would be [0,∞]. While interval analysis methods can

handle unbounded intervals, we find that in our case it is better to work with bounded

intervals for unknowns to be able to apply the Newton method as often as possible.

Second, by Walras’ Law we could drop the labor market clearing condition for one

of the countries. However, we keep all conditions. It is typically better to keep as many

conditions as possible when using interval analysis for solving a system of equations

and/or inequalities. This allows discarding boxes that violate one of the conditions

more often.

Third, the splitting of the base box B at Step 0 is a way to produce as many boxes as

possible for which we can apply the Newton method. For small δ, we do not need to do

any further bisection for components [Bi, Bi+δ], and we can apply the Newton method

for components [Bi + δ,Bi] because they are bounded away from left endpoints of B.

Uniqueness and Non-Uniqueness. Perhaps the most important detail of the algo-

rithm that needs to be carefully explained is what we can conclude if for some box X

from R the corresponding box Y from U is empty. There are several possibilities that

are specific to our equilibrium system.

First, if X is the only element inR, then we can conclude that X contains at least one

equilibrium, because we know that at least one equilibrium exists. Unfortunately, we

cannot formally conclude uniqueness. All we can say is that all equilibria are contained
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within box X. However, diameter of any box X fromR is smaller than ε, which we set to

1e−10. In the context of our equilibrium system, the fact that all equilibria are within a

box of diameter 1e−10 most likely means that the equilibrium is unique.

Second, it can happen that there are multiple boxes in R, but all of them are con-

tained within a box of a “small” diameter. This can happen if the algorithm cannot ap-

ply the Newton method around boxes inR and it needs to do bisection. Multiple boxes

occur because of two factors. First, the solution region is approached by bisection from

different sides. Second, when a box is near the solution region, but not necessarily in-

cludes the solution, this box can be quite narrow and the equilibrium conditions might

still be non-violated due to overestimation of the range of values of functions that typ-

ically occurs when using interval arithmetic. If we continue bisecting such boxes with

no solutions, we will eventually be able to discard them. However, this is very time con-

suming. In our simulations, we stop processing boxes when their diameter becomes

smaller than 1e−10. Every time when our algorithm resulted in multiple boxes inR, we

found that the union of all of these boxes was contained in a box of diameter smaller

than 1e−9. As in first case above, we conclude that this most likely means that the equi-

librium is unique.

Third, it can happen that there are multiple boxes in R, and some of them are at

“large” distances from each other. In this case, we most likely have multiple solutions.

However, we never encountered such situation in our simulations of economies with

αk ≤ 1 for all sectors.

Finally, it is worth mentioning that in the simulations our algorithm always pro-

duced a non-empty listR.
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