EXPLICIT CONSTRUCTIONS OF CONCENTRA TORS
G. A. Margulis o ' S UDC 621.395.34:513.83

In,the solution of certain problems of switching and coding theory it is required to synthesize
structures similar to what in the present article are called concentrators. While the exist-
ence of concentrators is easily proved on probabilistic grounds, their explicit construction

_proves difficult. The theory of group representatlons is used to solve the problems of the ex-
- plicit construction of concentrators. -

1. Statement of the Problem

1,1. Let it be required to synthesize a structure possessing a certain property. The following ap-
proach is one of the most widely used in information theory and related problems: first construct a certain
class of structures, and then show that almost all structures in that class are (in some sense) "good" (i.e.,
have the required property). It frequently happens, however, that while there may be many "good" struc-
tures, it is exceedingly difficult to explicitly construct at least one of them. The problem to which we now
address ourselves is specifically related to such constructions,

1.2. Here we give the definitions required for the formal statement of the problem. Let A and B be
finite sets.: We call the elements of A inputs, and the elements of B outputs. Let every input be directly
connected to a certain number of outputs, We call any graph so constructed a connector. If the number of
elements in the set A is equal to the number of elements in the set B in a connector, the latter is calleda
uniform connector. Let H be a uniform connector. The capacity of H is the number of elements in A (or,
of course, in B), the weight ts the number of edges in the graph H, and the density is the ratio of the weight

to the capaclity. Hereinafter for any uniform connector H we denote by c(H), w(H), and d(H), respectlvely,
the capacity, weight, and density of that connector. ;

** Let H be a uniform connector, and let X be a subset of the set A. We then denote by XH the subset of
B formed by outputs, and only those outputs, that are connected to at least one input in the subset X.

For any subset X of A (or of B) we denote by 7(X) the number of elements in X, and we call the ratio
c(X)/c(A) the density of the subset X. Now let ¢ and a be positive numbers, ¢ > 1, @ <1. Then a uniform
connector H is called a (¢, a)-concentrator if the following condition holds: for any subset X of A whose
density is less than a the following lnequality is satisfied:

c(Xn)
c(Xt; >

1.3. Formal Statement of the Problem., For any positive numbers ¢ and o 'sueh:th‘at c> 1, a <1,
and ca < 1 it i8 required to construct an infinite sequence H,, «eey Hi, ... of uniform connectors such that
the following conditions are satisfied: ‘ o ’

- 1) for any { (1 s 1< «)Hj is a (¢, a)-concentrator;
2) as { tends to infinity the capacity of Hj tends to infinity, i.e.; Iimc(Hl) = o0

3) the densities of all the connectors Hj are bounded in the aggregate by a constant D, l.e., for any
1 (1 =1 < «) the Inequality d(Hj) <D holds, where D is independent of i.

Despite the comparative ease of proving the existence of the required sequence of uniform connectors
on the basis of probabilistic considerations, the explicit construction of such a sequence proves troublesome,
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1.4. Problems similar to that stated above arise in a number of theoretical switching and cooling
problems. One might be interested, for example (see Pinsker [1]), in constructing a sequence of connec-
tors Hy, ..., Hj, ... for which the number of inputs is proportional with a certain constant k to the number
of outputs and which are (c, a)-concentrators [for nonuniform connectors the concept of the (¢, a)-concen-
trator is defined the same as for uniform connectors]. It is essential, of course, to demand observance of
the inequality ca < 1/k. We show how to solve this problem for integer-valued k and a < 1/k once the prob-
lem stated in subsection 1.3 has been solved. Thus, inasmuch as the number of Inputs, i.e., c(A), is pro-
portional to the number of outputs, I.e., ¢(B), by an integer-valued constant k, we can partition A into k
disjoint subsets Ay, ..., Ax such that the power of each subset is equal to the power of B, i.e., c(A)) =c(B)
forany 1 <{ <k, Then for any i (1 =i =<Kk) we construct a (c, ak)-concentrator for which Aj is the set of
inputs and B is the set of outputs (using the solution of the problem from subsection 1.3). We then amalga-
mate all of the resulting k connectors into one. To show that the connector H so obtained is a (c, a)-con-
centrator it is sufficient to note that for any X = A the inequality ¢ (XN A{)/c(A1) > k{c(X)/c(A)) holds for at
least one i and then to make use of the fact that H consists of (¢, ak)-concentrators.

For practical problems in which the problem stated in 1.3 above is encounteréd it is lrhportant that
the constant D be sufficiently small. The constructions presented below clearly satisfy this condition. Un-
fortunately, the author has not been able to prove the fact. . We can only prove the existence of D. '

2. The Construction; Formulation of Propositions

Implying that the Resulting Construction is the

One Required

2.1. Notation. For any positive integer m we denote by Z., the ring of residues modulo m. For any
X and Y we denote by X XY the direct product of X and Y. C o

2.2. The Construction. Let m be any positive integer. We put Am = Zyy XZm and By = 2y X Zpy,
Thus, the elements of both sets A and B,, are pairs (x, y), where X€Zp, and y€Z,,. We now synthesize
the connector Hy, as follows: every element (x, y) of Am 18 connected to the following five elements of Bm:
D&ys 2)x+1,9%5 3) (x,5+1); 4) X, x+y); 5) (=3, x).

2.3. THEOREM. A positive constant d independent of m exists such that for any positive integer m
the connector Hp,, constructed in subsection 2.2 is a (1 +d(1 ~a), a)-concentrator for any a satisfying the
inequality 0 <o <1." ' ‘ '

The proof of the theorem will be given in Sec. 3.

2.4. Let Hy and H, be two uniform connectors with the same capacity, L.e., the same number of in-~
puts (and outputs) for H; and H,. Then a one-to-one correspondence can be set up between the outputs of H,
and the inputs of H,. In other words, we can assume that the outputs of Hy are the inputs of H,. We now
define the product H,°H, of connectors H, and H, as follows: :

1) the inputs of H,°H; are the inputs of Hy, and the outputs of the product are the outputs of Hy;

2) an input x of H,°Hy is connected to an output of H,°H, if and only if there is an output z of H; (being
also an input of H,) that is connected to both x and to y. ' IR ‘ :

2.5. The following is an immediate consequence of the definition of the product of connectors and
the definition of a (c, a)~concentrator:

LEMMA, If H;is a (cy, @)-concentrator and H, {s a (cgy cyar)-concentrator, then H,°H; is a (cyc,, )~
concentrator, o .

Remark. Strictly speaking, the definition of the product of connectors H, and H, depends on the mode
by which the outputs of H; are associated with the inputs of H,, Nonetheless, the lemma stated above is
true independently of that mode,

. Kk [r————
2.6, For any connector H and any positive integer k we denote by HX the product Hs,,.«H. It then

follows at once from the definition of the connector Hy, and the definition of the product connector that for
any positive integers m and k every input of H}{n is connected at most to sk outputs of that connector. v’I‘he

following is true. :
LEMMA. For any positive integers m and k the density of Hi‘n Is not greater than 5k,
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2.7. The following is a consequence of Theorem 2.3 and Lemma 2.5.

LEMMA. Letc and c»z~ be positive numbers such that @ <1, ¢ >1, andca <1. Then there is a k such
that for any m the connector le(n is a (c, a)-concentrator.

2.8. Remark. Lemmas 2.6 and 2.7 solve the‘ problem stated in subsection 1.3.

3. Proof of Theorem 2.3

3.1. There are two parts to the present section. In the first part (subsections 3.2 through 3.8) The-
‘orem 2.3 is reduced to Lemma 3.7. In the second part (subsections 3.9 through 3.23) Lemma 3.7 is proved
by the methods of group representation theory,

3.2. We retain the notation of 2.2. We now define transformatlons Ti. Ty, T3, and T, of the set Am
= Zm X Zm by the formulas

Tuz, 0)=(aH, 1),
Tz, y)=(z, yH1).
Ts(z, y) =(z+y, 1),
© Tz, y)=(-y, 2),
in which x€Zp, and y € Zp,.

3.3. As before, for any X we denote by c(X) the number of elements in X, Also, for any subset X
of A andany i (1 =i =4) we denote by Tj(x) the lmage of X under the transformation Ty, i.e., T{(X)
= U Ti(x).

LEMMA A posltive constant d exists such that for any posltlve integer m and any o satlsfylng the
inequality 0 < @ <1 the following is true: f X ©Ap, =7, XZp, and e(X) < ozc(Am) = am?, then for a cer-
tain i (1 =1 = 4) the inequality ¢(T{X) UX) > (1 + d(l a))e X) holds.

It is apparent from the definitions of Hy, and the transformations Tis Tz, T3, and T, that Theorem 2.3
is an immediate consequence of Lemma 3.3 stated above.

3.4. In the space of complex—valued functlons on Ay, we deflne the scalar product by the formula

(fnfz)— 2 fl(a)fﬁ(a)v

where f; and f, are functions and the bar over f,(a) indicates the complex conjugate. It is readily seen that
the space of complex-valued functions on Ay, with the scalar product defined above is a finite-dimensional

Euclidean space, which we denote by L*(Am). We equip L?(Apy) with a norm, namely for f6L?(Ap) we say
that Ifl =V D. S r . ,

3. 5 Let T be an arbitrary one-to-one mapping of the set Am onto itself. We associate with T a lin-
ear operator T in the space L?(Ap) as follows- if fe L’(Am), then for any a€Ay,

Tf(a)=f(T~'a),

where T~! is the inverse of the mapping T. It follows from the one-to-one character of T and the definition
of the scalar product in L*(Ap) that Tisa unitary operator in L?(Ay,) [for any f,, f26L (Apy) the equality
(Tfi, sz) = (£, £,) holds].

3.6. We denote by S(Am) the subspace of L2(A m) formed by all functions f for which Z fa) = 0. I
agA,
other words, S(Apm) if the orthogonal complement to a one-dimensional space of constants (fur?ctions con-

stant on the entire set Ap). It is readily seen that S(A,) s a subspace of Lz(Am) of codimension 1, t.e.,

dim Lz(Am) ~dim S(Apy) = 1. Wealsonote that for any one-to-one mapping Tof A into itself the space S(Ap,)
is invariant under T.

3.7. Let Ty, T, Tj and T, have the same meaning as in 3.2 and 3.3, |

LEMMA. A positive constant d independent of m exists such that for any £€S(Am) there isani(1 <1
=4) such that .

(T{fv f)

00 -<t-



3.8. The proof of Lemma 3.7 is given below, ‘We show for now that it leads to Lemma 3.3,

" Let X by any * subset of the set Ay, We define the functlon fx on Am as follows: , . " .1
fe(@)=c(dn)—c(X) 1 a€X, o
fx(a)=—c(X) i a@X, _ :

where c(A) and c¢(X), as before, denote the numbers of elements in A and X. It is at once obvious from the
definition of fx% that fXFS(Am) Therefore, according to Lemma 3.7, there is an i (1 <1 < 4) satisfying the
inequallty e : : o _ SRR SE

’ Fgnitn iy
(fAth) <1 V ()

From the deflnltlon of the function fX and the operator T we infer the following equalities by direct computa—
tions (which we omit for their triviality):

(1 ) = () e(A2) e (n) —e(X)) @
and : . v

(T'fz, 1) =c(4) [c(XNTX)c(4,) —c* (X) ]. ' (3)
1t follows from (1)~(3) that S

© (X N TX)e(Am) — 2 (X) R PR R
' C(X)(‘c(A...)—-c(X)) <1" A T (4

Since ¢(X) > 0 and c(Am—c(X) >0 (because X = ¢ and X # Am), we infer from (4), denotlng c(X)/c (Am) by
ax, that . , A

‘c(Xﬂ rx)<-4= d)f(_")(c(A )—-c(X»+c'(X)

= C(X)c(Am)—0’(X)—d6(Xc)(c[:A1l)+dC’lé)+¢=’(X) ’ | o |
! —C(X)—dc(x)+¢(x)da:gc)(x)(i—d+d<lx) N )
Inasmuch as Ti is a one-to-one mapplng, we have c(T1X) = c(X) Therefore.
¢(XUTX) =c{X)+c(r.X)—c(an(X) =2¢(X) —c(XNTX). ' (6)
It follows from (5) and (6) that ‘ P S
R | c(XUT.X)>c(X) [1+d(i—ax)] R

Lemma 3. 3 follows at once from lnequallty (7) ) o
3. 9 This and the ensuing subsections are devoted to the proof of Lemma 3.7, The proof is based on
the methods of group representation theory or, more precisely, on methods associated with the property of
T investigated by Kazhdan (see [2, 3]). We shall not give any definitions from the actual theory of group
representations, because to do so would take up too much space. We merely point out that all the required

, definitions may be found in [2-4]. . L o o 10u\ -
(0 1 v), and by

. abu \N0O1

S the group of matrices of the form (c d v), where a, b, ¢, d, u, and v run through the real number field.
. \001

We denote by Hz c H(SZ c S) the subgroup conslsting of all matrices belonglng to H(S) wlth lnteger-valued

coefflclents ' ;

3.10. Notation. - We denote by H the group of all unlmodularT matrlces of the form

3.11, For any lnteger a and any element X of the rlng Zm we denote by ax the product of a and x; If

a-fold
a >0, then ax s definedas x +... +x; if a <0, then ax = =[(~-a)x}; and if a = 0, then ax = 0,
‘ T . o . o fabu
Let m be an arbitrary positive integer. We now assoclate with each element g = (c d v) of the group
' 001/ -~

*We exclude cases in which X is the empty set and in which X = Am
TA matrix {s called unimodular if its determinant is equal to 1.

'328



H a transformation Tpy (g) of the set Ay, = Z,, X Zp, as follows: if (x, Y)€Zm X Zyy, then Tm @)X, ¥) = (ax

+ by + u, ex +dy + v) 1t is verified by direction computation that the following equality holds for any g1

T (8182) =T (g:) Tm(g:). 1 R (8)
3.12, Inasmuch as Hgz is a group, it follows from (8) that the transformation Ty, (g) is one~to-one for

any gGHZZ Consequently, it is possible to associate with Ty, (g) (see subsection 3.5) a linear unitary opera-

tor in L*(Apy). We denote that operator by Tm(g) It follows from (8) and the definition of the operators -
Tm (g) that the following equality holds for any g1 826Hg: L .

T (8:83) =T (2)Ta(25) (9),

(it is necessary here to rely on the easily verified fact that the equality Tl Tz = Ti T, is true for any two
one-to-one mappings Tt and Ty). Co ' .

It follows from Eq. (9) and the unitarity of the operators Tm () that Tm is a unitary representation
of the group Hyp. .

3.13. We pick the following four elements inHZ:' ‘ . ‘
101 _ 100
m={010) e={011)
001 001
T 110 (0 —10
c e g=lot0), a=[1 00
o . 001 o 0 01

We infer the following equality directly from the definition of Tm(g) (subsection 3.11) and the definitions of
Ty, Ty T3 and Ty (subsection 3.2): '

. T (8t)’=T« (10)

for any i(1=1t=4). From Eq. (10), the definition of Ti (1 =i=4) (subsection 3. 5), and the definition of
the representatlons Tm (subsection 3.12) we deduce the equality .

T (g) =T\ ‘ o - (D
foranyi (1 =i=4). '

3.14, Definition. We call a unitary representation T of Hg in the space X essentially nontrivial on
Sy if X does not contain a nonnull vector invariant under T(Sz), i.e., if for any x€X (x # 0) there is an
element s8€Sy such that T(s)x = x.

Definition. We call a unitary representation T of H in the space X essentiaily nontrivial on S if X
does not contailn a nonnull vector invariant under T(S).

3.15. LEMMA. A positive constant d exists such that if T is any unitary representation of Hy in the
Hilbert space L, essentially nontrivial on Sz, and x is any nonnull element of L, then there is ani(1=i
=< 4) such that

(T (g) =, 7)
Temn <

: where X, y denotes the scalar product in L.

. 3.16. The proof of Lemma 3,15 will be given below. We show for now that Lemma 3.7 follows from
Lemma 3.15.

. As we mentioned in subsection 3.6, for any one-to~-one mapping of the set T into itself the space S(Am)
is invariant under T, Consequently, S(Am) is an invariant subspace for the representation Tm We denote
by T}y, the restriction of Tm onto the subspace S(A,,). Inasmuch as Tmisa unitary representation (see
subsection 3.12), Ty, is also a unitary representation. We now show that T}, {s essentially nontrivial on
Sz. Indeed, if Ty, were not essentially nontrivial on Sy, it would be readily apparent that S(Ap,) contained
a nonnull function f invariant under T'm(SZ). But then, by the» definition of the representation Ty, the fol-
lowing would hold for any x, y, u, v€Zp: "~ ‘ TR o

f(z+u, y+v)=f(z, y). : (12)
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Since x, y, v6Zy, are arbitrary, it follows from (12) that f is constant on Ay, But £€S(Am), L.e., 2 f(a)

=0. Consequently, f =0. We have thus shown that T}, is essentially nontrivial on Sz. It follows from
the latter assertion, the unitarity of Tin» and Lemma 3,15 that for any nonnull function f6S(Am) there is
ani (1 <1 =4) such that

(T,.'(gf)/,f) <t—d. Co : (13)

Inasmuch as T}, @pf = m(gl)f foranyi (1 =i =<4)and fGS(Am) (by the definition of ’I"m), Lemma 3. 7
therefore follows from (13) and (11).

3.17. Let G be a locally compact group. We denote by G the set of unitary representations of G. Let
" T€G, &> 0, letKbea compactum in G, andlet X be a vector in T representation space. We denote by
V(X, K, €) the set of all T' €G such that T representation space contains a vector Y such that the inequality .
(T ®)Y, Y)—(TE)X, X)) < € holds for any g€K. “We now define in G a topology for which the sets VX, K,
g) form a basis of neighborhoods of T.

3.18. LEMMA. For the unit representation of Hy there isa nelghborhood U such that any unitary
representation of H, essentially nontrivial on Sz isnot in U.

3.19. The proof of Lemma 3.18 will be given below, We show for now that Lemma 3.15 reduces to
Lemma 3.18. The reduction s based on the following lemme, which _will be proved in subsection 3.20,

LEMMA. The elements gy, g,, g3, and g, In subsection 3.13 are generators of the group Hy.

Reduction of Lemma 3.15 to Lemma 3,18, Inasmuch as Hz is a discrete group, any compactum
K = Hg is a finite subset. We therefore infer from Lemma 3.18 the existence of an &€ > 0 and of a finite
subset K = Hyz such that for any unitary representation T' of Hy essentially nontrivial on Sz the following
is true: if s is an element of T' representation space, then for any h€K the following inequality holds:

(T (h) 2, z)

" (z,2)

It follows from the unitarlty of the operator T'(h) and the Pythagorean theorem that lnequahty (14) is .
equivalent to the inequality

T <i-—e (19

el >V%e—¢ (15)

We give the following simple proposition without proof:

Proposition. Let Ay and A, be two unitary operators acting in the same Hﬂbert space L and let
X€L. Then lx—TiTxll < lIIx = Tyxll + lx = T,xll (the unitarity of Ty and Tz is essentlal)

Inasmuch as K is a finite subset in Hyz and as gy, g,, g3, and g, are generators of Hyz, a positive in-
teger m exists such that any element h€K is representable in the form of a word from g;, £, g3, g4 Whose
length is not greater than* m. It follows from this result, inequality (15), and the above stated proposi-~
tion that for any x In T' representation space there is an i such that

’ — — p?
iIT7'(@g)z :c||< VZs e (16)
H]
1t follows from the unitarlty of T'(gj) and the Pythagorean theorem that inequality (16) is equivalent to the
lnequality
(I"(g) z,2) 1/ 23—3’ ] - ' Coan
(z,2) g < 1= ‘ U

We have now merely to puf d equal to 1 —\/ -(2e - ez)/m2 and to note that Lemma 3 15 follows from (17 )e

3. 20 Proof of Lemma 3.19. We denote by A the group cons!stlng of lnteger-valued untmodular
matrlces of the form » -

*In other words, h = gig{?z. . .g{?l, where 1 < lj =4 and ‘_E‘ lmjl <m (mj can be n.eg‘ative).v



ab0
cd0]
001
ab0

We denote by f a inapping of Hy into Ay taking the matrix ( cdv ) into the mafrlk (c d 0) . Ii is verified
[ : 001
by direct computations that the following equality holds for any g€Hg:

g=/(g) ‘s, : (18)
where 8€Sz.  We now inject the following two remarks: ' ‘

Remark 1. 1t is readily inferred from (5], Seé. 2 (sée the remark in (5] following Theorem 1 in Sec.
2) that the group Az is generated by elements g3 and 84 (see subsection 3.13 for the definition of gy and g4)..

Remark 2. It is directly verifiable that the following equality holds for any Integers m and n:

10m\ . : .
01n |=g"g", , . (19)
001 )

‘ where'g, and g, are given in subsection 3.13. It follows from (19) that g, and g, are generators of the group

Lemma 3.19 now follows from Remarks 1 and 2 in conjunction with Eq. (18).

3.21. Let p be a right-invariant Haar measure* on the group H. Then p r.laturally‘ induces on the
factor space H/Hz a measure which we denote by p. :

LEMMA. The measure of the entire factor space H/Hy under measure [ s finite, Le., ﬁ(H/HZ)
< o,

Proof. We note first of all that it {s necessary to review the treatise [6] with regard to the definitions
used in the proof. We then inject the following remarks:

Remark 1. 1t follows at once from the definition of an arithmetic subgroup of an algebraic group that
Hz is an arithmetic subgroup of H.

Remark 2. We denote by A the subgroup of H consisting of real unimodular matrices of the form

ab0 :
(c a0 ) It is readily seen that H is the semidirect product of A and S (see subsection 3.10 for the defini- '
001

tion of S). On the other hand: 1) since A is readily perceived to be isomorphic to SL(2, R) (the group of
real second-order unimodular matrices) and SL(2, R) is, of course (see, e.g., [8]) a simple group, A is

therefore a simple group; 2) S is a unipotent group. It follows from the last two propositions that H does
not have nontrivial rational characters.

The following lemma is a consequence of Remarks 1 and 2 and Theorem 9.4 in [6].

3.22. LEMMA,. For the unit representation of H there is a neighborhood V such that any unitary -
representation of H nontrivial on S is not in V. :

Proof. It follows directly from Lemmas 2 and 3 of [2] that for the unit representation of H there is
a neighborhood V such that any irreducible unitary representation of H nontrivial on S is not in V. It fol-
lows from this result, a theorem (see [9]) on the decomposition of any unitary representation into a direct

integral of irreducible representations, and the definition of a representation of H nontrivial on S (see sub-
section 3.14) that the lemma is true.

3.23. Proof of Lemma 3.18. As before, for any locally compact group G we denote by G the épace
of unitary representations with topology described in 3.17 above.

Consider the mapping ¢: ﬁz ~ H, which is an Induction in the sense of Frobentus (or, in the ter-

minology of [3], an induction in the sense of Mackey). Lemma 3.18 follows directly from two properties of
this mapping: ' '

*See Pontryagin [7] for the definition of Haar measure.
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va) ¢ i3 continuous;

b) if pGHz is essentially nontrivial on S;, then (p(p) is essentially nontrivial on S.
Property a) is easily derived from Lemma 3 19 and the results of Fell [10] (see also [2, 3)).

Property b) follows at once from the definition of go.
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