
Alex Hamer CT7111 Technical Art Research Project s1900038

Summary
I have always been fascinated by fractals, as well as volumetric rendering. Seeing realistic volumetric clouds or
even volumetric smoke effects within video games made me interested into learning about the techniques that
go into rendering volumetric effects within Unreal Engine, and I chose fractals to be the centrepiece
Generating real time volumetric fractals in Unreal can be defined by two stages; first creating the fractal and
then rendering it. The following documentation will use this differentiation to split up the methods presented.

Although there are many different and unique fractal sets, I wanted to use one that could be represented in a
3D way, to simplify the process. The Mandelbrot set is a fractal function where complex numbers do not
diverge to infinity, meaning that one could zoom in on a point within the set and it would continue forever.
A three-dimensional version of this fractal has also been devised, constructed by Jules Ruis in 1997. This can
technically not exist in 3D space, as there is no direct equivalent of two-dimensional complex numbers in three
dimensions. However it is possible to create mandelbrot sets in the fourth-dimension using different numbering
systems like quaternions and bicomplex numbers.
Many other forms of mandelbulb formulas exist, Quintic, Power-nine, spherical, cubic etc., but for the purpose
of this project I will be using the main mandelbulb formula, by Daniel White and Paul Nylander, which uses
spherical coordinates, which is an alternative coordinate system surmised of radial distance, polar angle and
azimuthal angle.

Goals
● Create Real-Time applications of fractals in Unreal using the mandelbrot/mandelbulb set.
● Understand the processes behind real-time volumetrics
● Understand the processes behind Raymarching within Unreal

Construction

Houdini / VEX
Houdini’s procedural generation toolset as well as its efficient node-based scripting workflow made it
the most suitable candidate for creating fractals. Additionally Houdini allows quick changes to be made
in real-time and much customisation into many workflows.
Most importantly, Houdini allows creation and manipulation of volumes and volumetric data.
After creating a volume, I was able to use a volume wrangle node to morph the volume into whatever
shape I wanted. Using VEX (Vector EXpressions), Houdini’s proprietary high-performance scripting
language for writing functions into custom nodes and other various functions within Houdini.
The mandelbulb equation set is well documented online, and I was able to source a version converted
for VEX use relatively quickly from Entagma, a source of Houdini knowledge online.

1



Alex Hamer CT7111 Technical Art Research Project s1900038

From this I could then convert and output this volume in many forms; Volume Textures, VDB data, and
polygonal data.

2



Alex Hamer CT7111 Technical Art Research Project s1900038

I then imported these directly into Unreal-Engine, from which I could then move on to rendering these in
different ways.

3



Alex Hamer CT7111 Technical Art Research Project s1900038

HLSL / Render Targets
I was curious if it was possible to create a mandelbulb directly in Unreal Engine. It turns out that using
HLSL, you can generate a mandelbulb within Unreal and convert it directly into a volume texture within
the same shader. A technical artist online, by the name of Art Hiteca, demonstrated an implementation
of this and I was able to get it set up very quickly.

4



Alex Hamer CT7111 Technical Art Research Project s1900038

This render target texture can then be applied to a Density RayMarch (described in greater detail in the
next section), by using a render target. The result is an average quality mandelbulb that can be
manipulated in real-time by altering values on a material instance. I created an animated sequence
where I animated various values to create a morphing mandelbulb.

By no means does this method produce real-time capabilities whatsoever, drawing a render target for a
volume texture is extremely budget consuming - as volume textures have resolutions in the many
thousands, and updating this every frame makes it near impossible to perform well, and also makes it
challenging to work with. For this reason I decided not to pursue this method further and focused more
on pre-created mandelbulb data.

Rendering

Volume Textures
Although I would count volume textures as part of constructing, Volume textures are an obscure type of
texture created by taking a three-dimensional shape and slicing it into cross sections.

5



Alex Hamer CT7111 Technical Art Research Project s1900038

Test Geometry converted into a volume texture using Houdini

6



Alex Hamer CT7111 Technical Art Research Project s1900038

Volume textures have a multitude of uses, most commonly clouds and fluid simulations. It can allow
complex fluid or cloud sequences to be baked into a texture for efficient real-time use.

Above test geometry’s volume texture converted into a real-time volume using a Density RayMarch.

Ray Marching
Raymarching is a rendering technique used to render 3D scenes, as a variant of the more commonly
used Ray Tracing, steps are taken along a ray, where the ray interacts with something within the scene,
from the scene towards the camera, as opposed to drawing trace rays from the camera to the scene.

7



Alex Hamer CT7111 Technical Art Research Project s1900038

In Raymarching, we march along steps on the ray from the camera to as far as it can go straight away
from the camera. At each step we check if it is intersecting with an object within the scene, if it does we
calculate the colour at that point on the surface of the object. One of the more powerful applications of
Raymarching is the rendering of volumetric data. By calculating the density at each data point, it can be
determined how much light is absorbed at this particular point by the ray. There are many types of
raymarching, and for this project a Density RayMarch will be used.

8



Alex Hamer CT7111 Technical Art Research Project s1900038

Raymarching in Unreal engine is not a straightforward process, as there is no easy access to a shader
language, instead we must input HLSL code into a custom node for use within the material editor.

Luckily, many examples of raymarching nodes exist within the developer community, and I was able to
find a plugin adapted for UE5 from a Game Developers Conference (GDC) talk from ShaderBits, a
HLSL and UE4 shader Blog. They provided a custom node which allowed many inputs and
modifications such as different directional lighting, density modifiers, iterations and other values which
helped produce a nice looking result.

9



Alex Hamer CT7111 Technical Art Research Project s1900038

This looked great although there were some clear pixel artefacts due to the low X/Y slice count, as
highlighted. I wanted to see how far I could go with the quality, so I went back to Houdini and increased
the initial volume density, which will make the whole mandelbulb significantly more intricate and detailed
after it has been wrangled. As well as this I stepped up the X/Y slice count from 11 to 22, and increased
the resolution of each slice. I noticed immediately that increasing these values would result in
decreased performance and any camera movements would cause the FPS to drop to under 30.
This made it clear that ultra high quality volume textures for ray marching would not be suitable for real
time use, so I decided to do some cinematic renders to show a proof of concept of how it would work.

While ray marching produced a high quality result, it is one of the higher performance costing methods,
as the higher the detail within the geometry (or volume), the more steps are needed to march along the
ray to check for intersections. This is much more expensive on the CPU, as well as the fact that
multiple iterations have to be taken to accurately calculate the density and colour at each point, as
shown below.

10



Alex Hamer CT7111 Technical Art Research Project s1900038

Higher iterations, as well as having to calculate light and colour values would result in much lower FPS
while being rendered on the screen. It also has a more complex setup, requiring many material settings
to be tuned in order to produce more optimised and cheap rendering. Therefore I found this method to
not be suitable for real-time applications without a sacrifice of visual quality.

OpenVDB / NanoVDB
Volumetric Data can be stored in a format called VDB otherwise known as “Voxel Data Base”, or
“Volumetric Data Blocks” as grid information in the form of scalar and vector values. OpenVDB is an
award winning C++ library for efficient and optimised storage of sparse volumetric (VDB) data.
Developed by Ken Museth and three other developers while working at DreamWorks Animation in
2012, it’s largely used for offline rendering, where performance is not a factor. However as rendering
engines and hardware became more powerful, possibilities for real-time applications of VDB data
arose.
NVIDIA took the opportunity to contribute real-time rendering GPU support for OpenVDB. It optimises
the OpenVDB library by using a linearized, condensed and read-only version of the VDB tree structure.
This means that all simulations can be baked into a VDB format, converted into NanoVDB and can be
read and rendered in real time.
While NanoVDB has many industry partners who quickly adopted it such as Houdini, Blender or
RENDERMAN, Unreal currently has had no native VDB support of any kind in any of its versions, it is
also not listed on their roadmap despite many community requests for support to be added. Thus, this
lead to community plugins such as SparseVolumetrics, developed by Thibault Lambert with the help of
Sami Ibrahaim, which enables OpenVDB and NanoVDB support.

After installing this plugin I was surprised at how quick and painless they had made the process of
importing VDB data. Simply dragging it into the content browser will allow importing of not only
sequences of data meaning real-time animation, but also many forms of quantization, allowing VDB
data to be compressed and therefore more lightweight.

11



Alex Hamer CT7111 Technical Art Research Project s1900038

Using the same volume from Houdini, I converted the volume to a VDB data structure and exported it.

Then, I simply imported it into Unreal and was able to drag it straight into the world with no extra setup.

12



Alex Hamer CT7111 Technical Art Research Project s1900038

As shown, there are many rendering options, including an optional increased quality skylight sampling
mode.

There is a noticeable difference in performance between these two.

13



Alex Hamer CT7111 Technical Art Research Project s1900038

Volumetrics
Unreal’s volumetric cloud system was released with engine version 4.26 on the 10th December 2020.
The new component allows users to create realistic and volumetric looking clouds for relatively low
rendering cost. This also uses Raymarching, however it is much more efficient due to various
optimisations developed by Epic Games;

Adaptive sampling changes the amount of steps taken along the ray depending on the complexity of
the cloud shape as well as its proximity towards the camera.

This reduces the amount of calculations done along the ray and therefore improves performance
without affecting quality. As the rays are tested against boundaries of each region, it is possible to
determine how many steps are needed at each sampling point. This can be applied to
geometry/volumes where the detail of a shape as well as its distance from the camera determines the
amount of sampling steps taken within this region. Due to its capabilities and customisation I wanted to
be able to create cloud shapes using fractals.

But, how do we get these “regions”, well this is the secondary main
technique that Unreal employs to optimise their volumetric raymarching.
Hierarchical data structures such as Octree, developed by Donald
Meagher in 1980, are a way to procedurally break up a three-dimensional
space into smaller partitions, commonly referred to as ‘cells’.

For example, if there is a cell that intersects with high detail or many
objects, it makes more sense to subdivide the cell so that the ray only
has to check the smaller cells that the ray intersects, rather than the
whole cell with many objects.

14



Alex Hamer CT7111 Technical Art Research Project s1900038

Luckily, Unreal does all of this work behind the scenes, by feeding data into their ‘Advanced Volumetric
Output’ node we can have all this optimisation done for us by the engine.

15



Alex Hamer CT7111 Technical Art Research Project s1900038

While Unreal has a very customisable volumetric cloud system by default, I wanted to have clouds that
morphed through many different fractal shapes. So I looked towards a popular community plugin called
FluidNinja - a baking toolkit for fluid and volumetric simulation.
They provide several use cases within their project of volume textures and flow maps used to create
volumetric effects, as shown below.

I adapted one of their master materials which used many of their custom material functions called
AtlasPlay - intended for flipbooking through volume textures for cloud materials. This works great as it
allowed me to animate clouds in a way that wasn’t just noise.

16



Alex Hamer CT7111 Technical Art Research Project s1900038

My initial tests with this method allowed me to use a simple volume texture of the mandelbulb to morph
through cross-sections of its shape, however I noted that due to the volume texture having mostly black
or white pixels - there would be very sharp edges [Green]

I also noted that single small island pixels would be as tall as more solid parts [Red]. I wanted to reduce
the frequency of these artefacts and give the clouds an actual “shape” rather than looking like a wedge
of clouds. The way to achieve this would be to have grayscale values representing depth.

17



Alex Hamer CT7111 Technical Art Research Project s1900038

Creating Demo Scenes

Ray Marching

Inspired by one of the final scenes in Big Hero 6, by Disney Animation Studios, where the mandelbulb
formula is used to create a vibrant environment for the inside of a wormhole.

I loved the pink and purple look, and wanted to use my own spin on this idea. I chose purple with blue
lighting to create a wispy colourful appearance. I was also able to animate the lights position within the
sequencer to add additional flair to the lighting.

18



Alex Hamer CT7111 Technical Art Research Project s1900038

Volumetrics
For the scene that will contain these volumetric fractal clouds, I wanted to create a mountainous
landscape using the mandelbulb volume.
So, utilising Houdini I converted the mandelbulb from a volume to polygons. I then used several
additional nodes to reduce polygons, cut off sections I did not need, smooth much rough geometry,
project the UVs face downward so that I could put landscape materials on it, soften normals, and
transform it to an appropriate scale for Unreal.

Here the resulting geometry can be seen:

I was very pleased with the output - the ridges with the cobweb looking structures appeared
other-worldly while still looking like terrain with smooth hills, ridges and erosion.
I took several sections of the mandelbulb to have some variation - I used a more messy section of the
mandelbulb which resulted

19



Alex Hamer CT7111 Technical Art Research Project s1900038

To make this look like mountainous terrain, I used a Slate texture created by photographing some tiling
outside of my house, and running it through Substance Sampler’s AI to Material filter to make it tile.
Referring to my concept art for the scene, I wanted to add some extra flair to the centre of the
landscape, so I created a simple shader that uses perlin and voronoi noise textures panning and
multiplied through each other to create a flowing glow that lights up the centre of the landscape.

20



Alex Hamer CT7111 Technical Art Research Project s1900038

21



Alex Hamer CT7111 Technical Art Research Project s1900038

For the clouds, I wanted to morph through various shapes. Using photoshop, I cherry picked several
frames from three volume textures, each with 6, 7 and 8 iterations respectively; producing different
shapes.
I then composed these over smaller shapes to create even more diverse and interesting looking
shapes, and collaged them into a volume texture. I then used gaussian blurs using different blending
layers on top of this to create smooth fades on the edges which will negate this sharp edge effect as
mentioned earlier.

This produced the exact result I wanted.

22



Alex Hamer CT7111 Technical Art Research Project s1900038

Modifying the master material to use a custom float value in place of Time, I was able to animate the
sequence in which the clouds change through the shapes by using a Material Parameter Collection
within a Level Sequencer.

23



Alex Hamer CT7111 Technical Art Research Project s1900038

Although this looked great, I wanted to have the clouds have more colour, and fit into the environment
more, so I scouted out for a plugin that would help me do this. I then found the ‘Clouds Lighting System’
plugin on the Unreal Engine Marketplace.

24



Alex Hamer CT7111 Technical Art Research Project s1900038

This plugin adds multiple light sources that are made for volumetric materials, which are fully
customisable and accessible via blueprints. Originally intended for Unreal’s ‘Paint Clouds’, I adapted
the material functions for use within the master cloud material that I had been using. With this, I could
easily add volume light sources that would only impact the clouds themselves, and gave a very
appealing look.

Additionally, multiplying the volume light material function by the cloud noise produces a more realistic
look as it blends into the clouds rather than just lights up areas.

Sparse Volumetrics
I wanted to create a scene where an expansive blue ocean contained several “fallen clouds” of various
sizes that stretch across the water, as well as this I wanted the scene to contain several more clouds
floating in the sky that the camera would pan up to. Achieving the basic setup was pretty simple, hand
placement of the VDB actors was done by taking into account where the camera will be throughout the
scene, and the water was made using Unreal’s default water plugin, with some of my own modifications
to the scattering and absorption as well as the waves.
As mentioned earlier, using improved sampling and higher samples-per-pixel counts stops this scene
from being run in real-time, so I intended to create two renders, one with the highest quality possible,
and one with many render settings changed on the VDB actors, to allow them to run in real-time. My
aim was to get both these renders as close as possible, getting to the point where I could have the VDB
actors run in real-time as close to the highest quality with as small a sacrifice of quality as possible.

25



Alex Hamer CT7111 Technical Art Research Project s1900038

ABOVE: Lower Quality with tuned & optimised settings [90 FPS+ in real-time]
BELOW: Highest Quality Settings [3 FPS* in real-time]

*After experimenting with all the different features and options, I came to learn what each one did. So I
went back to the original highest quality settings, and I disabled trilinear sampling interpolation, and

26



Alex Hamer CT7111 Technical Art Research Project s1900038

tweaked a couple of values by a small amount and I was able to reach around 20-30 FPS. Though I
didn’t feel that this range is an acceptable real-time FPS count as the standards for the absolute

minimum in the gaming industry in 2023 is 60FPS, so this is what I aimed for.
Due to the fact that even tweaking these settings did not reach this goal I re-enabled them for the most

detail possible for the high-quality render.

After much experimentation, I managed to get both results as close as possible, however there are
definitely notable differences. The most is that the ambient scattering, largely affected by whether
improved sunlight sampling is enabled, changes the highlights on the clouds that make it appear to not
take in the scene’s lighting as much. You would expect in this scene with a large blue ocean that it
would appear more like the left side, less so of the right side where it appears more white as though it is
being lit without taking in the surrounding scene as much. Additionally, to bring the FPS up to a

Ultimately, I was able to produce a nice looking result that worked for real-time, however this was on a
NVIDIA RTX 3080TI, one of the more recent graphics cards and therefore despite adjusted optimisation
settings allowing real-time use on this graphics card, it is likely to be unsuitable for lower end graphics
cards.

27



Alex Hamer CT7111 Technical Art Research Project s1900038

Conclusion

Ray marching is a practical approach for rendering volumetrics in Unreal Engine. Unreal Engine, for instance,
employs multiple optimisation techniques, as well as including volume textures to make animated volumetric
clouds achievable and practical for real-time use within games and cinematic purposes.
In the case of NanoVDB, it can produce visually appealing and high-quality results, however it was primarily
designed as an experimental tool for playing with sparse volumes. While it can render realistic VDB clouds and
other volumetric simulations, it lacks real-time potential for games due to trade-offs between quantisation,
optimisation and quality. Although, despite being only a few years old, NanoVDB has much potential for
cinematic uses within Unreal-Engine, and many technical artists have already begun demonstrating this by
using programs such as EmberGen to create volumetric simulations for cinematic purposes.
As mentioned earlier within this documentation, NanoVDB is not natively supported by Unreal Engine, and thus
this is currently a highly experimental workflow with many quirks and limitations. However I believe it is only a
matter of time before we see native support and use within cinematic applications, given how fast rendering
technology is advancing.

Sources
Below is a table of resources used to assist development throughout this project. More information
available on request.

Source Creator(s) Role Link

Fluid Ninja Andras Ketzer Volumetric Flow Materials https://www.unrealengine.co
m/marketplace/en-US/product
/fluidninja-vfx-tools

Shaderbits GDC Pack Shaderbits Density RayMarch https://shaderbits.com/blog

Shaderbits GDC Pack Fix
[4.22+]

Michał Kłoś Density RayMarch https://github.com/sp0lsh/UE
ShaderBits-GDC-Pack

NanoVDB NVIDIA Real-time GPU support for
OpenVDB

https://developer.nvidia.com/n
anovdb

Sparse Volumetrics
[OpenVDB and NanoVDB
in Unreal]

Thibault Lambert,
Maxime Dupart

Unreal Engine
implementation of NanoVDB

https://github.com/eidosmontr
eal/unreal-vdb

Entagma Fractal Set Moritz Schwind,
Manual Merkle

VEX implementation of
Mandelbulb Equation

https://youtu.be/_mwJ7mlYR
Wg

Clouds Lighting System Lukerrr Additional Volumetric lighting
for renders

https://www.unrealengine.co
m/marketplace/en-US/product
/a54a45caa08e41bb97b1c19
cebfe1093

ChatGPT 3.5 & 4 OpenAI Used throughout the project https://openai.com/blog/chatg

28

https://www.unrealengine.com/marketplace/en-US/product/fluidninja-vfx-tools
https://www.unrealengine.com/marketplace/en-US/product/fluidninja-vfx-tools
https://www.unrealengine.com/marketplace/en-US/product/fluidninja-vfx-tools
https://shaderbits.com/blog
https://github.com/sp0lsh/UEShaderBits-GDC-Pack
https://github.com/sp0lsh/UEShaderBits-GDC-Pack
https://developer.nvidia.com/nanovdb
https://developer.nvidia.com/nanovdb
https://github.com/eidosmontreal/unreal-vdb
https://github.com/eidosmontreal/unreal-vdb
https://youtu.be/_mwJ7mlYRWg
https://youtu.be/_mwJ7mlYRWg
https://www.unrealengine.com/marketplace/en-US/product/a54a45caa08e41bb97b1c19cebfe1093
https://www.unrealengine.com/marketplace/en-US/product/a54a45caa08e41bb97b1c19cebfe1093
https://www.unrealengine.com/marketplace/en-US/product/a54a45caa08e41bb97b1c19cebfe1093
https://www.unrealengine.com/marketplace/en-US/product/a54a45caa08e41bb97b1c19cebfe1093
https://openai.com/blog/chatgpt


Alex Hamer CT7111 Technical Art Research Project s1900038

to assist with solving
problems as well as assisting
with documentation

pt

ResearchGate ResearchGate Used for understanding
Ray-Marching optimisation
techniques such as adaptive
sampling

https://www.researchgate.net/
figure/Adaptive-sampling-a-wi
th-a-volume-ray-marcher-and
-b-with-a-particle-tracer-As-th
e_fig2_358820596

Art Hiteca Art Hiteca HLSL Mandelbulb https://www.youtube.com/@A
rtHiteca

29

https://openai.com/blog/chatgpt
https://www.researchgate.net/figure/Adaptive-sampling-a-with-a-volume-ray-marcher-and-b-with-a-particle-tracer-As-the_fig2_358820596
https://www.researchgate.net/figure/Adaptive-sampling-a-with-a-volume-ray-marcher-and-b-with-a-particle-tracer-As-the_fig2_358820596
https://www.researchgate.net/figure/Adaptive-sampling-a-with-a-volume-ray-marcher-and-b-with-a-particle-tracer-As-the_fig2_358820596
https://www.researchgate.net/figure/Adaptive-sampling-a-with-a-volume-ray-marcher-and-b-with-a-particle-tracer-As-the_fig2_358820596
https://www.researchgate.net/figure/Adaptive-sampling-a-with-a-volume-ray-marcher-and-b-with-a-particle-tracer-As-the_fig2_358820596
https://www.youtube.com/@ArtHiteca
https://www.youtube.com/@ArtHiteca

